Component Data Catalog 1987

Excellence in Integrated Signal Processing IC's \qquad

ThiN
 Component Data Catalog 1987

1

Table of Contents

SELECTOR GUIDES
A/D CONVERTERS DISPLAY TYPE

D/A CONVERTERS
POWER SUPPLY SUPERVISORY
SPECIAL ANALOG
OPERATIONAL AMPLIFIERS
ANALOG SWITCHES
MULTIPLEXERS

MULTIPLEXERS	9
dISCRETES	10
dATA COMMUNICATIONS	11
digital signal procesing	12
dISPLAY drivers	13

TIMERS/CLOCKS/COUNTERS WITH DISPLAY DRIVERS
HIGH RELIABILITY

Functional Table of Contents

Description Page
Section 1 - Selector Guides 1-1
Section 2 - A/D Converters Display Type
ICL7106 3 ½-Digit LCD Single-Chip A/D Converter 2-1
ICL7107 3 ½-Digit LED Single-Chip A/D Converter 2-1
ICL7116 3 ½-Digit with Display Hold Single-Chip A/D Converter 2-13
ICL7117 3 1/2-Digit with Display Hold Single-Chip A/D Converter 2-13
ICL7126 3 ½-Digit Low-Power Single-Chip A/D Converter 2-24
ICL7129 4 ½ Digit LCD Single-Chip A/D Converter 2-35
ICL7136 3 ½-Digit LCD Low Power A/D Converter 2-47
ICL7137 3 ½-Digit LED Low Power Single-Chip A/D Converter 2-58
ICL7139 3³/4-Digit Autoranging Multimeter 2-67
ICL7149 Low Cost 33/4-Digit Autoranging Multimeter 2-81
ICL7182 101 Segment LCD Bargraph A/D Converter 2-95
Section 3 - A/D Converters $\mu \mathbf{P}$ Type
ADC0802 8-Bit $\mu \mathrm{P}$-Compatible A/D Converter 3-1
ADC0803 8-Bit $\mu \mathrm{P}$-Compatible A/D Converter 3-1
ADC0804 8-Bit $\mu \mathrm{P}$-Compatible A/D Converter 3-1
ICL7104/ICL8052 12/14/16-Bit μ P-Compatible 2-Chip A/D Converter 3-19
ICL7104/ICL8068 12/14/16-Bit μ P-Compatible 2-Chip A/D Converter 3-19
ICL7109 12-Bit $\mu \mathrm{P}$-Compatible A/D Converter 3-39
ICL7112 12-Bit High-Speed CMOS μ P-Compatible A/D Converter 3-58
ICL7115 14-Bit High-Speed CMOS μ P-Compatible A/D Converter 3-60
ICL7135 4 ½-Digit BCD Output A/D Converter 3-74
Section 4 - D/A Converters
AD7520 10/12-Bit Multiplying D/A Converter 4-1
AD7521 10/12-Bit Multiplying D/A Converter 4-1
AD7530 10/12-Bit Multiplying D/A Converter 4-1
AD7531 10/12-Bit Multiplying D/A Converter 4-1
AD7523 8-Bit Multiplying D/A Converter 4-8
AD7533 10-Bit Multiplying D/A Converter 4-13
AD7541 12-Bit Multiplying D/A Converter 4-18
ICL7121 16-Bit Multiplying Microprocessor-Compatible D/A Converter 4-25
ICL7134 14-Bit Multiplying $\mu \mathrm{P}$-Compatible D/A Converter 4-32
IM2110 256×12 Color Lookup Table and DAC 4-46
Section 5 - Power Supply Supervisory
ICL7660 CMOS Voltage Converter 5-1
ICL7660S Super Voltage Converter 5-10
ICL7662 CMOS Voltage Converter 5-20
ICL7663 CMOS Programmable Micropower Positive Voltage Regulator 5-28
ICL7663S CMOS Programmable Micropower Positive Voltage Regulator 5-37
ICL7665 Micropower Under/Over Voltage Detector 5-44
ICL7665S CMOS Micropower Over/Under Voltage Detector 5-53

Functional Table of Contents

Description Page
Section 5 - Power Supply Supervisory (Continued)
ICL7667 Dual Power MOSFET Driver 5-63
ICL7673 Automatic Battery Back-up Switch 5-71
ICL7675 Switched-Mode Power Supply Controller Set 5-79
ICL7676 Switched-Mode Power Supply Controller Set 5-79
ICL7677 Power Fail Detector 5-89
ICL7680 +5 V to $\pm 15 \mathrm{~V}$ Voltage Converter/Regulator 5-101
ICL8211 Programmable Voltage Detector 5-103
ICL8212 Programmable Voltage Detector 5-103
Section 6 - Special Analog
AD590 2-Wire Current Output Temperature Transducer 6-1
ICL8013 Four Quadrant Analog Multiplier 6-12
ICL8038 Precision Waveform Generator/Voltage Controlled Oscillator 6-21
ICL8048 Logarithmic Amplifier 6-30
ICL8049 Antilog Amplifier 6-30
ICL8069 Low Voltage Reference 6-39
Section 7 - Operational Amplifiers
ICH8500/A Ultra Low Input-Bias Operational Amplifier 7-1
ICL7600 Commutating Auto-Zero (CAZ) Operational Amplifier 7-7
ICL7601 Commutating Auto-Zero (CAZ) Operational Amplifier 7-7
ICL7605 Commutating Auto-Zero (CAZ) Instrumentation Amplifier 7-19
ICL7606 Commutating Auto-Zero (CAD) Instrumentation Amplifier 7-19
ICL76XX Series Low Power CMOS Operational Amplifiers 7-31
ICL7650 Chopper-Stabilized Operational Amplifier 7-46
ICL7650S Super Chopper-Stabilized Operational Amplifier 7-54
ICL7652 Chopper-Stabilized Low-Noise Operational Amplifier 7-64
ICL7652S Super Chopper-Stabilized Low-Noise Operational Amplifier 7-72
ICL8007 JFET Input Operational Amplifier 7-82
ICL8021 Low Power Bipolar Operational Amplifier 7-86
ICL8023 Triple Low Power Bipolar Operational Amplifier 7-86
ICL8043 Dual JFET Input Operational Amplifier 7-91
ICL8063 Power Transistor Driver/Amplifier 7-99
LM4250 Programmable Operational Amplifier 7-108
Section 8 - Analog Switches
D123 SPST 6-Channel JFET Switch Driver 8-1
D125 SPST 6-Channel JFET Switch Driver 8-1
D129 4-Channel Decoded JFET Switch Driver 8-5
DG123 SPST 5-Channel Driver With Switch 8-7
DG125 SPST 5-Channel Driver With Switch 8-7
DG126 Dual DPST 80 Ohm JFET Analog Switch 8-11
DG129 Dual DPST 30 Ohm JFET Analog Switch 8-11
DG133 Dual SPST 30/35 Ohm JFET Analog Switch 8-11
DG134 Dual SPST 80 Ohm JFET Analog Switch 8-11
DG140 Dual DPST 10/15 Ohm JFET Analog Switch 8-11

Functional Table of Contents

Description Page
Section 8 - Analog Switches (Continued)
DG141 Dual SPST 10 Ohm JFET Analog Switch 8-11
DG151 Dual SPST 15 Ohm JFET Analog Switch 8-11
DG152 Dual SPST 50 Ohm JFET Analog Switch 8-11
DG153 Dual DPST 15 Ohm JFET Analog Switch 8-11
DG154 Dual DPST 50 Ohm JFET Analog Switch 8-11
DG139 DPDT 30 Ohm Differentially Driven JFET Switch 8-17
DG142 DPDT 80 Ohm Differentially Driven JFET Switch 8-17
DG143 SPDT 80 Ohm Differentially Driven JFET Switch 8-17
DG144 SPDT 30 Ohm Differentially Driven JFET Switch 8-17
DG145 DPDT 10 Ohm Differentially Driven JFET Switch 8-17
DG146 SPDT 10 Ohm Differentially Driven JFET Switch 8-17
DG161 SPDT 15 Ohm Differentially Driven JFET Switch 8-17
DG162 SPDT 50 Ohm Differentially Driven JFET Switch 8-17
DG163 DPDT 15 Ohm Differentially Driven JFET Switch 8-17
DG164 DPDT 50 Ohm Differentially Driven JFET Switch 8-17
DG180 Dual SPST 10 Ohm High-Speed Driver With JFET Switch 8-22
DG181 Dual SPST 30 Ohm High-Speed Driver With JFET Switch 8-22
DG182 Dual SPST 75 Ohm High-Speed Driver With JFET Switch 8-22
DG183 Dual DPST 10 Ohm High-Speed Driver With JFET Switch 8-22
DG184 Dual DPST 30 Ohm High-Speed Driver With JFET Switch 8-22
DG185 Dual DPST 75 Ohm High-Speed Driver With JFET Switch 8-22
DG186 SPDT 10 Ohm High-Speed Driver With JFET Switch 8-22
DG187 SPDT 30 Ohm High-Speed Driver With JFET Switch 8-22
DG188 SPDT 75 Ohm High-Speed Driver With JFET Switch 8-22
DG189 Dual SPDT 10 Ohm High-Speed Driver With JFET Switch 8-22
DG190 Dual SPDT 30 Ohm High-Speed Driver With JFET Switch 8-22
DG191 Dual SPDT 75 Ohm High-Speed Driver With JFET Switch 8-22
DG200 Dual SPST CMOS Analog Switch 8-28
DG201 Quad SPST CMOS Analog Switch 8-32
DG201A Quad Monolithic SPST CMOS Analog Switches 8-36
DG202 Quad Monolithic SPST CMOS Analog Switches 8-36
DG211 SPST 4-Channel Analog Switch 8-41
DG212 SPST 4-Channel Analog Switch 8-41
DG300A TTL Compatible CMOS Analog Switches 8-44
DG301A TTL Compatible CMOS Analog Switches 8-44
DG302A TTL Compatible CMOS Analog Switches 8-44
DG303A TTL Compatible CMOS Analog Switches 8-44
DGM181 Dual SPST 50 Ohm High-Speed CMOS Analog Switch 8-49
DGM182 Dual SPST 50/75 Ohm High-Speed CMOS Analog Switch 8-49
DGM184 Dual DPST 50 Ohm High-Speed CMOS Analog Switch 8-49
DGM185 Dual DPST 50/75 Ohm High-Speed CMOS Analog Switch 8-49
DGM190 Dual SPDT 50 Ohm High-Speed CMOS Analog Switch 8-49
DGM191 Dual SPDT 50/75 Ohm High-Speed CMOS Analog Switch 8-49
IH311 High Speed SPST 4-Channel Analog Switch 8-54
IH312 High Speed SPST 4-Channel Analog Switch 8-54
IH401 QUAD Varafet Analog Switch 8-59
IH401A QUAD Varafet Analog Switch 8-59
IH5009 Quad 100 Ohm Virtual Ground Analog Switch 8-65
IH5010 Quad 150 Ohm Virtual Ground Analog Switch 8-65

Functional Table of Contents

Description Page
Section 8 - Analog Switches (Continued)
IH5011 Quad 100 Ohm Virtual Ground Analog Switch 8-65
IH5012 Quad 150 Ohm Virtual Ground Analog Switch 8-65
IH5013 Triple 100 Ohm Virtual Ground Analog Switch 8-65
IH5014 Triple 150 Ohm Virtual Ground Analog Switch 8-65
IH5015 Triple 100 Ohm Virtual Groung Analog Switch 8-65
IH5016 Triple 150 Ohm Virtual Ground Analog Switch 8-65
IH5017 Dual 100 Ohm Virtual Ground Analog Switch 8-65
IH5018 Dual 150 Ohm Virtual Ground Analog Switch 8-65
IH5019 Dual 100 Ohm Virtual Ground Analog Switch 8-65
IH5020 Dual 150 Ohm Virtual Ground Analog Switch 8-65
IH5021 Single 100 Ohm Virtual Ground Analog Switch 8-65
IH5022 Single 150 Ohm Virtual Ground Analog Switch 8-65
IH5023 Single 100 Ohm Virtual Ground Analog Switch 8-65
IH5024 Single 150 Ohm Virtual Ground Analog Switch 8-65
IH5040 SPST 75 Ohm High-Level CMOS Analog Switch 8-72
IH5041 Dual SPST 75 Ohm High-Level CMOS Analog Switch 8-72
IH5042 SPDT 75 Ohm High-Level CMOS Analog Switch 8-72
IH5043 Dual SPDT 75 Ohm High-Level CMOS Analog Switch 8-72
IH5044 DPST 75 Ohm High-Level CMOS Analog Switch 8-72
IH5045 Dual DPST 75 Ohm High-Level CMOS Analog Switch 8-72
IH5046 DPDT 75 Ohm High-Level CMOS Analog Switch 8-72
IH5047 4PST 75 Ohm High-Level CMOS Analog Switch 8-72
IH5048 Dual SPST 35 Ohm High-Level CMOS Analog Switch 8-81
IH5049 Dual DPST 35 Ohm High-Level CMOS Analog Switch 8-81
IH5050 SPDT 35 Ohm High-Level CMOS Analog Switch 8-81
IH5051 Dual SPDT 35 Ohm High-Level CMOS Analog Switch 8-81
IH5052 QUAD CMOS Analog Switch 8-86
IH5053 QUAD CMOS Analog Switch 8-86
IH5140 SPST High-Level CMOS Analog Switch 8-92
IH5141 Dual SPST High-Level CMOS Analog Switch 8-92
IH5142 SPDT High-Level CMOS Analog Switch 8-92
IH5143 Dual SPDT High-Level CMOS Analog Switch 8-92
IH5144 DPST High-Level CMOS Analog Switch 8-92
IH5145 Dual DPST High-Level CMOS Analog Switch 8-92
IH5148 Dual SPST High-Level CMOS Analog Switch 8-103
IH5149 Dual DPST High-Level CMOS Analog Switch 8-103
IH5150 SPDT High-Level CMOS Analog Switch 8-103
IH5151 Dual SPDT High-Level CMOS Analog Switch 8-103
IH5341 Dual SPST CMOS RF/Video Switch 8-111
IH5352 QUAD SPST CMOS RF/Video Switch 8-117
MM450 Dual Differential High Voltage Analog Switch 8-122
MM451 Four Channel High Voltage Multiplexer 8-122
MM452 Quad SPST High Voltage Analog Switch 8-122
MM455 Three SPST High Voltage Analog Switch 8-122
MM550 Dual Differential High Voltage Analog Switch 8-122
MM551 Four Channel High Voltage Multiplexer 8-122
MM552 Quad SPST High Voltage Analog Switch 8-122
MM555 Three SPST High Voltage Analog Switch 8-122

Functional Table of Contents

Description Page

Section 9 - Multiplexers

IH5108 8-Channel Fault Protected Analog Multiplexer 9-1
IH5116 16-Channel Fault Protected Analog Multiplexer 9-10
IH5208 4-Channel Differential Fault Protected Analog Multiplexer 9-14
IH5216 8-Channel Differential Fault Protected Analog Multiplexer 9-23
IH6108 8-Channel CMOS Analog Multiplexer 9-27
IH6116 16-Channel CMOS Analog Multiplexer 9-33
IH6201 Dual CMOS Driver/Voltage Translator 9-40
IH6208 4-Channel Differential CMOS Analog Multiplexer 9-44
IH6216 8-Channel Differential CMOS Analog Multiplexer 9-50
IH9108 8-Channel High-Voltage Multiplier with Latches 9-56
Section 10 - Discretes
2N2607 P-Channel JFET General Purpose Amplifier 10-1
2N2608 P-Channel JFET General Purpose Amplifier 10-1
2N2609 P-Channel JFET General Purpose Amplifier 10-1
2N2609JAN P-Channel JFET General Purpose Amplifier 10-1
2N3684 N-Channel JFET Low Noise Amplifier 10-2
2N3685 N-Channel JFET Low Noise Amplifier 10-2
2N3686 N-Channel JFET Low Noise Amplifier 10-2
2N3687 N-Channel JFET Low Noise Amplifier 10-2
2N3810/A Monolithic Dual Matched PNP General Purpose Amplifier 10-3
2N3811/A Monolithic Dual Matched PNP General Purpose Amplifier 10-3
2N3821 N-Channel JFET High Frequency Amplifier 10-5
2N3821JAN N-Channel JFET High Frequency Amplifier 10-5
2N3821JTX N-Channel JFET High Frequency Amplifier 10-5
2N3821JTXV N-Channel JFET High Frequency Amplifier 10-5
2N3822 N-Channel JFET High Frequency Amplifier 10-5
2N3822JAN N-Channel JFET High Frequency Amplifier 10-5
2N3822JTX N-Channel JFET High Frequency Amplifier 10-5
2N3822JTXV N-Channel JFET High Frequency Amplifier 10-5
2N3823 N-Channel JFET High Frequency Amplifier 10-7
2N3823JAN N-Channel JFET High Frequency Amplifier 10-7
2N3823JTX N-Channel JFET High Frequency Amplifier 10-7
2N3823JTXV N-Channel JFET High Frequency Amplifier 10-7
2N3824 N-Channel JFET Switch 10-8
2N3921 Dual N-Channel JFET General Purpose Amplifier 10-9
2N3922 Dual N-Channel JFET General Purpose Amplifier 10-9
2N3954 Monolithic Dual N-Channel JFET General Purpose Amplifier 10-11
2N3954A Monolithic Dual N-Channel JFET General Purpose Amplifier 10-11
2N3955 Monolithic Dual N-Channel JFET General Purpose Amplifier 10-11
2N3955A Monolithic Dual N-Channel JFET General Purpose Amplifier 10-11
2N3956 Monolithic Dual N-Channel JFET General Purpose Amplifier 10-11
2N3957 Monolithic Dual N-Channel JFET General Purpose Amplifier 10-11
2N3958 Monolithic Dual N-Channel JFET General Purpose Amplifier 10-11
2N3970 N-Channel JFET Switch 10-13
2N3971 N-Channel JFET Switch 10-13
2N3972 N-Channel JFET Switch 10-13
2N3993 P-Channel JFET General Purpose Amplifier/Switch 10-15

Functional Table of Contents

Description Page
Section 10 - Discretes (Continued)
2N3994 P-Channel JFET General Purpose Amplifier/Switch 10-15
2N4044 Dielectrically Isolated Monolithic Dual NPN General Purpose Amplifier 10-16
2N4045 Dielectrically Isolated Monolithic Dual NPN General Purpose Amplifier 10-16
2N4100 Dielectrically Isolated Monolithic Dual NPN General Purpose Amplifier 10-16
2N4878 Dielectrically Isolated Monolithic Dual NPN General Purpose Amplifier 10-16
2N4879 Dielectrically Isolated Monolithic Dual NPN General Purpose Amplifier 10-16
2N4880 Dielectrically Isolated Monolithic Dual NPN General Purpose Amplifier 10-16
2N4091 JANTX N-Channel JFET Switch 10-19
2N4091 N-Channel JFET Switch 10-19
2N4092 JANTX N-Channel JFET Switch 10-19
2N4092 N-Channel JFET Switch 10-19
2N4093 JANTX N-Channel JFET Switch 10-19
2N4093 N-Channel JFET Switch 10-19
ITE4091 N-Channel JFET Switch 10-19
ITE4092 N-Channel JFET Switch 10-19
ITE4093 N-Channel JFET Switch 10-19
2N4117 N-Channel JFET General Purpose Amplifier 10-21
2N4117A N-Channel JFET General Purpose Amplifier 10-21
2N4118 N-Channel JFET General Purpose Amplifier 10-21
2N4118A N-Channel JFET General Purpose Amplifier 10-21
2N4119 N-Channel JFET General Purpose Amplifier 10-21
2N4119A N-Channel JFET General-Purpose Amplifier 10-21
2N4220 N-Channel JFET General Purpose Amplifier/Switch 10-22
2N4221 N-Channel JFET General Purpose Amplifier/Switch 10-22
2N4222 N-Channel JFET General Purpose Amplifier/Switch 10-22
2N4223 N-Channel JFET High Frequency Amplifier 10-23
2N4224 N-Channel JFET High Frequency Amplifier 10-23
2N4338 N-Channel JFET Low Noise Amplifier 10-24
2N4339 N-Channel JFET Low Noise Amplifier 10-24
2N4340 N-Channel JFET Low Noise Amplifier 10-24
2N4341 N-Channel JFET Low Noise Amplifier 10-24
2N4351 N-Channel Enhancement Mode MOSFET General Purpose Amplifier/Switch 10-25
2N4391 N-Channel JFET Switch 10-26
2N4392 N-Channel JFET Switch 10-26
2N4393 N-Channel JFET Switch 10-26
ITE4391 N-Channel JFET Switch 10-26
ITE4392 N-Channel JFET Switch 10-26
ITE4393 N-Channel JFET Switch 10-26
2N4416/A N-Channel JFET High Frequency Amplifier 10-28
ITE4416 N-Channel JFET High Frequency Amplifier 10-28
2N4856 N-Channel JFET Switch 10-30
2N4856JAN,JTX,JTXV N-Channel JFET Switch 10-30
2N4857 N-Channel JFET Switch 10-30
2N4857JAN,JTX,JTXV N-Channel JFET Switch 10-30
2N4858 N-Channel JFET Switch 10-30
2N4858JAN,JTX,JTXV N-Channel JFET Switch 10-30
2N4859 N-Channel JFET Switch 10-30
2N4859JAN,JTX,JTXV N-Channel JFET Switch 10-30
2N4860 N-Channel JFET Switch 10-30

Functional Table of Contents

Description Page
Section 10 - Discretes (Continued)
2N4860JAN,JTX,JTXV N-Channel JFET Switch 10-30
2N4861 N-Channel JFET Switch 10-30
2N4861JAN,JTX,JTXV N-Channel JFET Switch 10-30
2N4867/A N-Channel JFET Low Noise Amplifier 10-32
2N4868/A N-Channel JFET Low Noise Amplifier 10-32
2N4869/A N-Channel JFET Low Noise Amplifier 10-32
2N5018 P-Channel JFET Switch 10-33
2N5019 P-Channel JFET Switch 10-33
2N5114 P-Channel JFET Switch 10-35
2N5114JAN,JTX,JTXV P-Channel JFET Switch 10-35
2N5115 P-Channel JFET Switch 10-35
2N5115JAN,JTX,JTXV P-Channel JFET Switch 10-35
2N5116 P-Channel JFET Switch 10-35
2N5116JAN,JTX,JTXV P-Channel JFET Switch 10-35
2N5117 Dielectrically Isolated Dual PNP General Purpose Amplifier 10-37
2N5118 Dielectrically Isolated Dual PNP General Purpose Amplifier 10-37
2N5119 Dielectrically Isolated Dual PNP General Purpose Amplifier 10-37
2N5196 Dual N-Channel JFET General Purpose Amplifier 10-39
2N5197 Dual N-Channel JFET General Purpose Amplifier 10-39
2N5198 Dual N-Channel JFET General Purpose Amplifier 10-39
2N5199 Dual N-Channel JFET General Purpose Amplifier 10-39
2N5397 N-Channel JFET High Frequency Amplifier 10-41
2N5398 N-Channel JFET High Frequency Amplifier $10-41$
2N5432 N-Channel JFET Switch 10-43
2N5433 N-Channel JFET Switch 10-43
2N5434 N-Channel JFET Switch 10-43
2N5452 Dual N-Channel JFET General Purpose Amplifier $10-45$
2N5453 Dual N-Channel JFET General Purpose Amplifier $10-45$
2N5454 Dual N-Channel JFET General Purpose Amplifier $10-45$
2N5457 N-Channel JFET General Purpose Amplifier/Switch $10-47$
2N5458 N-Channel JFET General Purpose Amplifier/Switch 10-47
2N5459 N-Channel JFET General Purpose Amplifier/Switch $10-47$
2N5460 P-Channel JFET Low Noise Amplifier 10-48
2N5461 P-Channel JFET Low Noise Amplifier 10-48
2N5462 P-Channel JFET Low Noise Amplifier 10-48
2N5463 P-Channel JFET Low Noise Amplifier 10-48
2N5464 P-Channel JFET Low Noise Amplifier 10-48
2N5465 P-Channel JFET Low Noise Amplifier 10-48
2N5484 N-Channel JFET High Frequency Amplifier 10-50
2N5485 N-Channel JFET High Frequency Amplifier 10-50
2N5486 N-Channel JFET High Frequency Amplifier 10-50
2N5515 Dual N-Channel JFET Low Noise Amplifier 10-52
2N5516 Dual N-Channel JFET Low Noise Amplifier 10-52
2N5517 Dual N-Channel JFET Low Noise Amplifier 10-52
2N5518 Dual N-Channel JFET Low Noise Amplifier 10-52
2N5519 Dual N-Channel JFET Low Noise Amplifier 10-52
2N5520 Dual N-Channel JFET Low Noise Amplifier 10-52
2N5521 Dual N-Channel JFET Low Noise Amplifier 10-52
2N5522 Dual N-Channel JFET Low Noise Amplifier 10-52

Functional Table of Contents

Description Page
Section 10 - Discretes (Continued)
2N5523 Dual N-Channel JFET Low Noise Amplifier 10-52
2N5524 Dual N-Channel JFET Low Noise Amplifier 10-52
2N5638 N-Channel JFET Switch 10-54
2N5639 N-Channel JFET Switch 10-54
2N5640 N-Channel JFET Switch 10-54
2N5902 Monolithic Dual N-Channel JFET General Purpose Amplifier 10-56
2N5903 Monolithic Dual N-Channel JFET General Purpose Amplifier 10-56
2N5904 Monolithic Dual N-Channel JFET General Purpose Amplifier 10-56
2N5905 Monolithic Dual N-Channel JFET General Purpose Amplifier 10-56
2N5906 Monolithic Dual N-Channel JFET General Purpose Amplifier 10-56
2N5907 Monolithic Dual N-Channel JFET General Purpose Amplifier 10-56
2N5908 Monolithic Dual N-Channel JFET General Purpose Amplifier 10-56
2N5909 Monolithic Dual N-Channel JFET General Purpose Amplifier 10-56
2N5911 Dual N-Channel JFET High Frequency Amplifier 10-58
2N5912 Dual N-Channel JFET High Frequency Amplifier 10-58
IT5911 Dual N-Channel JFET High Frequency Amplifier 10-58
IT5912 Dual N-Channel JFET High Frequency Amplifier 10-58
ITC5911 Dual N-Channel JFET High Frequency Amplifier 10-58
ITC5912 Dual N-Channel JFET High Frequency Amplifier 10-58
2N6483 Dual N-Channel JFET Low Noise Amplifier 10-60
2N6484 Dual N-Channel JFET Low Noise Amplifier 10-60
2N6485 Dual N-Channel JFET Low Noise Amplifier 10-60
3N161 Diode Protected P-Channel Enhancement Mode MOSFET General Purpose Amplifier/Switch 10-62
3N163 P-Channel Enhancement Mode MOSFET General Purpose Amplifier/Switch 10-63
3N164 P-Channel Enhancement Mode MOSFET General Purpose/Switch 10-63
3N165 Monolithic Dual P-Channel Enhancement Mode MOSFET General Purpose Amplifier 10-65
3N166 Monolithic Dual P-Channel Enhancement Mode MOSFET General Purpose Amplifier 10-65
3N170 N-Channel Enhancement Mode MOSFET Switch 10-67
3N171 N-Channel Enhancement Mode MOSFET Switch 10-67
3N172 Diode Protected P-Channel Enhancement Mode MOSFET General Purpose Amplifier/Switch 10-69
3N173 Diode Protected P-Channel Enhancement Mode MOSFET General Purpose Amplifier/Switch 10-69
3N188 Dual P-Channel Enhancement Mode MOSFET General Purpose Amplifier 10-71
3N189 Dual P-Channel Enhancement Mode MOSFET General Purpose Amplifier 10-71
3N190 Dual P-Channel Enhancement Mode MOSFET General Purpose Amplifier 10-71
3N191 Dual P-Channel Enhancement Mode MOSFET General Purpose Amplifier 10-71
ID100 Dual Low Leakage Diode 10-73
ID101 Dual Low Leakage Diode 10-73
IT100 P-Channel JFET Switch. 10-75
IT101 P-Channel JFET Switch. 10-75
IT120 Dual NPN General Purpose Amplifier 10-76
IT120A Dual NPN General Purpose Amplifier 10-76
IT121 Dual NPN General Purpose Amplifier 10-76
IT122 Dual NPN General Purpose Amplifier 10-76
IT126 Monolithic Dual NPN General Purpose Amplifier 10-78

Functional Table of Contents

Description Page
Section 10 - Discretes (Continued)
IT127 Monolithic Dual NPN General Purpose Amplifier 10-78
IT128 Monolithic Dual NPN General Purpose Amplifier 10-78
IT129 Monolithic Dual NPN General Purpose Amplifier 10-78
IT130 Monolithic Dual PNP General Purpose Amplifier 10-80
IT130A Monolithic Dual PNP General Purpose Amplifier 10-80
IT131 Monolithic Dual PNP General Purpose Amplifier 10-80
IT132 Monolithic Dual PNP General Purpose Amplifier 10-80
IT136 Monolithic Dual PNP General Purpose Amplifier 10-82
IT137 Monolithic Dual PNP General Purpose Amplifier 10-82
IT138 Monolithic Dual PNP General Purpose Amplifier 10-82
IT139 Monolithic Dual PNP General Purpose Amplifier 10-82
IT500 Monolithic Dual Cascoded N-Channel JFET General Purpose Amplifier 10-84
IT501 Monolithic Dual Cascoded N-Channel JFET General Purpose Amplifier 10-84
IT502 Monolithic Dual Cascoded N-Channel JFET General Purpose Amplifier 10-84
IT503 Monolithic Dual Cascoded N-Channel JFET General Purpose Amplifier 10-84
IT504 Monolithic Dual Cascoded N-Channel JFET General Purpose Amplifier 10-84
IT505 Monolithic Dual Cascoded N-Channel JFET General Purpose Amplifier 10-84
IT1700 P-Channel Enhancement Mode MOSFET General Purpose Amplifier 10-87
IT1750 N-Channel Enhancement Mode MOSFET General Purpose Amplifier/Switch 10-88
J105 N-Channel JFET Switch 10-89
J106 N-Channel JFET Switch 10-89
J107 N-Channel JFET Switch 10-89
J108 N-Channel JFET Switch 10-90
J109 N-Channel JFET Switch 10-90
J110 N-Channel JFET Switch 10-90
J111 N-Channel JFET Switch 10-91
J112 N-Channel JFET Switch 10-91
J113 N-Channel JFET Switch 10-91
J174 P-Channel JFET Switch 10-92
J175 P-Channel JFET Switch 10-92
J176 P-Channel JFET Switch 10-92
J177 P-Channel JFET Switch 10-92
J201 N-Channel JFET General Purpose Amplifier 10-94
J202 N-Channel JFET General Purpose Amplifier 10-94
J203 N-Channel JFET General Purpose Amplifier 10-94
J204 N-Channel JFET General Purpose Amplifier 10-94
J308 N-Channel JFET High Frequency Amplifier 10-95
J309 N-Channel JFET High Frequency Amplifier 10-95
J310 N-Channel JFET High Frequency Amplifier 10-95
LM114/H Monolithic Dual NPN General Purpose Amplifier 10-97
LM114A/AH Monolithic Dual NPN General Purpose Amplifier 10-97
M116 Diode Protected N-Channel Enhancement Mode MOSFET General Purpose Amplifier 10-99
U200 N-Channel JFET Switch 10-100
U201 N-Channel JFET Switch 10-100
U202 N-Channel JFET Switch 10-100
U231 Dual N-Channel JFET General Purpose Amplifier 10-101
U232 Dual N-Channel JFET General Purpose Amplifier 10-101
U233 Dual N-Channel JFET General Purpose Amplifier 10-101

Functional Table of Contents

Description Page
Section 10 - Discretes (Continued)
U234 Dual N-Channel JFET General Purpose Amplifier 10-101
U235 Dual N-Channel JFET General Purpose Amplifier 10-101
U257 Dual N-Channel JFET High Frequency Amplifier 10-103
U304 P-Channel JFET Switch 10-104
U305 P-Channel JFET Switch 10-104
U306 P-Channel JFET Switch 10-104
U308 N-Channel JFET High Frequency Amplifier 10-106
U309 N-Channel JFET High Frequency Amplifier 10-106
U310 N-Channel JFET High Frequency Amplifier 10-106
U401 Dual N-Channel JFET Switch 10-108
U402 Dual N-Channel JFET Switch 10-108
U403 Dual N-Channel JFET Switch 10-108
U404 Dual N-Channel JFET Switch 10-108
U405 Dual N-Channel JFET Switch 10-108
U406 Dual N-Channel JFET Switch 10-108
U1897 N-Channel JFET Switch 10-110
U1898 N-Channel JFET Switch 10-110
U1899 N-Channel JFET Switch 10-110
VCR2N Voltage Controlled Resistors 10-112
VCR3P Voltage Controlled Resistors 10-112
VCR4N Voltage Controlled Resistors 10-112
VCR5P Voltage Controlled Resistors 10-112
VCR7N Voltage Controlled Resistors 10-112
VCR11N Voltage Controlled Resistors 10-115
Section 11 - Data Communications
IM26C91 Universal Asynchronous Receiver/Transmitter (UART) 11-1
IM4702/4712 Baud Rate Generator 11-19
IM6402 Universal Asynchronous Receiver Transmitter (UART) 11-26
IM6403 Universal Asynchronous Receiver Transmitter (UART) 11-26
ICL232 + 5 Volt Powered Dual RS-232 Transmitter/Receiver 11-36
Section 12 - Digital Signal Processing
IM29C128 Finite Impulse Response Filter Controller 12-1
IM29C510 CMOS 16×16 Bit, Multiplier/Accumulator 12-7
EVK-128 Data Conversion and FIR Filtering System 12-19
Section 13 - Display Drivers
ICM7211 4-Digit LCD/LED Display Driver 13-1
ICM7212 4-Digit LCD/LED Display Driver 13-1
ICM7218 8-Digit LED Multiplexed Display Driver 13-12
ICM7228 8-Digit LED Multiplexed Display Driver 13-23
ICM7231 Numeric Triplexed LCD Display Driver 13-36
ICM7232 Numeric Triplexed LCD Display Driver 13-36
ICM7233 Alphanumeric Triplexed LCD Display Driver 13-36
ICM7243 8-Character LED μ P-Compatible Display Driver 13-55

Functional Table of Contents

Description Page
Section 14 - Timers/Clocks/Counters with Display Drivers
ICM7170 μ P-Compatible Real-Time Clock 14-1
ICM7207/A CMOS Timebase Generator 14-14
ICM7208 7-Digit LED Display Counter 14-19
ICM7209 Timebase Generator 14-26
ICM7215 6-Digit LED Display 4-Function Stopwatch 14-29
ICM7216A 8-Digit Multi-Function Frequency Counter/Timer 14-36
ICM7216B 8-Digit Multi-Function Frequency Counter/Timer 14-36
ICM7216C 8-Digit Frequency Counter 14-36
ICM7216D 8-Digit Frequency Counter 14-36
ICM7217 4-Digit LED Display Programmable Up/Down Counter 14-54
ICM7227 4-Digit LED Display Programmable Up/Down Counter 14-54
ICM7224 4 ½-Digit LCD/LED Display Counter 14-72
ICM7225 4 ½-Digit LCD/LED Display Counter 14-72
ICM7226A/B 8-Digit Multi-Function Frequency Counter/Timer 14-80
ICM7236 4 ½-Digit Counter/Vacuum Fluorescent Display Driver 14-93
ICM7240 Programmable Timer 14-98
ICM7250 Programmable Timer 14-98
ICM7242 Long-Range Fixed Timer 14-108
ICM7249 5½-Digit LCD μ-Power Event/Hour Meter 14-114
ICM7555 General Purpose Timer 14-123
ICM7556 Dual General Purpose Timer 14-123
Section 15 - High Reliability 15-1
Section 16 - Ordering and Marking Information 16-1

Alphanumeric Index

2N2607 P-Channel JFET General Purpose Amplifier 10-1
2N2608 P-Channel JFET General Purpose Amplifier 10-1
2N2609 P-Channel JFET General Purpose Amplifier 10-1
2N2609JAN P-Channel JFET General Purpose Amplifier 10-1
2N3684 N-Channel JFET Low Noise Amplifier 10-2
2N3685 N-Channel JFET Low Noise Amplifier 10-2
2N3686 N-Channel JFET Low Noise Amplifier 10-2
2N3687 N-Channel JFET Low Noise Amplifier 10-2
2N3810/A Monolithic Dual Matched PNP General Purpose Amplifier 10-3
2N3811/A Monolithic Dual Matched PNP General Purpose Amplifier 10-3
2N3821 N-Channel JFET High Frequency Amplifier 10-5
2N3821JAN N-Channel JFET High Frequency Amplifier 10-5
2N3821JTX N-Channel JFET High Frequency Amplifier 10-5
2N3821JTXV N-Channel JFET High Frequency Amplifier 10-5
2N3822 N-Channel JFET High Frequency Amplifier 10-5
2N3822JAN N-Channel JFET High Frequency Amplifier 10-5
2N3822.JTX N-Channel JFET High Frequency Amplifier 10-5
2N3822JTXV N-Channel JFET High Frequency Amplifier 10-5
2N3823 N-Channel JFET High Frequency Amplifier 10-7
2N3823JAN N-Channel JFET High Frequency Amplifier 10-7
2N3823JTX N-Channel JFET High Frequency Amplifier 10-7
2N3823JTXV N-Channel JFET High Frequency Amplifier 10-7
2N3824 N-Channel JFET Switch 10-8
2N3921 Dual N-Channel JFET General Purpose Amplifier 10-9
2N3922 Dual N-Channel JFET General Purpose Amplifier 10-9
2N3954 Monolithic Dual N-Channel JFET General Purpose Amplifier 10-11
2N3954A Monolithic Dual N-Channel JFET General Purpose Amplifier 10-11
2N3955 Monolithic Dual N-Channel JFET General Purpose Amplifier 10-11
2N3955A Monolithic Dual N-Channel JFET General Purpose Amplifier 10-11
2N3956 Monolithic Dual N-Channel JFET General Purpose Amplifier 10-11
2N3957 Monolithic Dual N-Channel JFET General Purpose Amplifier 10-11
2N3958 Monolithic Dual N-Channel JFET General Purpose Amplifier 10-11
2N3970 N-Channel JFET Switch 10-13
2N3971 N-Channel JFET Switch 10-13
2N3972 N-Channel JFET Switch 10-13
2N3993 P-Channel JFET General Purpose Amplifier/Switch 10-15
2N3994 P-Channel JFET General Purpose Amplifier/Switch 10-15
2N4044 Dielectrically Isolated Monolithic Dual NPN General Purpose Amplifier 10-16
2N4045 Dielectrically Isolated Monolithic Dual NPN General Purpose Amplifier 10-16
2N4091 JANTX N-Channel JFET Switch 10-19
2N4091 N-Channel JFET Switch 10-19
2N4092 N-Channel JFET Switch 10-19
2N4092 JANTX N-Channel JFET Switch 10-19
2N4093 JANTX N-Channel JFET Switch 10-19
2N4093 N-Channel JFET Switch 10-19
2N4100 Dielectrically Isolated Monolithic Dual NPN General Purpose Amplifier 10-16
2N4117 N-Channel JFET General Purpose Amplifier 10-21
2N4117A N-Channel JFET General Purpose Amplifier 10-21
2N4118 N-Channel JFET General Purpose Amplifier 10-21
2N4118A N-Channel JFET General Purpose Amplifier 10-21
2N4119 N-Channel JFET General Purpose Amplifier 10-21
2N4119A N-Channel JFET General Purpose Amplifier 10-21
2N4220 N-Channel JFET General Purpose Amplifier/Switch 10-22
2N4221 N-Channel JFET General Purpose Amplifier/Switch 10-22
2N4222 N-Channel JFET General Purpose Amplifier/Switch 10-22
2N4223 N-Channel JFET High Frequency Amplifier 10-23
2N4224 N-Channel JFET High Frequency Amplifier 10-23
2N4338 N-Channel JFET Low Noise Amplifier 10-24
2N4339 N-Channel JFET Low Noise Amplifier 10-24
2N4340 N-Channel JFET Low Noise Amplifier 10-24
2N4341 N-Channel JFET Low Noise Amplifier 10-24
2N4351 N-Channel Enhancement Mode MOSFET General Purpose Amplifier/Switch 10-25
2N4391 N-Channel JFET Switch 10-26
2N4392 N-Channel JFET Switch 10-26
2N4393 N-Channel JFET Switch 10-26
2N4416/A N-Channel JFET High Frequency Amplifier 10-28
2N4856 N-Channel JFET Switch 10-30
2N4856JAN,JTX,JTXV N-Channel JFET Switch 10-30
2N4857 N-Channel JFET Switch 10-30
2N4857JAN,JTX,JTXV N-Channel JFET Switch 10-30
2N4858 N-Channel JFET Switch 10-30
2N4858JAN,JTX,JTXV N-Channel JFET Switch 10-30
2N4859 N-Channel JFET Switch 10-30
2N4859JAN,JTX,JTXV N-Channel JFET Switch 10-30
2N4860 N-Channel JFET Switch 10-30
2N4860JAN,JTX,JTXV N-Channel JFET Switch 10-30
2N4861 N-Channel JFET Switch 10-30
2N4861JAN,JTX,JTXV N-Channel JFET Switch 10-30
2N4867/A N-Channel JFET Low Noise Amplifier 10-32
2N4868/A N-Channel JFET Low Noise Amplifier 10-32
2N4869/A N-Channel JFET Low Noise Amplifier 10-32
2N4878 Dielectrically Isolated Monolithic Dual NPN General Purpose Amplifier 10-16
2N4879 Dielectrically Isolated Monolithic Dual NPN General Purpose Amplifier 10-16
2N4880 Dielectrically Isolated Monolithic Dual NPN General Purpose Amplifier 10-16
2N5018 P-Channel JFET Switch 10-33
2N5019 P-Channel JFET Switch 10-33
2N5114 P-Channel JFET Switch 10-35
2N5114JAN,JTX,JTXV P-Channel JFET Switch 10-35
2N5115 P-Channel JFET Switch 10-35
2N5115JAN,JTX,JTXV P-Channel JFET Switch 10-35
2N5116 P-Channel JFET Switch 10-35
2N5116JAN,JTX,JTXV P-Channel JFET Switch 10-35
2N5117 Dielectrically Isolated Dual PNP General Purpose Amplifier 10-37
2N5118 Dielectrically Isolated Dual PNP General Purpose Amplifier 10-37
2N5119 Dielectrically Isolated Dual PNP General Purpose Amplifier 10-37
2N5196 Dual N-Channel JFET General Purpose Amplifier 10-39
2N5197 Dual N-Channel JFET General Purpose Amplifier 10-39
2N5198 Dual N-Channel JFET General Purpose Amplifier 10-39
2N5199 Dual N-Channel JFET General Purpose Amplifier 10-39
2N5397 N-Channel JFET High Frequency Amplifier 10-41
2N5398 N-Channel JFET High Frequency Amplifier 10-41
2N5432 N-Channel JFET Switch 10-43
2N5433 N-Channel JFET Switch 10-43
2N5434 N-Channel JFET Switch 10-43
2N5452 Dual N-Channel JFET General Purpose Amplifier 10-45
2N5453 Dual N-Channel JFET General Purpose Amplifier 10-45
2N5454 Dual N-Channel JFET General Purpose Amplifier 10-45
2N5457 N-Channel JFET General Purpose Amplifier/Switch 10-47
2N5458 N-Channel JFET General Purpose Amplifier/Switch 10-47
2N5459 N-Channel JFET General Purpose Amplifier/Switch 10-47
2N5460 P-Channel JFET Low Noise Amplifier 10-48
2N5461 P-Channel JFET Low Noise Amplifier 10-48
2N5462 P-Channel JFET Low Noise Amplifier 10-48
2N5463 P-Channel JFET Low Noise Amplifier 10-48
2N5464 P-Channel JFET Low Noise Amplifier 10-48
2N5465 P-Channel JFET Low Noise Amplifier 10-48
2N5484 N-Channel JFET High Frequency Amplifier 10-50
2N5485 N-Channel JFET High Frequency Amplifier 10-50
2N5486 N-Channel JFET High Frequency Amplifier 10-50
2N5515 Dual N-Channel JFET Low Noise Amplifier 10-52
2N5516 Dual N-Channel JFET Low Noise Amplifier 10-52
2N5517 Dual N-Channel JFET Low Noise Amplifier 10-52
2N5518 Dual N-Channel JFET Low Noise Amplifier 10-52
2N5519 Dual N-Channel JFET Low Noise Amplifier 10-52
2N5520 Dual N-Channel JFET Low Noise Amplifier 10-52
2N5521 Dual N-Channel JFET Low Noise Amplifier 10-52
2N5522 Dual N-Channel JFET Low Noise Amplifier 10-52
2N5523 Dual N-Channel JFET Low Noise Amplifier 10-52
2N5524 Dual N-Channel JFET Low Noise Amplifier 10-52
2N5638 N-Channel JFET Switch 10-54
2N5639 N-Channel JFET Switch 10-54
2N5640 N-Channel JFET Switch 10-54
2N5902 Monolithic Dual N-Channel JFET General Purpose Amplifier 10-56
2N5903 Monolithic Dual N-Channel JFET General Purpose Amplifier 10-56
2N5904 Monolithic Dual N-Channel JFET General Purpose Amplifier 10-56
2N5905 Monolithic Dual N-Channel JFET General Purpose Amplifier 10-56
2N5906 Monolithic Dual N-Channel JFET General Purpose Amplifier 10-56
2N5907 Monolithic Dual N-Channel JFET General Purpose Amplifier 10-56
2N5908 Monolithic Dual N-Channel JFET General Purpose Amplifier 10-56
2N5909 Monolithic Dual N-Channel JFET General Purpose Amplifier 10-56
2N5911 Dual N-Channel JFET High Frequency Amplifier 10-58
2N5912 Dual N-Channel JFET High Frequency Amplifier 10-58
2N6483 Dual N-Channel JFET Low Noise Amplifier 10-60
2N6484 Dual N-Channel JFET Low Noise Amplifier 10-60
2N6485 Dual N-Channel JFET Low Noise Amplifier 10-60
3N161 Diode Protected P-Channel Enhancement Mode MOSFET General Purpose Amplifier/Switch 10-62
3N163 P-Channel Enhancement Mode MOSFET General Purpose Amplifier/Switch 10-63
3N164 P-Channel Enhancement Mode MOSFET General Purpose/Switch 10-63
3N165 Monolithic Dual P-Channel Enhancement Mode MOSFET General Purpose Amplifier 10-65
3N166 Monolithic Dual P-Channel Enhancement Mode MOSFET General Purpose Amplifier 10-65
3N170 N-Channel Enhancement Mode MOSFET Switch 10-67
3N171 N-Channel Enhancement Mode MOSFET Switch 10-67
3N172 Diode Protected P-Channel Enhancement Mode MOSFET General Purpose Amplifier/Switch 10-69
3N173 Diode Protected P-Channel Enhancement Mode MOSFET General Purpose Amplifier/Switch 10-69
3N188 Dual P-Channel Enhancement Mode MOSFET General Purpose Amplifier 10-71
3N189 Dual P-Channel Enhancement Mode MOSFET General Purpose Amplifier 10-71
3N190 Dual P-Channel Enhancement Mode MOSFET General Purpose Amplifier 10-71
3N191 Dual P-Channel Enhancement Mode MOSFET General Purpose Amplifier 10-71
AD590 2-Wire Current Output Temperature Transducer 6-1
AD7520 10/12-Bit Multiplying D/A Converter 4-1
AD7521 10/12-Bit Multiplying D/A Converter 4-1
AD7523 8-Bit Multiplying D/A Converter 4-8
AD7530 10/12-Bit Multiplying D/A Converter 4-1
AD7531 10/12-Bit Multiplying D/A Converter 4-1
AD7533 10-Bit Multiplying D/A Converter 4-13
AD7541 12-Bit Multiplying D/A Converter 4-18
ADC0802 8-Bit $\mu \mathrm{P}$-Compatible A/D Converter 3-1
ADC0803 8-Bit $\mu \mathrm{P}$-Compatible A/D Converter 3-1
ADC0804 8-Bit $\mu \mathrm{P}$-Compatible A/D Converter 3-1
D123 SPST 6-Channel JFET Switch Driver 8-1
D125 SPST 6-Channel JFET Switch Driver 8-1
D129 4-Channel Decoded JFET Switch Driver 8-5
DG123 SPST 5-Channel Driver With Switch 8-7
DG125 SPST 5-Channel Driver With Switch 8-7
DG126 Dual DPST 80 Ohm JFET Analog Switch 8-11
DG129 Dual DPST 30 Ohm JFET Analog Switch 8-11
DG133 Dual SPST 30/35 Ohm JFET Analog Switch 8-11
DG134 Dual SPST 80 Ohm JFET Analog Switch 8-11
DG139 DPDT 30 Ohm Differentially Driven JFET Switch 8-17
DG140 Dual DPST 10/15 Ohm JFET Analog Switch 8-11
DG141 Dual SPST 10 Ohm JFET Analog Switch 8-11
DG142 DPDT 80 Ohm Differentially Driven JFET Switch 8-17
DG143 SPDT 80 Ohm Differentially Driven JFET Switch 8-17
DG144 SPDT 30 Ohm Differentially Driven JFET Switch 8-17
DG145 DPDT 10 Ohm Differentially Driven JFET Switch 8-17
DG146 SPDT 10 Ohm Differentially Driven JFET Switch 8-17
DG151 Dual SPST 15 Ohm JFET Analog Switch 8-11
DG152 Dual SPST 50 Ohm JFET Analog Switch 8-11
DG153 Dual DPST 15 Ohm JFET Analog Switch 8-11
DG154 Dual DPST 50 Ohm JFET Analog Switch 8-11
DG161 SPDT 15 Ohm Differentially Driven JFET Switch 8-17
DG162 SPDT 50 Ohm Differentially Driven JFET Switch 8-17
DG163 DPDT 15 Ohm Differentially Driven JFET Switch 8-17
DG164 DPDT 50 Ohm Differentially Driven JFET Switch 8-17
DG180 Dual SPST 10 Ohm High-Speed Driver With JFET Switch 8-22
DG181 Dual SPST 30 Ohm High-Speed Driver With JFET Switch 8-22
DG182 Dual SPST 75 Ohm High-Speed Driver With JFET Switch 8-22
DG183 Dual DPST 10 Ohm High-Speed Driver With JFET Switch 8-22
DG184 Dual DPST 30 Ohm High-Speed Driver With JFET Switch 8-22
DG185 Dual DPST 75 Ohm High-Speed Driver With JFET Switch 8-22
DG186 SPDT 10 Ohm High-Speed Driver With JFET Switch 8-22
DG187 SPDT 30 Ohm High-Speed Driver With JFET Switch 8-22
DG188 SPDT 75 Ohm High-Speed Driver With JFET Switch 8-22
DG189 Dual SPDT 10 Ohm High-Speed Driver With JFET Switch 8-22
DG190 Dual SPDT 30 Ohm High-Speed Driver With JFET Switch 8-22
DG191 Dual SPDT 75 Ohm High-Speed Driver With JFET Switch 8-22
DG200 Dual SPST CMOS Analog Switch 8-28
DG201 Quad SPST CMOS Analog Switch 8-32
DG201A Quad Monolithic SPST CMOS Analog Switches 8-36
DG202 Quad Monolithic SPST CMOS Analog Switches 8-36
DG211 SPST 4-Channel Analog Switch 8-41
DG212 SPST 4-Channel Analog Switch 8-41
DG300A TTL Compatible CMOS Analog Switches 8-44
DG301A TTL Compatible CMOS Analog Switches 8-44
DG302A TTL Compatible CMOS Analog Switches 8-44
DG303A TTL Compatible CMOS Analog Switches 8-44
DGM181 Dual SPST 50 Ohm High-Speed CMOS Analog Switch 8-49
DGM182 Dual SPST 50/75 Ohm High-Speed CMOS Analog Switch 8-49
DGM184 Dual DPST 50 Ohm High-Speed CMOS Analog Switch 8-49
DGM185 Dual DPST 50/75 Ohm High-Speed CMOS Analog Switch 8-49
DGM190 Dual SPDT 50 Ohm High-Speed CMOS Analog Switch 8-49
DGM191 Dual SPDT 50/75 Ohm High-Speed CMOS Analog Switch 8-49
EVK-128 Data Conversion and FIR Filtering System 12-19
ICH8500/A Ultra Low Input-Bias Operational Amplifier 7-1
ICL232 + 5 Volt Powered Dual RS-232 Transmitter/Receiver 11-36
ICL7104/ICL8052 12/14/16-Bit μ P-Compatible 2-Chip A/D Converter 3-19
ICL7104/ICL8068 12/14/16-Bit μ P-Compatible 2-Chip A/D Converter 3-19
ICL7106 3 ½-Digit LCD Single-Chip A/D Converter 2-1
ICL7107 3 ½-Digit LED Single-Chip A/D Converter 2-1
ICL7109 12-Bit $\mu \mathrm{P}$-Compatible A/D Converter 3-39
ICL7112 12-Bit High-Speed CMOS μ P-Compatible A/D Converter 3-58
ICL7115 14-Bit High-Speed CMOS μ P-Compatible A/D Converter 3-60
ICL7116 3 ½-Digit with Display Hold Single-Chip A/D Converter 2-13
ICL7117 3 ½-Digit with Display Hold Single-Chip A/D Converter 2-13
ICL7121 16-Bit Multiplying Microprocessor-Compatible D/A Converter 4-25
ICL7126 3 ½-Digit Low-Power Single-Chip A/D Converter 2-24
ICL7129 4 ½ Digit LCD Single-Chip A/D Converter 2-35
ICL7134 14-Bit Multiplying $\mu \mathrm{P}$-Compatible D/A Converter 4-32
ICL7135 4 ½-Digit BCD Output A/D Converter 3-74
ICL7136 3 ½-Digit LCD Low Power A/D Converter 2-47
ICL7137 3 ½-Digit LED Low Power Single-Chip A/D Converter 2-58
ICL7139 3³/4-Digit Autoranging Multimeter 2-67
ICL7149 Low Cost $33 / 4$-Digit Autoranging Multimeter 2-81
ICL7182 101 Segment LCD Bargraph A/D Converter 2-95
ICL7600 Commutating Auto-Zero (CAZ) Operational Amplifier 7-7
ICL7601 Commutating Auto-Zero (CAZ) Operational Amplifier 7-7
ICL7605 Commutating Auto-Zero (CAZ) Instrumentation Amplifier 7-19
ICL7606 Commutating Auto-Zero (CAD) Instrumentation Amplifier 7-19
ICL7650 Chopper-Stabilized Operational Amplifier 7-46
ICL7650S Super Chopper-Stabilized Operational Amplifier 7-54
ICL7652 Chopper-Stabilized Low-Noise Operational Amplifier 7-64
ICL7652S Super Chopper-Stabilized Low-Noise Operational Amplifier 7-72
ICL7660 CMOS Voltage Converter 5-1
ICL7660S Super Voltage Converter 5-10
ICL7662 CMOS Voltage Converter 5-20
ICL7663 CMOS Programmable Micropower Positive Voltage Regulator 5-28
ICL7663S CMOS Programmable Micropower Positive Voltage Regulator 5-37
ICL7665 Micropower Under/Over Voltage Detector 5-44
ICL7665S CMOS Micropower Over/Under Voltage Detector 5-53
ICL7667 Dual Power MOSFET Driver 5-63

Alphanumeric Index (Continued)

ICL7673 Automatic Battery Back-up Switch 5-71
ICL7675 Switched-Mode Power Supply Controller Set 5-79
ICL7676 Switched-Mode Power Supply Controller Set 5-79
ICL7677 Power Fail Detector 5-89
ICL7680 +5 V to $\pm 15 \mathrm{~V}$ Voltage Converter/Regulator 5-101
ICL76XX Series Low Power CMOS Operational Amplifiers 7-31
ICL8007 JFET Input Operational Amplifier 7-82
ICL8013 Four Quadrant Analog Multiplier 6-12
ICL8021 Low Power Bipolar Operational Amplifier 7-86
ICL8023 Triple Low Power Bipolar Operational Amplifier 7-86
ICL8038 Precision Waveform Generator/Voltage Controlled Oscillator 6-21
ICL8043 Dual JFET Input Operational Amplifier 7-91
ICL8048 Logarithmic Amplifier 6-30
ICL8049 Antilog Amplifier 6-30
ICL8063 Power Transistor Driver/Amplifier 7-99
ICL8069 Low Voltage Reference 6-39
ICL8211 Programmable Voltage Detector 5-103
ICL8212 Programmable Voltage Detector 5-103
ICM7170 μ P-Compatible Real-Time Clock 14-1
ICM7207/A CMOS Timebase Generator 14-14
ICM7208 7-Digit LED Display Counter 14-19
ICM7209 Timebase Generator 14-26
ICM7211 4-Digit LCD/LED Display Driver 13-1
ICM7212 4-Digit LCD/LED Display Driver 13-1
ICM7215 6-Digit LED Display 4-Function Stopwatch 14-29
ICM7216A 8-Digit Multi-Function Frequency Counter/Timer 14-36
ICM7216B 8-Digit Multi-Function Frequency Counter/Timer 14-36
ICM7216C 8-Digit Frequency Counter 14-36
ICM7216D 8-Digit Frequency Counter 14-36
ICM7217 4-Digit LED Display Programmable Up/Down Counter 14-54
ICM7218 8-Digit LED Multiplexed Display Driver 13-12
ICM7224 4 ½-Digit LCD/LED Display Counter 14-72
ICM7225 4 ½-Digit LCD/LED Display Counter 14-72
ICM7226A/B 8-Digit Multi-Function Frequency Counter/Timer 14-80
ICM7227 4-Digit LED Display Programmable Up/Down Counter 14-54
ICM7228 8-Digit LED Multiplexed Display Driver 13-23
ICM7231 Numeric Triplexed LCD Display Driver 13-36
ICM7232 Numeric Triplexed LCD Display Driver 13-36
ICM7233 Alphanumeric Triplexed LCD Display Driver 13-36
ICM7236 4 ½-Digit Counter/Vacuum Fluorescent Display Driver 14-93
ICM7240 Programmable Timer 14-98
ICM7242 Long-Range Fixed Timer 14-108
ICM7243 8-Character LED $\mu \mathrm{P}$-Compatible Display Driver 13-55
ICM7249 5½-Digit LCD μ-Power Event/Hour Meter 14-114
ICM7250 Programmable Timer 14-98
ICM7555 General Purpose Timer 14-123
ICM7556 Dual General Purpose Timer 14-123
ID100 Dual Low Leakage Diode 10-73
ID101 Dual Low Leakage Diode 10-73
IH311 High Speed SPST 4-Channel Analog Switch 8-54
IH312 High Speed SPST 4-Channel Analog Switch 8-54
IH401 QUAD Varafet Analog Switch 8-59
IH401A QUAD Varafet Analog Switch 8-59

Alphanumeric Index (Continued)

IH5009 Quad 100 Ohm Virtual Ground Analog Switch 8-65
IH5010 Quad 150 Ohm Virtual Ground Analog Switch 8-65
IH5011 Quad 100 Ohm Virtual Ground Analog Switch 8-65
IH5012 Quad 150 Ohm Virtual Ground Analog Switch 8-65
IH5013 Triple 100 Ohm Virtual Ground Analog Switch 8-65
IH5014 Triple 150 Ohm Virtual Ground Analog Switch 8-65
IH5015 Triple 100 Ohm Virtual Groung Analog Switch 8-65
IH5016 Triple 150 Ohm Virtual Ground Analog Switch 8-65
IH5017 Dual 100 Ohm Virtual Ground Analog Switch 8-65
IH5018 Dual 150 Ohm Virtual Ground Analog Switch 8-65
IH5019 Dual 100 Ohm Virtual Ground Analog Switch 8-65
IH5020 Dual 150 Ohm Virtual Ground Analog Switch 8-65
IH5021 Single 100 Ohm Virtual Ground Analog Switch 8-65
IH5022 Single 150 Ohm Virtual Ground Analog Switch 8-65
IH5023 Single 100 Ohm Virtual Ground Analog Switch 8-65
IH5024 Single 150 Ohm Virtual Ground Analog Switch 8-65
IH5040 SPST 75 Ohm High-Level CMOS Analog Switch 8-72
IH5041 Dual SPST 75 Ohm High-Level CMOS Analog Switch 8-72
IH5042 SPDT 75 Ohm High-Level CMOS Analog Switch 8-72
IH5043 Dual SPDT 75 Ohm High-Level CMOS Analog Switch 8-72
IH5044 DPST 75 Ohm High-Level CMOS Analog Switch 8-72
IH5045 Dual DPST 75 Ohm High-Level CMOS Analog Switch 8-72
IH5046 DPDT 75 Ohm High-Level CMOS Analog Switch 8-72
IH5047 4PST 75 Ohm High-Level CMOS Analog Switch 8-72
IH5048 Dual SPST 35 Ohm High-Level CMOS Analog Switch 8-81
IH5049 Dual DPST 35 Ohm High-Level CMOS Analog Switch 8-81
IH5050 SPDT 35 Ohm High-Level CMOS Analog Switch 8-81
IH5051 Dual SPDT 35 Ohm High-Level CMOS Analog Switch 8-81
IH5052 QUAD CMOS Analog Switch 8-86
IH5053 QUAD CMOS Analog Switch 8-86
IH5108 8-Channel Fault Protected Analog Multiplexer 9-1
IH5116 16-Channel Fault Protected Analog Multiplexer 9-10
IH5140 SPST High-Level CMOS Analog Switch 8-92
IH5141 Dual SPST High-Level CMOS Analog Switch 8-92
IH5142 SPDT High-Level CMOS Analog Switch 8-92
IH5143 Dual SPDT High-Level CMOS Analog Switch 8-92
IH5144 DPST High-Level CMOS Analog Switch 8-92
IH5145 Dual DPST High-Level CMOS Analog Switch 8-92
IH5148 Dual SPST High-Level CMOS Analog Switch 8-103
IH5149 Dual DPST High-Level CMOS Analog Switch 8-103
IH5150 SPDT High-Level CMOS Analog Switch 8-103
IH5151 Dual SPDT High-Level CMOS Analog Switch 8-103
IH5208 4-Channel Differential Fault Protected Analog Multiplexer 9-14
IH5216 8-Channel Differential Fault Protected Analog Multiplexer 9-23
IH5341 Dual SPST CMOS RF/Video Switch 8-111
IH5352 QUAD SPST CMOS RF/Video Switch 8-117
IH6108 8-Channel CMOS Analog Multiplexer 9-27
IH6116 16-Channel CMOS Analog Multiplexer 9-33
IH6201 Dual CMOS Driver/Voltage Translator 9-40
IH6208 4-Channel Differential CMOS Analog Multiplexer 9-44
IH6216 8-Channel Differential CMOS Analog Multiplexer 9-50
IH9108 8-Channel High-Voltage Multiplier with Latches 9-56
IM2110 256×12 Color Lookup Table and DAC 4-46
IM26C91 Universal Asynchronous Receiver/Transmitter (UART) 11-1
IM29C128 Finite Impulse Response Filter Controller 12-1
IM29C510 CMOS 16×16 Bit, Multiplier/Accumulator 12-7
IM4702/4712 Baud Rate Generator 11-19
IM6402 Universal Asynchronous Receiver Transmitter (UART) 11-26
IM6403 Universal Asynchronous Receiver Transmitter (UART) 11-26
IT100 P-Channel JFET Switch 10-75
IT101 P-Channel JFET Switch 10-75
IT120 Dual NPN General Purpose Amplifier 10-76
IT120A Dual NPN General Purpose Amplifier 10-76
IT121 Dual NPN General Purpose Amplifier 10-76
IT122 Dual NPN General Purpose Amplifier 10-76
IT126 Monolithic Dual NPN General Purpose Amplifier 10-78
IT127 Monolithic Dual NPN General Purpose Amplifier 10-78
IT128 Monolithic Dual NPN General Purpose Amplifier 10-78
IT129 Monolithic Dual NPN General Purpose Amplifier 10-78
IT130 Monolithic Dual PNP General Purpose Amplifier 10-80
IT130A Monolithic Dual PNP General Purpose Amplifier 10-80
IT131 Monolithic Dual PNP General Purpose Amplifier 10-80
IT132 Monolithic Dual PNP General Purpose Amplifier 10-80
IT136 Monolithic Dual PNP General Purpose Amplifier 10-82
IT137 Monolithic Dual PNP General Purpose Amplifier 10-82
IT138 Monolithic Dual PNP General Purpose Amplifier 10-82
IT139 Monolithic Dual PNP General Purpose Amplifier 10-82
IT1700 P-Channel Enhancement Mode MOSFET General Purpose Amplifier 10-87
IT1750 N-Channel Enhancement Mode MOSFET General Purpose Amplifier/Switch 10-88
IT500 Monolithic Dual Cascoded N-Channel JFET General Purpose Amplifier 10-84
IT501 Monolithic Dual Cascoded N-Channel JFET General Purpose Amplifier 10-84
IT502 Monolithic Dual Cascoded N-Channel JFET General Purpose Amplifier 10-84
IT503 Monolithic Dual Cascoded N-Channel JFET General Purpose Amplifier 10-84
IT504 Monolithic Dual Cascoded N-Channel JFET General Purpose Amplifier 10-84
IT505 Monolithic Dual Cascoded N-Channel JFET General Purpose Amplifier 10-84
IT5911 Dual N-Channel JFET High Frequency Amplifier 10-58
IT5912 Dual N-Channel JFET High Frequency Amplifier 10-58
ITC5911 Dual N-Channel JFET High Frequency Amplifier 10-58
ITC5912 Dual N-Channel JFET High Frequency Amplifier 10-58
ITE4091 N-Channel JFET Switch 10-19
ITE4092 N-Channel JFET Switch 10-19
ITE4093 N-Channel JFET Switch 10-19
ITE4391 N-Channel JFET Switch 10-26
ITE4392 N-Channel JFET Switch 10-26
ITE4393 N-Channel JFET Switch 10-26
ITE4416 N-Channel JFET High Frequency Amplifier 10-28
J105 N-Channel JFET Switch 10-89
J106 N-Channel JFET Switch 10-89
J107 N-Channel JFET Switch 10-89
J108 N-Channel JFET Switch 10-90
J109 N-Channel JFET Switch 10-90
J110 N-Channel JFET Switch 10-90
J111 N-Channel JFET Switch 10-91
J112 N-Channel JFET Switch 10-91
J113 N-Channel JFET Switch 10-91
J174 P-Channel JFET Switch 10-92
J175 P-Channel JFET Switch 10-92
J176 P-Channel JFET Switch 10-92
J177 P-Channel JFET Switch 10-92
J201 N-Channel JFET General Purpose Amplifier 10-94
J202 N-Channel JFET General Purpose Amplifier 10-94
J203 N-Channel JFET General Purpose Amplifier 10-94
J204 N-Channel JFET General Purpose Amplifier 10-94
J308 N-Channel JFET High Frequency Amplifier 10-95
J309 N-Channel JFET High Frequency Amplifier 10-95
J310 N-Channel JFET High Frequency Amplifier 10-95
LM114/H Monolithic Dual NPN General Purpose Amplifier 10-97
LM114A/AH Monolithic Dual NPN General Purpose Amplifier 10-97
LM4250 Programmable Operational Amplifier 7-108
M116 Diode Protected N-Channel Enhancement Mode MOSFET General Purpose Amplifier 10-99
MM450 Dual Differential High Voltage Analog Switch 8-122
MM451 Four Channel High Voltage Multiplexer 8-122
MM452 Quad SPST High Voltage Analog Switch 8-122
MM455 Three SPST High Voltage Analog Switch 8-122
MM550 Dual Differential High Voltage Analog Switch 8-122
MM551 Four Channel High Voltage Multiplexer 8-122
MM552 Quad SPST High Voltage Analog Switch 8-122
MM555 Three SPST High Voltage Analog Switch 8-122
U1897 N-Channel JFET Switch 10-110
U1898 N-Channel JFET Switch 10-110
U1899 N-Channel JFET Switch 10-110
U200 N-Channel JFET Switch 10-100
U201 N-Channel JFET Switch 10-100
U202 N-Channel JFET Switch 10-100
U231 Dual N-Channel JFET General Purpose Amplifier 10-101
U232 Dual N-Channel JFET General Purpose Amplifier 10-101
U233 Dual N-Channel JFET General Purpose Amplifier 10-101
U234 Dual N-Channel JFET General Purpose Amplifier 10-101
U235 Dual N-Channel JFET General Purpose Amplifier 10-101
U257 Dual N-Channel JFET High Frequency Amplifier 10-103
U304 P-Channel JFET Switch 10-104
U305 P-Channel JFET Switch 10-104
U306 P-Channel JFET Switch 10-104
U308 N-Channel JFET High Frequency Amplifier 10-106
U309 N-Channel JFET High Frequency Amplifier 10-106
U310 N-Channel JFET High Frequency Amplifier 10-106
U401 Dual N-Channel JFET Switch 10-108
U402 Dual N-Channel JFET Switch 10-108
U403 Dual N-Channel JFET Switch 10-108
U404 Dual N-Channel JFET Switch 10-108
U405 Dual N-Channel JFET Switch 10-108
U406 Dual N-Channel JFET Switch 10-108
VCR11N Voltage Controlled Resistors 10-115
VCR2N Voltage Controlled Resistors 10-112
VCR3P Voltage Controlled Resistors 10-112
VCR4N Voltage Controlled Resistors 10-112
VCR5P Voltage Controlled Resistors 10-112
VCR7N Voltage Controlled Resistors 10-112

ALPHANUMERIC CROSS REFERENCE

ALTERNATE SOURCE PRODUCT	INTERSIL EQUIVALENT						
$\begin{aligned} & 100 \mathrm{~S} \\ & 100 \mathrm{U} \\ & 102 \mathrm{M} \\ & 102 \mathrm{~S} \\ & 103 \mathrm{M} \end{aligned}$	2N5458 2N3684 2N5686 2N5457 2N5457	$\begin{aligned} & \text { 2N2606 } \\ & \text { 2N2607 } \\ & \text { 2N2608 } \\ & \text { 2N2609 } \\ & \text { 2N2639 } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 2N2607 } \\ & \text { 2N2607 } \\ & \text { 2N2608 } \\ & \text { 2N2609 } \\ & \text { 1T120 } \\ & \hline \end{aligned}$	2N3332 2N3333 2N3334 2N3335 2N3336	2N5268 IT132 IT132 IT132 IT132	$\begin{aligned} & \text { 2N3815 } \\ & \text { 2N3816 } \\ & \text { 2N3816A } \\ & \text { 2N3817 } \\ & \text { 2N3817A } \\ & \hline \end{aligned}$	IT132 IT130 IT130A IT130 IT130A
$\begin{aligned} & 103 \mathrm{~S} \\ & 104 \mathrm{M} \\ & 105 \mathrm{M} \\ & 105 \mathrm{U} \\ & 106 \mathrm{M} \\ & \hline \end{aligned}$	2N5459 2N5458 2N5459 2N4340 2N5485	$\begin{aligned} & \text { 2N2640 } \\ & \text { 2N2641 } \\ & \text { 2N2642 } \\ & \text { 2N2643 } \\ & \text { 2N2644 } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { IT122 } \\ & \text { IT122 } \\ & \text { T120 } \\ & \text { IT122 } \\ & \text { IT122 } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 2N3347 } \\ & \text { 2N3348 } \\ & \text { 2N3349 } \\ & \text { 2N3350 } \\ & \text { 2N3351 } \\ & \hline \end{aligned}$	IT137 IT138 IT139 IT137 IT138	$\begin{aligned} & \text { 2N3819 } \\ & \text { 2N3820 } \\ & \text { 2N3821 } \\ & \text { 2N3822 } \\ & \text { 2N3823 } \\ & \hline \end{aligned}$	2N5484 2N2608 2N3821 2N3822 2N3823
$\begin{aligned} & 107 \mathrm{M} \\ & 110 \mathrm{U} \\ & 120 \mathrm{U} \\ & 125 \mathrm{U} \\ & 1277 \mathrm{~A} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 2N5485 } \\ & \text { 2N3685 } \\ & \text { 2N3686 } \\ & \text { 2N4339 } \\ & \text { 2N3822 } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 2N2652 } \\ & \text { 2N2652A } \\ & \text { 2N2720 } \\ & \text { 2N2721 } \\ & \text { 2N2722 } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { IT120 } \\ & \text { IT120 } \\ & \text { IT120 } \\ & \text { IT122 } \\ & \text { IT120 } \\ & \hline \end{aligned}$	2N3352 2N3365 2N3366 2N3367 2N3368	$\begin{aligned} & \text { IT139 } \\ & \text { 2N4340 } \\ & \text { 2N4338 } \\ & \text { 2N4338 } \\ & \text { 2N4341 } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 2N3824 } \\ & \text { 2N3907 } \\ & \text { 2N3908 } \\ & \text { 2N3999 } \\ & \text { 2N3909A } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 2N3824 } \\ & \text { IT120 } \\ & \text { IT120 } \\ & \text { 2N2609 } \\ & \text { 2N2609 } \\ & \hline \end{aligned}$
$\begin{aligned} & 1278 A \\ & 1279 A \\ & 1280 A \\ & 1281 A \\ & 1282 A \\ & \hline \end{aligned}$	2N3821 2N3821 2N4224 2N3822 2N4341	$\begin{aligned} & \text { 2N2802 } \\ & \text { 2N2803 } \\ & \text { 2N2804 } \\ & \text { 2N2805 } \\ & \text { 2N2806 } \\ & \hline \end{aligned}$	IT139 IT139 IT139 IT139 IT139	$\begin{aligned} & \text { 2N3369 } \\ & \text { 2N3370 } \\ & \text { 2N3376 } \\ & \text { 2N3378 } \\ & \text { 2N3380 } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 2N4339 } \\ & \text { 2N4338 } \\ & \text { 2N2608 } \\ & \text { 2N2608 } \\ & \text { 2N2609 } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 2N3921 } \\ & \text { 2N3922 } \\ & \text { 2N3949 } \\ & \text { 2N3950 } \\ & \text { 2N3954 } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 2N3921 } \\ & \text { 2N3922 } \\ & \text { 1T132 } \\ & \text { 1T132 } \\ & \text { 2N3954 } \\ & \hline \end{aligned}$
$\begin{aligned} & 1283 A \\ & 1284 A \\ & 1285 A \\ & 1286 A \\ & 130 U \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 2N4340 } \\ & \text { 2N4222 } \\ & \text { 2N3821 } \\ & \text { 2N4220 } \\ & \text { 2N3687 } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 2N2807 } \\ & \text { 2N2841 } \\ & \text { 2N2842 } \\ & \text { 2N2843 } \\ & \text { 2N2844 } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { IT139 } \\ & \text { 2N2607 } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 2N3382 } \\ & \text { 2N3384 } \\ & \text { 2N3386 } \\ & \text { 2N3409 } \\ & \text { 2N3410 } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 2N3994 } \\ & 2 N 3993 \\ & 2 N 5114 \\ & \text { TT122 } \\ & \text { IT122 } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 2N3954AA } \\ & \text { 2N3955 } \\ & \text { 2N3955A } \\ & \text { 2N } 3956 \\ & \text { 2N } 3957 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 2N3954A } \\ & \text { 2N3955 } \\ & \text { 2N3955A } \\ & \text { 2N3956 } \\ & \text { 2N } 3957 \\ & \hline \end{aligned}$
$\begin{aligned} & 1325 \mathrm{~A} \\ & 135 \mathrm{U} \\ & 14 \mathrm{~T} \\ & 155 \mathrm{U} \\ & 1714 \mathrm{~A} \end{aligned}$	$\begin{aligned} & \text { 2N4222 } \\ & \text { 2N4339 } \\ & \text { 2N4224 } \\ & \text { 2N4416 } \\ & \text { 2N4340 } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 2N2903 } \\ & \text { 2N2903A } \\ & 2 N 2910 \\ & 2 N 2913 \\ & 2 N 2914 \\ & \hline \end{aligned}$	IT122 IT120 IT122 IT122 IT120	$\begin{aligned} & \text { 2N3411 } \\ & \text { 2N3423 } \\ & \text { 2N3424 } \\ & \text { 2N3425 } \\ & \text { 2N3436 } \\ & \hline \end{aligned}$	IT122 IT122 IT122 IT122 2N4341	$\begin{aligned} & \text { 2N3966 } \\ & \text { 2N3967 } \\ & \text { 2N3967A } \\ & \text { 2N3968 } \\ & \text { 2N3968A } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 2N4416 } \\ & \text { 2N4221 } \\ & \text { 2N4221 } \\ & \text { 2N3685 } \\ & \text { 2N3685 } \\ & \hline \end{aligned}$
$\begin{aligned} & 182 \mathrm{~S} \\ & 183 \mathrm{~S} \\ & 197 \mathrm{~S} \\ & 198 \mathrm{~S} \\ & 199 \mathrm{~S} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 2N4391 } \\ & \text { 2N3823 } \\ & \text { 2N4338 } \\ & \text { 2N4340 } \\ & \text { 2N4341 } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 2N2915 } \\ & \text { 2N2915A } \\ & \text { 2N2916 } \\ & \text { 2N2916A } \\ & \text { 2N2917 } \\ & \hline \end{aligned}$	IT120 IT120 IT120 IT120 1 T122	$\begin{aligned} & \text { 2N3437 } \\ & \text { 2N3438 } \\ & \text { 2N3452 } \\ & \text { 2N3453 } \\ & \text { 2N3454 } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 2N4340 } \\ & \text { 2N4338 } \\ & \text { 2N4220 } \\ & \text { 2N4338 } \\ & \text { 2N4338 } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 2N3969 } \\ & \text { 2N3969A } \\ & \text { 2N3970 } \\ & \text { 2N3971 } \\ & \text { 2N } 3972 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 2N3686 } \\ & \text { 2N3686 } \\ & \text { 2N3970 } \\ & \text { 2N3971 } \\ & \text { 2N3972 } \\ & \hline \end{aligned}$
$\begin{aligned} & 2000 \mathrm{M} \\ & 2001 \mathrm{M} \\ & 200 \mathrm{~S} \\ & 200 \mathrm{U} \\ & 201 \mathrm{~S} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 2N3823 } \\ & \text { 2N3823 } \\ & \text { 2N4392 } \\ & \text { 2N3824 } \\ & \text { 2N4391 } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 2N2918 } \\ & \text { 2N2919 } \\ & \text { 2N2919A } \\ & \text { 2N2920 } \\ & \text { 2N2920A } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { IT122 } \\ & \text { IT120 } \\ & \text { IT120 } \\ & \text { 2N2920 } \\ & \text { 2N2920 } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 2N3455 } \\ & \text { 2N3456 } \\ & \text { 2N3457 } \\ & \text { 2N3458 } \\ & \text { 2N3459 } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 2N4340 } \\ & \text { 2N4338 } \\ & \text { 2N4338 } \\ & \text { 2N4341 } \\ & 2 N 4339 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 2N3993 } \\ & \text { 2N3993A } \\ & \text { 2N3994 } \\ & \text { 2N3994A } \\ & \text { 2N4009 } \\ & \hline \end{aligned}$	2N3993 2N3993 2N3994 2N3994 IT132
$\begin{aligned} & 202 \mathrm{~S} \\ & 203 \mathrm{~S} \\ & 204 \mathrm{~S} \\ & 2078 \mathrm{~A} \\ & 2079 \mathrm{~A} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 2N4392 } \\ & \text { 2N3821 } \\ & \text { 2N3821 } \\ & \text { 2N3955 } \\ & \text { 2N3955 } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 2N2936 } \\ & \text { 2N2937 } \\ & \text { 2N2972 } \\ & \text { 2N2973 } \\ & \text { 2N2974 } \\ & \hline \end{aligned}$	IT120 IT120 IT122 IT122 $1 T 120$	$\begin{aligned} & \text { 2N3460 } \\ & \text { 2N3513 } \\ & \text { 2N3514 } \\ & \text { 2N3515 } \\ & \text { 2N3516 } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 2N4338 } \\ & \text { IT122 } \\ & \text { T122 } \\ & \text { IT122 } \\ & \text { IT122 } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 2N4010 } \\ & \text { 2N4011 } \\ & \text { 2N4015 } \\ & \text { 2N4016 } \\ & \text { 2N4O17 } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { IT132 } \\ & \text { IT132 } \\ & \text { IT139 } \\ & \text { IT137 } \\ & \text { IT139 } \end{aligned}$
$\begin{aligned} & 2080 \mathrm{~A} \\ & 2081 \mathrm{~A} \\ & 2093 \mathrm{M} \\ & 2094 \mathrm{M} \\ & 2095 \mathrm{M} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 2N3955A } \\ & \text { 2N3955A } \\ & \text { 2N3687 } \\ & \text { 2N3686 } \\ & \text { 2N3686 } \end{aligned}$	$\begin{aligned} & \text { 2N2975 } \\ & \text { 2N2976 } \\ & \text { 2N2977 } \\ & \text { 2N2978 } \\ & \text { 2N2979 } \\ & \hline \end{aligned}$	IT120 IT120 IT120 IT120 IT120	$\begin{aligned} & \text { 2N3517 } \\ & \text { 2N3521 } \\ & \text { 2N3522 } \\ & \text { 2N3574 } \\ & \text { 2N3575 } \\ & \hline \end{aligned}$	IT122 IT122 IT122 2N2607 2N2607	$\begin{aligned} & \text { 2N4018 } \\ & \text { 2N4019 } \\ & \text { 2N4020 } \\ & \text { 2N4021 } \\ & \text { 2N4022 } \\ & \hline \end{aligned}$	IT139 IT139 IT139 IT139 IT139
$\begin{aligned} & 2098 A \\ & 2099 A \\ & 210 U \\ & 2130 U \\ & 2132 U \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 2N3954 } \\ & \text { 2N39555A } \\ & \text { 2N4416 } \\ & \text { 2N5452 } \\ & \text { 2N3955 } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 2N2980 } \\ & \text { 2N2981 } \\ & \text { 2N2982 } \\ & \text { 2N3043 } \\ & \text { 2N3044 } \\ & \hline \end{aligned}$	IT121 IT122 IT122 IT121 IT122	$\begin{aligned} & \text { 2N3578 } \\ & \text { 2N3587 } \\ & \text { 2N3608 } \\ & \text { 2N3680 } \\ & \text { 2N3684 } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 2N2608 } \\ & \text { IT122 } \\ & \text { 3N172 } \\ & \text { IT120 } \\ & \text { 2N3684 } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 2N4023 } \\ & \text { 2N4024 } \\ & \text { 2N4025 } \\ & \text { 2N4026 } \\ & \text { 2N4O38 } \\ & \hline \end{aligned}$	IT137 IT137 IT137 3N163 2N4351
$\begin{aligned} & 2134 \mathrm{U} \\ & 2136 \mathrm{U} \\ & 2138 \mathrm{U} \\ & 2139 \mathrm{U} \\ & 2147 \mathrm{U} \end{aligned}$	$\begin{aligned} & \text { 2N3956 } \\ & \text { 2N3957 } \\ & \text { 2N3958 } \\ & \text { 2N3958 } \\ & \text { 2N3958 } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 2N3045 } \\ & \text { 2N3046 } \\ & \text { 2N3047 } \\ & \text { 2N3048 } \\ & \text { 2N3049 } \\ & \hline \end{aligned}$	IT122 IT121 IT122 IT122 IT139	$\begin{aligned} & \text { 2N3684A } \\ & \text { 2N36855 } \\ & \text { 2N3685A } \\ & \text { 2N3686 } \\ & \text { 2N3686A } \end{aligned}$	$\begin{aligned} & \text { 2N3684 } \\ & \text { 2N3685 } \\ & \text { 2N3685 } \\ & \text { 2N3686 } \\ & \text { 2N3686 } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 2N4039 } \\ & \text { 2N4065 } \\ & \text { 2N4066 } \\ & \text { 2N4067 } \\ & \text { 2N4082 } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 2N4351 } \\ & \text { 3N163 } \\ & \text { 3N166 } \\ & \text { 3N166 } \\ & \text { 2N3954 } \\ & \hline \end{aligned}$
$\begin{aligned} & 2148 \mathrm{U} \\ & 2149 \mathrm{U} \\ & 231 \mathrm{~S} \\ & 232 \mathrm{~S} \\ & 233 \mathrm{~S} \\ & \hline \end{aligned}$	2N3958 2N3958 2N3954 2N3955 2N3956	$\begin{aligned} & \text { 2N3050 } \\ & \text { 2N3051 } \\ & \text { 2N3052 } \\ & \text { 2N3059 } \\ & \text { 2N3066 } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { IT139 } \\ & \text { IT139 } \\ & \text { T1129 } \\ & \text { IT139 } \\ & \text { 2N4340 } \\ & \hline \end{aligned}$	2N3687 2N3687A 2N3726 2N3727 2N3728	$\begin{aligned} & \text { 2N3687 } \\ & \text { 2N3687 } \\ & \text { IT131 } \\ & \text { T130 } \\ & \text { T1122 } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 2N4083 } \\ & \text { 2N4084 } \\ & \text { 2N4085 } \\ & \text { 2N4091 } \\ & \text { 2N4091A } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 2N3955 } \\ & \text { 2N3954 } \\ & \text { 2N3955 } \\ & \text { 2N4091 } \\ & \text { 2N4091 } \\ & \hline \end{aligned}$
$\begin{aligned} & 234 \mathrm{~S} \\ & 235 \mathrm{~S} \\ & 241 \mathrm{U} \\ & 250 \mathrm{U} \\ & 251 \mathrm{U} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 2N3957 } \\ & \text { 2N3958 } \\ & \text { 2N4869 } \\ & \text { 2N4091 } \\ & \text { 2N4392 } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 2N3067 } \\ & \text { 2N3068 } \\ & \text { 2N3069 } \\ & \text { 2N3070 } \\ & \text { 2N3071 } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 2N4338 } \\ & \text { 2N4338 } \\ & \text { 2N4341 } \\ & \text { 2N4339 } \\ & \text { 2N4338 } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 2N3729 } \\ & \text { 2N3800 } \\ & \text { 2N3801 } \\ & \text { 2N3802 } \\ & \text { 2N3803 } \\ & \hline \end{aligned}$	IT121 IT132 IT132 IT132 1 IT132	$\begin{aligned} & \text { 2N4091JAN } \\ & \text { 2N4091JANTX } \\ & \text { 2N4091JANTXV } \\ & \text { 2N4092 } \\ & \text { 2N4092A } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 2N4091 JAN } \\ & \text { 2N4091 JANTX } \\ & \text { 2N4091 JANTXV } \\ & \text { 2N4092 } \\ & \text { 2N4092 } \\ & \hline \end{aligned}$
$\begin{aligned} & \text { 2N2060 } \\ & \text { 2N2060A } \\ & \text { 2N2060B } \\ & \text { 2N2223 } \\ & \text { 2N2223A } \\ & \hline \end{aligned}$	IT120 IT121 IT121 IT122 IT121	$\begin{aligned} & \text { 2N3084 } \\ & \text { 2N3085 } \\ & \text { 2N3086 } \\ & \text { 2N3087 } \\ & \text { 2N3088 } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 2N4339 } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 2N3804 } \\ & \text { 2N3804A } \\ & \text { 2N3805 } \\ & \text { 2N3805A } \\ & \text { 2N3806 } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { IT130 } \\ & \text { IT130A } \\ & \text { IT130 } \\ & \text { IT130A } \\ & \text { IT122 } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 2N4092JAN } \\ & \text { 2N4092JANTX } \\ & \text { 2N4092JANTXV } \\ & \text { 2N4093 } \\ & \text { 2N4093A } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 2N4092JAN } \\ & \text { 2N4092JANTX } \\ & \text { 2N4092JANTXV } \\ & \text { 2N4093 } \\ & \text { 2N4093 } \\ & \hline \end{aligned}$
$\begin{aligned} & \text { 2N2386 } \\ & \text { 2N2386A } \\ & \text { 2N2453 } \\ & \text { 2N2453A } \\ & \text { 2N2480 } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 2N2608 } \\ & \text { 2N2608 } \\ & \text { IT122 } \\ & \text { T121 } \\ & \text { IT122 } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 2N3088A } \\ & \text { 2N3089 } \\ & \text { 2N3089A } \\ & \text { 2N3113 } \\ & \text { 2N3277 } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 2N4339 } \\ & \text { 2N4339 } \\ & \text { 2N4339 } \\ & \text { 2N2607 } \\ & \text { 2N2606 } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 2N3807 } \\ & \text { 2N3808 } \\ & \text { 2N3809 } \\ & \text { 2N3810 } \\ & \text { 2N3810A } \\ & \hline \end{aligned}$	IT122 IT122 IT122 2N3810 2N3810A	$\begin{aligned} & \text { 2N4093JAN } \\ & \text { 2N4093JANTX } \\ & \text { 2N4093JANTXV } \\ & \text { 2N4100 } \\ & \text { 2N4117 } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 2N4093JAN } \\ & \text { 2N4093JANTX } \\ & \text { 2N4093JANTXV } \\ & \text { 2N4100 } \\ & \text { 2N4117 } \\ & \hline \end{aligned}$
$\begin{aligned} & \text { 2N2480A } \\ & \text { 2N2497 } \\ & \text { 2N2498 } \\ & \text { 2N2499 } \\ & \text { 2N2500 } \end{aligned}$	$\begin{aligned} & \text { IT121 } \\ & \text { 2N2608 } \\ & \text { 2N2608 } \\ & \text { 2N2609 } \\ & \text { 2N2608 } \end{aligned}$	$\begin{aligned} & \text { 2N3278 } \\ & \text { 2N3328 } \\ & \text { 2N3329 } \\ & \text { 2N3330 } \\ & \text { 2N3331 } \end{aligned}$	$\begin{aligned} & \text { 2N2607 } \\ & \text { 2N5265 } \\ & \text { 2N5267 } \\ & \text { 2N5268 } \\ & \text { 2N5270 } \end{aligned}$	$\begin{aligned} & \text { 2N38111 } \\ & \text { 2N3811A } \\ & \text { 2N3812 } \\ & \text { 2N3813 } \\ & \text { 2N3814 } \end{aligned}$	$\begin{aligned} & \text { 2N3811 } \\ & 2 N 3811 \mathrm{~A} \\ & \text { IT132 } \\ & \text { IT132 } \\ & \text { IT132 } \end{aligned}$	$\begin{aligned} & \text { 2N41117A } \\ & \text { 2N41188 } \\ & \text { 2N4118A } \\ & \text { 2N4119 } \\ & \text { 2N4119A } \end{aligned}$	$\begin{aligned} & \text { 2N4117AA } \\ & \text { 2N4118 } \\ & \text { 2N4118A } \\ & \text { 2N41199 } \\ & \text { 2N41199A } \end{aligned}$

ALTERNATE SOURCE PRODUCT	INTERSIL EQUIVALENT						
3N181 3N182 3N183 3N188 3N189	$\begin{aligned} & \text { 3N161 } \\ & \text { 3N161 } \\ & \text { 3N161 } \\ & \text { 3N188 } \\ & \text { 3N189 } \end{aligned}$	$\begin{aligned} & \text { AD7520SD } \\ & \text { AD7520TD } \\ & \text { AD7520UD } \\ & \text { AD7521JD } \\ & \text { AD7521JN } \end{aligned}$	AD7520SD AD7520TD AD7520UD AD7521JD AD7521JN	$\begin{aligned} & \text { AHO141D } \\ & \text { AHO141D/883 } \\ & \text { AHO142CD } \\ & \text { AHO142D } \\ & \text { AHO142D/883 } \end{aligned}$	$\begin{aligned} & \text { DG141AP } \\ & \text { DG141AP/883B } \\ & \text { DG142BK } \\ & \text { DG142AK } \\ & \text { DG142AK/883B } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { BF805 } \\ & \text { BF806 } \\ & \text { BF808 } \\ & \text { BF810 } \\ & \text { BF811 } \end{aligned}$	$\begin{aligned} & \text { 2N4869 } \\ & \text { 2N4869 } \\ & \text { 2N4868 } \\ & \text { 2N4858 } \\ & \text { 2N4858 } \\ & \hline \end{aligned}$
$\begin{aligned} & \text { 3N190 } \\ & \text { 3N191 } \\ & \text { 3N207 } \\ & \text { 3N208 } \\ & \text { 3SK22 } \end{aligned}$	$\begin{aligned} & \text { 3N190 } \\ & \text { 3N191 } \\ & \text { 3N190 } \\ & \text { 3N188 } \\ & \text { 2N5486 } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { AD7521KD } \\ & \text { AD7521KN } \\ & \text { AD7521LD } \\ & \text { AD7521 } \\ & \text { AD7521SD } \end{aligned}$	AD7521KD AD7521KN AD7521LD AD7521LN AD7521SD	$\begin{aligned} & \text { AHO143CD } \\ & \text { AHO143D } \\ & \text { AHO143D/883 } \\ & \text { AHO144CD } \\ & \text { AHO144D } \end{aligned}$	$\begin{aligned} & \text { DG143BK } \\ & \text { DG143AK } \\ & \text { DG143AK/883B } \\ & \text { DG144BK } \\ & \text { DG144AK } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { BF815 } \\ & \text { BF816 } \\ & \text { BF817 } \\ & \text { BF818 } \\ & \text { BFQ10 } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 2N4858 } \\ & \text { U4O1 } \end{aligned}$
$\begin{aligned} & 3 \mathrm{SK23} \\ & 3 \mathrm{SK28} \\ & 42 \mathrm{~T} \\ & 4360 \mathrm{TP} \\ & 5033 \mathrm{TP} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 2N5397 } \\ & \text { 2N5397 } \\ & \text { 2N4392 } \\ & \text { 2N5462 } \\ & \text { 2N5460 } \\ & \hline \end{aligned}$	AD7521TD AD7521UD AD7523AD AD7523BD AD7523CD	AD7521TD AD7521UD AD7523AD AD7523BD AD7523CD	$\begin{aligned} & \text { AHO144D/883 } \\ & \text { AHO145CD } \\ & \text { AHO145D } \\ & \text { AHO145D/883 } \\ & \text { AHO146CD } \end{aligned}$	$\begin{aligned} & \text { DG144AK/883B } \\ & \text { DG145BP } \\ & \text { DG145AP } \\ & \text { DG145AP/883B } \\ & \text { DG146BP } \end{aligned}$	$\begin{aligned} & \text { BFQ11 } \\ & \text { BFQ112 } \\ & \text { BFO13 } \\ & \text { BFQ14 } \\ & \text { BFQ15 } \\ & \hline \end{aligned}$	$\begin{aligned} & U 401 \\ & U 402 \\ & \cup 403 \\ & U 404 \\ & \cup 405 \\ & \hline \end{aligned}$
$\begin{aligned} & 588 \mathrm{U} \\ & 58 \mathrm{~T} \\ & 59 \mathrm{~T} \\ & 703 \mathrm{U} \\ & 704 \mathrm{U} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 2N4416 } \\ & \text { 2N5457 } \\ & \text { 2N4416 } \\ & \text { 2N4220 } \\ & \text { 2N4220 } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { AD7523JN } \\ & \text { AD7523KN } \\ & \text { AD7523LN } \\ & \text { AD7523SD } \\ & \text { AD7523TD } \\ & \hline \end{aligned}$	AD7523JN AD7523KN AD7523LN AD7523SD AD7523TD	$\begin{aligned} & \text { AHO146D } \\ & \text { AHO146D/883 } \\ & \text { AHO151CD } \\ & \text { AHO151D/883 } \\ & \text { AHO152CD } \end{aligned}$	$\begin{aligned} & \text { DG146AP } \\ & \text { DG146AP/883B } \\ & \text { DG151BK } \\ & \text { DG151AK/883B } \\ & \text { DG152BK } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { BFQ16 } \\ & \text { BFQ23 } \\ & \text { BFO26 } \\ & \text { BFQ44 } \\ & \text { BFQ45 } \end{aligned}$	$\begin{aligned} & \text { U406 } \\ & \text { IT5912 } \\ & \text { U403 } \\ & \text { IT5912 } \\ & \text { IT5912 } \\ & \hline \end{aligned}$
$\begin{aligned} & 705 \mathrm{U} \\ & 707 \mathrm{U} \\ & 714 \mathrm{U} \\ & 734 \mathrm{EU} \\ & 734 \mathrm{U} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 2N4224 } \\ & \text { 2N4860 } \\ & \text { 2N3822 } \\ & \text { 2N4416 } \\ & \text { 2N5516 } \end{aligned}$	AD7523UD AD7530JD AD7530JN AD7530KD AD7530KN	AD7523UD AD7530JD AD7530JN AD7530KD AD7530KN	AHO152D AHO152D/883 AHO153CD AHO153D AHO153D/883	$\begin{aligned} & \text { DG152AK } \\ & \text { DG152AK/883B } \\ & \text { DG153BP } \\ & \text { DG153AP } \\ & \text { DG153AP/883B } \end{aligned}$	$\begin{aligned} & \text { BFQ49A } \\ & \text { BFO49B } \\ & \text { BFO49C } \\ & \text { BFS21 } \\ & \text { BFS21A } \end{aligned}$	$\begin{aligned} & \text { 2N3055 } \\ & \text { 2N3958 } \\ & \text { 2N3958 } \\ & \text { 2N5199 } \\ & \text { 2N5199 } \\ & \hline \end{aligned}$
$\begin{aligned} & 751 \mathrm{U} \\ & 752 \mathrm{U} \\ & 753 \mathrm{U} \\ & 754 \mathrm{U} \\ & 755 \mathrm{U} \end{aligned}$	$\begin{aligned} & \text { 2N4340 } \\ & \text { 2N4340 } \\ & \text { 2N4341 } \\ & \text { 2N4340 } \\ & \text { 2N4341 } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { AD7530LD } \\ & \text { AD7530LN } \\ & \text { AD7531JD } \\ & \text { AD7531 JN } \\ & \text { AD7531KD } \end{aligned}$	AD7530LD AD7530LN AD7531JD AD7531JN AD7531KD	$\begin{aligned} & \text { AHO154CD } \\ & \text { AHO154D } \\ & \text { AHO154D/883 } \\ & \text { AHO155D } \\ & \text { AHO161CD } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { DG154BK } \\ & \text { DG154AK } \\ & \text { DG143AK/883B } \\ & \text { DG151AK } \\ & \text { DG161BP } \end{aligned}$	$\begin{aligned} & \text { BFS67 } \\ & \text { BFS67P } \\ & \text { BFS68 } \\ & \text { BFS68P } \\ & \text { BFS70 } \end{aligned}$	$\begin{aligned} & \text { 2N3821 } \\ & \text { 2N5459 } \\ & \text { 2N3823 } \\ & \text { 2N4416 } \\ & \text { 2N3821 } \end{aligned}$
$\begin{aligned} & 756 \mathrm{U} \\ & \text { A190 } \\ & \text { A191 } \\ & \text { A192 } \\ & \text { A193 } \end{aligned}$	2N4340 ITE4416 ITE4416 2N4416 2N5484	AD7531 KN AD7531LD AD7531LN AD7533AD AD7533BD	AD7531KN AD7531LD AD7531LN AD7533AD AD7533BD	AH0161D AH0161D/883 AH0162CD AHO162D AHO162D/883B	$\begin{aligned} & \text { DG161AP } \\ & \text { DG161AP/883B } \\ & \text { DG162BK } \\ & \text { DG162AK } \\ & \text { DG162AK/883B } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { BFS71 } \\ & \text { BFS72 } \\ & \text { BFS73 } \\ & \text { BFS74 } \\ & \text { BFS75 } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 2N3822 } \\ & \text { 2N3823 } \\ & \text { 2N3821 } \\ & \text { 2N4856 } \\ & \text { 2N4857 } \end{aligned}$
A194 A195 A196 A197 A198	$\begin{aligned} & \text { 2N5484 } \\ & \text { 2N5484 } \\ & \text { ITE4416 } \\ & \text { ITE4391 } \\ & \text { ITE4392 } \end{aligned}$	AD7533CD AD7533JN AD7533KN AD7533LN AD7533SD	AD7533CD AD7533JN AD7533KN AD7533LN AD7533SD	$\begin{aligned} & \text { AHO163CD } \\ & \text { AHO163D } \\ & \text { AHO163D/883 } \\ & \text { AHO164CD } \\ & \text { AHO164D } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { DG163BP } \\ & \text { DG163AP } \\ & \text { DG163AP/883B } \\ & \text { DG164BK } \\ & \text { DG164AK } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { BFS76 } \\ & \text { BFS77 } \\ & \text { BFS78 } \\ & \text { BFS79 } \\ & \text { BFS80 } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 2N4858 } \\ & \text { 2N48599 } \\ & \text { 2N4860 } \\ & \text { 2N4861 } \\ & \text { 2N4416A } \\ & \hline \end{aligned}$
A199 A5T3821 A5T3822 A5T3823 A5T3824	$\begin{aligned} & \text { ITE4393 } \\ & \text { 2N5484 } \\ & \text { 2N5484 } \\ & \text { 2N4416 } \\ & \text { 2N4341 } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { AD7533TD } \\ & \text { AD7533UD } \\ & \text { AD7541AD } \\ & \text { AD7541BD } \\ & \text { AD7541 JN } \end{aligned}$	AD7533TD AD7533UD AD7541AD AD7541BD AD7541JN	$\begin{aligned} & \text { AHO164D/883 } \\ & \text { AH5009CN } \\ & \text { AH5010CN } \\ & \text { AH5012CN } \\ & \text { AH5013CN } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { DG164AK/883B } \\ & \text { 1H5009CPD } \\ & \text { 1H5010CPD } \\ & \text { 1H5012CPE } \\ & \text { 1H5013CPD } \\ & \hline \end{aligned}$	BFT10 BFT11 BFW10 BFW11 BFW12	$\begin{aligned} & \text { 2N5397 } \\ & \text { 2N5019 } \\ & \text { 2N3823 } \\ & \text { 2N3822 } \\ & \text { 2N4416 } \\ & \hline \end{aligned}$
$\begin{aligned} & \text { A5T5460 } \\ & \text { A5T5461 } \\ & \text { A5T5462 } \\ & \text { AD39554 } \\ & \text { AD } 3954 A \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 2N5460 } \\ & \text { 2N5461 } \\ & \text { 2N5462 } \\ & \text { 2N3954 } \\ & \text { 2N3954A } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { AD7541 KN } \\ & \text { AD7541SD } \\ & \text { AD7541 TD } \\ & \text { AD810 } \\ & \text { AD811 } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { AD7541KN } \\ & \text { AD7541 SD } \\ & \text { AD7541TD } \\ & \text { 2N4878 } \\ & \text { 2N4878 } \end{aligned}$	AH5014CN AH5015CN AH5016CN ALD555 ALD556	IH5014CPD IH5015CPE IH5016CPE ICM7555 ICM7556	BFW13 BFW39 BFW39A BFW54 BFW55	$\begin{aligned} & \text { 2N4867 } \\ & \text { 1T129 } \\ & \text { IT120 } \\ & \text { 2N3822 } \\ & \text { 2N3822 } \\ & \hline \end{aligned}$
$\begin{aligned} & \text { AD3955 } \\ & \text { AD3956 } \\ & \text { AD3958 } \\ & \text { AD589 } \\ & \text { AD590 } \end{aligned}$	$\begin{aligned} & 2 N 3955 \\ & 2 N 3956 \\ & 2 N 3958 \\ & \text { ICL8069 } \\ & \text { AD590 } \end{aligned}$	AD812 AD813 AD814 AD815 AD816	$\begin{aligned} & \text { 2N4878 } \\ & \text { 2N4878 } \\ & \text { IT124 } \\ & \text { IT124 } \\ & \text { IT120A } \end{aligned}$	$\begin{aligned} & \text { AM5011CN } \\ & \text { BC264 } \\ & \text { BC264A } \\ & \text { BC264B } \\ & \text { BC264C } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { IH5011CPE } \\ & \text { 2N5458 } \\ & \text { 2N5457 } \\ & \text { 2N5458 } \\ & \text { 2N5458 } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { BFW56 } \\ & \text { BFW61 } \\ & \text { BFX11 } \\ & \text { BFX15 } \\ & \text { BFX36 } \end{aligned}$	$\begin{aligned} & \text { 2N4860 } \\ & \text { 2N4224 } \\ & \text { IT132 } \\ & \text { IT122 } \\ & \text { IT131 } \\ & \hline \end{aligned}$
AD5905 AD5906 AD5907 AD5908 AD5909	$\begin{aligned} & \text { 2N5905 } \\ & \text { 2N5906 } \\ & \text { 2N5907 } \\ & \text { 2N5908 } \\ & \text { 2N5909 } \\ & \hline \end{aligned}$	AD818 AD820 AD821 AD822 AD830	IT140 IT132 IT130A IT130A 2N5520	BC264D BCY87 BCY88 BCY89 BF244	2N4416 IT121 IT122 IT122 2N5486	$\begin{aligned} & \text { BFX70 } \\ & \text { BFX71 } \\ & \text { BFX72 } \\ & \text { BFX78 } \\ & \text { BFX82 } \end{aligned}$	IT122 IT122 IT122 2N5397 2N5019
AD7506/COM/CHIPS AD7506/MIL/CHIPS AD7506JD AD7506JD/883B AD7506JN	IH6116C/D IH6116M/D \|H6116CJI \|H6116CJI/883B. IH6116CPI	$\begin{aligned} & \text { AD831 } \\ & \text { AD832 } \\ & \text { AD833 } \\ & \text { AD833A } \\ & \text { AD835 } \end{aligned}$	$\begin{aligned} & \text { 2N5521 } \\ & \text { 2N5522 } \\ & \text { 2N5523 } \\ & \text { 2N5524 } \\ & \text { 2N3954 } \end{aligned}$	$\begin{aligned} & \text { BF244A } \\ & \text { BF244B } \\ & \text { BF244C } \\ & \text { BF245 } \\ & \text { BF245A } \end{aligned}$	$\begin{aligned} & \text { 2N5484 } \\ & \text { 2N5485 } \\ & \text { 2N5486 } \\ & \text { 2N5486 } \\ & \text { 2N4416 } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { BFX83 } \\ & \text { BFX99 } \\ & \text { BFY20 } \\ & \text { BFY81 } \\ & \text { BFY82 } \end{aligned}$	2N5019 IT120A IT122 IT122 IT122
AD7506KD AD7506KD/883B AD7506KN AD7506SD AD7506SD/883B	$\begin{aligned} & \text { IH6116CJI } \\ & \text { IH6116CJI/883B } \\ & \text { IH6116CPI } \\ & \text { H6116MJI } \\ & \text { HH6116MJI/883B } \end{aligned}$	$\begin{aligned} & \text { AD836 } \\ & \text { AD837 } \\ & \text { AD838 } \\ & \text { AD839 } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 2N3955 } \\ & \text { 2N3955 } \\ & \text { 2N3956 } \\ & \text { 2N3957 } \\ & \text { 2N5520 } \\ & \hline \end{aligned}$	BF245B BF245C BF246 BF246A BF246B	$\begin{aligned} & \text { 2N4416 } \\ & \text { 2N4416 } \\ & \text { 2N5485 } \\ & \text { 2N5639 } \\ & \text { 2N5638 } \\ & \hline \end{aligned}$	BFY83 BFY84 BFY85 BFY86 BFY91	$\begin{aligned} & \text { IT122 } \\ & \text { IT122 } \\ & \text { TT122 } \\ & \text { IT122 } \\ & \text { IT122 } \\ & \hline \end{aligned}$
$\begin{aligned} & \text { AD7506TD } \\ & \text { AD7506TD/883B } \\ & \text { AD7507/COM/CHIPS } \\ & \text { AD7507/MIL/CHIPS } \\ & \text { AD7507JD } \end{aligned}$	$\begin{aligned} & \text { IH6116MJI } \\ & \text { IH6116MJI/883B } \\ & \text { IH6216C/D } \\ & \text { HH6216M/D } \\ & \text { IH6216CJI } \end{aligned}$	$\begin{aligned} & \text { AD841 } \\ & \text { AD842 } \\ & \text { AHO126D } \\ & \text { AHO126D/883 } \\ & \text { AHO129CD } \end{aligned}$	$\begin{aligned} & \text { 2N5521 } \\ & \text { 2N5523 } \\ & \text { DG126AP } \\ & \text { DG126AP/883B } \\ & \text { DG129BK } \end{aligned}$	BF246C BF247 BF247A BF247B BF247C	$\begin{aligned} & \text { 2N5638 } \\ & \text { 2N4091 } \end{aligned}$	BFY92 BN209 BSV22 BSV78 BSV79	IT122 IT122 2N4416 2N4856A 2N4857A
$\begin{aligned} & \text { AD7507JD/883B } \\ & \text { AD7507JN } \\ & \text { AD7507KD } \\ & \text { AD7507KD/883B } \\ & \text { AD7507KN } \end{aligned}$	$\begin{aligned} & \text { HH6216CJI/883B } \\ & \text { IH6216CPI } \\ & \text { IH6216CJI } \\ & \text { 1H6216CJI/883B } \\ & \text { IH6216CPI } \end{aligned}$	$\begin{aligned} & \text { AHO129D } \\ & \text { AHO129D/883 } \\ & \text { AHO133CD } \\ & \text { AHO133D } \\ & \text { AHO133D/883 } \end{aligned}$	$\begin{aligned} & \text { DG129AK } \\ & \text { DG129AK/883B } \\ & \text { DG133BK } \\ & \text { DG133AK } \\ & \text { DG133AK/883B } \\ & \hline \end{aligned}$	BF256 BF256A BF256B BF256C BF320	$\begin{aligned} & \text { 2N5484 } \\ & \text { 2N5484 } \\ & \text { 2N4416 } \\ & \text { 2N4416 } \\ & \text { 2N5461 } \\ & \hline \end{aligned}$	BSV80 BSX82 C21 C2306 C38	$\begin{aligned} & \text { 2N4858A } \\ & \text { 2N3822 } \\ & \text { 2N3821 } \\ & \text { 2N5196 } \\ & \text { 2N4338 } \\ & \hline \end{aligned}$
$\begin{aligned} & \text { AD7507SD } \\ & \text { AD7507SD/883B } \\ & \text { AD7507TD } \\ & \text { AD7507TD/883B } \\ & \text { AD7520JD } \end{aligned}$	$\begin{aligned} & \text { IH6216M/D } \\ & \text { IH6216MJI/883B } \\ & \text { IH6216MJI } \\ & \text { IH6216MJI/883B } \\ & \text { AD7520JD } \end{aligned}$	$\begin{aligned} & \text { AHO134CD } \\ & \text { AHO134D } \\ & \text { AHO134D/883 } \\ & \text { AHO139CD } \\ & \text { AHO139D } \end{aligned}$	$\begin{aligned} & \text { DG134BK } \\ & \text { DG134AK } \\ & \text { DG134AK/883B } \\ & \text { DG139BK } \\ & \text { DG139AK } \end{aligned}$	BF320A BF320B BF320C BF346 BF347	$\begin{aligned} & \text { 2N5460 } \\ & \text { 2N5461 } \\ & \text { 2N5462 } \\ & \text { 1TE4392 } \\ & \text { J201 } \end{aligned}$	$\begin{aligned} & \text { C413N } \\ & \text { C610 } \\ & \text { C611 } \\ & \text { C612 } \\ & \text { C613 } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 2N5434 } \\ & \text { 2N4392 } \\ & \text { 2N4221 } \\ & \text { 2N4221 } \\ & \text { 2N4221 } \\ & \hline \end{aligned}$
AD7520JN AD7520KD AD7520KN AD7520LD AD7520LN	AD7520JN AD7520KD AD7520KN AD7520LD AD7520LN	$\begin{aligned} & \text { AHO139D/883 } \\ & \text { AHO140CD } \\ & \text { AHO140D } \\ & \text { AHO140D/883 } \\ & \text { AHO141CD } \end{aligned}$	$\begin{aligned} & \text { DG139AK/883B } \\ & \text { DG140BP } \\ & \text { DG140AP } \\ & \text { DG140AP/883B } \\ & \text { DG141BP } \end{aligned}$	BF348 BF800 BF801 BF802 BF804	$\begin{aligned} & \text { J310 } \\ & \text { 2N4867 } \\ & \text { 2N4867 } \\ & \text { 2N4338 } \\ & \text { 2N4338 } \end{aligned}$	$\begin{aligned} & \text { C614 } \\ & \text { C615 } \\ & \text { C620 } \\ & \text { C621 } \\ & \text { C622 } \end{aligned}$	$\begin{aligned} & \text { 2N4220 } \\ & \text { 2N4221 } \\ & \text { 2N4220 } \\ & \text { 2N4220 } \\ & \text { 2N4220 } \end{aligned}$

ALTERNATE SOURCE PRODUCT	INTERSIL EQUIVALENT	ALTERNATE SOURCE PRODUCT	INTERSIL EQUIVALENT	ALTERNATE SOURCE PRODUCT	INTERSIL EQUIVALENT	ALTERNATE SOURCE PRODUCT	INTERSIL. EQUIVALENT
$\begin{aligned} & \text { C623 } \\ & \text { C624 } \\ & \text { C625 } \\ & \text { C650 } \\ & \text { C651 } \end{aligned}$	2N4220 2N4220 2N4220 2N4220 2N4220	$\begin{aligned} & \text { D123AL } \\ & \text { D123AP } \\ & \text { D123BP } \\ & \text { D123BP } \\ & \text { D125AL } \end{aligned}$	$\begin{aligned} & \text { D123AL } \\ & \text { D123AK } \\ & \text { D123BK } \\ & \text { D123BJ } \\ & \text { D125AL } \end{aligned}$	DG152AP DG152BP. DG153AL DG153AP DG153BP	$\begin{aligned} & \text { DG152AK } \\ & \text { DG152BK } \\ & \text { DG153AL } \\ & \text { DG153AP } \\ & \text { DG153BP } \end{aligned}$	$\begin{aligned} & \text { DG191AL } \\ & \text { DG191AP } \\ & \text { DG191AP } \\ & \text { DG191BP } \\ & \text { DG191BP } \end{aligned}$	DG191AL DGM191AK DG191AK DGM191CJ DGM191BK
C652 C653 C6690 C6691 C6692	$\begin{aligned} & \text { 2N4220 } \\ & \text { 2N4220 } \\ & \text { 2N4341 } \\ & \text { 2N4341 } \\ & \text { 2N4339 } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { D125AP } \\ & \text { D125BP } \\ & \text { D129AL } \\ & \text { D129AP } \\ & \text { D129BP } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { D125AP } \\ & \text { D125BK } \\ & \text { D129AL } \\ & \text { D129AK } \\ & \text { D129BK } \\ & \hline \end{aligned}$	DG154AL DG154AP DG154BP DG161AL DG161AP	$\begin{aligned} & \text { DG154AL } \\ & \text { DG154AK } \\ & \text { DG154BK } \\ & \text { DG161AL } \\ & \text { DG161AP } \end{aligned}$	DG191BP DG200AAA DG200AAK DG200AAL DG200ABA	DG191BK DG200AA DG200AK DG200AL DG200BA
$\begin{aligned} & \mathrm{C} 673 \\ & \mathrm{C} 674 \\ & \mathrm{C} 680 \\ & \mathrm{C} 680 \mathrm{~A} \\ & \mathrm{C} 681 \end{aligned}$	$2 N 4341$ $2 N 4341$ $2 N 4338$ 2N4338 2N4338	D1301 D1302 D1303 D1420 D1421	$\begin{aligned} & \text { 2N4222 } \\ & \text { 2N4220 } \\ & \text { 2N4220 } \\ & \text { 2N4868 } \\ & \text { 2N3822 } \end{aligned}$	DG161BP DG162AL DG162AP DG162BP DG163AL	DG161BP DG162AL DG162AK DG162BK DG163AL	$\begin{aligned} & \text { DG200ABK } \\ & \text { DG200ACJ } \\ & \text { DG201AAK } \\ & \text { DG201ABK } \\ & \text { DG201ACJ } \end{aligned}$	$\begin{aligned} & \text { DG200BK } \\ & \text { DG200CJ } \\ & \text { DG201AK } \\ & \text { DG201BK } \\ & \text { DG201CJ } \end{aligned}$
$\begin{aligned} & \text { C681A A } \\ & \text { C682 } \\ & \text { C682A } \\ & \text { C683 } \\ & \text { C683 } \end{aligned}$	$2 N 4338$ $2 N 4339$ $2 N 4339$ 2N4339 2N4339	$\begin{aligned} & \text { D1422 } \\ & \text { D2T2218 } \\ & \text { D2T2218A } \\ & \text { D2T2219 } \\ & \text { D2T2219A } \\ & \hline \end{aligned}$	2N4869 $1 T 129$ 11129 T1129 $1 T 129$	$\begin{aligned} & \text { DG163AP } \\ & \text { DG163BP } \\ & \text { DG164AL } \\ & \text { DG164AP } \\ & \text { DG164BP } \end{aligned}$	$\begin{aligned} & \text { DG163AP } \\ & \text { DG163BP } \\ & \text { DG164AL } \\ & \text { DG164AK } \\ & \text { DG164BK } \end{aligned}$	$\begin{aligned} & \text { DG211CJ } \\ & \text { DG212CJ } \\ & \text { DG381AA } \\ & \text { DG381AK } \\ & \text { DG381AP } \end{aligned}$	$\begin{aligned} & \text { DG211CJ } \\ & \text { DG212CJ } \\ & \text { DGM182AA } \\ & \text { DGM182AK } \\ & \text { DGM182AK } \end{aligned}$
$\begin{aligned} & \text { C684 } \\ & \text { C684A } \\ & \text { C685 } \\ & \text { C685A } \\ & \text { C80 } \end{aligned}$	$\begin{aligned} & \text { 2N4220 } \\ & \text { 2N4338 } \end{aligned}$	$\begin{aligned} & \text { D2T2904 } \\ & \text { D2T2904A } \\ & \text { D2T2905 } \\ & \text { D2T2905A } \\ & \text { D2T918 } \end{aligned}$	$\begin{aligned} & \text { IT139 } \\ & \text { IT129 } \end{aligned}$	DG180AA DG180AL DG180AP DG180BA DG180BP	$\begin{aligned} & \text { DG180AA } \\ & \text { DG180AL } \\ & \text { DG180AK } \\ & \text { DG180BA } \\ & \text { DG180BK } \end{aligned}$	$\begin{aligned} & \text { DG381BA } \\ & \text { DG381BK } \\ & \text { DG381BP } \\ & \text { DG381CJ } \\ & \text { DG384AK } \end{aligned}$	DGM181BA DGM181BK DGM181BK DGM181CJ DGM185AK
$\begin{aligned} & \text { C81 } \\ & \text { C84 } \\ & \text { C85 } \\ & \text { C91 } \\ & \text { C92 } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 2N4338 } \\ & \text { 2N4338 } \\ & \text { 2N4338 } \\ & \text { 2N4858 } \\ & \text { 2N4091 } \\ & \hline \end{aligned}$	DA102 DA402 DAC1020LCD DAC1020LD DAC1021LCD	$\begin{aligned} & \text { 2N5196 } \\ & \text { 2N5196 } \\ & \text { AD7520LD } \\ & \text { AD7520UD } \\ & \text { AD7520KD } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { DG181AA } \\ & \text { DG181AA } \\ & \text { DG181AL } \\ & \text { DG181AL } \\ & \text { DG181AP } \end{aligned}$	DGM181AA DG181AA DGM181AL DG181AL DGM181AK	$\begin{aligned} & \text { DG384AP } \\ & \text { DG384BK } \\ & \text { DG384BP } \\ & \text { DG384CJ } \\ & \text { DG387AA } \end{aligned}$	DGM185AK DGM184BK DGM184BK DGM184CJ DGM188AA
C93 C94 C94E C95 C95E	$\begin{aligned} & \text { 2N4393 } \\ & \text { 2N5457 } \\ & \text { 2N5457 } \\ & \text { 2N5457 } \\ & \text { 2N5459 } \\ & \hline \end{aligned}$	DAC1021LD DAC1022LCD DAC1022LD DAC1218LCD DAC1218LCN	AD7520TD AD7520JD AD7520SD AD7541BD AD7541LN	$\begin{aligned} & \text { DG181AP } \\ & \text { DG181BA } \\ & \text { DG181BA } \\ & \text { DG181BP } \\ & \text { DG181BP } \end{aligned}$	$\begin{aligned} & \text { DG181AK } \\ & \text { DGM181BA } \\ & \text { DG181BA } \\ & \text { DGM181CJ } \\ & \text { DGM181BK } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { DG387AK } \\ & \text { DG387AP } \\ & \text { DG387BA } \\ & \text { DG387BK } \\ & \text { DG387BP } \end{aligned}$	DGM188AK DGM188AK DGM187BA DGM187BK DGM187BK
C96E C97E C98E CA555 CA556	$\begin{aligned} & \text { 2N5484 } \\ & \text { 2N3822 } \\ & \text { 2N3822 } \\ & \text { ICM7555 } \\ & \text { ICM7556 } \end{aligned}$	DAC1218LCN DAC1219LCD DAC1219LCN DAC1220LCD DAC1220LD	$\begin{aligned} & \text { AD7541 KN } \\ & \text { AD7541AD } \\ & \text { AD7541 } \mathrm{JN} \\ & \text { AD7521LD } \\ & \text { AD7521UD } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { DG181BP } \\ & \text { DG182AA } \\ & \text { DG182AA } \\ & \text { DG182AL } \\ & \text { DG182AL } \end{aligned}$	$\begin{aligned} & \text { DG181BK } \\ & \text { DGM182AA } \\ & \text { DG182AA } \\ & \text { DGM182AL } \\ & \text { DG182AL } \end{aligned}$	$\begin{aligned} & \text { DG390AK } \\ & \text { DG390AP } \\ & \text { DG390BK } \\ & \text { DG390BP } \\ & \text { DG390CJ } \end{aligned}$	DGM191AK DGM191AK DGM190BK DGM190BK DGM190CJ
CC4445 CC4446 CC697 CD22001H CD22015E	$\begin{aligned} & \text { 2N5432 } \\ & \text { 2N5434 } \\ & \text { 2N4856 } \\ & \text { ICM1424C } \\ & \text { ICM7051A } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { DAC1221LCD } \\ & \text { DAC1221LD } \\ & \text { DAC1222LCD } \\ & \text { DAC1222LD } \\ & \text { DG123AL } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { AD7521KD } \\ & \text { AD7521 TD } \\ & \text { AD7521JD } \\ & \text { AD7521SD } \\ & \text { DG123AL } \end{aligned}$	$\begin{aligned} & \text { DG182AP } \\ & \text { DG182AP } \\ & \text { DG182BA } \\ & \text { DG182BA } \\ & \text { DG182BP } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { DGM182AK } \\ & \text { DG182AK } \\ & \text { DGM182BA } \\ & \text { DG182BA } \\ & \text { DGM182CJ } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { DG503 } \\ & \text { DG5040AK } \\ & \text { DG5040CJ } \\ & \text { DG5040CK } \\ & \text { DG5041AK } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { AD503 } \\ & \text { IH5040MJE } \\ & \text { IH5040CPE } \\ & \text { IH5040CJE } \\ & \text { IH5041 MJE } \end{aligned}$
$\begin{aligned} & \text { CF2386 } \\ & \text { CF24 } \\ & \text { CFM13026 } \\ & \text { CM600 } \\ & \text { CM601 } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 2N5458 } \\ & \text { 2N3824 } \\ & \text { 2N4858 } \\ & \text { 2N4092 } \\ & \text { 2N4091 } \end{aligned}$	$\begin{aligned} & \text { DG123AP } \\ & \text { DG123BP } \\ & \text { DG125AL } \\ & \text { DG125AP } \\ & \text { DG125BP } \end{aligned}$	$\begin{aligned} & \text { DG123AP } \\ & \text { DG123BB } \\ & \text { DG125AL } \\ & \text { DG125AP } \\ & \text { DG125BP } \end{aligned}$	$\begin{aligned} & \text { DG182BP } \\ & \text { DG182BP } \\ & \text { DG183AL } \\ & \text { DG183AP } \\ & \text { DG183BP } \end{aligned}$	$\begin{aligned} & \text { DGM182BK } \\ & \text { DG182BK } \\ & \text { DG183AL } \\ & \text { DG183AP } \\ & \text { DG183BP } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { DG5041CJ } \\ & \text { DG5041 CK } \\ & \text { DG5042AK } \\ & \text { DG5042CJ } \\ & \text { DG5042CK } \end{aligned}$	IH5041CPE IH5041CJE IH5042MJE IH5042CPE IH5042CJE
CM602 CM603 CM640 CM641 CM642	$\begin{aligned} & \text { 2N4091 } \\ & \text { 2N4091 } \\ & \text { 2N4093 } \\ & \text { 2N4093 } \\ & \text { 2N4093 } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { DG126AK } \\ & \text { DG126AL } \\ & \text { DG126BP } \\ & \text { DG129AL } \\ & \text { DG129AP } \end{aligned}$	$\begin{aligned} & \text { DG126AP } \\ & \text { DG126AL } \\ & \text { DG126BP } \\ & \text { DG1129AL } \\ & \text { DG129AK } \end{aligned}$	$\begin{aligned} & \text { DG184AL } \\ & \text { DG184AL } \\ & \text { DG184AP } \\ & \text { DG184AP } \\ & \text { DG184BP } \end{aligned}$	DGM184AL DG184AL DGM184AK DG184AK DGM184CJ	DG5043AK DG5043CJ DG5043CK DG5044AK DG5044CJ	$\begin{aligned} & \text { IH5043MJE } \\ & \text { IH5043CPE } \\ & \text { IH5043CJE } \\ & \text { IH5044MME } \\ & \text { IH5044CPE } \end{aligned}$
CM643 CM644 CM645 CM646 CM647	$\begin{aligned} & \text { 2N4092 } \\ & \text { 2N4091 } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { DG129BP } \\ & \text { DG133AL } \\ & \text { DG133AP } \\ & \text { DG133BP } \\ & \text { DG134AL } \end{aligned}$	$\begin{aligned} & \text { DG129BK } \\ & \text { DG133AL } \\ & \text { DG133AK } \\ & \text { DG133BK } \\ & \text { DG134AL } \end{aligned}$	$\begin{aligned} & \text { DG184BP } \\ & \text { DG184BP } \\ & \text { DG185AL } \\ & \text { DG185AL } \\ & \text { DG185AAP } \end{aligned}$	DGM184BK DG184BK DGM185AL DG185AL DGM185AK	DG5044CK DG5045AK DG5045CJ DG5045CK DG506AAK	IH5044CJE IH5045MJE IH5045CPE IH5045CJE IH6116MJI
CM650 CM651 CM652 CM653 CM697	$\begin{aligned} & \text { 2N5432 } \\ & \text { 2N5433 } \\ & \text { 2N5432 } \\ & \text { 2N5433 } \\ & \text { 2N5433 } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { DG134AP } \\ & \text { DG134BP } \\ & \text { DG139AL } \\ & \text { DG139AP } \\ & \text { DG139BP } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { DG134AK } \\ & \text { DG134BK } \\ & \text { DG139AL } \\ & \text { DG139AK } \\ & \text { DG139BK } \end{aligned}$	$\begin{aligned} & \text { DG185AP } \\ & \text { DG185BP } \\ & \text { DG185BP } \\ & \text { DG185BP } \\ & \text { DG186AA } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { DG185AK } \\ & \text { DGM185CJ } \\ & \text { DGM185BK } \\ & \text { DG185BK } \\ & \text { DG186AA } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { DG506ABK } \\ & \text { DG506ACJ } \\ & \text { DG507AAK } \\ & \text { DG507ABK } \\ & \text { DG507ACJ } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { IH6116CJI } \\ & \text { IH6116CPI } \\ & \text { H6216MJI } \\ & \text { H6216CJI } \\ & \text { IH6216CPI } \\ & \hline \end{aligned}$
CM800 CM856 CM860 CMX740 CP640	$\begin{aligned} & \text { 2N5433 } \\ & \text { 2N5433 } \\ & \text { 2N4868A } \\ & \text { 2N5432 } \\ & \text { 2N4091 } \end{aligned}$	$\begin{aligned} & \text { DG140AL } \\ & \text { DG140AP } \\ & \text { DG140BP } \\ & \text { DG141AL } \\ & \text { DG141AP } \end{aligned}$	$\begin{aligned} & \text { DG140AL } \\ & \text { DG140AA } \\ & \text { DG140BP } \\ & \text { DG141AL } \\ & \text { DG141AAP } \end{aligned}$	$\begin{aligned} & \text { DG186AL } \\ & \text { DG186AP } \\ & \text { DG186BA } \\ & \text { DG186BP } \\ & \text { DG187AA } \end{aligned}$	$\begin{aligned} & \text { DG186AL } \\ & \text { DG186AP } \\ & \text { DG186BA } \\ & \text { DG186BP } \\ & \text { DG187AA } \end{aligned}$	$\begin{aligned} & \text { DG508AAK } \\ & \text { DG508ABK } \\ & \text { DG508ACJ } \\ & \text { DG509AAK } \\ & \text { DG509ABK } \end{aligned}$	$\begin{aligned} & \text { IH6108MJE } \\ & \text { IH6108CJE } \\ & \text { IH6108CPE } \\ & \text { IH5208MJJ } \\ & \text { IH6208CJE } \end{aligned}$
$\begin{aligned} & \text { CP643 } \\ & \text { CP650 } \\ & \text { CP651 } \\ & \text { CP652 } \\ & \text { CP653 } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 2N5434 } \\ & \text { 2N5432 } \\ & \text { 2N5433 } \\ & \text { 2N5433 } \\ & \text { 2N5433 } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { DG141BP } \\ & \text { DG142AL } \\ & \text { DG142AP } \\ & \text { DG142BP } \\ & \text { DG143AL } \end{aligned}$	$\begin{aligned} & \text { DG141BP } \\ & \text { DG142AL } \\ & \text { DG142AK } \\ & \text { DG142BK } \\ & \text { DG143AL } \end{aligned}$	$\begin{aligned} & \text { DG187AL } \\ & \text { DG187AA } \\ & \text { DG187BA } \\ & \text { DG187BP } \\ & \text { DG188AA } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { DG187AL } \\ & \text { DG187AAK } \\ & \text { DG187BA } \\ & \text { DG187BK } \\ & \text { DG188AA } \end{aligned}$	$\begin{aligned} & \text { DG509ACJ } \\ & \text { DG5140AK } \\ & \text { DG5140CJ } \\ & \text { DG5140CK } \\ & \text { DG5141AK } \end{aligned}$	$\begin{aligned} & \text { IH6208CPE } \\ & \text { tH5140MJE } \\ & \text { IH5140CPE } \\ & \text { IH5140CJJE } \\ & \text { IH5141MJE } \end{aligned}$
$\begin{aligned} & \text { D1101 } \\ & \text { D1102 } \\ & \text { D1103 } \\ & \text { D1177 } \\ & \text { D1178 } \end{aligned}$	$\begin{aligned} & \text { 2N3821 } \\ & \text { 2N3821 } \\ & \text { 2N4338 } \\ & \text { 2N3821 } \\ & \text { 2N3821 } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { DG143AP } \\ & \text { DG143BP } \\ & \text { DG144AL } \\ & \text { DG144AP } \\ & \text { DG144BP } \end{aligned}$	$\begin{aligned} & \text { DG143AK } \\ & \text { DG143BK } \\ & \text { DG144AL } \\ & \text { DG144AK } \\ & \text { DG144BK } \end{aligned}$	$\begin{aligned} & \text { DG188AL } \\ & \text { DG188AA } \\ & \text { DG188BA } \\ & \text { DG188BP } \\ & \text { DG189AL } \end{aligned}$	$\begin{aligned} & \text { DG188AL } \\ & \text { DG188AK } \\ & \text { DG188BA } \\ & \text { DG188BK } \\ & \text { DG189AL } \end{aligned}$	$\begin{aligned} & \text { DG5141CJ } \\ & \text { DG5141CK } \\ & \text { DG5142AK } \\ & \text { DG5142CJ } \\ & \text { DG5142CK } \end{aligned}$	$\begin{aligned} & \text { IH5141CPE } \\ & \text { IH5141CJE } \\ & \text { H5142MJE } \\ & \text { IH5142CPE } \\ & \text { IH5142CJJE } \end{aligned}$
$\begin{aligned} & \text { D1179 } \\ & \text { D1180 } \\ & \text { D1181 } \\ & \text { D1182 } \\ & \text { D1183 } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 2N4338 } \\ & \text { 2N3822 } \\ & \text { 2N43388 } \\ & \text { 2N4338 } \\ & \text { 2N4341 } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { DG145AL } \\ & \text { DG145AA } \\ & \text { DG145BP } \\ & \text { DG146AL } \\ & \text { DG146AP } \end{aligned}$	$\begin{aligned} & \text { DG145AL } \\ & \text { DG145AP } \\ & \text { DG145BP } \\ & \text { DG146AL } \\ & \text { DG146AP } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { DG189AP } \\ & \text { DG189BP } \\ & \text { DG190AL } \\ & \text { DG190AL } \\ & \text { DG190AP } \end{aligned}$	DG189AP DG189BP DGM190AL DG190AL DGM190AK	$\begin{aligned} & \text { DG5143AK } \\ & \text { DG5143CJ } \\ & \text { DG5143CK } \\ & \text { DG5144AK } \\ & \text { DG5144CJ } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { IH5143MJE } \\ & \text { IH5143CPE } \\ & \text { IH5143CJJE } \\ & \text { IH5144MJE } \\ & \text { IH5144CPE } \end{aligned}$
D1184 D1185 D1201 D1202 D1203	$\begin{aligned} & \text { 2N4340 } \\ & \text { 2N4339 } \\ & \text { 2N4224 } \\ & \text { 2N3821 } \\ & \text { 2N4220 } \end{aligned}$	DG146BP DG151AL DG151AP DG151BP DG152AL	DG146BP DG151AL DG151AK DG151BK DG152AL	DG190AP DG190BP DG190BP DG190BP DG191AL	DG190AK DGM190CJ DGM190BK DG190BK DGM191AL	DG5144CK DG5145AK DG5145CJ DG5145CK DN3066A	IH5144CJE IH5145MJE IH5145CPE IH5145CJE 2N3821
**CONSULT FACTORY		XXIV					

ALTERNATE SOURCE PRODUCT	INTERSIL EQUIVALENT	ALTERNATE SOURCE PRODUCT	INTERSIL EqUIVALENT	ALTERNATE SOURCE PRODUCT	INTERSIL EquIVALENT	ALTERNATE SOURCE PRODUCT	INTERSIL EQUIVALENT
DN3067A DN3068A DN3069A DN3070A DN3071A	$\begin{aligned} & \text { 2N4338 } \\ & \text { 2N4338 } \\ & \text { 2N3822 } \\ & \text { 2N3821 } \\ & \text { 2N4338 } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { E411 } \\ & \text { E412 } \\ & \text { E413 } \\ & \text { E415 } \end{aligned}$	$\begin{aligned} & \text { IT5911 } \\ & \text { IT5911 } \\ & \text { 2N5454 } \\ & \text { 2N3956 } \\ & \text { 2N3957 } \\ & \hline \end{aligned}$	FM3956 FM3957 FM3958 FP4339 FP4340	$\begin{aligned} & \text { 2N3956 } \\ & \text { 2N3957 } \\ & \text { 1T59911 } \\ & \text { 2N4339 } \\ & \text { 2N4340 } \end{aligned}$	HI1-0507A-8 HI1-0508-2 HI1-0508-5 H11-0508-8 HI1-0508A-2	$\begin{aligned} & \text { IH5216MJI/883B } \\ & \text { IH6108MJE } \\ & \text { IH6108CJE } \\ & \text { IH6108MJE/883B } \\ & \text { IH5108MJE } \\ & \hline \end{aligned}$
DN3365A DN3365B DN3366A DN3366B DN3367A	$\begin{aligned} & \text { 2N4220 } \\ & \text { 2N4091 } \\ & \text { 2N3686 } \\ & \text { 2N4091 } \\ & \text { 2N3687 } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { E420 } \\ & \text { E421 } \\ & \text { E430 } \\ & \text { ESM25 } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { IT5911 } \\ & \text { IT5912 } \\ & \text { J309(X2) } \\ & \text { J310(X2) } \\ & \text { U401 } \end{aligned}$	FT0654A FT0654B FT0654C FT0654D FT3820	$\begin{aligned} & \text { 2N5486 } \\ & \text { 2N5486 } \\ & \text { 2N4221 } \\ & \text { 2N4221 } \\ & \text { 2N5460 } \\ & \hline \end{aligned}$	HI1-0508A-5 HI1-0508A-8 HI1-0509-2 HI1-0509-5 HI1-0509-8	$\begin{aligned} & \text { IH5108IJE } \\ & \text { IH5108MJE/883B } \\ & \text { IH6208MJE } \\ & \text { IH6208CJE } \\ & \text { IH6208MJE/883B } \\ & \hline \end{aligned}$
DN3367B DN3368A DN3368B DN3369A DN3369B	$\begin{aligned} & \text { 2N4091 } \\ & \text { 2N4341 } \\ & \text { 2N4221 } \\ & \text { 2N4339 } \\ & \text { 2N4220 } \end{aligned}$	ESM25A ESM4091 ESM4092 ESM4093 ESM4302	$\begin{aligned} & \text { U401 } \\ & \text { 2N4091 } \\ & \text { 2N4092 } \\ & \text { 2N4093 } \\ & \text { 2N5457 } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { FT3820 } \\ & \text { FT3909 } \\ & \text { FT703 } \\ & \text { FT704 } \\ & \text { G118AL } \end{aligned}$	$\begin{aligned} & \text { 2N5019 } \\ & \text { 2N5019 } \\ & \text { 3N161 } \\ & \text { 3N163 } \\ & \text { G118AL } \end{aligned}$	HI1-0509A-2 HI1-0509A-5 HI1-0509A-8 HI1-5040-2 HI1-5040-5	$\begin{aligned} & \text { IH5208MJE } \\ & \text { IH5208IJE } \\ & \text { IH5208MJE/883B } \\ & \text { IH5040MJE } \\ & \text { IH5040CJE } \\ & \hline \end{aligned}$
DN3370A DN3370B DN3436A DN3436B DN3437A	$\begin{aligned} & \text { 2N4338 } \\ & \text { 2N4338 } \\ & \text { 2N4341 } \\ & \text { 2N4222 } \\ & \text { 2N4340 } \\ & \hline \end{aligned}$	ESM4303 ESM4304 ESM4445 ESM4446 ESM4447	$\begin{aligned} & \text { 2N5459 } \\ & \text { 2N5458 } \\ & \text { 2N5432 } \\ & \text { 2N5434 } \\ & \text { 2N5432 } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { G118AP } \\ & \text { G123AL } \\ & \text { G123AP } \\ & \text { GET5457 } \\ & \text { GET5458 } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { G118AK } \\ & \text { G123AL } \\ & \text { G123AK } \\ & \text { 2N5457 } \\ & \text { 2N5458 } \\ & \hline \end{aligned}$	HII-5040-8 HI1-5041-2 HI1-5041-5 HI1-5041-8 HI1-5042-2	$\begin{aligned} & \text { IH5040MJE/883B } \\ & \text { IH5041MJE } \\ & \text { IH5041 CJE } \\ & \text { IH5041MJE/883B } \\ & \text { IH5042MJE } \end{aligned}$
DN3437B DN3438A DN3438B DN3458A DN3458B	$\begin{aligned} & \text { 2N4220 } \\ & \text { 2N4338 } \\ & \text { 2N4339 } \\ & \text { 2N4341 } \\ & \text { 2N4222 } \\ & \hline \end{aligned}$	ESM4448 FE0654A FE0654B FE100 FE100A	$\begin{aligned} & \text { 2N5434 } \\ & \text { 2N4386 } \\ & \text { 2N5485 } \\ & \text { 2N3821 } \\ & \text { 2N3821 } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { GET5459 } \\ & \text { HA2720 } \\ & \text { HA7807 } \\ & \text { HA7809 } \\ & \text { HD43871 } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 2N5459 } \\ & \text { ICL8021 } \\ & \text { IT132 } \\ & \text { IT132 } \\ & \text { ICM7050H } \end{aligned}$	$\begin{aligned} & H 11-5042-5 \\ & \text { HI1-5042-8 } \\ & \text { HI1-5043-2 } \\ & \text { HI1-5043-5 } \\ & \text { HI1-5043-8 } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { IH5042CJE } \\ & \text { IH5142MJE/883B } \\ & \text { IH5143MJE } \\ & \text { IH5143CJE } \\ & \text { IH5143MJE/883B } \end{aligned}$
DN3459A DN3459B DN3460A DN3460B DNX1	$\begin{aligned} & \text { 2N4339 } \\ & \text { 2N4220 } \\ & \text { 2N4338 } \\ & \text { 2N4220 } \\ & \text { 2N4338 } \end{aligned}$	FE102 FE102A FE104 FE104A FE1600	$\begin{aligned} & \text { 2N4119 } \\ & \text { 2N4119 } \\ & \text { 2N4118 } \\ & \text { 2N4118 } \\ & \text { 2N4092 } \end{aligned}$	HD43871 HDIG1030 HEP801 HEP802 HEP803	$\begin{aligned} & \text { ICM7050G } \\ & \text { 3N163 } \\ & \text { 2N3822 } \\ & \text { 2N5484 } \\ & \text { 2N5019 } \end{aligned}$	$\begin{aligned} & \text { HI1-5044-2 } \\ & \text { HI1-5044-5 } \\ & \text { HI1-5044-8 } \\ & \text { HH1-5045-2 } \\ & \text { HI1-5045-5 } \end{aligned}$	IH5144MJE IH5144CJE IH5144MJE/883B IH5145MJE IH5145CJE
$\begin{aligned} & \text { DNX2 } \\ & \text { DNX3 } \\ & \text { DNX4 } \\ & \text { DNX5 } \\ & \text { DNX6 } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 2N4338 } \\ & \text { 2N4338 } \\ & \text { 2N4869 } \\ & \text { 2N4868 } \\ & \text { 2N4338 } \\ & \hline \end{aligned}$	FE200 FE202 FE204 FE300 FE302	$\begin{aligned} & \text { 2N3821 } \\ & \text { 2N3821 } \\ & \text { 2N3821 } \\ & \text { 2N3822 } \\ & \text { 2N3821 } \\ & \hline \end{aligned}$	HEPFOO21 HEPF 1035 HEPF2004 HEPF2005 HIO-0201-6	$\begin{aligned} & \text { 2N5484 } \\ & \text { J176 } \\ & \text { 2N5484 } \\ & \text { 2N5459 } \\ & \text { DG201C/D } \end{aligned}$	HI1-5045-8 HI1-5046-2 HI1-5046-5 HI1-5046-8 HI1-5047-2	$\begin{aligned} & \text { IH5145MJE/883B } \\ & \text { IH5046MJE } \\ & \text { IH5046CJE } \\ & \text { IH5046MJE/883B } \\ & \text { IH5047MJE } \\ & \hline \end{aligned}$
$\begin{aligned} & \text { DNX7 } \\ & \text { DNX8 } \\ & \text { DNX9 } \\ & \text { DSOO26 } \\ & \text { DSOO26 } \end{aligned}$	$\begin{aligned} & \text { 2N4416 } \\ & \text { 2N4416 } \\ & \text { 2N4339 } \\ & \text { ICL7667 } \\ & \text { ICL7667 } \end{aligned}$	FE304 FE3819 FE4302 FE4303 FE4304	$\begin{aligned} & \text { 2N3821 } \\ & \text { 2N5484 } \\ & \text { 2N5457 } \\ & \text { 2N5459 } \\ & \text { 2N5458 } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { HIO-0381-6 } \\ & \text { HIO-0384-6 } \\ & \text { HIO-0387-6 } \\ & \text { HIO-0390-6 } \\ & \text { HIO-0506-6 } \end{aligned}$	DGM181C/D DGM184C/D DGM187C/D DGM190C/D IH6116C/D	$\begin{aligned} & \text { HI1-5047-5 } \\ & \text { HI1-5047-8 } \\ & \text { HI1-5049-2 } \\ & \text { HH1-5049-5 } \\ & \text { HI1-5049-8 } \end{aligned}$	IH5047CJE IH5047MJE/883B IH5149MJE IH5149CJE IH5149MJE/883B
$\begin{aligned} & \text { DU4339 } \\ & \text { DU4340 } \\ & \text { E100 } \\ & \text { E101 } \\ & \text { E102 } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 2N5397 } \\ & \text { 2N5398 } \\ & \text { 2N5458 } \\ & \text { J204 } \\ & \text { 2N5457 } \\ & \hline \end{aligned}$	FE5245 FE5246 FE5247 FE5457 FE5458	$\begin{aligned} & \text { 2N4416 } \\ & \text { 2N5484 } \\ & \text { 2N5486 } \\ & \text { 2N5457 } \\ & \text { 2N5458 } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { HIO-0506A-6 } \\ & \text { HIO-0507-6 } \\ & \text { HIO-0507A-6 } \\ & \text { HIO-0508-6 } \\ & \text { HIO-0508A-6 } \end{aligned}$	$\begin{aligned} & \text { IH5116C/D } \\ & \text { 1H6216C/D } \\ & \text { 1H5216C/D } \\ & \text { 1H6108C/D } \\ & \text { IH5108C/D } \end{aligned}$	HI1-5050-2 HI1-5050-5 HI1-5050-8 HI1-5051-2 HI1-5051-5	$\begin{aligned} & \text { IH5150MJE } \\ & \text { IH5150CJE } \\ & \text { IH5150MJE/883B } \\ & \text { IH5151MJE } \\ & \text { IH5151CJE } \end{aligned}$
E103 E105 E106 E107 E108	$\begin{aligned} & \text { 2N5459 } \\ & \text { J105 } \\ & \text { J106 } \\ & \text { J107 } \\ & \text { J105 } \end{aligned}$	FE5459 FE5484 FE5485 FE5486 FF400	$\begin{aligned} & \text { 2N5459 } \\ & \text { 2N5484 } \\ & \text { 2N5485 } \\ & \text { 2N5486 } \\ & \text { 2N5457 } \end{aligned}$	$\begin{aligned} & \text { HIO-0509-6 } \\ & \text { HIO-0509A-6 } \\ & \text { HIO-5040-6 } \\ & \text { HIO-5041-6 } \\ & \text { HIO-5042-6 } \end{aligned}$	$\begin{aligned} & \text { IH6208C/D } \\ & \text { 1H5208C/D } \\ & \text { 1H5140C/D } \\ & \text { 1H5141C/D } \\ & \text { IH5142C/D } \\ & \hline \end{aligned}$	HI1-5051-8 H12-0200-2 HI2-0200-4 HI2-0200-5 H12-0200-8	$\begin{aligned} & \text { IH5151MJE/883B } \\ & \text { DG200AA } \\ & \text { DG200BA } \\ & \text { DG200BA } \\ & \text { DG200AA/883B } \end{aligned}$
E109 E110 E111 E1115 El11A	$\begin{aligned} & \text { J106 } \\ & \text { J107 } \\ & \text { J111 } \\ & \text { ICM1115A } \\ & \text { J111 } \end{aligned}$	FM1 100 FM1100A FM1101A FM1 102 FM1102A	$\begin{aligned} & \text { 2N3954A } \\ & \text { 2N5906 } \\ & \text { 2N5906 } \\ & \text { 2N3954 } \\ & \text { 2N59006 } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { HIO-5043-6 } \\ & \text { HIO-5044-6 } \\ & \text { HIO-5045-6 } \\ & \text { HIO-5046-6 } \\ & \text { HIO-5047-6 } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 1H5143C/D } \\ & \text { 1H5144C/D } \\ & \text { IH5145C/D } \\ & \text { 1H5046C/D } \\ & \text { 1H5047C/D } \end{aligned}$	$\begin{aligned} & \mathrm{HI} 2-0381-2 \\ & \mathrm{HI} 2-0381-5 \\ & \mathrm{HH} 2-0381-8 \\ & \mathrm{HI} 3-0200-5 \\ & \mathrm{HI} 3-0201-5 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { DGM182AA } \\ & \text { DGM181BA } \\ & \text { DGM181AA } 883 B \\ & \text { DG200CJ } \\ & \text { DG201CJ } \\ & \hline \end{aligned}$
E112 E112A E113 El13A E114	$\begin{aligned} & J 112 \\ & J 112 \\ & J 113 \\ & J 113 \\ & J 204 \\ & \hline \end{aligned}$	FM1103 FM1103A FM1 104 FM1104A FM1 105	$\begin{aligned} & \text { 2N3955 } \\ & \text { 2N59008 } \\ & \text { 2N3957 } \\ & \text { 2N5909 } \\ & \text { 2N3954A } \\ & \hline \end{aligned}$	HIO-5049-6 HIO-5050-6 HiO-5051-6 Hil-0200-2 HI1-0200-4	IH5149C/D IH5150C/D IH5051C/D DG200AK DG200BK	H13-0381-5 HI3-0384-5 HI3-0390-5 H13-0506-5 HI3-0506A-5	DGM181CJ DGM184CJ DGM190CJ IH6116CPI IH5116CPI
E1151 E1426 E174 E175 E176	ICM1115B ICM7050U J174 $J 175$ J176	FM1105A FM1106 FM1106A FM1107 FM1107A	$\begin{aligned} & \text { IT500 } \\ & 2 N 3954 \mathrm{~A} \\ & \text { IT500 } \\ & 2 N 3954 \\ & \text { IT500 } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { H11-0200-5 } \\ & \mathrm{H} 11-0200-6 \\ & \mathrm{H} 11-0200-8 \\ & \mathrm{H} 11-0201-2 \\ & \mathrm{H} 11-0201-4 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { DG200BK } \\ & \text { DG200C/D } \\ & \text { DG200AK/883B } \\ & \text { DG201AK } \\ & \text { DG201BK } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { HI3-0507-5 } \\ & \text { HI3-0507A-5 } \\ & \text { HI3-0508-5 } \\ & \text { HI3-0508A-5 } \\ & \text { HI3-0509-5 } \end{aligned}$	$\begin{aligned} & \text { IH6216CPI } \\ & \text { IH5216CPI } \\ & \text { IH6108CPE } \\ & \text { IH5108CPE } \\ & \text { IH6208CPE } \\ & \hline \end{aligned}$
$\begin{aligned} & \text { E177 } \\ & \text { E201 } \\ & \text { E203 } \\ & \text { E204 } \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{J} 177 \\ & \mathrm{~J} 201 \\ & \mathrm{~J} 202 \\ & \mathrm{~J} 203 \\ & \mathrm{~J} 204 \\ & \hline \end{aligned}$	FM1108 FM1108A FM1109 FM1109A FM1110	$\begin{aligned} & \text { 2N3955 } \\ & \text { 1T502 } \\ & \text { 2N3957 } \\ & \text { IT503 } \\ & \text { 2N3955 } \end{aligned}$	$\begin{aligned} & \mathrm{HI} 1-0201-5 \\ & \mathrm{HI} 1-0201-8 \\ & \mathrm{HI}-0381-2 \\ & \mathrm{HI1-0381-5} \\ & \mathrm{HI}-0381-8 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { DG201BK } \\ & \text { DG201AK/883B } \\ & \text { DGM182AK } \\ & \text { DGM181BK } \\ & \text { DGM182AK/883B } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { HI3-0509A-5 } \\ & \text { ICL7611 } \\ & \text { ICL7612 } \\ & \text { ICL7621 } \\ & \text { ICL7631 } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { IH5208CPE } \\ & \text { ICL7611 } \\ & \text { ICL7612 } \\ & \text { ICL7621 } \\ & \text { ICL7631 } \\ & \hline \end{aligned}$
$\begin{aligned} & \text { E210 } \\ & \text { E211 } \\ & \text { E230 } \\ & \text { E231 } \end{aligned}$	$\begin{aligned} & \text { 2N5397 } \\ & \text { 2N5397 } \\ & \text { 2N5397 } \\ & \text { 2N4867 } \\ & \text { 2N4868 } \end{aligned}$	FM1110A FM1111 FM1111A FM1112 FM1200	$\begin{aligned} & \text { 2N5908 } \\ & \text { 2N3957 } \\ & \text { 2N5909 } \\ & \text { 2N5196 } \\ & \text { 2N3954 } \end{aligned}$	HI1-0384-2 HI1-0384-5 HII-0384-8 HI1-0387-2 HI1-0387-5	$\begin{aligned} & \text { DGM185AK } \\ & \text { DGM184BK } \\ & \text { DGM185AK/883B } \\ & \text { DGM188AK } \\ & \text { DGM187BK } \end{aligned}$	ICL7641 ICL7642 ICL7650 ICL7652 ICL7660	ICL7641 ICL7642 ICL7650 ICL7652 ICL7660
$\begin{aligned} & \text { E232 } \\ & \text { E271 } \\ & \text { E300 } \\ & \text { E304 } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 2N4869 } \\ & \text { J270 } \\ & \text { J271 } \\ & \text { 2N5397 } \\ & \text { 2N5486 } \\ & \hline \end{aligned}$	FM1201 FM1202 FM1203 FM1204 FM1205	$\begin{aligned} & \text { 2N3954 } \\ & \text { 2N3954 } \\ & \text { 2N3955A } \\ & \text { 2N3955 } \\ & \text { 2N3954 } \\ & \hline \end{aligned}$	HI1-0387-8 HI1-0390-2 HI1-0390-5 HI1-0390-8 HI1-0506-2	$\begin{aligned} & \text { DGM188AK/883B } \\ & \text { DGM191AK } \\ & \text { DGM190BK } \\ & \text { DGM191AK/883B } \\ & \text { IH6116MJI } \end{aligned}$	ICL.7663 ICL7665 ICL8069 ICM7240 ICM7242	ICL7663 ICL7665 ICL8069 ICM7240 ICM7242
$\begin{aligned} & \text { E305 } \\ & \text { E308 } \\ & \text { E309 } \\ & \text { E310 } \\ & \text { E311 } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 2N5484 } \\ & \text { J308 } \\ & \text { J309 } \\ & \text { J310 } \\ & \text { J310 } \\ & \hline \end{aligned}$	FM1206 FM1207 FM1208 FM1209 FM1210	$\begin{aligned} & \text { 2N3954 } \\ & \text { 2N3954 } \\ & \text { 2N3955A } \\ & \text { 2N3955 } \\ & \text { 2N3955A } \\ & \hline \end{aligned}$	HI1-0506-5 HI1-0506-8 HI1-0506A-2 HI1-0506A-5 HI1-0506A-8	IH6116CJI IH6116MJI/883B IH5116MJI IH5116IJI IH5116MJI/883B	ICM7250 ICM7555 ICM7556 ICNOOM7555 ID100	$\begin{aligned} & \text { ICM7250 } \\ & \text { ICM7555 } \\ & \text { ICM7556 } \\ & \text { ICM7555 } \\ & \text { ID100 } \end{aligned}$
$\begin{aligned} & \text { E312 } \\ & \text { E400 } \\ & \text { E401 } \\ & \text { E402 } \end{aligned}$	$\begin{aligned} & \text { 2N5397 } \\ & \text { 2N3955 } \\ & \text { 2N3955 } \\ & \text { 2N3957 } \\ & \text { 2N3955 } \end{aligned}$	FM1211 FM3954 FM3954A FM3955 FM3955A	$\begin{aligned} & \text { IT5911 } \\ & \text { 2N3954 } \\ & \text { 2N3954A } \\ & \text { 2N39555 } \\ & \text { 2N39555A } \end{aligned}$	HI1-0507-2 HI1-0507-5 HI1-0507-8 HII-0507A-2 HII-0507A-5	$\begin{aligned} & \text { IH6216MJI } \\ & \text { IH6216CJI } \\ & \text { IH6216MJI/883B } \\ & \text { IH5216MJI } \\ & \text { IH5216IJI } \end{aligned}$	ID101 IMF3954 IMF3954A IMF3955 IMF3955A	$\begin{aligned} & \text { ID101 } \\ & \text { 2N3954 } \\ & \text { 2N3954A } \\ & \text { 2N3955 } \\ & \text { 2N3955A } \end{aligned}$

souncernhatect		souncerphaticer	Eouthatient		Eauthatient	souncerphatect	Eouvikailent
				$\begin{aligned} & \text { j17.48 } \end{aligned}$			
						$\begin{array}{\|l\|l\|} \hline \end{array}$	
$\begin{gathered} 15053 \\ \hline \end{gathered}$					$\begin{aligned} & 1310 \\ & \hline \end{aligned}$		
					$\underset{\substack{159912 \\ \text { I2020 } \\ \text { j2020 }}}{\substack{202}}$		
		$\begin{aligned} & j 1020 \\ & j 1020 \\ & j 1025-18 \end{aligned}$					
		$\begin{aligned} & j 106618 \\ & \hline 10018 \\ & \hline 1001818 \\ & \hline 108 \end{aligned}$	1106 $\substack{1106 \\ j 1005 \\ j 105}$				
			$\begin{aligned} & 1105 \\ & \begin{array}{l} 1106 \\ \text { j105 } \\ \hline 1087 \end{array} \end{aligned}$	$\begin{aligned} & \text { jase } \\ & \text { jas } \\ & \hline \end{aligned}$			
			1111 1111 1112				
			$\begin{aligned} & 1112 \\ & \left.\begin{array}{l} 1112 \\ \hline 112 \\ \hline 112 \end{array}\right\} . \end{aligned}$				
-consult factory		xxvi					

sountefnniowict	EMOUTKALEMT	soutiteranimict		sounteranateoct	Emutinailent	sounteranaicicr	Emutinitur
		$\begin{gathered} \text { colit } 1122 \\ \text { cop } 122 \end{gathered} 2$					
	j202 $\substack{2020 \\ 1203}$ 1203				4003 and and and 3N 172 4		
$\begin{gathered} 15658 \\ \hline \end{gathered}$							
$\substack { \text { M117 } \\ \begin{subarray}{c}{117 \\ \text { Mited } \\ \text { M5001 }{ \text { M117 } \\ \begin{subarray} { c } { 1 1 7 \\ \text { Mited } \\ \text { M5001 } } } \end{subarray}$							
onsult fac		xxv					

ALTERNATE SOURCE PRODUCT	INTERSIL EQUIVALENT	ALTERMATE SOURCE PRODUCT	INTERSIL EQUIVALENT	ALTERNATE SOURCE PRODUCT	INTERSIL EQUIVALENT	ALTERNATE SOURCE PRODUCT	INTERSIL EQUIVALENT
MP7520LN MP7520SD MP7520TD MP7520UD MP7521JD	AD7520LN AD7520SD AD7520TD AD7520UD AD7521JD	NF5101 NF5102 NF5103 NF511 NF5163	$\begin{aligned} & \text { 2N4867 } \\ & \text { 2N4867 } \\ & \text { 2N4867 } \\ & \text { 2N4860 } \\ & \text { 2N4341 } \\ & \hline \end{aligned}$	PN3687 PN4091 PN4092 PN4093 PN4220	$\begin{aligned} & \text { 2N3687 } \\ & \text { ITE4091 } \\ & \text { ITE4092 } \\ & \text { ITE4093 } \\ & \text { J204 } \end{aligned}$	SJM187BCC SJM187BIC SJM188BCC SJM188BIC SJM190BEC	JM38510/11105BCC JM38510/11105BIC JM38510/11106BCC JM38510/11106BIC JM38510/11107BEC
MP7521JN MP7521KD MP7521KN MP7521LD MP7521LN	AD7521JN AD7521KD AD7521KN AD7521LD AD7521LN	NF520 NF521 NF522 NF523 NF530	2N3684 2N3685 2N3686 2N3865 2N4341	PN4221 PN4222 PN4223 PN4224 PN4342	$\begin{aligned} & \text { J202 } \\ & \text { J203 } \\ & \text { J204 } \\ & \text { J202 } \\ & \text { 2N5461 } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { SJM191BEC } \\ & \text { SL301AT } \\ & \text { SL301BT } \\ & \text { SL301CT } \\ & \text { SL301ET } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { JM38510/11108BEC } \\ & \text { IT129 } \\ & \hline \end{aligned}$
MP7521SD MP7521TD MP7521UD MP7523JN MP7523KN	AD7521SD AD7521TD AD7521UD AD7523JN AD7523KN	NF5301 NF5301-1 NF5301-2 NF5301-3 NF531	$\begin{aligned} & \text { 2N4118A } \\ & \text { 2N4117A } \\ & \text { 2N4118A } \\ & \text { 2N4118A } \\ & \text { 2N4339 } \end{aligned}$	PN4360 PN4391 PN4392 PN4416 PN4856	2N5460 ITE4391 ITE4392 ITE4416 2N4856	$\begin{aligned} & \text { SL360C } \\ & \text { SL362C } \\ & \text { SM5011 } \\ & \text { SM5510 } \\ & \text { SM5530B } \end{aligned}$	IT129 IT129 ICM7050G ICM1115B ICM7070P
MP7523LN MP7621AD MP7621BD MP7621JN MP7621KN	AD7523LN AD7541AD AD7541BD AD7541JN AD7541KN	NF532 NF533 NF5457 NF5458 NF5459	$\begin{aligned} & \text { 2N4341 } \\ & \text { 2N4339 } \\ & \text { 2N5457 } \\ & \text { 2N5458 } \\ & \text { 2N5459 } \\ & \hline \end{aligned}$	PN4857 PN4858 PN4859 PN4860 PN4861	$\begin{aligned} & \text { 2N4857 } \\ & \text { 2N4858 } \\ & \text { 2N4859 } \\ & \text { 2N4860 } \\ & \text { 2N4861 } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { SU2000 } \\ & \text { SU2020 } \\ & \text { SU2021 } \\ & \text { SU2022 } \\ & \text { SU2023 } \end{aligned}$	$\begin{aligned} & \text { 2N4340 } \\ & \text { 2N3954 } \\ & \hline \end{aligned}$
MP7621SD MP7621TD MP804 MP830 MP831	$\begin{aligned} & \text { AD7541SD } \\ & \text { AD7541TD } \\ & \text { 2N5520 } \\ & \text { 2N5520 } \\ & \text { 2N5521 } \\ & \hline \end{aligned}$	NF5484 NF5485 NF5486 NF5555 NF5638	$\begin{aligned} & \text { 2N5484 } \\ & \text { 2N5485 } \\ & \text { 2N5486 } \\ & \text { 2N5484 } \\ & \text { 2N5638 } \\ & \hline \end{aligned}$	PN5033 PTC151 PTC152 RC555 RC556	$\begin{aligned} & \text { 2N5460 } \\ & \text { 2N5484 } \\ & \text { 2N5485 } \\ & \text { ICM7555 } \\ & \text { ICM } 7556 \\ & \hline \end{aligned}$	SU2024 SU2025 SU2026 SU2027 SU2028	$\begin{aligned} & \text { 2N3954 } \\ & \hline \end{aligned}$
MP832 MP833 MP835 MP836 MP837	$\begin{aligned} & \text { 2N5522 } \\ & \text { 2N5523 } \\ & \text { 2N3954 } \\ & \text { 2N3955 } \\ & \text { 2N3955 } \end{aligned}$	NF5639 NF5640 NF5653 NF5654 NF580	$\begin{aligned} & \text { 2N5639 } \\ & \text { 2N5640 } \\ & \text { 2N4860 } \\ & \text { 2N4861 } \\ & \text { 2N5432 } \\ & \hline \end{aligned}$	S1424 SA2253 SA2254 SA2255 SA2644	ICM1424C IT122 IT122 IT122 IT120	$\begin{aligned} & \text { SU2O29 } \\ & \text { SU2029 } \\ & \text { SU2030 } \\ & \text { SU2030 } \\ & \text { SU2031 } \end{aligned}$	$\begin{aligned} & \text { 2N5197 } \\ & \text { 2N3954 } \\ & \text { 2N3955 } \\ & \text { 2N3954 } \\ & \text { 2N5198 } \end{aligned}$
MP838 MP839 MP840 MP841 MP842	$\begin{aligned} & \text { 2N3956 } \\ & \text { 2N3957 } \\ & \text { 2N5520 } \\ & \text { 2N5521 } \\ & \text { 2N5523 } \end{aligned}$	NF581 NF582 NF583 NF584 NF585	$\begin{aligned} & \text { 2N5432 } \\ & \text { 2N5433 } \\ & \text { 2N5434 } \\ & \text { 2N5433 } \\ & \text { 2N4859 } \\ & \hline \end{aligned}$	SA2648 SA2710 SA2711 SA2712 SA2713	$\begin{aligned} & \text { IT120 } \\ & \text { IT120 } \\ & \text { T120 } \\ & \text { IT121 } \\ & \text { IT121 } \end{aligned}$	$\begin{aligned} & \text { SU2031 } \\ & \text { SU2032 } \\ & \text { SU2033 } \\ & \text { SU2034 } \\ & \text { SU2034 } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 2N3954 } \\ & \text { 2N3954 } \\ & \text { 2N3954 } \\ & \text { 2N3955 } \\ & \text { 2N3954 } \\ & \hline \end{aligned}$
MPF102 MPF103 MPF104 MPF105 MPF106	$\begin{aligned} & \text { 2N5486 } \\ & \text { 2N5457 } \\ & \text { 2N5458 } \\ & \text { 2N5459 } \\ & \text { 2N5485 } \\ & \hline \end{aligned}$	NF6451 NF6452 NF6453 NF6454 NKT80111	$\begin{aligned} & \text { U310 } \\ & \text { 2N4220 } \end{aligned}$	$\begin{aligned} & \text { SA2714 } \\ & \text { SA2715 } \\ & \text { SA2716 } \\ & \text { SA2717 } \\ & \text { SA2718 } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { IT122 } \\ & \text { IT120 } \\ & \text { IT120 } \\ & \text { T121 } \\ & \text { IT122 } \\ & \hline \end{aligned}$	SU2035 SU2035 SU2074 SU2075 SU2076	$\begin{aligned} & \text { 2N3955 } \\ & \text { 2N3954 } \\ & \text { 2N39544 } \\ & \text { 2N3954 } \\ & \text { 2N3954 } \\ & \hline \end{aligned}$
MPF107 MPF108 MPF109 MPF111 MPF112	$\begin{aligned} & \text { 2N5486 } \\ & \text { 2N5486 } \\ & \text { 2N5484 } \\ & \text { 2N5458 } \\ & \text { 2N5458 } \\ & \hline \end{aligned}$	NKT80112 NKT80113 NKT80211 NKT80212 NKT80213	2N4220 2N3821 2N4339 2N4339 2N4339	SA2719 SA2720 SA2721 SA2722 SA2723	$\begin{aligned} & \text { IT120 } \\ & \text { IT121 } \\ & \text { IT122 } \\ & \text { IT120 } \\ & \text { IT121 } \end{aligned}$	$\begin{aligned} & \text { SU2077 } \\ & \text { SU } 2077 \\ & \text { SU2078 } \\ & \text { SU2079 } \\ & \text { SU2080 } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 2N3955 } \\ & \text { 2N3954 } \\ & \text { 2N3955 } \\ & \text { 2N3955 } \\ & \text { U404 } \end{aligned}$
MPF161 MPF208 MPF209 MPF256 MPF4391	$\begin{aligned} & \text { 2N5398 } \\ & \text { 2N3821 } \\ & \text { 2N3821 } \\ & \text { ITE4416 } \\ & \text { ITE4391 } \\ & \hline \end{aligned}$	NKT80214 NKT80215 NKT80216 NKT80421 NKT80422	$\begin{aligned} & \text { 2N4339 } \\ & \text { 2N4339 } \\ & \text { 2N4339 } \\ & \text { 2N4220 } \\ & \text { 2N422O } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { SA2724 } \\ & \text { SA2726 } \\ & \text { SA2727 } \\ & \text { SA2738 } \\ & \text { SA2739 } \\ & \hline \end{aligned}$	IT122 IT122 IT122 IT120A IT120	$\begin{aligned} & \text { SU2081 } \\ & \text { SU2098 } \\ & \text { SU2098A } \\ & \text { SU2098B } \\ & \text { SU2099 } \end{aligned}$	$\begin{aligned} & \text { U404 } \\ & \text { 2N5197 } \\ & \text { 2N5197 } \\ & \text { 2N5196 } \\ & \text { 2N5197 } \\ & \hline \end{aligned}$
MPF4392 MPF4393 MPF820 MPF970 MPF971	$\begin{aligned} & \text { ITE4392 } \\ & \text { ITE4393 } \\ & \text { J310 } \\ & \text { J175 } \\ & \text { J175 } \\ & \hline \end{aligned}$	NKT80423 NKT80424 NPC108 NPC211N NPC212N	2N4220 2N4220 2N5484 2N4338 2N4338	SCL54301 SCL5478 SDF1001 SDF1002 SDF1003	$\begin{aligned} & \text { ICM1424C } \\ & \text { ICM7269 } \\ & \text { 2N5432 } \\ & \text { 2N5433 } \\ & \text { 2N5434 } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { SU2099A } \\ & \text { SU2365 } \\ & \text { SU2365A } \\ & \text { SU2366 } \\ & \text { SU2366A } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 2N5197 } \\ & \text { 2N3954 } \\ & \text { 2N3954 } \\ & \text { 2N3955 } \\ & \text { 2N3955 } \\ & \hline \end{aligned}$
MPS5010 MSM5001 MSM5011 MSM5977 MTF101	ICL8069 ICM7269 ICM1424C ICM1424C 2N5484	NPC213N NPC214N NPC215N NPC216N NPD8301	$\begin{aligned} & \text { 2N4338 } \\ & \text { 2N4339 } \\ & \text { 2N4339 } \\ & \text { 2N4339 } \\ & \text { 2N3954 } \\ & \hline \end{aligned}$	SDF500 SDF501 SDF502 SDF504	$\begin{aligned} & \text { 2N5520 } \\ & \text { 2N5520 } \end{aligned}$	$\begin{aligned} & \text { SU2367 } \\ & \text { SU2367A } \\ & \text { SU2368 } \\ & \text { SU2368A } \\ & \text { SU2369 } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 2N3955 } \\ & \text { 2N3955 } \\ & \text { 2N3956 } \\ & \text { 2N3956 } \\ & \text { 2N3957 } \\ & \hline \end{aligned}$
MTF102 MTF103 MTF104 ND5700 ND5701	$\begin{aligned} & \text { 2N5484 } \\ & \text { 2N5457 } \\ & \text { 2N5459 } \\ & \text { IT120A } \\ & \text { IT120A } \\ & \hline \end{aligned}$	NPD8302 NPD8303 OT3 P1004 P1005	$\begin{aligned} & \text { 2N3955 } \\ & \text { 2N3956 } \\ & \text { 2N4338 } \\ & \text { 2N5116 } \\ & \text { 2N5115 } \\ & \hline \end{aligned}$	SDF505 SDF506 SDF507 SDF508 SDF509	$\begin{aligned} & \text { 2N5520 } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { SU2369A } \\ & \text { SU2410 } \\ & \text { SU2411 } \\ & \text { SU2412 } \\ & \text { SU2652 } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 2N3957 } \\ & \text { 2N5907 } \\ & \text { 2N5908 } \\ & \text { 2N5909 } \\ & \text { U401 } \\ & \hline \end{aligned}$
ND5702 NDF9401 NDF9402 NDF9403 NDF9404	$\begin{aligned} & \text { IT120 } \\ & 17500 \\ & 1 T 501 \\ & 1 T 502 \\ & 17503 \end{aligned}$	$\begin{aligned} & \text { P1027 } \\ & \text { P1028 } \\ & \text { P1029 } \\ & \text { P1069E } \\ & \text { P1086E } \end{aligned}$	$\begin{aligned} & \text { 2N5267 } \\ & \text { 2N5270 } \\ & \text { 2N5270 } \\ & \text { 2N2609 } \\ & \text { 2N5115 } \\ & \hline \end{aligned}$	SDF510 SDF512 SDF513 SDF514 SDF661	$\begin{aligned} & \text { 2N3954 } \\ & \text { 2N3954 } \\ & \text { 2N39544 } \\ & \text { 2N3954 } \\ & \text { IT122 } \end{aligned}$	$\begin{aligned} & \text { SU2652M } \\ & \text { SU2653 } \\ & \text { SU2653M } \\ & \text { SU2654 } \\ & \text { SU2654M } \end{aligned}$	$\begin{aligned} & \text { U401 } \\ & \text { U401 } \\ & \text { U401 } \\ & \text { U401 } \end{aligned}$
NDF9405 NDF9406 NDF9407 NDF9408 NDF9409	$\begin{aligned} & \text { IT504 } \\ & \text { IT500 } \\ & \text { iT501 } \\ & \text { iT502 } \\ & \text { IT503 } \end{aligned}$	$\begin{aligned} & \text { P1087E } \\ & \text { P1117E } \\ & \text { P1118E } \\ & \text { P1119E } \\ & \text { PF510 } \end{aligned}$	$\begin{aligned} & \text { 2N5516 } \\ & \text { 2N5640 } \\ & \text { 2N5641 } \\ & \text { 2N5640 } \\ & \text { 2N5115 } \end{aligned}$	SDF662 SDF663 SE555 SE556 SES3819	IT122 IT122 ICM7555 ICM7556 2N5484	$\begin{aligned} & \text { SU2655 } \\ & \text { SU2655M } \\ & \text { SU2656 } \\ & \text { SU2656M } \\ & \text { SX3819 } \end{aligned}$	U402 U402 U404 U404 2N5484
NDF9410 NE555 NE556 NE590 NF3819	$\begin{aligned} & \text { IT504 } \\ & \text { ICM7555 } \\ & \text { ICM7556 } \\ & \text { AD5990 } \\ & \text { 2N5484 } \end{aligned}$	PF5101 PF5102 PF5103 PF511 PF5301	$\begin{aligned} & \text { 2N4867 } \\ & \text { 2N4867 } \\ & \text { 2N4867 } \\ & \text { 2N5114 } \\ & \text { 2N4118A } \\ & \hline \end{aligned}$	SFT601 SFT602 SFT603 SFT604 SG4250	$\begin{aligned} & \text { 2N4338 } \\ & \text { 2N4338 } \\ & \text { 2N4339 } \\ & \text { 2N4339 } \\ & \text { LM4250 } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { SX3820 } \\ & \text { TC8031P } \\ & \text { TC8032P } \\ & \text { TC8051P } \\ & \text { TC8052P } \end{aligned}$	2N2608 ICM7038A ICM7038F ICM7038B ICM7038E
NF4302 NF4303 NF4304 NF4445 NF4446	$\begin{aligned} & \text { 2N5457 } \\ & \text { 2N5459 } \\ & \text { 2N5458 } \\ & \text { 2N5432 } \\ & \text { 2N5433 } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { PF5301-1 } \\ & \text { PF5301-2 } \\ & \text { PF5301-3 } \\ & \text { PL1091 } \\ & \text { PL1092 } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 2N4117A } \\ & \text { 2N4118A } \\ & \text { 2N4118A } \\ & \text { 2N3823 } \\ & \text { 2N3823 } \\ & \hline \end{aligned}$	S17135CPI SI7652 S17660 Si7661 SJM181BCC	ICL7135CPI ICL7652 ICL7660 ICL7662 JM38510/11101BCC	$\begin{aligned} & \text { TC8056PA } \\ & \text { TC8057P } \\ & \text { TD100 } \\ & \text { TD101 } \\ & \text { TD102 } \\ & \hline \end{aligned}$	ICM1115B ICM7038D IT129 IT129 IT129
NF4447 NF4448 NF500 NF501 NF506	2N5433 2N5433 2N4224 2N4224 2N4416	PL1093 PL1094 PN3684 PN3685 PN3686	$\begin{aligned} & \text { 2N3823 } \\ & \text { 2N3823 } \\ & \text { 2N3684 } \\ & \text { 2N3685 } \\ & \text { 2N3686 } \end{aligned}$	SJM181BIC SJM182BCC SJM182BIC SJM184BEC SJM185BEC	JM38510/11101BIC JM38510/11102BCC JM38510/11102BIC JM38510/11103BEC JM38510/11104BEC	$\begin{aligned} & \text { TD200 } \\ & \text { TD201 } \\ & \text { TD202 } \\ & \text { TD2219 } \\ & \text { TD224 } \end{aligned}$	$\begin{aligned} & \text { IT129 } \\ & \text { IT122 } \end{aligned}$

Section 1 - Selector Guides

INTERSIL YOUR COMPLETE SOURCE FOR INTEGRATED SIGNAL PROCESSING COMPONENTS

Intersil, founded in 1967, is a wholly owned subsidiary of General Electric Company U.S.A., and a component of the GE/RCA Solid State Division, headquartered in Somerville, New Jersey.

Intersil's Semiconductor Business charter has been the development of an extensive analog/digital component complement focusing on the commercial, industrial, instrumentation and military markets. Based on the most advanced innovations in CMOS technology, it has established itself as a frontrunner in products serving the explosive data conversion and digital signal processing marketplace.

Intersil's expanding product line is headed by a respected portfolio of data converters, analog switches and multiplexers, display drivers, digital controls and sophisticated linear circuitry. Technology innovations include an operational 130 -volt CMOS process with 3μ and 4μ feature sizes, and a 5 -inch wafer fabrication system. Intersil's new digital signal processing products use advanced very large scale integration (AVLSI) processes with a 1.5μ feature size, and a 1.25μ process is in the final stages of development. Intersil's next-generation MOS/bipolar (BiMOS) process that combines the best attributes of MOS and bipolar processing on a single chip.

Product quality and reliability are fundamental considerations in Intersil's manufacturing facilities. Clean-room environments, Class 100 in critical wafer processing areas and Class 5000 in manufacturing areas, easily meet recommended standards. A high degree of factory automation has phased out slower and less reliable manual operations.

And, overall, a high dedication to customer service reflects the Intersil commitment to be one of the most respected semiconductor suppliers in the industry.

The proliferation of microprocessors and the general swing to digital signal processing has caused an explosion in the need for data acquisition products. In turn, the associated data translation requirements from the analog world to digital format, and vice versa, have spurred considerable effort toward making A/D-D/A converters progressively smaller, cheaper, and more reliable. Toward that end, Intersil has developed a family of integrated circuits designed to meet the varying requirements of the system designer.
All of Intersil's converters are fabricated using CMOS technology, which equates, inherently, to extremely low power consumption. All maximize on-chip componentry for the intended application in order to reduce the external component requirements to a minimum.
To facilitate acquaintance with Intersil products, a number of A / D converters are available in the form of low-cost Eval-
uation Kits. The Kits combine the specified converter with a number of additional components required to assemble a functional subsystem. They include components PC board and appropriate assembly instructions.

Content:

A/D Converter Systems
Digital Multimeter
Instrumentation
Bargraph
A/D Converters
Display Type
$\mu \mathrm{P}$ Type
Evaluation Kits
D/A Converters

Analog To Digital Converters

A/D Converters with Display Drivers

Integrating A/D Converters are characterized by high inherent accuracy, excellent noise rejection, non-critical associated components and low cost. They are relatively slow with conversion rates up to 30 conversions per second. All Intersil integrating converters provide fully precise Auto-Zero, Auto-Polarity (including \pm null indication), single reference operation, very high input impedance, true input integration over a constant period (for maximum EMI rejection), fully ratiometric operation, overrange indication and a medium-quality built-in reference.

33/4 Digit LCD

7-Segment Displays

ICL7139
For Low-Cost Autoranging Digital Multimeters
ICL7149
These monolithic autoranging multimeter circuits always display the results of a conversion on the correct range. Measure AC and DC voltage, DC current and resistance in the following ranges:
DC Voltage $-400 \mathrm{mV}, 4 \mathrm{~V}, 40 \mathrm{~V}, 400 \mathrm{~V}$
AC Voltage -400 V (ICL7139)
(Optional ac circuit with 2 ranges (ICL7149))
DC Current $-4 \mathrm{~mA}, 4 \mathrm{~mA}, 400 \mathrm{~mA}, 4 \mathrm{~A}$
Resistance $-4 \mathrm{~K}, 40 \mathrm{~K}, 40 \mathrm{~K}, 4 \mathrm{M}$

On-chip duplex display drive includes three decimal points and 11 annunciators. Less than 20 mW power dissipation provides 1000 hours typical battery life. Continuity output drives piezoelectric beeper. Guaranteed zero reading for 0 Volts input on all ranges.

101-Segment LCD Bargraph A-D Converter

ICL7182
The ICL7182 is a complete analog-to-digital converter that directly drives a multiplexed liquid crystal display. Included are a chargebalance A/D converter, a 2.56 V bandgap reference, display decode and driver, and a 50 KHz oscillator. A complete analog bargraph generator requires only the addition of an external display, two passive components and a $350 \mu \mathrm{~A}, 5 \mathrm{~V}$ power source.

4 1 ² Digit LCD

7-Segment Displays
ICL7129

For High Quality Battery Operated Instruments

Very high performance A/D Converter for direct drive of multiplexed LCDs. Ideal for high-resolution, hand-held digital multimeters and other battery powered (9 V) instruments. Accuracy is better than 0.005% of full scale, with resolution down to $10 \mu \mathrm{~V}$ per count. Overrange and underrange outputs permit design of autoranging instruments with 10:1 range changing input. Instant continuity check gives both visual indication and a logic-level output for enabling an external audible transducer. Provisions for detection and indication of Low Battery condition.

For $31 / 2$ Digit LCD/LED 7-Segment Displays

ICL7106/7116, ICL7136/7126 ICL7137-7107, ICL7117
These $31 / 2$-digit A/D Converters contain all the necessary active devices on a single CMOS integrated circuit. Included are A/D Converters, 7-segment decoders, display drivers, a reference and a clock. All feature auto-zero to less than $10 \mu \mathrm{~V}$, zero-input drift of less than $1 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$, input bias current of 10 pA max., and rollover and linearity errors of less than one count. True differential inputs and reference provide wide applications versatility over a temperature range from 0 to $+70^{\circ} \mathrm{C}$.

For Liquid Crystal Displays	ICL7106 - Direct drive; 0.1 to 15 conversions per second; supply current $=1.8 \mathrm{~mA}$ max. ICL7116 - Similar to above, but features a Hold Reading input which allows indefinite retention of a display reading ICL7136 - Low-power version of ICL7106, but with maximum supply current of only $100 \mu \mathrm{~A}$ gives 8000 hours typical 9V battery life. 0.1 ICL7126 to 4 conversions per second. Earlier version of ICL7136. Recommended for exact replacement requirement only.
For LED Displays	ICL7137 - Low-power, direct drive ADC for commonanode, 7 -segment LED displays. Requires positive and negative 5 V supply voltages, with supply current of less than $200 \mu \mathrm{~A} .0 .1$ to 4 conversions per second. ICL7107 - \quad ICLL7107 - Earlier version of ICLT7137. Recommended for exact replacement requirements only. ICL7117 - Similar to ICL7137, but requires 1.8 mA (max.) of supply current and provides up to 15 conversions per second. Hold Reading allows indefinite retention of display reading.

$\mu \mathrm{P}$ Compatible A/D Converters

Integrating

Intersil integrating $\mu \mathrm{P}$-Compatible $\mathrm{A} / \mathrm{D}^{\circ}$ Converters contain both monolithic versions and 2-chip sets, with up to 16 -bit resolution. All utilize CMOS processing for lowest power consumption, and all have a guaranteed accuracy of 1 count.

41⁄2 Digit A/D Converter

 with Multiplexed BCD Output ICL7135This precision A/D Converter is suitable for display applications as well as microprocessor and UART interface. Count accuracy of ± 1 in 20,000 makes it ideal for the visual display DVM/DPM market, while added functions such as Strobe, Run/Hold, Busy, Overrange and Underrange allow operation in more sophisticated systems. Chip contains all necessary active devices except display drivers, reference and clock. All outputs are TTL compatible.

12-Bit μ P-Compatible

A/D Converter

ICL7109
This monolithic 12-bit binary A/D converter may be directly accessed under control of two byte-Enable inputs, and a Chip Select input, for a simple parallel-bus interface. A UART handshake mode operates in conjunction with industry-standard UARTs to provide serial data transmission. Operates at up to 30 conversions per second. Available in three temperature ranges: $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C},-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, and $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$.

14/16-Bit μ P-Compatible Two-Chip A/D Converter Sets

ICL8052/ICL7104 ICL8068/ICL7104
Available with 14 -bit and 16 -bit resolution, this two-chip set performs the analog signal processing on one chip (ICL8052 or ICL8068) and the switching and digital functions on the other (ICL7104). A combination of chips may be ordered for either 14 -bit or 16 -bit operation and for low-noise or lowleakage alternatives. All combinations, however, offer threestate, latched, binary outputs plus Polarity and Overrange. All combinations operate over a temperature range of $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$.

ICL7104-14	14-Bit ADC
ICL7104-16	16-Bit ADC
ICL8052	Low input leakage current (30pA max.)
	analog processing circuit.
	Typical noise $=30 \mu \mathrm{~V}$.
ICL8068 -	Low noise $(2 \mu \mathrm{~V}$ typical) analog $=165 \mathrm{processing}$.

Successive Approximation

Successive Approximation Converters are generally associated with high speed, ranging up to 100,000 conversions per second. All Intersil Successive Approximation Converters are $\mu \mathrm{P}$ compatible.

8-Bit A/D Converters for 8080A MPU Interface
 ADC0802 ADC0803 ADC0804

This Successive Approximation A/D Converter was designed to operate with the 8080A or Z-80 microprocessor control bus via three-state outputs with no additional interfacing requirements, but permits easy interface to most other microprocessors. Differential analog input range is 0 to 5 V with a single +5 V supply. With a conversion time of less than $100 \mu \mathrm{~s}$, it provides up to 8888 conversions per second with a clock frequency of 640 KHz .

ADC0802 Total unadjusted error $= \pm 1 / 2$ LSB
ADC0803 Total full-scale adjust error $= \pm 1 / 2$ LSB
ADC0804 Total unadjusted error $= \pm 1$ LSB

14-Bit High-Speed

A/D Converter
With a conversion speed of $40 \mu \mathrm{~s}$ (max), this 14 -bit ADC has a byte organized digital output for bus interface to 8 and 16 -bit microprocessor systems. CMOS circuitry, thin-film resistors and an on-chip PROM calibration table combine to achieve 13 -bit linearity (without laser trimming) and a very low $(60 \mathrm{~mW})$ power dissipation. Available in three temperature ranges: $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C},-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, and $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$.

Digital to Analog Converters

Intersil supplies digital-to-analog converters (D/A converters) with 8 -bit, 10 -bit, 12 -bit, 14 -bit and 16 -bit resolution. All are four-quadrant multiplying D/A converters using thin-film
resistors and CMOS circuitry for high accuracy and low power dissipation. All are microcomputer compatible, with input protection against damage from electrostatic discharge.

Type	Digital Input Format	Settling Time (To 0.05\% FS)	Output Current (Max)	Non Linearity\% FS (Suffix)	Gain Error (\% FS)	Gain Linearity Tempo PPM $/{ }^{\circ} \mathrm{C}$	$\begin{aligned} & \text { Power } \\ & \text { Supply } \\ & \frac{V_{\text {(Typ) }}}{1(\text { Max })} \end{aligned}$

8 -BIT

| AD7523 | Binary/
 Offset
 Binary | 200 ns
 (Max) | $\pm \mathrm{V}_{R E F}$
 $10 \mathrm{~K} \Omega$ | $0.2 \%(\mathrm{~J})$
 $0.1 \%(\mathrm{~K})$ | $1.5 \%(\mathrm{Max})$ | 10 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | | | | |

10-BIT

$\begin{aligned} & \text { AD7520* } \\ & \text { AD7530 } \end{aligned}$	Binary/ Offset Binary	$\begin{aligned} & 500 \mathrm{~ns} \\ & \text { (Typ) } \end{aligned}$	$\frac{ \pm \mathrm{V}_{\text {REF }}}{10 \mathrm{~K} \Omega} \mathrm{~A}$	$\begin{aligned} & 0.2 \% ~(J) \\ & 0.1 \% ~(K) \\ & 0.05 \% ~(L) \end{aligned}$	$\begin{aligned} & 0.3 \% \\ & (\text { Max) } \end{aligned}$	$\begin{array}{r} 10 \\ 2 \end{array}$	$\frac{+15 \mathrm{~V}}{2 \mathrm{~mA}}$
AD7533	Binary/ Offset Binary	600 ns (Typ)	$\frac{ \pm \mathrm{V}_{\mathrm{REF}}}{10 \mathrm{~K} \Omega} \mathrm{~A}$	$\begin{aligned} & 0.2 \% ~(J) \\ & 0.1 \% ~(K) \\ & 0.05 \%(L) \end{aligned}$	$\begin{aligned} & 1.4 \% \\ & (\operatorname{Max}) \end{aligned}$	$\begin{array}{r} 10 \\ 2 \end{array}$	$\frac{+15 \mathrm{~V}}{2 m \mathrm{~A}}$

12-BIT

$\begin{aligned} & \text { AD7521* } \\ & \text { AD7531 } \end{aligned}$	Binary/ Offset Binary	500 ns (Typ)	$\frac{ \pm V_{R E F}}{10 \mathrm{~K} \Omega} \mathrm{~A}$	$\begin{gathered} 0.2 \% \text { (J) } \\ 0.1 \% \text { (K) } \\ 0.05 \% \text { (L) } \end{gathered}$	$\begin{aligned} & 0.3 \% \\ & \text { (Typ) } \end{aligned}$	$\begin{array}{r} 10 \\ 2 \end{array}$	$\frac{+15 \mathrm{~V}}{2 \mathrm{~mA}}$
AD7541	Binary/ Offset Binary	$\begin{gathered} 1 \mu \mathrm{~S} \\ (\mathrm{Max}) \end{gathered}$	$\frac{ \pm \mathrm{V}_{\text {REF }}}{10 \mathrm{~K} \Omega} \mathrm{~A}$	$\begin{aligned} & 0.02 \% ~(J) \\ & 0.01 \% \text { (K) } \\ & 0.01 \% \text { (L) } \end{aligned}$	$\begin{aligned} & 0.3 \% \\ & \text { (Max) } \end{aligned}$	2	$\frac{+15 \mathrm{~V}}{2 \mathrm{~mA}}$

14-BIT

ICL7134	$\begin{gathered} \text { Binary } \mu \\ \text { 2's } \\ \text { Complement B } \end{gathered}$	$\begin{gathered} 3 \mu \mathrm{~s} \\ (\operatorname{Max}) \end{gathered}$	$\frac{ \pm V_{R E F}}{10 K \Omega} A$	$\begin{gathered} 0.1 \%(\mathrm{~J}) \\ 0.006 \%(\mathrm{~K}) \\ 0.003 \%(\mathrm{~L}) \end{gathered}$	$\begin{gathered} 0.02 \% ~(J) \\ 0.012 \% ~(K) \\ 0.006 \% ~(L) \end{gathered}$	5 1	$\frac{+15 \mathrm{~V}}{0.5 \mathrm{~mA}}$

*AD7530 and AD7531 are identical to AD7520 and AD7521, respectively, except for output leakage current and feed-through specifications.

ICL7121

16-Bit μ P-Compatible

D/A Converter

This high-performance 16 -bit D/A converter achieves 0.003% linearity without laser trimming by combining the converter with a unique on-chip PROM-controlled correction circuit. This insures long-term stability and accuracy even over the full military temperature range. Silicon-gate CMOS circuitry keeps the power dissipation to a very low 25 mW .
Designed and programmed for bipolar operation, it can be connected to provide a true 2's complement input transfer function without any external resistors. Microprocessor bus interfacing is eased by standard memory WRite cycle timing and control signal use. The device is available in a 28 -pin CERDIP package in both $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$, and $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ temperature ranges.

A/D Converter
 Evaluation Kits

The following Evaluation Kits are available to permit rapid assembly, testing and evaluation of specific A/D converters. Each Kit comes complete with a prewired printed circuit board and all necessary components (except batteries) for a suitable demonstration circuit. Assembly and operating instruction are supplied.

ICL7129EV/Kit

This Kit permits evaluation of the Intersil ICL7129 $41 / 2$ digit, LCD, 7 -segment display in a functional DC digital voltmeter circuit. It includes the A/D converter IC, a liquid crystal display, a 120 KHz crystal, a voltage reference IC and all necessary passive components and hardware items.

ICL7139EV/Kit
 ICL7106/07EV/Kit
 ICL7136EV/Kit

ICL7106EV/Kit, ICL7107EV/Kit

To ease evaluation of these unique circuits, Intersil offers kits which contain all the necessary components to build a $31 / 2$ digit panel meter. Two kits are offered, the ICL7106EV/ Kit and the ICL7107EV/Kit. Both contain the appropriate IC, a circuit board, a display (LCD for the ICL7106EV/Kit, LEDs for the ICL7107EV/Kit), passive components, and miscellaneous hardware.

ICL7136EV/Kit

Intersil's ICL7136 is a low-power version of the $31 / 2$ digit LCD A/D converters. This Kit contains all the components necessary to build a battery-operated $31 / 2$ digit panel meter. It includes the A/D converter IC, a circuit board, liquid crystal display, passive components, and miscellaneous hardware.

ICL7139EV/Kit

This Kit uses the Intersil ICL7139 to build a complete $33 / 4$ digit autoranging multimeter, capable of directly measuring voltage, current, and resistance. Included in the Kit are the ICL7139 IC, circuit board, liquid crystal display, and all necessary passive components and hardware.

ICL7182EV/Kit

With this Kit, the user can easily evaluate a 101 segment LCD bargraph A/D converter using Intersil's ICL7182. Everything necessary to build the completed circuit is included in the Kit: The ICL7182 IC, circuit board, 101 segment LCD, passive components, and miscellaneous hardware.

GRAPHICS

IM2110

256×12 Color Lookup Table and DAC

The IM2110 is designed specifically for color graphics, and integrates a 256×12 color lookup table, three 4-bit DACs, and a microprocessor interface.
The color lookup table is stored in a RAM and may be written asynchronously by an 8- or 16-bit microprocessor. Three overlay registers are provided for overlaying cursors, grids, text, etc. The chip is capable of simultaneously displaying 256 out of 4096 colors at a 25 MHz rate, for a 640 x 480 non-interlaced display.
The IM2110 generates RS-343-A compatible red, green and blue analog signals, and is capable of driving doublyterminated 75Ω coaxial cables directly.
The circuit is available in a 40 -pin plastic package and operates over a temperature range of $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$.

ICL7660S/ICL7662S

Voltage Converters

These voltage converters transform a positive (+) input voltage from a power supply to a corresponding negative (-) output, resulting in complementary output voltages of -1.5 V to -12.0 V for the ICL7660, and -4.5 V to -20 V for the ICL7662. Only two non-critical external capacitors are needed to perform the conversions. The converters can also be connected as voltage doublers and will generate output voltages of +18.6 V and 22.6 V , respectively.
Available in two temperature ranges, $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ and $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$, and three packages, TO-99, 8-pin MiniDIP (ICL7660S only) and SOIC.

ICL7663S

Programmable Micropower Voltage Regulators

The ICL7663 (positive) series regulators are low-power, high-efficiency devices which accept inputs from 1.6 V to 16 V and provide adjustable outputs over the same range at currents up to 40 mA . Operating current is typically less than $4 \mu \mathrm{~A}$, regardless of load.
Output current sensing and remote shutdown are available, thereby providing protection for the regulators and the circuits they power.
The ICL7663 is available in 8-pin plastic, TO-99 metal can, CERDIP, and SOIC packages, in two temperature ranges $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ and $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.

ICL7667

Dual Power MOSFET Driver

The ICL7667 is a dual monolithic high-speed driver designed to convert TTL level signals into high current outputs at voltages up to 15 V . Its high speed and peak current output enable it to drive large capacitive loads with high slew rates and low propagation delays. With an output voltage swing only millivolts less than the supply voltage and a maximum supply voltage of 15 V , the ICL7667 is well suited for driving power MOSFETs in high frequency switched-mode power converters.
Available in commercial and military temperature ranges, and in 8 -pin plastic DIP, SOIC, CERDIP and TO-99 metal packages.

ICL7673

Automatic Battery Back-Up Switch

The ICL7673 automatically switches from the main power supply to a battery back-up supply in the event of power loss, and back again when power is restored. Ideal for on-board battery back-up for real-time clocks, timers, volatile RAMs, or portable instruments. Available in 8 -pin MiniDIP and TO-99 packages.

ICL7665

Micropower Under/Over Voltage Detector

The ICL7665 contains two individually programmable voltage detectors on a single chip. Requiring only $3 \mu \mathrm{~A}$, typical, for operation, the device is intended for battery-operated systems and instruments which require high or low voltage warnings, settable trip points, or fault monitoring and corrections.

Available in 8-lead CERDIP, MiniDIP, TO-99 metal can and SOIC packages with a temperature range from $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$.

ICL8211/ICL8212

Programmable Voltage Detector

These circuits consist of an accurate voltage reference, a comparator and a pair of output buffer/drivers.

The ICL8211 provides a 7 mA current limited output sink when the voltage applied to the 'THRESHOLD' terminals is less than 1.15 volts (the internal reference). The ICL8212 requires a voltage in excess of 1.15 volts to switch its output on (no current limit). Both devices have a low current output (HYSTERESIS) which is switched on for input voltages in excess of 1.15 V . The HYSTERESIS output may be used to provide positive and noise free output switching using a simple feedback network.

Available in 8 -lead MiniDip, TO-99 metal can and SOIC packages, in commercial and military temperature ranges.

ICL8069

Low Voltage Reference

ICL8069 is a 1.2 V temperature compensated voltage reference. It uses the band-gap principal to achieve excellent stability and low noise at reverse currents down to $50 \mu \mathrm{~A}$. Applications include analog-to-digital converters, threshold detectors, and voltage regulators. Its low power consumption makes it especially suitable for battery operated equipment.

Available in TO-92 plastic and TO-52 metal packages with $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ and $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ temperature ranges (metal only) and with temperature coefficients of 0.005 and $0.01 /^{\circ} \mathrm{C}$.

ICL7675/ICL7676

Switched-Mode Power Supply Controller Set

The ICL7675/7676 two-chip set provides the necessary control circuitry for regulation of an isolated flyback type switching power supply. Specifically designed to operate in this type of configuration, the Intersil controller chip-set is trimmed to provide a regulated 5 V output. The isolated flyback converter is the most widely used configuration for switchedmode power supplies in 50W to 150W range because of its simplicity. The chip-set features soft-start and power switch over-current protection.

ICL7677
Power Fail Detector
ICL7677 is a Power Fail Detector which can be incorporated either into the primary or the secondary side of a power supply to give the fastest possible power-fail indication. On the primary side, it can simultaneously monitor AC line voltage, the reservoir capacitor voltage, primary side current and ambient temperature. On the secondary side, it can simultaneously monitor up to two DC voltages, one load current and the ambient temperature. The circuit has an on-chip bandgap-voltage reference to conveniently program the detection thresholds.

ICL7680

5 V to $\pm 15 \mathrm{~V}$ Voltage Converter

The ICL7680 is a simple boost-type switched-mode converter/inverter chip using minimal external components to convert +5 V to $\pm 15 \mathrm{~V}$ regulated outputs. An internal oscillator is user programmable to optimize efficiency for various load conditions. The device features current limiting protection together with external shut-down.

ICM7206

Touch-Tone Encoder

The ICM7206 is a 2-ot-8 sinewave DTMF generator for use in telephone dialing systems. Requires a 3.58 MHz crystal and will operate with both 3×4 and 4×4 keypads. This low-cost circuit has a high current bipolar output driver providing low harmonic distortion. Supply voltage range is 3 to 6 volts with power dissipation of less than 5.5 mW at 5.5 volts. Single and dual tone capability.

Available in 16 -pin plastic DIP with a temperature range from $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.

ICL8013

Four Quadrant Anaiog Multiplier

The ICL8013 is a bipolar, four-quadrant analog multiplier whose output is proportional to the algebraic product of two input signals. Feedback around an internal op-amp provides level shifting and can be used to generate division and square root functions. A simple arrangement of potentiometers may be used to time gain accuracy, offset voltage and feedthrough performance.

Available in 10-pin TO-100 metal package in both commercial and military temperature ranges.

ICL8038

Precision Waveform Generator/Voltage Controlled Oscillator

The ICL8038 Waveform Generator is capable of producing high accuracy sine, square, triangular, sawtooth and pulse waveforms with a minimum of external components. The frequency (or repetition rate) can be selected externally from .001 Hz to more than 300 KHz using either resistors or capacitors, and frequency modulation, and sweeping can be accomplished with an external voltage.

The 14-pin CERDIP package is available with $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$, and $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ temperature ranges.

AD590

2-Wire, Current-Output Temperature Transducer

The AD590 is a 2-wire integrated-circuit temperature transducer which produces an output current proportional to absolute temperature. The device acts as a high impedance constant current regulator, passing $1 \mu \mathrm{~A} /{ }^{\circ} \mathrm{K}$ for supply voltages between +4 V and +30 V . Laser trimming of the chip's thin-film resistors is used to calibrate the device to $298.2 \mu \mathrm{~A}$ output at $298.2^{\circ} \mathrm{K}\left(+25^{\circ} \mathrm{C}\right)$.

The AD590 could be used in any temperature-sensing application between $-55^{\circ} \mathrm{C}$ and $+150^{\circ} \mathrm{C}$ in which conventional electrical temperature sensors are currently employed.

Plastic (TO-92) packaged device covers temperature ranges from $0^{\circ} \mathrm{C}$ to +70 C ; Metal packaged device (TO-52) covers $-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ range. With slope and offset trimming circuit it is possible to adjust devices to give less than 0.1% error over the temperature range from $0^{\circ} \mathrm{C}$ to $90^{\circ} \mathrm{C}$.

AD590 Slope and Offset Trimming Circuit

Special Purpose Amplifiers

ICL420/421

$\pm 15 \mathrm{~V}$ Chopper Stabilized

Operational Amplifier
These chopper-stabilized CMOS operational amplifiers are designed for signal conditioning, precision and instrumentation type applications. They offer a wide input and operating supply range, allowing virtual plug-in replacements for conventional lower-performance amplifiers, requiring only two additional external capacitors.

The ICL420 (8-pin) and ICL421 (14-pin) devices draw a maximum supply current of 2 mA and are available in all temperature ranges.

ICL7605/7606

Commutating Auto-Zero (CAZ)

Instrumentation Amplifier, CMOS

The ICL7605/ICL7606 CMOS commutating auto-zero (CAZ) instrumentation amplifiers are intended for lowfrequency operation in applications such as strain gauge amplifiers which require voltage gains from 1 to 1000 and bandwidths from DC to 10 Hz . Since the CAZ amp automatically corrects itself for internal errors, the only periodic adjustment required is that of gain, which is established by two external resistors. This, combined with extremely low offset and temperature coefficient figures, makes the CAZ instrumentation amplifier very desirable for operation in severe environments (temperature, humidity, toxicity, radiation, etc.) where equipment service is difficult.

Available in three temperature ranges.

ICL8048/ICL8049

Log/Antilog Amplifier

The 8048 is a monolithic logarithmic amplifier capable of handling six decades of current input, or three decades of voltage input. It is fully temperature compensated and is nominally designed to provide 1 volt of output for each decade change of input. For increased flexibility, the scale factor, reference current and offset voltage are externally adjustable.

The 8049 is the antilogarithmic counterpart of the 8048; it nominally generates one decade of output voltage for each 1 volt change in the input.

ICL8063

Power Transistor Driver/Amplifier

The ICL8063 is a monolithic transistor driver and amplifier primarily intended for driving complementary output stages.

The ICL8063 takes the output levels (typical $\pm 11 \mathrm{~V}$) from an op amp and boosts them to $\pm 30 \mathrm{~V}$ to drive power transistors, (e.g. 2N3055 (NPN) and 2N3789 (PNP)). The outputs from the ICL8063 supply up to 100 mA to the base leads of the external power transistors.

Content:

Special Purpose Amplifiers Instrumentation Amplifiers
Log/Antilog Amplifiers
Drive Amplifier for Power Transistors
Operational Amplifiers
General Purpose
Low Power
Low Input Offset Voltage
Low Input Bias Current

Features:

- Input Offset Voltage $-2 \mu \mathrm{~V}$
- Input Offset Voltage Drift - $0.2 \mu \mathrm{~V} /$ Year
- Common Mode Input Voltage Range - 0.3V Above Supply Rail
- Common Mode Rejection Ration - 100 dB
- Operates at Supply Voltages As Low As $\pm 2 \mathrm{~V}$
- Short Circuit Protection On Outputs
- Compensated (ICL7605) or Uncompensated (ICL7606) Versions

Features:

- $1 / 2 \%$ Full Scale Accuracy
- Temperature Compensated for $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
- Scale Factor 1V/Decade, Adjustable
- 120dB Dynamic Current Range (8048)
- 60dB Dynamic Voltage Range (8048 \& 8049)
- Dual JFET-Input Op-Amps

Features:

- When Used in Conjunction with General-Purpose Op Amps and External Complementary Power Transistors, System Can Deliver $>\mathbf{5 0}$ Watts to External Loads
- Built-In Safe Area Protection and Short-Circuit Protection
- Built-In $\pm 13 V$ Regulators to Power Op Amps or Other External Functions

AMPLIFIERS

Operational Amplifiers

Intersil offers a range of single and multiple monolithic operational amplifiers suitable for a number of specific applications categories. Included are bipolar Super-Beta and Chopper-Stabilized CMOS devices for very low input offset requirement, a selection of PMOS and JFET-input devices
for very low bias currents, as well as general-purpose and low-power amplifiers for a broad range of applications.

All monolithic operational amplifiers are available in a variety of packages and in die form.

Operational Amplifiers: General Purpose

Type	Description	$\underset{(m V \text { Max) }}{\stackrel{V}{2}}$	$\begin{aligned} & \text { IBIAS } \\ & \text { (pA Max) } \end{aligned}$	Slew Rate (V/ $/ \mathrm{s}$)	$\begin{gathered} \text { GBW } \\ (\mathrm{MHz}) \end{gathered}$	Compensation	VSUPPLY (V Max)	Temperature Range (${ }^{\circ} \mathrm{C}$)

SINGLES

ICL7611	CMOS, Selectable IQ	$2,5,15$	50	1.6	1.4	INT	± 9	0 to +70 ICL8007M
JFET Input Op-Amp	20	20	6	1.0	INT	± 18	-55 to +125	
ICL8007C	JFET Input Op-Amp	50	50	6	125			

DUALS

ICL7621	CMOS, Fixed IQ	$2,5,15$	50	0.16	0.48	INT	± 9	0 to +70 ICL8043M ICL8043C
JFET Input Op-Amp		20	20	6	1.0	INT	± 18	-55 to +125
JFET Input Op-Amp	50	50	6	1.0	INT	± 125		

TRIPLES

ICL7631	CMOS, Selectable I_{Q}	$5,10,20$	50	1.6	1.4	INT	± 9	0 to +70 -55 to +125

QUADS

ICL7641	CMOS, Fixed IQ	$5,10,20$	50	1.6	1.4	INT	± 9	0 to +70 -55 to +125

Low Power

Type	Description	Iquiescent (Per Channel) ($\mu \mathrm{A}$ Typ)	VSUPPLY (V Max)	$\left\lvert\, \begin{gathered} \mathrm{VOS} \\ (\mathrm{mV} \text { Max }) \end{gathered}\right.$	$\begin{gathered} \text { IBIAS } \\ (\mathrm{nA} \text { Max }) \end{gathered}$	$\begin{aligned} & \text { GBW } \\ & (\mathrm{MHz}) \end{aligned}$	Compensation	Temperature Range (${ }^{\circ} \mathrm{C}$)

SINGLES

ICL7611	CMOS, Selectable IQ	10	± 9	$2,5,15$	0.05	0.044	INT	0 to $+70 \&$
ICL7612	CMOS, Extended CMVR	10	± 9	$2,5,15$	0.05	0.044	INT	-55 to +125
ICL8021M	Bipolar, Selectable IQ	30	± 18	3	20	0.27	INT	-55 to +125
ICL8021C	Bipolar, Selectable IQ	30	± 18	6	30	0.27	INT	0 to +70

TRIPLES

ICL7631	CMOS, Selectable I_{Q}	10	± 9	$5,10,20$	0.05	0.044	INT	0 to $+70 \&$
ICL8023M	Triple 8021M	30	± 18	3	20	0.27	INT	-55 to +125
ICL8023C	Triple 8021C	30	± 18	6	30	0.27	INT	0 to +70

QUADS

ICL7642	CMOS, Fixed IQ	10	± 9	$5,10,20$	0.05	0.044	INT	0 to $+70 \&$ -55 to +125

Operational Amplifiers: Special Purpose

Low/Ultra-low Input Offset Voltage

Type	Description	$\underset{(\mu \mathrm{V} \text { Max })}{\text { VOS }}$	$\begin{gathered} \mathbf{\Delta V} \mathbf{V S}^{\prime} / \mathbf{\Delta T} \\ \left(\mu V /{ }^{\prime} \mathbf{C}\right) \\ (\text { Max) } \end{gathered}$	$\Delta \operatorname{Vos} / \Delta t$ (nV/month) (Тур)	IBIAS (pA Max)	$\begin{gathered} \text { GBW } \\ \text { (MHz) } \end{gathered}$	VSUPPLY (V Max)	Temperature Range (${ }^{\circ} \mathrm{C}$)

SINGLES

ICL7650C	CMOS, Chopper-stabilized	± 8	± 0.02	100	20	2.0	± 9	0 to +70
ICL7650I	CMOS, Chopper-stabilized	± 10	± 0.02	100	50	2.0	± 9	-25 to +85
ICL7650M	CMOS, Chopper-stabilized	± 20	± 0.03	100	500	2.0	± 9	-55 to +125
ICL7652C	Low-noise 7650C	± 7	± 0.01	100	30	0.5	± 9	0 to +70
ICL7652I	Low-noise 7650I	± 10	± 0.02	100	30	0.5	± 9	-25 to +85
ICL7652M	Low-noise 7650M	± 50	± 0.1	100	500	0.5	± 9	-55 to +125

Low Input Bias Current

Type	Description	IBIAS (pA Max)	$\underset{\text { (pA Typ) }}{\text { los }}$	$\begin{gathered} \mathrm{VOS}_{\text {OS }} \\ \text { (mV Max) } \end{gathered}$	GBW (MHz)	Compensation	VSUPPLY (V Max)	Temperature Range (${ }^{\circ} \mathrm{C}$)

SINGLES

ICL7611	CMOS, Selectable IQ	50	0.5	$2,5,15$	1.4	INT	± 9	0 to $+70 \&$
ICL7612	CMOS, Extended CMVR	50	0.5	$2,5,15$	1.4	INT	± 9	-55 to +125
ICL8007M	JFET Input Op-Amp	20	0.5	20	1.0	INT	± 18	-55 to +125
ICL8007AM	JFET Input, Low Bias	4.0	0.2	30	1.0	INT	± 18	-55 to +125
ICL8007C	SFET Input Op-Amp	50	0.5	50	1.0	INT	± 18	0 to +70
ICL8007AC	JFET Input, Low Bias	4.0	0.2	30	1.0	INT	± 18	0 to +70
ICH500	PMOS Input	0.1	-	50	0.7	INT	± 18	-25 to +85
ICH8500A	PMOS Input, Low Bias	0.01	-	50	0.7	INT	± 18	-25 to +85

DUALS

ICL7621	CMOS, Fixed ${ }^{\text {IQ }}$	50	0.5	2, 5, 15	0.48	INT	± 9	0 to +70
ICL8043M	JFET Input Op-Amp	20	0.5	20	1.0	INT	± 18	-55 to +125
ICL8043C	JFET Input Op-Amp	50	0.5	50	1.0	INT	± 18	0 to +70

TRIPLES

ICL7631	CMOS, Selectable I_{Q}	50	0.5	$5,10,20$	1.4	INT	± 9	0 to +70 $\&$ -55 to +125

QUADS

ICL7641	CMOS, Fixed I_{Q}	50	0.5	$5,10,20$	1.4	INT	± 9	0 to +70
ICL7642								

General Purpose Analog Switches

Intersil offers two general-purpose switch lines, each with various switch configurations. The first consists of bipolar drivers controlling an associated set of field-effect switching transistors in a multi-chip structure that provides a wide choice of parameters at low cost. The second is a monolithic CMOS structure capable of improved performance and

Content:

General Purpose Analog Switches Drivers for FET Switches Low Cost, Virtual Ground Switch Family RF/Video Switch Family Multiplexers
greater reliability. All have break-before-make switch action.
All switches are available in commercial and military temperature ranges. Package options include Plastic DIP, CERDIP, Flat Pack and Metal Can (not all options are available for all device types).

General Purpose Analog Switches

			Switch Parameters				
Switch Family	Special Features	Switch Type	RDS(ON) ($\mathbf{\Omega}$ Max) (Ω Max)	ID(OFF) (nA Max)	$\stackrel{\text { ton }}{\text { (ns Max) }}$	$\begin{gathered} \text { toff } \\ \text { (ns Max) } \end{gathered}$	Analog Voltage Range (VSUPPLY $= \pm 15 \mathrm{~V}$)

Multichip

DG123-125	Inverting/non-inverting logic inputs	PMOS	600	4	300	1000	-
DG126-154	Dual Channel		10	10	1000	2500	
DG139-164	Single Channel	N-JFET	15	10	1000	2500	-
			50	1	600	1600	-
			1	600	1600		
		80	1	600	1600		
DG180-191	Mature, Industry-standard switch,	N-JFET	10	10	300	250	-7.5 to +15
	JAN38510 Approved		1	150	130	-7.5 to +15	
			75	1	250	130	-10 to +15

Monolithic

DGM181-191	Monolithic replacement for DG180 family	CMOS	$\begin{aligned} & 50 \\ & 75 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 0.5 \end{aligned}$	$\begin{aligned} & 250 \\ & 450 \end{aligned}$	$\begin{aligned} & 200 \\ & 250 \\ & \hline \end{aligned}$	$\begin{aligned} & -15 \text { to }+15 \\ & -15 \text { to }+15 \end{aligned}$
DG200/201	Industry-standard low cost	CMOS	70/80	2.0	1000	500	-15 to +15
$\begin{aligned} & \text { DG211 } \\ & \text { DG212 } \end{aligned}$	Inverting Noninverting	CMOS	175	5.0	1000	500	-15 to +15
DG300A-303A	TTL compatible, low power	CMOS	50	1.0	300	250	-15 to +15
$\begin{aligned} & \text { IH311 } \\ & \text { IH312 } \end{aligned}$	High Speed Inverting Noninverting	$\begin{aligned} & \text { CMOS } \\ & \text { CMOS } \end{aligned}$	175	100	300	150	-15 to +15
$\begin{aligned} & \text { IH5040-47 } \\ & \text { IH5048-51 } \\ & \text { IH5052-53 } \end{aligned}$	Low quiescent current Low RDS(ON)	CMOS	$\begin{aligned} & 75 \\ & 40 \\ & 75 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 750 \\ & 500 \\ & 500 \end{aligned}$	$\begin{aligned} & 350 \\ & 250 \\ & 250 \end{aligned}$	$\begin{aligned} & -10 \text { to }+10 \\ & -10 \text { to }+10 \\ & -11 \text { to }+11 \end{aligned}$
IH5140-45	High speed, low power, low leakage	CMOS	50	0.5	100	75	-11 to +11
IH5148-51	Low RDS(ON), high speed, low power	CMOS	25	0.5	$\begin{aligned} & 250 \\ & 350 \\ & 500 \end{aligned}$	$\begin{aligned} & 200 \\ & 250 \\ & 250 \end{aligned}$	-14 to +14

Separate Driver/Switch Combinations

IH6201	TTL level translator/driver	N-JFET	30	0.5	50 (Typ)	150 (Typ)	15 p-p (Min)
IH401/A	Low charge injection switch		$30 / 50$	0.5	50 (Typ)	150 (Typ)	20 p-p (Min)

Drivers for FET Switches

Monolithic bipolar drivers convert low-level positive logic to high-level positive and negative voltages necessary to drive FET switches.

Type	Number of Channels	Output Swing		$\begin{aligned} & \text { ton } \\ & \text { ns } \end{aligned}$Max	toff ns Max
		Positive (V Max)	Negative (V Max)		
D123	6 TTL/DTL	$V_{\text {Supply }}$	-19.7	250	400-800
D125	6 TTL	$V_{\text {Supply }}$	- 19.7	250	400-800
D129	4 TTL/DTL	$V_{\text {Supply }}$	-19.3	250	1000
IH6201	2 TTL	+ 14.0	-14.0	200	300

ANALOG SWITCHES AND MULTIPLEXERS
Switch Configurations

Switch Configuration (Diagram)										
	Dual	Quad		Five		Dual		Dual		
SPST	SPST	SPST	4PST	SPST	SPDT	SPDT	DPST	DPST		
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	DPDT (10)	

				DG123 DG125					
					DG146				
	DG141								
	DG151				DG161			DG150	DG145
	DG133				DG144		DG163		
	DG152				DG162			DG129	DG139
	DG134				DG154	DG164			
						DG143		DG126	DG142
	DG180				DG186	DG189		DG183	
	DG181				DG187	DG190		DG184	
	DG182				DG188	DG191		DG185	

	DGM182				DGM190 DGM191		DGM184 DGM185	
	DG200	DG201						
		$\begin{aligned} & \text { DG211 } \\ & \text { DG212 } \end{aligned}$						
DG301A	DG300A				DG303A		DG302A	
		IH311 IH312						
1H5040	$\begin{aligned} & \hline \text { IH5041 } \\ & \text { IH5048 } \end{aligned}$	1H5052/53	IH5047	$\begin{aligned} & \text { IH5042 } \\ & \text { IH5050 } \end{aligned}$	$\begin{aligned} & \text { IH5043 } \\ & \text { IH5051 } \end{aligned}$	IH5044	$\begin{aligned} & \text { IH5O45 } \\ & \text { IH5049 } \end{aligned}$	1H5046
1H5140	IH5141			IH5142	IH5143	IH5144	IH5145	
	IH5148			IH5150	IH5151		IH5149	

		IH401/A							

Analog Switches and Multiplexers

Virtual Ground Switches, JFETs (P-Channel)

Each package contains up to four channels of analog gating designed to eliminate the need for external drivers. The oddnumbered devices are designed to be driven directly from TTL open-collector logic (15V). Each channel simulates a SPDT switch. The parts are intended for high-performance multiplexing and commutating use. All have turn-on/turn-off times of 500 ns and a leakage current (lD(off) of 0.2 nA .

Switch Configuration						
SPST	Dual	Triple	Quad	Special		
SPST	SPST	Switch				
SPST	Features	rDS(on) Type ($\boldsymbol{\Omega}$ Max)				
IH5021	IH5017	IH5013	IH5009	Common		100
IH5022	IH5018	IH5014	IH5010	Output		150
IH5023	IH5019	IH5015	IH5011	Separate		100
IH5024	IH5020	IH5016	IH5012	Output		150

RF/Video Switches, CMOS

Designed for high-frequency operation, these switches utilize a " T " configuration where a shunt switch is closed when the switch is open. This provides superior isolation between input and output and greatly improves performance in the video and RF region. Switch attenuation varies less than 3 dB from dc to 100 MHz . Available in three (commercial and military) temperature ranges and in 14-pin plastic DIP and 10-pin TO-100 metal package.

Switch Configuration					
Due SPS, r	Quad SPST	rDS(on) (Ω Max)	ID(off) (nA Max)	(ns Max) (ns	tOFF (ns Max)
IH5341	IH5352	75	1.0	300	150

Multiplexers

Intersil provides three multiplexer families - a standard IH6000 Family featuring low rDS(ON); an equivalent faultprotected IH5000 series which ensures that an OFF channel will remain OFF when the input exceeds the supply rails by up to $\pm 25 \mathrm{~V}$, even with the supply voltage at zero; a multiplex/ demultiplex unit with on-board data latches and control pins for microprocessor interface. All utilize CMOS technology for extremely low quiescent operating current.

Examples of Common Output and Separate Output Switch Configurations

Examples of Single-Ended and Differential Configurations

Switch Family	Special Features	rDS(ON) (Ω Max)	$\begin{gathered} \text { ID(OFF) } \\ \text { (nA Max) } \\ \hline \end{gathered}$	$\begin{gathered} \text { tON } \\ \text { (ns Max) } \end{gathered}$	$\begin{gathered} \text { tOFF } \\ \text { (ns Max) } \end{gathered}$	Analog Voltage Range $\mathbf{V}_{\text {Supply }}=$ ($\pm 15 \mathrm{~V}$)	Configuration			
							8 Channel Single Ended	4 Channel Differential	16 Channel Single Ended	8 Channel Differential
IH5000 Series	Industry standard pinouts, fault protection up to $\pm 25 \mathrm{~V}$ input, low leakage, low input current	900	1.0	1500	1000	$\begin{array}{\|c\|} -25 \text { to }+25 \\ \text { (Input) } \\ \hline \end{array}$	IH5108	IH5208		
		1000	1.0	1500	1000	$\begin{gathered} -25 \text { to }+25 \\ \text { (Input) } \end{gathered}$			IH5116	IH5216
$\begin{gathered} \text { IH6000 } \\ \text { Series } \end{gathered}$	Industrial standard pinouts, low leakage, low $\mathrm{R}_{\mathrm{DS}(\mathrm{ON})}$ break before make switching	300	2.0	1500	1000	-14 to +14	IH6108	IH6208		
		600	2.0	1500	1000	-14 to +14			IH6116	IH6216
IH9108	Multiplexer/Demultiplexer with latches for $\mu \mathrm{P}$ based systems	120	2.5	2000	1000	-50 to +50	IH9108			

DISCRETE PRODUCTS

Switching Transistors

Junction FETs - N-Channel

PART		$\begin{gathered} \text { rDS(ON) } \\ \Omega \end{gathered}$	$\begin{aligned} & \mathbf{V}_{\mathbf{p}} \\ & \mathbf{V} \end{aligned}$		igss PA	$\mathrm{BV}_{\mathrm{GSS}}$ \mathbf{v}	ID(OFF) pA	IDSS mA		$\begin{gathered} \text { tap }_{\text {ap }} \\ \text { ns } \\ \text { Max } \end{gathered}$	$\begin{aligned} & \mathrm{C}_{\text {rss }} \\ & \text { pF } \\ & \text { Max } \end{aligned}$	$C_{\text {iss }}$ pF Max	COMMENTS
NUMBER	PACKAGE**	Max	Min	Max	Max	Min	Max	Min	Max				
2N3824	TO-72	250		8.0	-100	-50					3	6	High Isolation
2N3970	TO-18	30	-4.0	-10.0	-250	-40	250	50	150	50	6	25	High Isolation
2N3971	TO. 18	60	-2.0	-5.0	-250	-40	250	25	75	90	6	25	High Isolation
2N3972	TO-18	100	-0.5	-3.0	-250	-40	250	5	30	180	6	25	High Isolation
- 2 N 4091	TO-18	30	-5.0	-10.0	-200	-40	200	30		65	5	16	High Isolation
2N4091A	TO-18	30	-5.0	-10.0	-40	-50	200	30		65	5	16	High Isolation
* 2N4092	TO-18	50	-2.0	-7.0	-200	-40	200	15		95	5	16	High Isolation
2N4092A	TO-18	50	-2.0	-7.0	40	-50	200	15		95	5	16	High Isolation
* 2N4093	TO-18	80	-1.0	-5.0	-200	-40	200	8		140	5	16	High Isolation
2N4093A	TO-18	80	-1.0	-5.0	40	-50	200	8		140	5	16	High Isolation
2N4391	TO-18	30	-4.0	-10.0	-100	-40	100	50	150	55	3.5	14	High Isolation
2N4392	TO-18	60	-2.0	-5.0	-100	-40	100	25	75	75	3.5	14	High Isolation
2N4393	TO-18	100	-0.5	-3.0	-100	-40	100	5	30	100	3.5	14	High Isolation
* 2N4856	TO-18	25	-4.0	-10.0	-250	-40	250	50		34	8	18	High Isolation
* 2N4857	TO. 18	40	-2.0	-6.0	-250	-40	250	20	100	60	8	18	High Isolation
* 2N4858	TO. 18	60	-0.8	-4.0	-250	-40	250	8	80	120	8	18	High Isolation
- 2N4859	TO. 18	25	-4.0	-10.0	-250	-30	250	50		34	8	18	High Isolation
* 2N4860	TO-18	40	-2.0	-6.0	-250	-30	250	20	100	60	8	18	High Isolation
* 2N4861	TO-18	60	-0.8	-4.0	-250	-30	250	8	80	120	8	18	High Isolation
2N4978	TO-18	20	-2.0	-8.0	-500	-30	500	15		55	8	35	Low ros(on)
2N5432	TO-52	5	-4.0	-10.0	-200	-25	200	150		41	15	30	Low ros(on)
2N5433	TO. 52	7	-3.0	-9.0	-200	-25	200	100		41	15	30	Low ros(on)
2N5434	TO-52	10	-1.0	-4.0	-200	-25	200	30		41	15	30	Low ros(on)
2N5555	T0.92	150		-10.0	$-1 n A$	-25	10 nA	15		35	1.2	5	Low Cost
2N5638	T0.92	30		-12.0	$-1 n A$	-30	1 nA	50		24	4	10	Low Cost
2N5639	TO-92	60		-8.0	$-1 n A$	-30	$1 \mathrm{n} A$	25		44	4	10	Low Cost
2N5640	T0.92	100		-6.0	$-1 n A$	-30	$1 \mathrm{n} A$	5		63	4	10	Low Cost
2N5653	TO.92	50		-12.0	$-1 n A$	-30	$1 n A$	40		24	3.5	10	Low Cost
2N5654	TO.92	100		-8.0	$-1 n A$	-30	$1 \cap \mathrm{~A}$	15		44	3.5	10	Low Cost
ITE4091	T0.92	30	-5.0	-10.0	-200	-40	200	30		65	5	16	Low Cost
ITE4092	TO.92	50	-2.0	-7.0	-200	-40	200	15		95	5	16	Low Cost
ITE4093	TO-92	80	-1.0	-5.0	-200	-40	200	8		140	5	16	Low Cost
ITE4391	TO. 92	30	-4.0	-10.0	-100	-40	100	50	150	55	3.5	14	Low Cost
ITE4392	T0.92	60	-2.0	-5.0	-100	-40	100	25	75	75	3.5	14	Low Cost
ITE4393	TO-92	100	-0.5	-3.0	-100	-40	100	5	30	100	3.5	14	Low Cost

*Also available as JAN/JANTX \& JANTXV
**Most TO-92's are available lead formed to a TO-18 or TO-5 pinout. Also available in tape and reel (EIA STD RS-468).

DISCRETE PRODUCTS

Switching Transistors (Continued)
Junction FETs - N-Channel (Continued)

PART NUMBER	PACKAGE**	rDS(ON) Ω Max	$\begin{gathered} V_{p} \\ V \end{gathered}$		$\begin{aligned} & \text { IGSS } \\ & \text { PA } \\ & \text { Max } \end{aligned}$	$\begin{gathered} B V_{G S S} \\ \mathbf{V} \\ M i n \end{gathered}$	ID(OFF) pA Max	IDSS mA		$\begin{gathered} \mathrm{t}_{\text {ap }} \\ \mathrm{ns} \\ \mathrm{Max} \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{C}_{\text {rss }} \\ \text { pF } \\ \text { Max } \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{C}_{\text {iss }} \\ \text { pF } \\ \mathrm{Max} \end{gathered}$	COMMENTS
			Min	Max				Min	Max				
J105	TO-92	3	-4.5	-10.0	$-3 n A$	-25	3nA	. 500		20		.	Lowest rision)
J106	TO-92	6	-2.0	-6.0	$-3 n A$	-25	$3 n A$	200		20			Lowest $\mathrm{r}_{\mathrm{DS}(\mathrm{ON})}$
J107	TO-92	8	-0.5	-4.5	$-3 n A$	-25	$3 n A$	100		20			Lowest ros(on)
J108	TO-92	8	-3.0	-10.0	$-3 n A$	-25	$3 n A$	80		41			Low Cost
J109	TO.92	12	-2.0	-6.0	$-3 n A$	-25	$3 n A$	40		41			Low Cost
J110	TO.92	18	-0.5	-4.0	$-3 n A$	-25	$3 n A$	10		41			Low Cost
J111	TO-92	30	-3.0	-10.0	$-1 n A$	-35	$1 \mathrm{n} A$	20		48			Lowest Cost
J112	TO.92	50	-1.0	-5.0	$-1 n A$	-35	$1 \mathrm{n} A$	5		48			Lowest Cost
$J 113$	TO-92	100	-0.5	-3.0	$-1 n A$	-35	$1 \mathrm{n} A$	2		48			Lowest Cost
$J 114$	TO-92	150		-10.0	$-1 n A$	-25	1 nA	15		26			Low Cost
PN4091	TO.92	30	-5.0	-10.0	-200	-40	200	30		65	5	16	Low Cost
PN4092	T0.92	50	-2.0	-7.0	-200	-40	200	15		95	5	16	Low Cost
PN4093	TO.92	80	-1.0	-5.0	-200	-40	200	8		140	5	16	Low Cost
PN5432	TO. 92	5	-4.0	-10.0	-200	-25	200	150		41	15	30	Lowest ${ }^{\text {r }}$ DS(ON)
PN5433	TO-92	7	-3.0	-9.0	-200	-25	200	100		41	15	30	Lowest r $\mathrm{DS}(\mathrm{ON}$)
PN5434	TO-92	10	-1.0	-4.0	-200	-25	200	30		41	15	30	Lowest r ${ }^{\text {DS(ON) }}$
U200	TO-18	150	-0.5	-3.0	$-1 n A$	-30	1 nA	3	25		8	30	Low Cost
U201	TO. 18	75	-1.5	-5.0	$-1 n A$	-30	$1 n A$	15	75		8	30	Low Cost
U202	TO-18	50	-3.5	-10.0	$-1 n A$	-30	1 nA	30	150		8	30	Low Cost
U1897	TO-92	30	-5.0	-10.0	-400	-40	200	30		65	5	16	Low Cost
U1898	T0.92	50	-2.0	-7.0	-400	-40	200	15		95	5	16	Low Cost
U1899	TO-92	80	-1.0	-5.0	-400	-40	200	8		140	5	$16 .$.	Low Cost

Junction FETs - P-Channel

[^0]Amplifier Transistors
Junction FETs - N-Channel

PART NUMBER	PACKAGE**	$g_{f s}$ $\mu \mathrm{mho}$ Min	IDss mA		$\begin{aligned} & \mathbf{V}_{\mathbf{p}} \\ & \mathbf{V} \end{aligned}$		IGSS pA Max	$\begin{aligned} & \mathbf{B V}_{\text {GSS }} \\ & \mathbf{V} \\ & \mathbf{M i n} \end{aligned}$	$\begin{aligned} & \mathrm{C}_{\text {iss }} \\ & \mathrm{pF} \\ & \text { Max } \end{aligned}$	$\begin{aligned} & \mathrm{C}_{\text {rss }} \\ & \mathrm{pF} \\ & \mathrm{Max} \end{aligned}$	$\begin{aligned} & e_{n} \\ & \mathrm{nV} / \sqrt{H z} \\ & \operatorname{Max} \end{aligned}$	COMMENTS
			Min	Max	Min	Max						
N-Channel:												
2N3684	TO. 72	2000	2.5	7.5	-2.0	-5.0	-100	-50	4	1.2	150 @ 20Hz	Low Noise
2N3685	TO.72	1500	1.0	3.0	-1.0	-3.5	-100	-50	4	1.2	150 @ 20 Hz	Low Noise
2N3686	TO.72	1000	0.4	1.2	-0.6	-2.0	-100	-50	4	1.2	150 @ 20 Hz	Low Noise
2N3687	TO. 72	500	0.1	0.5	-0.3	-1.2	-100	-50	4	1.2	150 @ 20Hz	Low Noise
* 2N3821	TO.72	1500	0.5	2.5		-4.0	-100	-50	6	3	200 @ 10Hz	GPA
2N3822	TO-72	3000	2.0	10.0		-6.0	-100	-50	6	3	200 @ 10Hz	GPA
2N3823	TO. 72	3500	4.0	20.0	-1.0	-7.5	-500	-30	6	2	2.5 dB @ 100 MHz	VHF Amp
2N4117	TO.72	70	0.03	0.09	-0.6	-1.8	-10	-40	3	1.5		Low Leakage
2N4117A	T0.72	70	0.03	0.09	-0.6	-1.8	-1	-40	3	1.5		Low Leakage
2N4118	T0.72	80	0.08	0.24	-1.0	-3.0	-10	-40	3	1.5		Low Leakage
2N4118A	TO.72	80	0.06	0.24	-1.0	-3.0	-1	-40	3	1.5		Low Leakage
2N4119	T0.72	100	0.2	0.6	-2.0	-6.0	-10	-40	3	1.5		Low Leakage
2N4119A	TO-72	100	0.2	0.6	-2.0	-6.0	-1	-40	3	1.5		Low Leakage
2N4220	TO. 72	1000	0.5	3.0		-4.0	-100	-30	6	2		Low Cost
2N4220A	TO.72	1000	0.5	3.0		-4.0	-100	-30	6	2	2.5 dB @ 100 Hz	GPA
2N4221	TO. 72	2000	2.0	6.0		-6.0	-100	-30	6	2		Low Cost
2N4221A	TO.72	2000	2.0	6.0		-6.0	-100	-30	6	2	$2.5 \mathrm{~dB} @ 100 \mathrm{~Hz}$	GPA
2N4222	TO.72	2500	5.0	15.0		-8.0	-100	-30	6	2		Low Cost
2N4222A	TO-72	2500	5.0	15.0		-8.0	-100	-30	6	2	2.5 dB @ 100Hz	GPA
2N4223	TO-72	3000	3.0	18.0	-0.1	-8.0	-250	-30	6	2		Low Cost
2N4224	TO. 72	2000	2.0	20.0	-0.1	-0.8	-150	-30	6	2		Low Cost
2N4338	TO-18	600	0.2	0.6	-0.3	-1.0	-100	-50	7	3	65 @ 1kHz	General Purpose Amp
2N4339	TO-18	800	0.5	1.5	-0.6	-1.8	-100	-50	7	3	65 @ 1kHz	General Purpose Amp
2N4340	TO. 18	1300	1.2	3.6	-1.0	-3.0	-100	-50	7	3	65 @ 1kHz	General Purpose Amp
2N4341	TO-18	2000	3.0	9.0	-2.0	-6.0	-100	-50	7	3	65 @ 1kHz	General Purpose Amp
2N4416	TO-72	4500	5.0	15.0		-6.0	-100	-30	4	2		High Gain
2N4867	TO-72	700	0.4	1.2	-0.7	-2.0	-250	-40	25	5	10 @ 1kHz	Audio Amp
2N4867A	TO-72	700	0.4	1.2	-0.7	-2.0	-250	-40	25	5	5 @ 1kHz	Low Noise/GPA
2N4868	TO-72	1000	1.0	3.0	-1.0	-3.0	-250	-40	25	5	10 @ 1kHz	Audio Amp
2N4868A	TO-72	1000	1.0	3.0	-1.0	-3.0	-250	-40	25	5	5 (1) 1kHz	Low Noise/GPA
2N4869	TO-72	1300	2.5	7.5	-1.8	-5.0	-250	-40	25	5	10 (1) 1 kHz	Audio Amp
2N4869A	TO-72	1300	2.5	7.5	-1.8	-5.0	-250	-40	25	5	5 @ 1kHz	Low Noise/GPA
2N5397	TO-72	6000	10.0	30.0	-1.0	-6.0	-100	-25	5.0	1.2	$3.5 \mathrm{~dB} @ 450 \mathrm{MHz}$	VHF Amp
2N5398	T0-72	5500	5.0	40.0	-1.0	-6.0	-100	-25	5.5	1.3		VHF Amp
2N5457	TO-92	1000	1.0	5.0	-0.5	-6.0	-1nA	-25	7	3	3dB @ 1kHz	Low Cost/GPA
2N5458	TO-92	1500	2.0	9.0	-1.0	-7.0	$-1 n A$	-25	7	3	3 dB @ 1kHz	Low Cost/GPA
2N5459	TO-92	2000	4.0	16.0	-2.0	-8.0	-1nA	-25	7	3	3 dB @ 1kHz	Low Cost/GPA
2N5484	TO-92	3000	1.0	5.0	-0.3	-0.3	-1nA	-25	5	1	120 @ 1kHz	Low Cost RF Amp
2N5485	TO-92	3500	4.0	10.0	-0.5	-4.0	$-1 n A$	-25	5	1	120 @ 1kHz	Low Cost RF Amp
2N5486	TO-92	4000	8.0	20.0	-2.0	-6.0	$-1 n A$	-25	5	1	120 @ 1kHz	Low Cost RF Amp
ITE4416	TO-92	4500	5.0	15.0		-6.0	100	-30	4	2		Low Cost RF Amp

[^1](Continued Next Page)

DISCRETE PRODUCTS

Amplifier Transistors (Continued)

Junction FETs - N-Channel (Continued)

PART NUMBER	PACKAGE**	gis $\mu \mathrm{mho}$ Min	$\begin{gathered} \mathrm{IDSS} \\ \mathrm{~mA} \end{gathered}$		$\begin{aligned} & \mathbf{V}_{\mathbf{p}} \\ & \mathbf{v} \end{aligned}$		$\begin{aligned} & \text { IGss } \\ & \text { pA } \\ & \text { Max } \end{aligned}$	$\mathrm{BV}_{\text {GSS }}$ V Min	$\begin{aligned} & \mathrm{C}_{\text {iss }} \\ & \mathrm{pF} \end{aligned}$Max	$\begin{aligned} & \mathrm{C}_{\text {rss }} \\ & \mathrm{pF} \\ & \mathrm{Max} \end{aligned}$	e_{n} $\mathrm{nV} / \sqrt{ } \mathrm{Hz}$ Max	COMMENTS
			Min	Max	Min	Max						
J201	T0.92	500	0.2	1.0	-0.3	-1.5	-100	-40	4typ.	1 typ.	5typ. @ 1kHz	GPA/Low Cost
J202	то-92	1000	0.9	4.5	-0.8	-4.0	-100	-40	4typ.	1 typ.	5typ. @ 1kHz	GPA/Low Cost
J203	то-92	1500	4.0	20.0	-2.0	-10.0	-100	-40	4typ.	1 typ.	5typ. @ 1kHz	GPA/Low Cost
J204	то-92				-0.5	-2.0	-100	-25	4typ.	1 1typ.	10typ.@1kHz	GPA/Low Cost
J210	T0.92	4000	2.0	15.0	-1.0	-3.0	-100	-25	4typ.	1 typ.	10typ. @ 1kHz	GPA/Low Cost
J211	то-92	7000	7.0	20.0	-2.5	-4.5	-100	-25	4typ.	1 typ.	10typ. @ 1kHz	GPA/Low Cost
J212	т0.92	7000	15.0	40.0	-4.0	-6.0	-100	-25	4typ.	1 typ.	10typ. @ 1kHz	GPA/Low Cost
J300	то-92	4500	4.0	45.0	-1.5	-7.0	-500	-25	5.5	1.7		VHF AMP/Low Cost
J308	T0-92	8000	12.0	60.0	-1.0	-6.5	-1nA	-25			2.7 dB @ 450 MHz	VHF Amp/Low Cost
J309	T0-92	10,000	12.0	30.0	-1.0	-4.0	$-1 n A$	-25			2.7 dB @ 450MHz	VHF Amp/Low Cost
J310	T0-92	8000	24.0	60.0	-2.0	-6.5	-1nA	-25			2.7 dB @ 450 MHz	VHF Amp/Low Cost
PN4302	T0-92	1000	0.5	5.0		-4.0	$-1 n A$	-30	6	2	2dB@1kHz	GPA/Low Cost
PN4303	T0.92	2000	4.0	10.0		-6.0	$-1 n A$	-30	6	2	2dB@1kHz	GPA/Low Cost
PN4304	T0-92	1000	0.5	15.0		-10.0	-1nA	-30	6	2	3 dB @ 1kHz	GPA/Low Cost
PN4338	т0.92	600	0.2	0.6	-0.3	-1.0	-100	-50	7	3	1 dB @ 1kHz	GPANCR
PN4339	T0.92	800	0.5	1.5	-0.6	-1.8	-100	-50	7	3	1 db (a) 1 kHz	GPAVCR
PN4340	T0.92	1300	1.2	3.6	-1.0	-3.0	-100	-50	7	3	1 db (1) 1kHz	GPANCR
PN4341	T0-92	2000	3.0	9.0	-2.0	-6.0	-100	-50	7	3	1 db @ 1 kHZ	GPANCR
PN4416	T0.92	4500	5.0	15.0		-6.0	-100	-30	4	2		High Gain/Low Cost
PN5163	T0.92	2000	1.0	40.0	-0.4	-8.0	-10nA	-25	20	5	50 @ 1kHz	Low Cost
U308	TO-52	10,000	12.0	60.0	-1.0	-6.0	-150	-25	7typ.	4.0typ.	2.7 dB @ 450MHz	VHF Amp
U309	TO-52	10,000	12.0	30.0	-1.0	-4.0	-150	-25	7 typ.	4.0typ.	2.7 dB @ 450 MHz	VHF Amp
U310	TO-52	10,000	24.0	60.0	-2.5	-6.0	-150	-25	7 typ.	4.0typ.	2.7 dB @ 450 MHz	VHF Amp

[^2]
DISCRETE PRODUCTS

Amplifier Transistors (Continued)

Junction FETs - P-Channel

PART NUMBER	PACKAGE**	$\underset{\substack{\mathbf{9}_{\text {ts }}}}{\substack{\text { nho }}}$ Min	$\begin{aligned} & \text { IDSS } \\ & \mathrm{mA} \end{aligned}$		$\begin{aligned} & \mathbf{V}_{\mathbf{p}} \\ & \mathbf{V} \end{aligned}$		$\begin{gathered} \mathbf{l}_{\text {GSS }} \\ \text { nA } \\ \text { Max } \end{gathered}$	$\begin{gathered} \mathbf{B V}_{\text {GSS }} \\ \mathbf{V} \\ \mathbf{M i n} \end{gathered}$	$\begin{gathered} \mathrm{C}_{\text {iss }} \\ \mathrm{pF} \\ \text { Max } \end{gathered}$	$\begin{gathered} \mathbf{c}_{\text {rss }} \\ \text { pF } \\ \text { Max } \end{gathered}$	$\stackrel{e_{n}}{n V I \sqrt{H z}}$Max	COMMENTS
			Min	Max	Min	Max						
2N2606	TO-18	110	0.1	-0.5	0.5	4.0	1 nA	30	6		3 dB @ 1kHz	VP Min Waiver
2N2607	TO-18	330	-0.3	-1.5	1.0	4.0	3nA	30	10		400@1kHz	Low Noise/GPA
2N2608	TO-18	1000	-0.9	-4.5	1.0	4.0	10nA	30	17		18001 kHz	Low Noise/GPA
2N2609	TO-18	2500	-2.0	-10.0	1.0	4.0	30 nA	30	30		180@1kHz	Low Noise/GPA
2N2609JAN	TO-18	2500	-2.0	-10.0	1.0	4.0	30 nA	30	30		3dB@1kHz	Low Noise/GPA
2N3328	T0.72	100		-1.0		6.0	1nA	20	4		400@1kHZ	GPA
2N3329	T0.72	1000	-1.0	-3.0		5.0	10na	20	20		3 db 16 1 kHz	GPA
2N3330	T0.72	1500	-2.0	-6.0		6.0	10nA	20	20		$3 \mathrm{db} @ 1 \mathrm{kHz}$	GPA
2N3331	T0-72	2000	-5.0	-15.0		8.0	10nA	20	20		4db@1kHz	GPA
2N3332	T0.72	1000	-1.0	-6.0		6.0	10nA	20	20		1 db @ 1 kHz	GPA
2N5265	то.72	900	-0.5	-1.0	0.3	1.5	2nA	60	7	2	115@100Hz	Low Noise/GPA
2N5266	т0.72	1000	-0.8	-1.6	0.4	2.0	2 nA	60	7	2	115@100Hz	Low Noise/GPA
2N5267	T0.72	1500	-1.5	-3.0	1.0	4.0	2nA	60	7	2	115@100Hz	Low Noise/GPA
2N5268	тO-72	2000	-2.5	-5.0	1.0	4.0	2nA	60	7	2	115@100Hz	Low Noise/GPA
2N5269	T0.72	2200	-4.0	-8.0	2.0	6.0	2nA	60	7	2	115@100Hz	Low Noise/GPA
2N5270	T0.72	2500	-7.0	-14.0	2.0	6.0	2 nA	60	7	2	$115 @ 100 \mathrm{~Hz}$	Low Noise/GPA
2N5460	т0.92	1000	-1.0	-5.0	0.75	6.0	5 nA	40	7	2	115@100Hz	Low Noise/Low Cost
2N5461	т0-92	1500	-2.0	-9.0	1.0	7.5	5nA	40	7	2	115@100Hz	Low Noise/Low Cost
2N5462	т0.92	2500	-4.0	-16.0	1.8	9.0	$5 n A$	40	7	2	115@100Hz	Low Noise/Low Cost
2N5463	то-92	1000	-1.0	-5.0	0.75	6.0	$5 n A$	60	7	2	115@100Hz	Low Noise/Low Cost
2N5464	тO-92	1500	-2.0	-9.0	1.0	7.5	5nA	60	7	2	115100 Hz	Low Noise/Low Cost
2N5465	T0.92	2500	-4.0	-16.0	1.8	9.0	5 nA	60	7	2	$115 @ 100 \mathrm{~Hz}$	Low Noise/Low Cost
J270	то-92	6000	-2.0	-15.0	0.5	2.0	0.200	30	32typ	4typ	6typ@1kHz	Low Noise/Low Cost
J271	то-92	8000	-6.0	-50.0	1.5	4.5	0.200	30	31 typ	4typ	6 typ@1kHz	Low Noise/Low Cost
PN4342	то-92	2000	-4.0	-12.0	0.7	5.0	10nA	25	20	5	80@100Hz	Low Noise/Low Cost
PN4343	то.92	3000	-10.0	-30.0	1.8	9.0	10 nA	25	20	5	$80 @ 100 \mathrm{~Hz}$	Low Noise/Low Cost

[^3]
Switching/Amplifier Transistors

MOSFETs - N-Channel

$\begin{aligned} & \text { PART } \\ & \text { NUMBER } \\ & \hline \end{aligned}$	PACKAGE	$\underset{\mathbf{V}}{\mathrm{V}_{\mathrm{GS}}(T H)}$		$\begin{gathered} \mathrm{BV}_{\mathrm{DSS}} \\ \mathbf{V} \\ \mathrm{Min} \end{gathered}$	$\begin{aligned} & \text { IDss } \\ & \text { pA } \\ & \text { Max } \end{aligned}$	$\underset{\text { pA }}{\mathrm{I}_{\text {GSS }}}$Max	gis μ mho Min	$\begin{gathered} \text { rDS(ON) } \\ 0 \\ \text { Max } \end{gathered}$	IDON mA Min	IdON) mA Max	COMMENTS
		Min	Max								
2N4351	TO.72	1.0	5.0	25	10nA	10	1000	300	3		High Input Z
3N170	то-72	1.0	2.0	25	10 nA	10	1000	200	10		High Input Z
3N171	T0.72	1.5	3.0	25	10nA	10	1000	200	10		High Input Z
IT1750	тO-72	0.5	3.0	25	10nA	10	3000	50	10		Low ros(on)
M116	то-72	1.0	5.0	30	$10 \mathrm{~A} A$	100		100			Diode Protected
M117	T0.72	1.0	5.0	30	10 nA	1		100			High Input Z

MOSFETs - P-Channel

Generally used where max. isolation between signal source and logic drive is required: switch "On" resistance varies with signal amplitude.

PART NUMBER	PACKAGE	$\mathrm{V}_{\mathrm{GS}(\mathrm{~V}}$		$B V_{\text {DSS }}$ V Min	$\begin{aligned} & \text { IDSS } \\ & \text { pA } \\ & \text { Max } \end{aligned}$	IGSS pA Max	$\begin{gathered} \mathbf{g}_{\mathrm{fs}} \\ \mu \mathrm{mho} \\ \text { Min } \end{gathered}$	$\begin{gathered} \text { rDS(ON) } \\ \Omega \\ \text { Max } \end{gathered}$	$I_{D(O N)}$ mA Min	$\begin{aligned} & \text { IDON }{ }^{\text {POON }} \\ & \text { mA } \\ & \text { Max } \end{aligned}$	COMMENTS
		Min	Max								
2N4352	TO.72	-1.0	-5.0	-25	-10nA	10	1000	600	-3		High Input Z
3N155	T0.72	-1.5	-3.2	-35	- 1nA	10	1000	600	-5		High Input Z
3N155A	T0.72	-1.5	-3.2	-35	-250	10	1000	300	-5		High Input Z
3N157	T0.72	-1.5	-3.2	-35	-1nA	10	1000		-5		High Input Z
3N157A	T0.72	-1.5	-3.2	-50	-250	10	1000		-5		High Input Z
3N161	T0.72	-1.5	-5.0	-25	-10nA	-100	3500		-40	-120	Diode Protected
3N163	T0.72	-2.0	-5.0	-40	-200	-10	2000	250	-5	-30	High Input Z
3N164	T0.72	-2.0	-5.0	-30	400	10	1000	300	-3	-30	High Input Z
3N172	T0-72	-2.0	-5.0	-40	-400	-200		250	-5	-30	Diode Protected
3N173	то-72	-2.0	-5.0	-30	$-10 \mathrm{nA}$	-500		350	-5	-30	Diode Protected
IT1700	T0.72	-2.0	-5.0	-40	200		2000	400	-2		High Input Z
171701	TO-72	-2.0	-5.0	-40	200	100	2000	400	-2		Diode Protected

Diodes, Low Leakage Used to protect the inputs of MOSFETs such as 3 N 163 , while maintaining input leakage $<0.1 \mathrm{pA}$.

PART NUMBER	PACKAGE	$\mathbf{I}_{\mathbf{R}} @ 1 \mathbf{1}$ (pA) Typ	$\begin{gathered} \mathrm{I}_{\mathrm{R}} @ 10 \mathrm{~V}, 125^{\circ} \mathrm{C} \\ \text { (nA) } \\ \mathrm{Max} \end{gathered}$	$B V_{R} @ 1 \mu A$ (V) Min	$\mathbf{V}_{\mathbf{F}} @$ (V) Min	A (V) Max	COMMENTS
ID100	TO-78	0.1	10	30	0.8	1.1	(Note 1)
ID101	T0.71	0.1	10	30	0.8	1.1	(Note 1)

Note 1. Used to protect the inputs of MOSFETs such as 3 N 163 , while maintaining input leakage $<0.1 \mathrm{pA}$.

Differential Amplifier Transistors - Monolithic Duals
Junction FETs - N-Channel

PART NUMBER	PACKAGE	$\mathbf{V}_{\text {GS1.2 }}$ mV Max	$\Delta \mathbf{V}_{\text {GS }}$ $\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$ Max	$\begin{aligned} & I_{G} \\ & \text { PA } \\ & \text { Max } \end{aligned}$	$\begin{gathered} \text { BV }_{\text {GSS }} \\ \mathbf{V} \\ \mathbf{M i n} \end{gathered}$	$\begin{gathered} \mathbf{v}_{\mathbf{p}} \\ \mathbf{v} \end{gathered}$		$\underset{\substack{\mathbf{g}_{\mathrm{fs}} \\ \mathrm{mmho}}}{ }$		IDss mA		$\stackrel{e_{n}}{n V / \sqrt{H z}}$Max	COMMENTS
						Min	Max	Min	Max	Min	Max		
2N3921	TO.71	5	10	250	-50		-3.0	1.5	7.5	1	10.0	2dB@1kHz	GP Diff Amp
2N3922	T0.71	5	25	250	-50		-3.0	1.5	7.5	1	10.0	2dB@1kHz	GP Diff Amp
2N3954	т0-71	5	10	-50	-50	-1.0	-4.5	1	3	0.5	5.0	160 @ 100Hz	General Purpose
2N3954A	T0.71	5	5	-50	-50	-1.0	-4.5	1	3	0.5	5.0	160 (1) 100Hz	General Purpose
2N3955	T0.71	10	25	-50	-50	-1.0	-4.5	1	3	0.5	5.0	160 @ 100Hz	General Purpose
2N3955A	T0.71	5	15	-50	-50	-1.0	-4.5	1	3	0.5	5.0	160 (1) 100Hz	General Purpose
2N3956	T0.71	15	50	-50	-50	-1.0	-4.5	1	3	0.5	5.0	160 @ 100Hz	General Purpose
2N3957	T0.71	20	75	-50	-50	-1.0	-4.5	1	3	0.5	5.0	160 @ 100Hz	General Purpose
2N3958	T0.71	25	100	-50	-50	-1.0	-4.5	1	3	0.5	5.0	160 @ 100Hz	General Purpose
2N5045	T0.71	5	65		-50	-0.5	-4.5	1.5	6.0	0.5	8.0	200 @ 10Hz	GP Diff Amp
2N5046	T0.71	10	133		-50	-0.5	-4.5	1.5	6.0	0.5	8.0	200 @ 10Hz	GP Diff Amp
2N5047	T0.71	15	200		-50	-0.5	-4.5	1.5	6.0	0.5	8.0		GP Diff Amp
2N5196	т0.71	5	5	-15	-50	-0.7	-4.0	0.7 @	200 A	0.7	7.0	20 @ 1kHz	Low Noise, GPA
2N5197	T0.71	5	10	-15	-50	-0.7	-4.0	0.7 @	$200 \mu \mathrm{~A}$	0.7	7.0	20 @ 1kHz	Low Noise, GPA
2N5198	T0.71	10	20	-15	-50	-0.7	-4.0	0.7 @	$200 \mu \mathrm{~A}$	0.7	7.0	20 @ 1kHz	Low Noise, GPA
2N5199	T0.71	15	40	-15	-50	-0.7	-4.0	0.7 (a)	$200 \mu \mathrm{~A}$	0.7	7.0	20 @ 1kHz	Low Noise, GPA
2N5515	T0.71	5	5	-100	-40	-0.7	-4.0	1	4	0.5	7.5	30 @ 10Hz	GP Diff Amp
2N5516	T0.71	5	10	-100	-40	-0.7	-4.0	1	4	0.5	7.5	30 @ 10Hz	GP Diff Amp
2N5517	T0.71	10	20	-100	-40	-0.7	-4.0	1	4	0.5	7.5	30 @ 10Hz	GP Diff Amp
2N5518	T0.71	15	40	-100	-40	-0.7	-4.0	1	4	0.5	7.5	30 @ 10Hz	GP Diff Amp
2N5519	T0.71	15	80	-100	-40	-0.7	-4.0	1	4	0.5	7.5	30 @ 10Hz	GP Diff Amp
2N5520	T0.71	5	5	-100	-40	-0.7	-4.0	1	4	0.5	7.5	15 @ 10Hz	Lowest Noise
2N5521	T0.71	5	10	-100	-40	-0.7	-4.0	1	4	0.5	7.5	15 @ 10Hz	Lowest Noise
2N5522	T0.71	10	20	-100	-40	-0.7	-4.0	1	4	0.5	7.5	15 @ 10Hz	Lowest Noise
2N5523	T0.71	15	40	-100	-40	-0.7	-4.0	1	4	0.5	7.5	15 @ 10Hz	Lowest Noise
2N5524	т0.71	15	80	-100	-40	-0.7	-4.0	1	4	0.5	7.5	15 @ 10Hz	Lowest Noise
2N5545	T0.71	5	10	-50	-50	-0.5	-4.5	1.5	6	0.5	8.0	180 @ 10Hz	GP Diff Amp
2N5546	T0.71	10	20	-50	-50	-0.5	-4.5	1.5	6	0.5	8.0	200 @ 10Hz	GP Diff Amp
2N5547	T0.71	15	40	-50	-50	-0.5	-4.5	1.5	6	0.5	8.0		GP Diff Amp
2N5902	T0.78	5	5	-3	-40	-0.6	-4.5	0.07	. 250	0.03	0.50	100 @ 1kHz	Low Leakage
2N5903	T0.78	5	10	-3	-40	-0.6	-4.5	0.07	. 250	0.03	0.50	100 @ 1kHz	Low Leakage
2N5904	T0.78	10	20	-3	-40	-0.6	-4.5	0.07	. 250	0.03	0.50	100 @ 1kHz	Low Leakage
2N5905	т0.78	15	40	-3	-40	-0.6	-4.5	0.07	. 250	0.03	0.50	100 @ 1kHz	Low Leakage
2N5906	то.99	5	5	-1	-40	-0.6	-4.5	0.07	0.25	0.03	0.50	100 @ 1kHz	Low Leakage
2N5907	тО-99	5	10	-1	-40	-0.6	-4.5	0.07	0.25	0.03	0.50	100 @ 1kHz	Low Leakage
2N5908	то-99	10	20	-1	-40	-0.6	-4.5	0.07	0.25	0.03	0.50	100 @ 1kHz	Low Leakage
2N5909	то-99	15	40	-1	-40	-0.6	-4.5	0.07	0.25	0.03	0.50	100 @ 1kHz	Low Leakage
2N5911	т0-99	10	20	-100	-25	-1.0	-5.0	5/10@	5 mA	7.0	40.0	20 @ 10kHz	RF Amplifier
2N5912	т0.99	15	40	-100	-25	-1.0	-5.0	5/10@	5 mA	7.0	40.0	20 @ 10kHz	RF Amplifier
2N6483	т0.71	5	5	-100	-50	-0.7	-4.0	1	4	0.5	7.5	10 @ 10Hz	Low Noise
2N6484	T0.71	10	10	-100	-50	-0.7	-4.0	1	4	0.5	7.5	10 @ 10Hz	Low Noise
2N6485	T0.71	15	25	-100	-50	-0.7	-4.0	1	4	0.5	7.5	10 @ 10Hz	Low Noise
IT500	тO-52	5	5	-5	-50	-0.7	-4.0	0.711.6	(1)200 $\mu \mathrm{A}$	0.7	7.0	35 @ 10Hz	Cascode RF Amp
IT501	TO-52	5	10	-5	-50	-0.7	-4.0	0.711.6	($200 \mu \mathrm{~A}$	0.7	7.0	35 @ 10Hz	Cascode RF Amp
IT502	TO-52	10	20	-5	-50	-0.7	-4.0	0.711.6	($200 \mu \mathrm{~A}$	0.7	7.0	35 @ 10Hz	Cascode RF Amp
1 IT503	TO-52	15	40	-5	-50	-0.7	-4.0	0.711.6	($200 \mu \mathrm{~A}$	0.7	7.0	35 @ 10Hz	Cascode RF Amp
IT504	TO-52	25	100	-5	-25	-0.7	-4.0	0.711.6	($200 \mu \mathrm{~A}$	0.7	7.0	35 @ 10Hz	Cascode RF Amp
IT505	TO-52	50	200	-5	-25	-0.7	-4.0	0.7/1.6	($200 \mu \mathrm{~A}$	0.7	7.0	35 @ 10Hz	Cascode RF Amp

[^4](Continued Next Page)

DISCRETE PRODUCTS

Differential Amplifiers (Continued)

Junction FETs - N-Channel (Continued)

$\begin{aligned} & \text { PART } \\ & \text { NUMBER } \\ & \hline \end{aligned}$	PACKAGE	$\begin{gathered} \mathrm{V}_{\text {GS1.2 }} \\ \mathrm{mV} \\ \mathrm{Max} \end{gathered}$	$\Delta \mathbf{V}_{\text {GS }}$ $\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$ Max	$\begin{aligned} & I_{G} \\ & p A \end{aligned}$Max	$\begin{gathered} \mathrm{BV}_{\text {GSS }} \\ \mathbf{V} \\ \mathbf{M i n} \end{gathered}$	$\begin{gathered} \mathbf{v}_{\mathbf{p}} \\ \mathbf{v} \end{gathered}$		gis mmho		$\begin{gathered} \text { IDSS } \\ \text { mA } \end{gathered}$		$n \mathrm{~V} / \sqrt{\mathrm{Hz}}$ Max	COMMENTS
						Min	Max	Min	Max	Min	Max		
IT5911	T0.71	10	20	-100	-25	-1.0	-5.0	5/10	5 mA	7.0	40.0	20 (1) 10kHz	RF Amplifier
IT5912	T0.71	15	40	-100	-25	-1.0	-5.0	5/10	5 mA	7.0	40.0	20 (1) 10kHz	RF Amplifier
ITC5911	т0.99	10	20	-100	-25	-1.0	-5.0	5/10	5 mA	7.0	40.0	20 (1) 10kHz	RF Amplifier
ITC5912	T0-99	15	40	-100	-25	-1.0	-5.0	5/10	5 mA	7.0	40.0	20 @ 10kHz	RF Amplifier
U231	T0.71	5	10	-50	-50	-0.5	-4.5	1	5	0.5	5.0	80 © 100Hz	GP Diff Amp
U232	T0.71	10	25	-50	-50	-0.5	-4.5	1	5	0.5	5.0	80 (1) 100Hz	GP Diff Amp
U233	T0.71	15	50	-50	-50	-0.5	-4.5	1	5	0.5	5.0	80 (1) 100Hz	GP Diff Amp
U234	т0.71	20	75	-50	-50	-0.5	-4.5	1	5	0.5	5.0	80 (1) 100Hz	GP Diff Amp
U235	T0.71	25	100	-50	-50	-0.5	-4.5	1	5	0.5	5.0	80 @ 100Hz	GP Diff Amp
U257	T0.78	100			-25	-1.0	-5.0	4.5	10	5.0	40.0	30 (1) 10kHz	Low Cost
U426	т0.78	25	40	-0.5	-40	-0.4	-3.0	0.3	1.5	. 06	1.8	70 @ 10Hz	Low Cost
4440	т0.71	10			-25	-1.0	-6.0	4.5/9	$5 \mu \mathrm{~A}$	6	30		High Gain
U441	T0.71	20			-25	-1.0	-6.0	4.5/9	$5 \mu \mathrm{~A}$	6	30		High Gain

MOSFETs - Monolithic Dual P-Channel (Enhancement)

ART		$\underset{\mathbf{V}}{\mathrm{V}_{\text {GSTH }}}$		$\underset{\mathbf{V}}{\mathrm{BV}^{\mathrm{DDS}}}$	IDSS pA Max	$I_{\text {GSS }}$ pA Max	$g_{f s}$ $\mu \mathrm{mho}$ Min	$I_{D(O N)}$ mA		$\begin{gathered} \mathrm{r} \mathrm{DS}(\mathrm{ON}) \\ \Omega \\ \operatorname{Max} \end{gathered}$	$\mathbf{V}_{\text {GS 1-2 }}$ mV Max	COMMENTS
NUMBER	PACKAGE	Min	Max	Min/Max				Min	Max			
3N165	TO-99	-2	-5	-40	-200	-10	1500	-5.0	-30	300	100	Low Leakage
3N166	T0.99	-2	-5	-40	-200	-10	1500	-5.0	-30	300		Low Leakage
3N188	TO-99	-2	-5	-40	-200	-200	1500	-5.0	-30	300	100	Diode Protected
3N189	TO-99	-2	-5	-40	-200	-200	1500	-5.0	-30	300		Diode Protected
3N190	TO-99	-2	-5	-40	-200	-10	1500	-5.0	-30	300	100	High Input Z
3N191	T0.99	-2	-5	-40	-200	-10	1500	-5.0	-30	300		High Input Z

* @ IDSS

DISCRETE PRODUCTS

Differential Amplifiers (Continued)

Bipolar Monolithic Dual Transistors - NPN

PART NUMBER	PACKAGE	$V_{\text {BE } 1.2}$ mV Max	$\Delta V_{B E}$ ${ }_{\mu} \mathrm{V} /{ }^{\circ} \mathrm{C}$ Max	$h_{\text {FE }}$ (Note 1) Min	$I_{B 1.2}$ (Note 1) nA Max	$\mathrm{BV}_{\text {CEO }}$ V Min	$I_{\text {CBO }}$ nA Max	NF dB Max	$\begin{gathered} \mathbf{f}_{\mathbf{t}} \\ \mathbf{M H z} @ \mathbf{I}_{\mathbf{C}} \\ \mathbf{M i n} \end{gathered}$	$\mathrm{C}_{\text {obo }}$ pF Max	COMMENTS
2N2453	TO-78	3	10	80		30	5	7 typ.			Audio Amp
2N2453A	TO-78	3	5	80		60	5	4 typ.			Audio Amp
2N2920	TO.78	3	10	150		60	2	3 typ.	60 @ 0.5mA	6	High Gain, Low Noise
2N2920A	TO-78	1.5	5	150		60	2	3 typ.	60 @ 0.5mA	6	High Gain, Low Noise
2N4044	TO-78	3	3	200	5	60	0.1	2	200 @ 1mA	0.8	Low Capacitance
2N4045	TO.78	5	10	80	25	45	0.1	3	150 @ 1mA	0.8	Low Capacitance
2N4100	T0.78	5	5	150	10	55	0.1	3	150 @ 1mA	0.8	Low Capacitance
2N4878	T0-71	3	3	- 200	5	60	0.1	2 typ.	200 @1mA	0.8	Low Capacitance
2N4879	T0.71	5	5	150	10	55	0.1	3 typ.	150 @ 1mA	0.8	Low Capacitance
2N4880	TO-71	5	10	80	25	45	0.1	3 typ.	150 @ 1mA	0.8	Low Capacitance
IT120	TO-78	2	5	200	5	45	1.0	2 typ.	150 @1mA	2	Low Cost, Low $\mathrm{V}_{\text {OS }}$
	TO-71										
IT120A	TO.78	1	3	200	2.5	45	1.0	2 typ.	150 (16) 1mA	2	Low Cost, Low $\mathrm{V}_{\text {OS }}$
	T0.71										
IT121	T0.78	3	10	80	25	45	1.0	2 typ.	180 (16) 1 mA	2	Low Cost
	T0.71										
IT122	TO-78	5	20	80	25	45	1.0	2 typ.	180 (14 1mA	2	Low Cost
	TO-71										
IT124	TO-78	5	15	1500	0.6A	2	0.1	3	100 (12 $100 \mu \mathrm{~A}$	0.8	Super, 3 for
											Log Amps
IT126	TO.78	1	3	150	2.5	60	0.1	1 typ.	250 (10 10mA	3	Low $\mathrm{V}_{\text {OS }}$
	T0.71										
IT127	TO-78	2	5	150	5	60	0.1	1 typ.	250 (il 10mA	3	Low VOS
	T0.71										
IT128	T0.78	3	10	100	10	55	0.1	1 typ.	250 (1. 10mA	3	Low $\mathrm{V}_{\text {OS }}$
	T0.71										
IT129	T0.78	10	20	70	20	45	0.1	1 typ.	250 (ii) 10 mA	3	Low Vos
	T0.71										
LM114	TO. 71	2.0	10	250	10	45	0.050				Low $\mathrm{V}_{\text {OS }}$
LM114A	TO-71	0.5	2	500	2	45	0.010				Low $V_{\text {OS }}$
LM114AH	T0.78	0.5	2	500	2	45	0.010				Low $\mathrm{V}_{\text {OS }}$
LM114B	TO-71	1.0	5	250	10	45	0.050				Low $\mathrm{V}_{\text {OS }}$
LM114BH	T0.78	1.0	5	250	10	45	0.050				Low $\mathrm{V}_{\text {OS }}$
LM114H	TO.78	2.0	10	250	10	45	0.050				Low $\mathrm{V}_{\text {OS }}$

NOTE:

DISCRETE PRODUCTS

Differential Amplifiers (Continued)
Bipolar Dual Transistors - PNP

PART NUMBER	PACKAGE	$\begin{gathered} V_{\text {BE 1.2 }} \\ \mathbf{m V} \\ \operatorname{Max} \end{gathered}$	$\begin{aligned} & \Delta \mathbf{V}_{\mathrm{BE}} \\ & { }_{\mu}^{\mathrm{V} /{ }^{\circ} \mathrm{C}} \\ & \mathrm{Max} \end{aligned}$	$h_{\text {FE }}$ (Note 1) Min	$\mathrm{I}_{\mathrm{B} 1.2}$ (Note 1) nA Max	$\begin{gathered} \mathrm{BV}_{\text {CEO }} \\ \mathbf{M} \\ \mathbf{M i n} \end{gathered}$	$\mathrm{I}_{\mathrm{CBO}}$ Max	$\begin{gathered} \mathrm{NF} \\ \mathrm{~dB} \\ \mathrm{Max} \end{gathered}$	$\begin{gathered} \mathbf{f}_{\mathbf{t}} \\ \mathbf{M H z} @ \mathbf{I c}^{2} \\ \mathbf{M i n} \end{gathered}$	$\mathrm{C}_{\mathrm{obo}}$ Max	COMMENTS
2N3810	T0.78	3	10	100		-60	10	3 typ.	100 @ 1mA	4	Low $\mathrm{V}_{\text {OS }}$
2N3810A	T0.78	1.5	5	100		-60	10	3 typ.	100 @ 1mA	4	Low $\mathrm{V}_{\text {OS }}$
2N3811	T0.78	3	10	225		-60	10	3 typ.	100 @ 1mA	4	Low $\mathrm{V}_{\text {OS }}$
2N3811A	T0.78	1.5	5	225		-60	10	3 typ.	100 @ 1mA	4	Low $\mathrm{V}_{\text {OS }}$
2N5117	T0.78	3	3	100	10	-45	0.1	4 typ.	100 @ 0.5mA	0.8	Low V ${ }_{\text {OS }}$
2N5118	T0.78	5	5	100	15	-45	0.1	4 typ.	100 @ 0.5mA	0.8	Low Cost
2N5119	T0.78	5	10	50	40	-45	0.1	4 typ.	100 @ 0.5mA	0.8	Low Cost
17130	T0.78	2	5	200	5	-45	1.0	2 typ.	150 @ 1mA	2	Low Vos
	T0.71										
IT130A	T0.78	1	3	200	2.5	-45	1.0	2 typ.	150 @ 1mA	2	Low $\mathrm{V}_{\text {OS }}$
	T0.71										
$1 T 131$	T0.78	3	10	80	25	-45	1.0	2 typ.	150 @ 1mA	2	Low Cost
	T0.71										
$1 T 132$	т0.78	5	20	80	25	-45	1.0	2 typ.	150 @ 1mA	2	Low Cost
	T0.71										
$1 T 136$	т0.78	1	3	150	2.5	-60	0.1	2 typ.	250 @ 10mA	4	Low $\mathrm{V}_{\text {OS }}$
	T0.71										
$1 T 137$	T0.78	2	5	150	5	-60	0.1	2 typ.	250 @ 10mA	4	Low $\mathrm{V}_{\text {OS }}$
	T0.71										
17138	T0.78	3	10	100	10	-55	0.1	2 typ.	250 @ 10mA	4	Low $\mathrm{V}_{\text {OS }}$
	T0.71										
$1 T 139$	T0.78	5	20	70	20	-45	0.1	2 typ.	250 @ 10mA	4	Low Vos
	T0.71										

Note:

1. $\mathrm{I}_{\mathrm{C}}=10 \mu \mathrm{~A}, \mathrm{~V}_{C E}=5 \mathrm{~V}$

TO-92 Taping Specifications and Winding Styles

(EIA STD RS468)

P	12.7 ± 0.5	H_{0}	16 ± 0.5
P_{0}	12.7 ± 0.2	F	$5_{-0.2}^{+0.6}$
P_{1}	3.85 ± 0.5	$F_{1}-F_{2}$	± 0.3
P_{2}	6.35 ± 0.5	D_{0}	4 ± 0.2
P_{3}	6.35	t	0.7 ± 0.2
W	$8_{-0.5}^{+1.0}$	Δ_{h}	0 ± 1
W_{0}	6 ± 1	d	$0.050_{-0.05}^{+0.06}$ dia.
W_{1}	9 ± 0.5	R	0.8
W_{2}	Max. 0.5	α	$45^{\circ} \mathrm{C}-60^{\circ} \mathrm{C}$
W_{3}	Min. 4.5	L	$M a x .11$
H	19.5 ± 0.5	Δ_{C}	0 ± 0.5

All Dimensions in Millimeter

STYLEA

ROUNDED SIDE OF TRANSISTOR AND ADHESIVE TAPE VISIBLE

STYLE B

FLAT SIDE OF TRANSISTOR AND CARRIER STRIP VISIBLE (ADHESIVE TAPE ON REVERSE SIDE)

STYLEC

ROUNDED SIDE OF TRANSISTOR AND ADHESIVE TAPE VISIBLE

STYLE D

flat side of transistor and carrier strip visible (ADHESIVE TAPE ON REVERSE SIDE)

STYLEE
STYLE E IS A PREFERRED STYLE

FLAT SIDE OF TRANSISTOR AND ADHESIVE TAPE VISIBLE
STYLE F

ROUNDED SIDE OF TRANSISTOR AND CARRIER STRIP VISIBLE (ADHESIVE TAPE ON REVERSE SIDE)

STYLE G

FLAT SIDE OF TRANSISTOR AND ADHESIVE TAPE VISIBLE
STYLEH

ROUNDED SIDE OF TRANSISTOR AND CARRIER STRIP VISIBLE (ADHESIVE TAPE ON REVERSE SIDE)

STYLEP
ROUNDED SIDE

ROUNDED SIDE OF TRANSISTOR AND ADHESIVE TAPE VISIBLE STYLE P IS EQUIVALENT TO STYLES A, B, C, D OF REEL PACK DEPENDING ON WHICH BOX-FLAP IS OPENED AND WHICH END OF THE BOX THE DEVICES ARE FED FROM.

STYLEM

FLAT SIDE OF TRANSISTOR AND ADHESIVE TAPE VISIBLE STYLE M AMMO PACK IS EQUIVALENT TO STYLES E, F, G, H OF REEL PACK DEPENDING ON WHICH BOX-FLAP IS OPENED AND WHICH END OF THE BOX THE DEVICES ARE FED FROM.

DATA COMMUNICATIONS

Microperipheral and Interface Circuits

IM6402/IM6403

Universal Asynchronous Receiver Transmitter (UART)

The IM6402 and IM6403 are CMOS/LSI UART's for interfacing computers or microprocessors to asynchronous serial data channels. The receiver converts serial start, data, parity and stop bits to parallel data verifying proper code transmission, parity, and stop bits. The transmitter converts parallel data into serial form and automatically adds start, parity, and stop bits.

The data word length can be 5, 6, 7 or 8 bits. Parity may be odd or even, and parity checking and generation can be inhibited. CMOS/LSI technology permits clock frequencies up to 6.0 MHz (250K Baud).

Variations include the following:

Device	Fc (MHz)
IM6402	1
IM6402-1	2
IM6402A	4

Device	Fc (MHz)
IM6403	2.46
IM6403-1	3.58
IM6403A	6.00

The IM6403 Series differs from the IM6402 Series primarily by having an on-board crystal oscillator and baud rate generator. Available in plastic and ceramic packages, in commercial and military temperature ranges.

IM4702/4712

Baud Rate Generator

The IM4702/12 Baud Rate Generators provide necessary clock signals for digital data transmission systems, such as UARTs, using a 2.4576 MHz crystal oscillator as an input. They control up to 8 output channels and can be cascaded for output expansion.

Multi-channel operation allows up to eight simultaneous Baud rates to be generated. Provides 14 most commonly used baud rates from zero through 9600 Baud. In addition, 19200 Baud is possible via hardwiring.

IM4712 integrates oscillator feedback resistor and two load capacitors on-chip.

Available in 16-pin plastic DIP and CERDIP packages with a temperature range from $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.

ICL232

+5V Powered Dual RS-232

Transmitter/Receiver

The ICL232 requires only a few non-critical external components to perform the RS-232 driver/receiver function with either CMOS or TTL inputs. It features two on-board chargepump voltage converters which generate the required $\pm 10 \mathrm{~V}$ supplies from a single 5 V power supply. The ICL232 meets all EIA RS-232C specifications. It is available in a variety of packages (including the $16-\mathrm{pin}$ SOIC) and operating temperature ranges.
VDD
V

RRD	- Rec. Reg. Disable
RBR	- Rec. Buffer Reg.
PE	- Parity Error
FE	- Framing Error
OE	- Overrun Error
SFD	- Status Flags Disable
$\overline{\text { DRR }}$	- Data Received Reset
DR	- Data Received
RRI	- Rec. Reg.
MR	- Master Reset
TBRE	- Trans. Buffer Reg. Empty
TBRL	- Trans. Buffer Reg. Load
TRO	- Trans. Reg. Output
TBR	- Trans. Buffer Reg.
CRL	- Control Register Load
PI	- Parity Inhibit
SBS	- Stop Bit Select
CLS	- Char. Length Selected
EPE	- Even Parity Enable

Pin Configuration

IM26C91
 Universal Asynchronous
 Receiver/Transmitter (UART)

The IM26C91 is a high-performance Universal Asynchronous Receiver/Transmitter that provides full duplex operation. Operating speed can be selected from 18 fixed baud rates ranging from 50 to 38.4 K baud, or from an internal programmable counter/timer ($16 \times$ clock speed), or from an external 1X or 16X clock. The ability to program the operating speed independently makes the UART particularly well suited for dual-speed channel applications, e.g. clustered terminal systems.

The quadruple buffered receiver minimizes potential receiver overrun and reduces interrupt overhead in interrupt driven systems. Handshaking capability disables a remote UART transmitter when the receiver buffer is full.

The IM26C91 UART is fabricated with high-density, lowpower CMOS technology which permits monolithic construction and encapsulation in a 24 -pin DIP. The device is TTL compatible and operates from a single +5 V power supply.

IM29C128

Finite Impulse Response

Filter Controller

The 16-bit FIR Filter Controller (FFC) provides all the data history, storage and programmable filter cycle control logic required to implement FIR filters of up to 128 filter points. When used in conjunction with an external filter coefficient memory of up to 128 words by 16 bits and an industry standard 16 bit Multiplier-Accumulator (MAC), the FFC provides the system designer with the ability to implement a powerful FIR filter with only three ICs. The FFC provides all the control signals required to operate the MAC and the coefficient memory as tri-stateable devices, allowing multiplexed use of these resources. The FFC's asynchronous interface enables easy integration of the FIR filter in any system environment. It incorporates a 16 bit data I/O path, a 428 word by 16 bit RAM memory, and programmable filter control logic capable of handling filter order lengths of up to 128 points. Available in 64 -lead DIP and 68 -contact PLCC packages, with $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ and $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ temperature ranges.

IM29C510

16×16 Bit
 Multiplier/Accumultor, CMOS

The IM29C510 is a high-speed 16×16 Bit Parallel Multiplier/Accumulator which operates at a 65 ns clock rate (more than 15 MHz Multiply/Accumulate rate). The 2 input registers, x and y, accept 16 bit two's complement or unsigned magnitude operands and produce a 32 bit product, with accumulation up to 35 bits. The IM29C510 16×16 Bit Multiplier/ Accumulataor is pin and function compatible with the indus-try-standard TDC1010. Depending on the multiply-accumulate rate, it operates with the same speed at one-sixth or less power dissipation than the bipolar versions. (Worst case CMOS power consumption decreases with decreasing clock rate.)

The IM29C510 can operate as a 16×16 Bit Multiplier only, as well as a 16×16 Bit Multiplier/Accumulator. It is available in 64-lead DIP and 68-contact PLCC packages, with $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ and $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ temperature ranges. Full MIL screening is available.

EVK-128

Data Conversion and

FIR Filtering System

The Intersil EVK-128 provides a moderate speed data acquisition, conversion, and digital filtering system for the IBM PC and most compatibles. Consisting of a board which occupies a single slot on the PC, the card digitally filters data with a filter length of 0 (unfiltered) to 128 taps. Throughput is a function of required filter length, with an 80 ns per tap processing rate.
The ICL7115 converts analog signals to 14 bit words at up to 32.727 kHz rate, while the ICL7121 converts a 16 bit digital data stream to analog. The A/D and/or D/A converters may be bypassed for processing of digital data. This allows nonreal time processing or storage of data to or from a disk, for example.

Also included is a floppy disk with an easy-to-use menu driven FIR filter design program for the PC, including coefficient calculations, time and frequency calculations and plotting capabilities.

DISPLAY DRIVERS

Intersil's complete complement of monolithic Display Driver circuits provides a suitable interface for virtually any display application.

- Choice of Displays:

LED, LCD, Vacuum Fluorescent

- Choice of Characters or Digits:

4, 8 or 107 -Segment Digits
14, 16 or 18-Segment Characters

- Choice of Font:

Hexadecimal, Code B, ASCII

- Choice of Interface:

Multiplexed or Direct Drive; BCD, Random Access, Serial or Parallel
All Intersil Drivers are fabricated with CMOS technology for low power dissipation, and most are available in CERDIP and Plastic Dual In-line packages, as well as in die form. All are completely self-contained, requiring few, if any, external components to accomplish their intended basic functions.

The following table offers a quick-glance overview of available functions for a first-order selection.

TYPE	\qquad						DISPLAY TYPE						FONT			INTERFACE					FEATURES AND COMMENTS
														Code B (0-9, H, E, L, P, - , and Blank)	$\begin{aligned} & \overline{\bar{U}} \\ & \text { Q } \\ & \hline \end{aligned}$				픙 N 玄	$\begin{aligned} & \text { W } \\ & \stackrel{\text { E }}{0} \\ & E \\ & E \\ & \text { © } \\ & \text { O } \end{aligned}$	
ICM7211	4									\bullet			-			\bullet				1000	Drives Conventional LCD Displays. Includes RC Oscillator, Divider Chain, Latches, Interface and LCD Drivers. Evaluation Kit Available.
ICM7211A	4									\bullet				\bullet		\bullet				1000	
ICM7211M	4									\bullet			\bullet				\bullet			200	
ICM7211AM	4									\bullet				\bullet			\bullet			200	
ICM7212	4						\bullet						\bullet			\bullet				1000	Drives Common Anode LED Displays. 28 Current Controlled Outputs. Includes Latches, Interface and Brightness Control. Evaluation Kit Available.
ICM7212A	4						-							-		\bullet				1000	
ICM7212M	4						-						\bullet				\bullet			200	
ICM7212AM	4						\bullet							\bullet			\bullet			200	
ICM7218A	8	8							\bullet				\bullet	\bullet				\bullet		550	3. Decode Formats Drives UP to 64 Independent LED's. Includes 8×8 Memory, Multiplexed LED Drivers, Decoders, Interface and control. Applications Include Bar Graphs.
ICM7218B	8	8						\bullet					\bullet	\bullet				\bullet		550	
ICM7218C	8	8							\bullet				\bullet	\bullet			\bullet			500	
ICM7218D	8	8						\bullet					\bullet	-			\bullet			500	
ICM7218E	8	8							\bullet				\bullet	\bullet			\bullet			500	
ICM7228A	8	8							\bullet				\bullet	\bullet				\bullet		550	
ICM7228B	8	8						\bullet					\bullet	-				\bullet		550	
ICM7228C	8	8							\bullet				\bullet	\bullet			\bullet			500	
ICM7228D	8	8						\bullet					\bullet	\bullet			\bullet			500	
ICM7231A	8	16									3		\bullet				\bullet			500	8 Digits, 16 Annunciators on COM, Hexadecimal
ICM7231B	8	16									3			\bullet			\bullet			500	8 Digits, 16 Annunciators on COM 3, Code B
ICM7231C	8	16									3			\bullet			\bullet			500	8 Digits, 16 Annunciators on COM $1+3$, Code B
ICM7232A	10	20									3		\bullet						\bullet	350	10 Digits, 20 Annunciators on COM 3, Hexadecimal
ICM7232B	10	20									3			\bullet					\bullet	350	10 Digits, 20 Annunciators on COM 3, Code B
ICM7232C	10	20									3			\bullet					\bullet	350	10 Digits, 20 Annunciators on COM $1+3$, Code B
ICM7233A					4						3				-		\bullet			500	4 Alphanumeric Characters. Evaluation Kit Available
ICM7233B					4						3				\bullet		\bullet			500	4 Alphanumeric Characters. Full-Width Numbers
ICM7243A				8				\bullet							\bullet		\bullet			250	8 Alphanumeric Characters + Decimal Pt. can be Daisy Chained or Cascaded. Evaluation Kit Avail.
ICM7243B			8					\bullet							\bullet		\bullet			250	

Available with and without on-board display drivers, Intersil's broad range of Timer/Counters circuits serves a
wide variety of control functions. For separate Display Driver circuits, see separate section.

Timer/Counters With Display Drivers

4 DIGIT

$41 / 2$ DIGIT

ICM7224			\bullet		\bullet	\bullet		\bullet					\bullet		\bullet	\bullet				15	\bullet
ICM7224A		$\mu \mathrm{A}$ operating current. Can be cascaded																			
for more digits.																					

$51 / 2$ DIGIT

ICM7249			\bullet			\bullet	\bullet				\bullet					\bullet		

6 DIGIT

8 DIGIT

ICM7216A		\bullet				\bullet	\bullet		\bullet	\bullet	\bullet	\bullet		\bullet	\bullet		\bullet				10		Universal frequency counter with display drivers. 4 internal gate times, auto decimal point, leading zero blanking, overflow indication. Display off, hold, and reset inputs.
ICM7216B		\bullet					\bullet	\bullet		\bullet	\bullet	\bullet	\bullet		\bullet	\bullet		\bullet				10	
ICM7216C		\bullet				\bullet	\bullet		\bullet					\bullet	\bullet		\bullet				10		
ICM7216D	\bullet					\bullet	\bullet		\bullet					\bullet	\bullet		\bullet				10		
ICM7226A		\bullet				\bullet	\bullet		\bullet				10	\bullet	Same as ICM7216 plus period and time interval averaging, BDC outputs, μ P PIA compatible.								
ICM7226B	\bullet					\bullet	\bullet		\bullet			10											

[^5]Timers/Counters Without Display Drivers

Type	Special Features	
ICM7555		Low power CMOS equivalent of industry standard 555 timer - only 80μ A supply current. ICM7555 does not have the large supply current transients of the bipolar 555 and does not require the large bypassing capacitors needed by the 555. Low leakage threshold and trigger inputs allow use of higher impedance RC timing components for extra long time delays.
ICM7556		An ICM7556 is a dual ICM7555, a CMOS, low power equivalent of the Bipolar 556 Timer.

Oscillator/Divider Selector Guide

Type	Output Frequency	Supply Voltage (V)	Typical Current ($\mu \mathrm{A}$)	Pulse Width (ms)	Crystal Frequency	Other Outputs/Comments
ICM7213	1 Pulse/Min	2-4	100	125, 1000	4.19 MHz	1 Pulse/Sec., 2048, 1024, 34.133, 16 Hz
	1 Hz	2-4	100	7.8	4.19 MHz	1 Pulse/Min., 2048, 1024, 34.133, 16 Hz
	16 Hz	2-4	100	Sq. Wave	4.19 MHz	1 Pulse/Min., 2048, 1024, 34.133, 1 Hz
	$\begin{aligned} & 1000 \mathrm{~Hz} \\ & 1024 \mathrm{~Hz} \end{aligned}$	$\begin{aligned} & 2-4 \\ & 2-4 \end{aligned}$	$\begin{aligned} & 100 \\ & 100 \end{aligned}$	Sq. Wave Sq. Wave	$\begin{gathered} \text { 4.096 MHz } \\ \text { 4.19 MHz } \end{gathered}$	2000, 2000 Pulses/Min. 1 Pulse/Min., 2048, 34.133, 16, 1 Hz
	2048 Hz	2-4	100	Sq. Wave	4.19 MHz	1 Pulse/Min., 1024, 34.133, 16, 1 Hz
ICM7209	$\begin{gathered} 250 \mathrm{kHz}- \\ 10 \mathrm{MHz} \end{gathered}$	4.5-5.5	11,000	Sq. Wave	$1-10 \mathrm{MHz}$	Two buffered outputs - Crystal Frequency and $\div 8$ output. Drives up to 5 TTL loads.

ICM7170
 $\mu \mathrm{P}$-Compatible
 Real-Time Clock, CMOS

This real-time clock circuit is set or read by accessing eight internal separately addressable and programmable counters from $1 / 100$ seconds to 99 years. An 8 -bit bidirectional bus is used for the data $1 / \mathrm{O}$ circuitry. Access time of 300 ns eliminates the need for mpu wait states or software overhead. An Address Latch Enable input is provided to permit both multiplexed and direct addressing. These features allow easy interface with any available microprocessor. Other features include full calendar with automatic leap-year correction, onchip battery backup switch over circuit and on-chip alarm comparator and RAM. Available in 24 -pin plastic DIP and CERDIP package with temperature range from $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.

Section 2 - A/D Converters Display Type

ICL7106 2-1
ICL7107 2-1
ICL7116 2-13
ICL7117 2-13
ICL7126 2-24
ICL7129 2-35
ICL7136 2-47
ICL7137 2-58
ICL7139 2-67
ICL7149 2-81
ICL7182 2-95

ICL7106/ICL7107 31⁄2-Digit LCD/LED Single-Chip A/D Converter

GENERAL DESCRIPTION

The Intersil ICL7106 and 7107 are high performance, low power $31 / 2$-digit A/D converters containing all the necessary active devices on a single CMOS I.C. Included are sevensegment decoders, display drivers, a reference, and a clock. The 7106 is designed to interface with a liquid crystal display (LCD) and includes a backplane drive; the 7107 will directly drive an instrument-size light emitting diode (LED) display.

The 7106 and 7107 bring together an unprecedented combination of high accuracy, versatility, and true economy. It features auto-zero to less than $10 \mu \mathrm{~V}$, zero drift of less than $1 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$, input bias current of 10 pA max., and rollover error of less than one count. True differential inputs and reference are useful in all systems, but give the designer an uncommon advantage when measuring load cells, strain gauges and other bridge-type transducers. Finally, the true economy of single power supply operation (7106), enables a high performance panel meter to be built with the addition of only 10 passive components and a display.

FEATURES

- Guaranteed Zero Reading for 0 Volts Input on All Scales
- True Polarity at Zero for Precise Null Detection
- 1pA Typical Input Current
- True Differential Input and Reference
- Direct Display Drive - No External Components Required - LCD ICL7106
— LED ICL7107
- Low Noise - Less Than $15 \mu \mathrm{~V}$ p-p
- On-Chip Clock and Reference
- Low Power Dissipation - Typically Less Than 10mW
- No Additional Active Circults Required
- New Small Outline Surface Mount Package Avallable
- Evaluation Kit Available

ORDERING INFORMATION

Part Number	Temperature Range	Package
ICL7106CPL	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	40 pin plastic DIP
ICL7106CJL	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	40 pin CERDIP
ICL7106CM44	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	44 pin Surface Mount
ICL7107CJL	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	40 pin CERDIP
ICL7107CPL	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	40 pin plastic DIP
ICL7106EV/Kit	Evaluation kits contain IC, display, ICL7107EV/Kit circuit board, passive components and hardware.	

[^6]ABSOLUTE MAXIMUM RATINGS
Supply Voltage
ICL7106, V^{+}to V^{-}. 15 V
ICL7107, $\mathrm{V}+$ to GND +6 V
ICL7107, V - to GND -9V
Analog Input Voltage (either input)(Note 1) V+ to V^{-}
Reference Input Voltage (either input) V+ to V^{-}
Clock Input
ICL7106
TEST to V^{+}
ICL7107
GND to V^{+}

NOTE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
Note 1: Input voltages may exceed the supply voltages provided the input current is limited to $\pm 100 \mu \mathrm{~A}$.
Note 2: Dissipation rating assumes device is mounted with all leads soldered to printed circuit board.
ELECTRICAL CHARACTERISTICS
(Note 3)

Characteristics	Test Conditions	Min	Typ	Max	Unit
Zero Input Reading	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=0.0 \mathrm{~V} \\ & \text { Full Scale }=200.0 \mathrm{mV} \end{aligned}$	-000.0	± 000.0	+000.0	Digital Reading
Ratiometric Reading	$\begin{aligned} & V_{I N}=V_{\text {REF }} \\ & V_{\text {REF }}=100 \mathrm{mV} \end{aligned}$	999	999/1000	1000	Digital Reading
Rollover Error (Difference in reading for equal positive and negative inputs near Full Scale)	$-\mathrm{V}_{\mathbb{I}}=+\mathrm{V}_{\mathbb{I N}} \cong 200.0 \mathrm{mV}$	-1	$\pm .2$	+1	Counts
Linearity (Max. deviation from best straight line fit)	$\begin{aligned} & \text { Full scale }=200.0 \mathrm{mV} \\ & \text { or full scale }=2.000 \mathrm{~V} \text { (Note } 6 \text {) } \end{aligned}$	-1	$\pm .2$	+1	Counts
Common Mode Rejection Ratio (Note 4)	$\begin{aligned} & V_{C M}= \pm 1 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=0 \mathrm{~V} \\ & \text { Full Scale }=200.0 \mathrm{mV} \end{aligned}$		50		$\mu \mathrm{V} / \mathrm{V}$
Noise (Pk-Pk value not exceeded 95\% of time)	$\begin{aligned} & V_{I N}=0 V \\ & \text { Full Scale }=200.0 \mathrm{mV} \end{aligned}$		15		$\mu \mathrm{V}$
Leakage Current Input	$\mathrm{V}_{\text {IN }}=0$ (Note 6)		1	10	pA
Zero Reading Drift	$\begin{aligned} & \mathrm{V}_{I N}=0 \\ & 0^{\circ}<T_{A}<70^{\circ} \mathrm{C} \text { (Note 6) } \end{aligned}$		0.2	1	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Scale Factor Temperature Coefficient	$\begin{aligned} & \mathrm{V}_{\mathbb{I N}}=199.0 \mathrm{mV} \\ & 0^{\circ}<\mathrm{T}_{\mathrm{A}}<70^{\circ} \mathrm{C} \\ & \text { (Ext. Ref. Oppm } /{ }^{\circ} \mathrm{C} \text {) (Note 6) } \end{aligned}$		1	5	ppm $/{ }^{\circ} \mathrm{C}$
V+ Supply Current (Does not include LED current for 7107)	$\mathrm{V}_{\mathrm{IN}}=0$		0.8	1.8	mA
V-Supply Current (7107 only)			0.6	1.8	mA
Analog Common Voltage (With respect to Pos. Supply)	25k Ω between Common \& Pos. Supply	2.4	2.8	3.2	V
Temp. Coeff. of Analog Common (With respect to Pos. Supply)	25k Ω between Common \& Pos. Supply		80		ppm $/{ }^{\circ} \mathrm{C}$

INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.
NOTE: All typical values have been characterized but are not tested.

ELECTRICAL CHARACTERISTICS
(Note 3) (Continued)

Characteristics	Test Conditions	Min	Typ	Max	Unit
7106 ONLY Pk-Pk Segment Drive Voltage Pk-Pk Backplane Drive Voltage (Note 5)	$\mathrm{V}+$ to $\mathrm{V}^{-}=9 \mathrm{~V}$	4	5	6	V
7107 ONLY Segment Sinking Current (Except Pin 19 \& 20) (Pin 19 only) (Pin 20 only)	$\begin{aligned} & \mathrm{V}^{+}=5.0 \mathrm{~V} \\ & \text { Segment voltage }=3 \mathrm{~V} \end{aligned}$	10	8.0 16 7		mA mA

NOTES: 3. Unless otherwise noted, specifications apply to both the 7106 and 7107 at $T_{A}=25^{\circ} \mathrm{C}, \mathrm{f}_{\text {clock }}=48 \mathrm{kHz} .7106$ is tested in the circuit of Figure 2.7107 is tested in the circuit of Figure 3.
4. Refer to "Differential Input" discussion.
5. Back plane drive is in phase with segment drive for 'off' segment, 180° out of phase for 'on' segment. Frequency is 20 times conversion rate. Average DC component is less than 50 mV .
6. Not tested, guaranteed by design.

TEST CIRCUITS

[^7]

Figure 4: Analog Section of 7106/7107

DETAILED DESCRIPTION

Analog Section

Figure 4 shows the Analog Section for the ICL7106 and 7107. Each measurement cycle is divided into three phases. They are (1) auto-zero (A/Z), (2) signal integrate (INT) and (3) de-integrate (DE).

Auto-zero phase

During auto-zero three things happen. First, input high and low are disconnected from the pins and internally shorted to analog COMMON. Second, the reference capacitor is charged to the reference voltage. Third, a feedback loop is closed around the system to charge the auto-zero capacitor $\mathrm{C}_{A Z}$ to compensate for offset voltages in the buffer amplifier, integrator, and comparator. Since the comparator is included in the loop, the A/Z accuracy is limited only by the noise of the system. In any case, the offset referred to the input is less than $10 \mu \mathrm{~V}$.

Signal Integrate phase

During signal integrate, the auto-zero loop is opened, the internal short is removed, and the internal input high and low are connected to the external pins. The converter then integrates the differential voltage between IN HI and IN LO for a fixed time. This differential voltage can be within a wide common mode range: up to one volt from either supply. If, on the other hand, the input signal has no return with respect to the converter power supply, IN LO can be tied to analog COMMON to establish the correct common-mode voltage. At the end of this phase, the polarity of the integrated signal is determined.

De-integrate phase

The final phase is de-integrate, or reference integrate. Input low is internally connected to analog COMMON and input high is connected across the previously charged reference capacitor. Circuitry within the chip ensures that the
capacitor will be connected with the correct polarity to cause the integrator output to return to zero. The time required for the output to return to zero is proportional to the input signal. Specifically the digital reading displayed is $1000\left(\frac{V_{\text {IN }}}{V_{\text {REF }}}\right)$.

Differential Input

The input can accept differential voltages anywhere within the common mode range of the input amplifier, or specifically from 0.5 volts below the positive supply to 1.0 volt above the negative supply. In this range, the system has a CMRR of 86 dB typical. However, care must be exercised to assure the integrator output does not saturate. A worst case condition would be a large positive common-mode voltage with a near full-scale negative differential input voltage. The negative input signal drives the integrator positive when most of its swing has been used up by the positive common mode voltage. For these critical applications the integrator output swing can be reduced to less than the recommended 2 V full scale swing with little loss of accuracy. The integrator output can swing to within 0.3 volts of either supply without loss of linearity. See Application Note A032 for a discussion of the effects of stray capacitance.

Differential Reference

The reference voltage can be generated anywhere within the power supply voltage of the converter. The main source of common mode error is a roll-over voltage caused by the reference capacitor losing or gaining charge to stray capacity on its nodes. If there is a large common mode voltage, the reference capacitor can gain charge (increase voltage) when called up to de-integrate a positive signal but lose charge (decrease voltage) when called up to deintegrate a negative input signal. This difference in reference for positive or negative input voltage will give a roll-over error. However, by selecting the reference capacitor such that it is

[^8]large enough in comparison to the stray capacitance, this error can be held to less than 0.5 count worst case. (See Component Value Selection.)

Analog COMMON

This pin is included primarily to set the common mode voltage for battery operation (7106) or for any system where the input signals are floating with respect to the power supply. The COMMON pin sets a voltage that is approximately 2.8 volts more negative than the positive supply. This is selected to give a minimum end-of-life battery voltage of about 6 V . However, analog COMMON has some of the attributes of a reference voltage. When the total supply voltage is large enough to cause the zener to regulate ($>7 \mathrm{~V}$), the COMMON voltage will have a low voltage coefficient ($0.001 \% / \mathrm{V}$), low output impedance ($\cong 15 \Omega$), and a temperature coefficient typically less than $80 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$.
The limitations of the on-chip reference should also be recognized, however. With the 7107, the internal heating which results from the LED drivers can cause some degradation in performance. Due to their higher thermal resistance, plastic parts are poorer in this respect than ceramic. The combination of reference Temperature Coefficient (TC), internal chip dissipation, and package thermal resistance can increase noise near full scale from $25 \mu \mathrm{~V}$ to $80 \mu \mathrm{Vp}-\mathrm{p}$. Also the linearity in going from a high dissipation count such as 1000 (20 segments on) to a low dissipation count such as 1111(8 segments on) can suffer by a count or more. Devices with a positive TC reference may require several counts to pull out of an overrange condition. This is because overrange is a low dissipation mode, with the three least significant digits blanked. Similarly, units with a negative TC may cycle between overrange and a nonoverrange count as the die alternately heats and cools. All these problems are of course eliminated if an external reference is used.

The 7106, with its negligible dissipation, suffers from none of these problems. In either case, an external reference can easily be added, as shown in Figure 5.

Analog COMMON is also used as the input low return during auto-zero and de-integrate. If IN LO is different from analog COMMON, a common mode voltage exists in the system and is taken care of by the excellent CMRR of the converter. However, in some applications IN LO will be set at a fixed known voltage (power supply common for instance). In this application, analog COMMON should be tied to the same point, thus removing the common mode voltage from the converter. The same holds true for the reference voltage. If reference can be conveniently tied to analog COMMON, it should be since this removes the common mode voltage from the reference system.
Within the IC, analog COMMON is tied to an N channel FET that can sink approximately 30 mA of current to hold the voltage 2.8 volts below the positive supply (when a load is trying to pull the common line positive). However, there is only $10 \mu \mathrm{~A}$ of source current, so COMMON may easily be tied to a more negative voltage thus over-riding the internal reference.

TEST

The TEST pin serves two functions. On the 7106 it is coupled to the internally generated digital supply through a 500Ω resistor. Thus it can be used as the negative supply for externally generated segment drivers such as decimal points or any other presentation the user may want to include on the LCD display. Figures 6 and 7 show such an application. No more than a 1 mA load should be applied.

0335-7
Figure 6: Simple Inverter for Fixed Decimal Point

DISPLAY FONT

Figure 8: Digital Section 7106

Figure 9: Digital Section 7107
0335-10

INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

NOTE: All typical values have been characterized but are not tested.

The second function is a "lamp test". When TEST is pulled high (to V^{+}) all segments will be turned on and the display should read - 1888. The TEST pin will sink about 10 mA under these conditions.

Caution: on the 7106, in the lamp test mode, the segments have a constant DC voltage (no square-wave) and may burn the LCD display if left in this mode for several minutes.

DIGITAL SECTION

Figures 8 and 9 show the digital section for the 7106 and 7107, respectively. In the 7106, an internal digital ground is generated from a 6 volt Zener diode and a large P channel source follower. This supply is made stiff to absorb the relative large capacitive currents when the back plane (BP) voltage is switched. The BP frequency is the clock frequency divided by 800 . For three readings/second this is a 60 Hz square wave with a nominal amplitude of 5 volts. The segments are driven at the same frequency and amplitude and are in phase with BP when OFF, but out of phase when ON. In all cases negligible DC voltage exists across the segments.

Figure 9 is the Digital Section of the 7107. It is identical to the 7106 except that the regulated supply and back plane drive have been eliminated and the segment drive has been increased from 2 to 8 mA , typical for instrument size common anode LED displays. Since the 1000 output (pin 19) must sink current from two LED segments, it has twice the drive capability or 16 mA .
In both devices, the polarity indication is "on" for negative analog inputs. If $\mathbb{N} \mathrm{LO}$ and IN HI are reversed, this indication can be reversed also, if desired.

System Timing

Figure 10 shows the clocking arrangement used in the 7106 and 7107. Three basic clocking arrangements can be used:

1. An external oscillator connected to pin 40.
2. A crystal between pins 39 and 40.
3. An R-C oscillator using all three pins.

The oscillator frequency is divided by four before it clocks the decade counters. It is then further divided to form the three convert-cycle phases. These are signal integrate (1000 counts), reference de-integrate (0 to 2000 counts) and auto-zero (1000 to 3000 counts). For signals less than full scale, auto-zero gets the unused portion of reference deintegrate. This makes a complete measure cycle of 4,000 counts (16,000 clock pulses) independent of input voltage. For three readings/second, an oscillator frequency of 48 kHz would be used.
To achieve maximum rejection of 60 Hz pickup, the signal integrate cycle should be a multiple of 60 Hz . Oscillator frequencies of $240 \mathrm{kHz}, 120 \mathrm{kHz}, 80 \mathrm{kHz}, 60 \mathrm{kHz}, 48 \mathrm{kHz}, 40 \mathrm{kHz}$, $331 / 3 \mathrm{kHz}$, etc. should be selected. For 50 Hz rejection, Oscillator frequencies of $200 \mathrm{kHz}, 100 \mathrm{kHz}, 662 / 3 \mathrm{kHz}, 50 \mathrm{kHz}$, 40 kHz , etc. would be suitable. Note that 40 kHz (2.5 readings/second) will reject both 50 and 60 Hz (also 400 and 440 Hz).

COMPONENT VALUE SELECTION

Integrating Resistor

Both the buffer amplifier and the integrator have a class A output stage with $100 \mu \mathrm{~A}$ of quiescent current. They can supply $20 \mu \mathrm{~A}$ of drive current with negligible non-linearity. The integrating resistor should be large enough to remain in this very linear region over the input voltage range, but small enough that undue leakage requirements are not placed on the PC board. For 2 volt full scale, $470 \mathrm{k} \Omega$ is near optimum and similarly a $47 \mathrm{k} \Omega$ for a 200.0 mV scale.

Integrating Capacitor

The integrating capacitor should be selected to give the maximum voltage swing that ensures tolerance build-up will not saturate the integrator swing (approx. 0.3 volt from either supply). In the 7106 or the 7107 , when the analog COMMON is used as a reference, a nominal ± 2 volt full scale integrator swing is fine. For the 7107 with ± 5 volt supplies and analog COMMON tied to supply ground, a ± 3.5 to ± 4 volt swing is nominal. For three readings $/ \mathrm{sec}$ ond (48 kHz clock) nominal values for $\mathrm{C}_{\mathrm{INT}}$ are $0.22 \mu \mathrm{~F}$ and $0.10 \mu \mathrm{~F}$, respectively. Of course, if different oscillator frequencies are used, these values should be changed in inverse proportion to maintain the same output swing.
An additional requirement of the integrating capacitor is that it must have a low dielectric absorption to prevent rollover errors. While other types of capacitors are adequate for this application, polypropylene capacitors give undetectable errors at reasonable cost.

Auto-Zero Capacitor

The size of the auto-zero capacitor has some influence on the noise of the system. For 200 mV full scale where noise is very important, a $0.47 \mu \mathrm{~F}$ capacitor is recommended. On the 2 volt scale, a $0.047 \mu \mathrm{~F}$ capacitor increases the speed of recovery from overload and is adequate for noise on this scale.

[^9]NOTE: All typical values have been characterized but are not tested.

ICL7106/ICL7107

Reference Capacitor

A $0.1 \mu \mathrm{~F}$ capacitor gives good results in most applications. However, where a large common mode voltage exists (i.e. the REF LO pin is not at analog COMMON) and a 200 mV scale is used, a larger value is required to prevent roll-over error. Generally $1.0 \mu \mathrm{~F}$ will hold the roll-over error to 0.5 count in this instance.

Oscillator Components

For all ranges of frequency a $100 \mathrm{k} \Omega$ resistor is recommended and the capacitor is selected from the equation $f=\frac{0.45}{R C}$. For 48 kHz clock (3 readings/second), $C=100 \mathrm{pF}$.

Reference Voltage

The analog input required to generate full-scale output (2000 counts) is: $\mathrm{V}_{\text {IN }}=2 \mathrm{~V}_{\text {REF }}$. Thus, for the 200.0 mV and 2.000 volt scale, Vref should equal 100.0 mV and 1.000 volt, respectively. However, in many applications where the A/D is connected to a transducer, there will exist a scale factor other than unity between the input voltage and the digital reading. For instance, in a weighing system, the designer might like to have a full scale reading when the voltage from the transducer is 0.682 V . Instead of dividing the input down to 200.0 mV , the designer should use the input voltage directly and select $V_{\text {REF }}=0.341 \mathrm{~V}$. Suitable values for integrating resistor and capacitor would be $120 \mathrm{k} \Omega$ and $0.22 \mu \mathrm{~F}$. This makes the system slightly quieter and also avoids a divider network on the input. The 7107 with $\pm 5 \mathrm{~V}$ supplies can accept input signals up to $\pm 4 \mathrm{~V}$. Another advantage of this system occurs when a digital reading of zero is desired for $\mathrm{V}_{\mathrm{IN}} \neq 0$. Temperature and weighing systems with a variable tare are examples. This offset reading can be conveniently generated by connecting the voltage transducer between IN HI and COMMON and the variable (or fixed) offset voltage between COMMON and IN LO.

7107 Power Supplies

The 7107 is designed to work from $\pm 5 \mathrm{~V}$ supplies. However, if a negative supply is not available, it can be generated from the clock output with 2 diodes, 2 capacitors, and an inexpensive I.C. Figure 11 shows this application. See ICL7660 data sheet for an alternative.

In fact, in selected applications no negative supply is required. The conditions to use a single +5 V supply are:

1. The input signal can be referenced to the center of the common mode range of the converter.
2. The signal is less than ± 1.5 volts.
3. An external reference is used.

TYPICAL APPLICATIONS

The 7106 and 7107 may be used in a wide variety of configurations. The circuits which follow show some of the possibilities, and serve to illustrate the exceptional versatility of these A/D converters.

0335-13
Figure 12: 7106 using the internal reference. Values shown are for $\mathbf{2 0 0 . 0} \mathbf{~ m V}$ full scale, 3 readings per second, floating supply voltage (9 V battery).

0335-14
Figure 13: 7107 using the internal reference. Values shown are for $\mathbf{2 0 0 . 0 m V}$ full scale, 3 readings per second. IN LO may be tied to either COMMON for inputs floating with respect to supplies, or GND for single ended inputs. (See discussion under Analog COMMON.)

0335-15
Figure 14: 7107 with an external band-gap reference (1.2 V type). IN LO is tied to COMMON, thus establishing the correct common mode voltage. If COMMON is not shorted to GND, the input voltage may float with respect to the power supply and COMMON acts as a preregulator for the reference. If COMMON is shorted to GND, the input is single ended (referred to supply ground) and the preregulator is over-ridden.

0335-16
Figure 15: 7107 with Zener diode reference. Since low T.C. zeners have breakdown voltages $\sim 6.8 \mathrm{~V}$, diode must be placed across the total supply (10V). As in the case of Figure 15, IN LO may be tied to either COMMON or GND.

0335-17
Figure 16: 7106/7107: Recommended component values for 2.000 V full scale.

[^10]NOTE: All typical values have been characterized but are not tested.

0335-18
Figure 17: 7107 operated from single +5 V supply. An external reference must be used in this application, since the voltage between V ${ }^{+}$ and \mathbf{V}^{-}is insufficient for correct operation of the internal reference.

Figure 18: 7107 measuring ratiometric values of Quad Load Cell. The resistor values within the bridge are determined by the desired sensitivity.

0335-20
Figure 19: 7106 used as a digital centigrade thermometer. A silicon diode-connected transistor has a temperature coefficient of about $-2 \mathrm{mV} /{ }^{\circ} \mathrm{C}$. Calibration is achieved by placing the sensing transistor in ice water and adjusting the zeroing potentiometer for a 000.0 reading. The sensor should then be placed in boiling water and the scale-factor potentiometer adjusted for 100.0 reading.

Figure 20: Circuit for developing Underrange and Overrange signals from 7106 outputs.

Figure 21: Circuit for developing Underrange and Overrange signals from 7107 outputs. The LM339 is required to ensure logic compatibility with heavy display loading.

7106/7107 EVALUATION KITS

After purchasing a sample of the 7106 or the 7107 , the majority of users will want to build a simple voltmeter. The parts can then be evaluated against the data sheet specifications, and tried out in the intended application. However, locating and purchasing even the small number of addition-
al components required, then wiring a breadboard, can often cause delays of days or sometimes weeks. To avoid this problem and facilitate evaluation of these unique circuits, Intersil is offering a kit which contains all the necessary components to build a $31 / 2$-digit panel meter. With the help of this kit, an engineer or technician can have the system "up and running" in about half an hour.

Two kits are offered, the ICL7106EV/KIT and the ICL7107EV/KIT. Both contain the appropriate IC, a circuit board, a display (LCD for $7106 E V / K I T$, LEDs for $7107 E V /$ KIT), passive components, and miscellaneous hardware.

APPLICATION NOTES

A016 "Selecting A/D Converters", by David Fullagar.
A017 "The Integrating A/D Converter", By Lee Evans.
A018 "Do's and Don'ts of Applying A/D Converters", by Peter Bradshaw and Skip Osgood.
A023 "Low Cost Digital Panel Meter Designs", by David Fullagar and Michael Dufort.
A032 "Understanding the Auto-Zero and Common Mode Performance of the ICL7106/7/9 Family", by Peter Bradshaw.
A046 "Building a Battery-Operated Auto Ranging DVM with the ICL7106", by Larry Goff.
A052 "Tips for Using Single-Chip $31 / 2$-Digit A/D Converters", by Dan Watson.

0335-23
Figure 22: AC to DC Converter with 7106. TEST is used as a common mode reference level to ensure compatibility with most op-amps.

[^11]NOTE: All typical values have been characterized but are not tested.

Figure 23: Display Buffering for increased drive current. Requires four DM7407 Hex Buffers. Each buffer is capable of sinking 40 mA .

ICL7116/7117
 31/2-Digit LCD/LED Single-Chip A/D Converter with Display Hold

LLLL/9トLLTOI

GENERAL DESCRIPTION

The Intersil ICL7116 and 7117 are high performance, low power $3-1 / 2$ digit A/D converters. All the necessary active devices are contained on a single CMOS I.C., including seven segment decoders, display drivers, reference, and a clock. The 7116 is designed to interface with a liquid crystal display (LCD) and includes a backplane drive; the 7117 will directly drive an instrument-size light emitting diode (LED) display.

The 7116 and 7117 have almost all of the features of the 7106 and 7107 with the addition of a HoLD Reading input. With this input, it is possible to make a measurement and then retain the value on the display indefinitely. To make room for this feature the reference input has been referenced to Common rather than being fully differential. These circuits retain the accuracy, versatility, and true economy of the 7106 and 7107. They feature auto-zero to less than $10 \mu \mathrm{~V}$, zero drift of less than $1 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$, input bias current of 10pA maximum, and roll over error of less than one count. The versatility of true differential input is of particular advantage when measuring load cells, strain gauges and other bridge-type transducers. And finally, the true economy of single power supply operation (7116) enables a high performance panel meter to be built with the addition of only eleven passive components and a display.

FEATURES

- HoLD Reading Input Allows Indefinite Display Hold
- Guaranteed Zero Reading for 0 Volts Input
- True Polarity at Zero for Precise Null Detection
- 1pA Input Current Typical
- True Differential Input
- Direct Display Drive - No External Components Required - LCD ICL7116
- LED ICL7117
- Low Noise - Less Than $15 \mu \mathrm{~V}$ pk-pk Typical
- On-Chip Clock and Reference
- Low Power Dissipation - Typically Less Than 10 mW
- No Additional Active Circuits Required
- New Small Outline Surface Mount Package Available

ORDERING INFORMATION

Part Number	Temperature Range	Package
ICL7116CPL	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	40-Pin Plastic DIP
ICL7116CM44	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	44-Pin Surface Mount
ICL7117CPL	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	40-Pin Plastic DIP

Figure 1: Pin Configurations

ABSOLUTE MAXIMUM RATINGS

ICL7116

ICL7117

Supply Voltage V^{+}..................................... +6 V V- -9V
Analog Input Voltage (either input) (Note 1) V+ to V^{-} Reference Input Voltage (either input) V+ to V^{-} HLDR, Clock Input Gnd to V+ Power Dissipation (Note 2)
Ceramic Package 1000mW
Plastic Package . 800 mW
Operating Temperature . $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

Lead Temperature (Soldering, 10sec) 300³

Note 1: Input voltages may exceed the supply voltages provided the input current is limited to $\pm 100 \mu \mathrm{~A}$.
Note 2: Dissipation rating assumes device is mounted with all leads soldered to printed circuit board.
NOTE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS (Note 3)

Parameter	Test Conditions	Min	Typ	Max	Unit
Zero Input Reading	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=0.0 \mathrm{~V} \\ & \text { Full Scale }=200.0 \mathrm{mV} \end{aligned}$	-000.0	± 000.0	+000.0	Digital Reading
Ratiometric Reading	$\begin{aligned} & V_{I N}=V_{R E F} \\ & V_{R E F}=100 \mathrm{mV} \end{aligned}$	999	999/1000	1000	Digital Reading
Rollover Error (Difference in reading for equal positive and negative eading near Full Scale)	$\left\|\mathrm{V}_{\mathrm{IN}}\right\| \cong 200.0 \mathrm{mV}$	-1	± 0.2	+1	Counts
Linearit (Max. deviation from best straight line fit)	Full Scale $=200 \mathrm{mV}$ or Full Scale $=2.000 \mathrm{~V}$ (Note 7)	-1	± 0.2	+1	Counts
Common Mode Rejection Ratio (Note 4)	$\begin{aligned} & V_{\mathrm{CM}}= \pm 1 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=0 \mathrm{~V} \\ & \text { Full Scale }=200.0 \mathrm{mV} \end{aligned}$		50		$\mu \mathrm{V} / \mathrm{V}$
Noise (Pk — Pk value not exceeded 95\% of time)	$\begin{aligned} & V_{I N}=0 V \\ & \text { Full Scale }=200.0 \mathrm{mV} \end{aligned}$		15		$\mu \mathrm{V}$
Leakage Current @ Input	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$ (Note 7)		1	10	pA
Zero Reading Drift	$\begin{aligned} & \mathrm{V}_{I N}=0 \\ & 0^{\circ} \mathrm{C}<\mathrm{T}_{A}<70^{\circ} \mathrm{C} \text { (Note 7) } \end{aligned}$		0.2	1	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Scale Factor Temperature Coefficient	$\begin{aligned} & V_{I N}=199.0 \mathrm{mV} \\ & 0^{\circ} \mathrm{C}<\mathrm{T}_{A}<70^{\circ} \mathrm{C} \\ & \text { (Ext. Ref. } 0 \mathrm{ppm} /{ }^{\circ} \mathrm{C} \text {) (Note 7) } \\ & \hline \end{aligned}$		1	5	ppm $/{ }^{\circ} \mathrm{C}$
V+ Supply Current (Does not include LED current for 7117)	$\mathrm{V}_{\mathrm{IN}}=0$		0.8	1.8	mA
V-Supply Current (7117 only)			0.6	1.8	mA
Analog Common Voltage (With respect to pos. supply)	$25 \mathrm{k} \Omega$ between COMMON \& pos. Supply	2.4	2.8	3.2	V
Temp. Coeff. of Analog Common (with respect to pos. Supply)	$25 \mathrm{k} \Omega$ between COMMON \& pos. Supply		80		ppm $/{ }^{\circ} \mathrm{C}$
Input Resistance, Pin 1 (Note 6)		30	70		k Ω
$\mathrm{V}_{\text {IL }}$, Pin 1 (7116 only)				TEST + 1.5	V

INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.
NOTE: All typical values have been characterized but are not tested.

ELECTRICAL CHARACTERISTICS
(Note 3) (Continued)

Parameter	Test Conditions	Min	Typ	Max	Unit
$\mathrm{V}_{\mathrm{IL},}$ Pin 1 (7117 only)				$\mathrm{GND}+1.5$	V
$\mathrm{~V}_{\mathrm{IH}}$, Pin 1 (Both)		$\mathrm{V}+-1.5$			V
7116 ONLY	$\mathrm{V}+-\mathrm{V}-=9 \mathrm{~V}$	4	5	6	
Pk-Pk Segment Drive Voltage		4	5	6	V
Pk-Pk Backplane Drive Voltage					
(Note 5)					
7117 ONLY	$\mathrm{V}+=5.0 \mathrm{~V}$	5	8.0		mA
Segment Sinking Current	Segment Voltage=3V	10	16		
(Except Pin 19 and 20)		4			
(Pin 19 only)					
(Pin 20 only)		7			

NOTES: 3. Unless otherwise noted, specifications apply to both the 7116 and 7117 at $T_{A}=25^{\circ} \mathrm{C}, \mathrm{f}_{\text {clock }}=48 \mathrm{kHz} .7116$ is tested in the circuit of Figure 2.7117 is tested in the circuit of Figure 3.
4. Refer to "Differential Input" discussion.
5. Back plane drive is in phase with segment drive for 'off' segment, 180° out of phase for 'on' segment. Frequency is 20 times conversion rate. Average DC component is less than 50 mV .
6. The 7116 logic input has an internal pull-down resistor connected from HLDR, pin 1 , to TEST, pin 37 . The 7117 logic input has an internal pull-down resistor connected from HLDR, pin 1 to GROUND, pin 21.
7. Not tested, guaranteed by design.

TEST CIRCUITS

0338-4
Figure 3: ICL7117 Test Circuit and Typical Application WIth LED Display

0338-3
Figure 2: ICL7116 Test Circult and Typical Application With Liquid Crystal Display

DETAILED DESCRIPTION

Analog Section

Figure 4 shows the Analog Section for the ICL7116 and 7117. Each measurement cycle is divided into three phases. They are (1) auto-zero (A/Z), (2) signal integrate (INT) and (3) de-integrate (DE).

Auto-zero phase

During auto-zero three things happen. First, input high and low are disconnected from the pins and internally shorted to analog COMMON. Second, the reference capacitor is charged to the reference voltage. Third, a feedback loop is closed around the system to charge the auto-zero capacitor $\mathrm{C}_{A Z}$ to compensate for offset voltages in the buffer amplifier, integrator, and comparator. Since the comparator is included in the loop, the A-Z accuracy is limited only by the noise of the system. In any case, the offset referred to the input is less than $10 \mu \mathrm{~V}$.

Signal Integrate phase

During signal integrate, the auto-zero loop is opened, the internal short is removed, and the internal input high and
low are connected to the external pins. The converter then integrates the differential voltage between IN HI and IN LO for a fixed time. This differential voltage can be within a wide common mode range; within one volt of either supply. If, on the other hand, the input signal has no return with respect to the converter power supply, IN LO can be tied to analog COMMON to establish the correct common-mode voltage. At the end of this phase, the polarity of the integrated signal is determined.

De-integrate phase

The final phase is de-integrate, or reference integrate. Input low is internally connected to analog COMMON and input high is connected across the previously charged reference capacitor. Circuitry within the chip ensures that the capacitor will be connected with the correct polarity to cause the integrator output to return to zero. The time required for the output to return to zero is proportional to the input signal. Specifically the digital reading displayed is $1000\left(\frac{\text { Vin }}{\text { Vref }}\right)$.

0338-5
Figure 4: Analog Section of 7116/7117

[^12]
Differential Input

The input can accept differential voltages anywhere within the common mode range of the input amplifier; or specifically from 0.5 volts below the positive supply to 1.0 volt above the negative supply. In this range the system has a CMRR of typically 86 dB . However, since the integrator also swings with the common mode voltage, care must be exercised to assure the integrator output does not saturate. A worse case condition would be a large positive commonmode voltage with a near full-scale negative differential input voltage. The negative input signal drives the integrator positive when most of its swing has been used up by the positive common mode voltage. For these critical applications the integrator swing can be reduced to less than the recommended 2 V full scale swing with little loss of accuracy. The integrator output can swing to within 0.3 volts of either supply without loss of linearity. See Application Note A032 for a discussion of the effects of stray capacitance.

Reference

The reference input must be generated as a positive voltage with respect to COMMON. Note that current flowing in the COMMON pins' internal resistance causes a slight shift in the effective reference voltage, disturbing ratiometric readings at low reference inputs. If possible, do not let this current vary.

Analog COMMON

This pin is included primarily to set the common mode voltage for battery operation (7116) or for any system where the input signals are floating with respect to the power supply. The COMMON pin sets a voltage that is approximately 2.8 volts less than the positive supply. This is selected to provide proper operation with a minimum end-of-life battery voltage of about 6 V . However, analog COMMON does have some of the attributes of a reference voltage. When the total supply voltage is large enough to cause the zener to regulate ($>7 \mathrm{~V}$), the COMMON voltage will have a low voltage coefficient (. $001 \% / \mathrm{V}$), low output impedance ($\cong 15 \Omega$), and a temperature coefficient typically less than $80 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$.

The limitations of the on-chip reference should also be recognized, however. With the 7117, the internal heating which results from the LED drivers can cause some degradation in performance. Due to their higher thermal resistance, plastic parts are poorer in this respect than ceramic. The combination of reference Temperature Coefficient (TC), internal chip dissipation, and package thermal resistance can increase noise near full scale from $25 \mu \mathrm{~V}$ to $80 \mu \mathrm{Vpk}-\mathrm{pk}$. Also the linearity in going from a high dissipation count such as 1000 (20 segments on) to a low dissipation count such as 1111 (8 segments on) can suffer by a count or more. Devices with a positive TC reference may require several counts to pull out of an overload condition. This is because overload is a low dissipation mode, with the three least significant digits blanked. Similarly, units with a negative TC may cycle between overload and a nonoverload count as the die alternately heats and cools. All these problems are of course eliminated if an external reference is used.

The 7116, with its negligible dissipation, suffers from none of these problems. In either case, an external reference can easily be added, as shown in Figure 5.

Analog COMMON is also the voltage that input low returns to during auto-zero and de-integrate. If IN LO is different from analog COMMON, a common mode voltage exists in the system and is taken care of by the excellent CMRR of the converter. However, in some applications IN LO will be set at a fixed known voltage (power supply common for instance). In this application, analog COMMON should be tied to the same point, thus removing the common mode voltage from the converter.

Figure 5: Using an External Reference
Within the IC, analog COMMON is tied to an N channel FET that can sink 30 mA or more of current to hold the voltage 2.8 volts below the positive supply (when a load is trying to pull the common line positive). However, there is only $10 \mu \mathrm{~A}$ of source current, so COMMON may easily be tied to a more negative voltage thus over-riding the internal reference.

TEST

The TEST pin serves two functions. On the 7116 it is coupled to the internally generated digital supply through a 500Ω resistor. Thus it can be used as the negative supply for externally generated segment drivers such as decimal points or any other presentation the user may want to include on the LCD display. Figures 6 and 7 show such an application. No more than a 1 mA load should be applied.

0338-7
Figure 6: Simple Inverter for Fixed Decimal Point

The second function is a "lamp test". When TEST is pulled to high (to V^{+}) all segments will be turned on and the display should read - 1888. [Caution: on the 7116, in the lamp test mode, the segments have a constant DC voltage (no square-wave) and will burn the LCD display if left in this mode for several minutes.]

DIGITAL SECTION

Figures 8 and 9 show the digital section for the 7116 and 7117, respectively. In the 7116, an internal digital ground is generated from a 6 volt Zener diode and a large P channel source follower. This supply is made stiff to absorb the relative large capacitive currents when the back plane (BP) voltage is switched. The BP frequency is the clock frequency divided by 800 . For three readings/second this is a 60 Hz square wave with a nominal amplitude of 5 volts. The segments are driven at the same frequency and amplitude and are in phase with BP when OFF, but out of phase when ON. In all cases negligible DC voltage exists across the segments.

Figure 9 is the Digital Section of the 7117. It is identical to that of the 7116 except the regulated supply and back plane drive have been eliminated and the segment drive has been increased from 2 to 8 mA , typical for instrument size common anode LED displays. Since the 1000 output (pin 19) must sink current from two LED segments, it has twice the drive capability or 16 mA .

In both devices the polarity indicator is ON for negative analog inputs. This can be reversed by simply reversing IN LO and IN HI.

HOLD Reading Input

The HLDR input will prevent the latch from being updated when this input is at a logic " 1 ". The chip will continue to make A/D conversions, however, the results will not be updated to the internal latches until this input goes low. This input can be left open or connected to TEST (7116) or GROUND (7117) to continuously update the display. This input is CMOS compatible, and has a $70 \mathrm{k} \Omega$ typical resistance to either TEST (7116) or GROUND (7117).

DISPLAY FONT

0338-10
Figure 9: Digital Section 7117

System Timing

Figure 10 shows the clocking arrangement used in the 7116 and 7117. Three basic clocking arrangements can be used:

1. An external oscillator connected to pin 40.
2. A crystal between pins 39 and 40.
3. An R-C oscillator using all three pins.

The oscillator frequency is divided by four before it clocks the decade counters. It is then further divided to form the three convert-cycle phases. These are signal integrate (1000 counts), reference de-integrate (0 to 2000 counts) and auto-zero (1000 to 3000 counts). For signals less than full scale, auto-zero gets the unused portion of reference deintegrate. This makes a complete measure cycle of 4,000 (16,000 clock pulses) independent of input voltage. For three readings/second, an oscillator frequency of 48 kHz would be used.
To achieve maximum rejection of 60 Hz pickup, the signal integrate cycle should be a multiple of 60 Hz . Oscillator frequencies of $240 \mathrm{kHz}, 120 \mathrm{kHz}, 80 \mathrm{kHz}, 60 \mathrm{kHz}, 48 \mathrm{kHz}, 40 \mathrm{kHz}$, $331 / 3 \mathrm{kHz}$, etc. should be selected. For 50 Hz rejection, Oscillator frequencies of $200 \mathrm{kHz}, 100 \mathrm{kHz}, 66^{2} / 3 \mathrm{kHz}, 50 \mathrm{kHz}$, 40 kHz , etc. would be suitable. Note that 40 kHz (2.5 readings/second) will reject both 50 and 60 Hz (also 400 and 440 Hz).

[^13]
COMPONENT VALUE SELECTION

Integrating Resistor

Both the buffer amplifier and the integrator have a class A output stage with $100 \mu \mathrm{~A}$ of quiescent current. They can supply $20 \mu \mathrm{~A}$ of drive current with negligible non-linearity. The integrating resistor should be large enough to remain in this very linear region over the input voltage range, but small enough that undue leakage requirements are not placed on the PC board. For 2 volts full scale, $470 \mathrm{k} \Omega$ is near optimum and similarly a $47 \mathrm{k} \Omega$ resistor is optimum for a 200.0 mV scale.

Integrating Capacitor

The integrating capacitor should be selected to give the maximum voltage swing that ensures tolerance build-up will not saturate the integrator swing (approx. 0.3 volt from either supply). In the 7116 or the 7117 , when the analog COMMON is used as a reference, a nominal ± 2 volt full scale integrator swing is fine. For the 7117 with ± 5 volt supplies and analog common tied to supply ground, a ± 3.5 to ± 4 volt swing is nominal. For three readings/second (48 kHz clock), nominal values for $\mathrm{C}_{\text {INT }}$ are $0.22 \mu \mathrm{~F}$ and $0.10 \mu \mathrm{~F}$, respectively. Of course, if different oscillator frequencies are used, these values should be changed in inverse proportion to maintain the same output swing.

An additional requirement of the integrating capacitor is it have low dielectric absorption to prevent roll-over errors. While other types of capacitors are adequate for this application, polypropylene capacitors give undetectable errors at reasonable cost.

Auto-Zero Capacitor

The size of the auto-zero capacitor has some influence on the noise of the system. For 200 mV full scale where noise is very important, a $0.47 \mu \mathrm{~F}$ capacitor is recommended. On the 2 volt scale, a $0.047 \mu \mathrm{~F}$ capacitor increases the speed of recovery from overload and is adequate for noise on this scale.

Reference Capacitor

A $0.1 \mu \mathrm{~F}$ capacitor gives good results in most applications. If rollover errors occur a larger value, up to $1.0 \mu \mathrm{~F}$ may be required.

Oscillator Components

For all ranges of frequency a $100 \mathrm{k} \Omega$ resistor is recommended and the capacitor is selected from the equation $f \cong \frac{0.45}{R C}$. For 48 kHz clock (3 readings/second), $C=100 \mathrm{pF}$.

Reference Voltage

The analog input required to generate full-scale output (2000 counts) is: $\mathrm{V}_{\text {IN }}=2 \mathrm{~V}_{\text {REF }}$. Thus, for the 200.0 mV and 2.000 volt scale, $V_{\text {REF }}$ should equal 100.0 mV and 1.000 volt, respectively. However, in many applications where the A/D is connected to a transducer, there will exist a scale factor other than unity between the input voltage and the
digital reading. For instance, in a weighing system, the designer might like to have a full scale reading when the voltage from the transducer is 0.682 V . Instead of dividing the input down to 200.0 mV , the designer should use the input voltage directly and select $\mathrm{V}_{\text {REF }}=0.341 \mathrm{~V}$. Suitable values for integrating resistor and capacitor would be $120 \mathrm{k} \Omega$ and $0.22 \mu \mathrm{~F}$. This makes the system slightly quieter and also avoids a divider network on the input. The 7117 with ± 5 volts supplies can accept input signals up to ± 4 volts. Another advantage of this system occurs when a digital reading of zero is desired for $\mathrm{V}_{\mathbb{N}} \neq 0$. Temperature and weighing systems with a variable tare are examples. This offset reading can be conveniently generated by connecting the voltage transducer between IN HI and COMMON and the variable (or fixed) offset voltage between COMMON and IN LO.

7117 Power Supplies

The 7117 is designed to work from ± 5 volt supplies. However, if a negative supply is not available, it can be generated from the clock output with 2 diodes, 2 capacitors, and an inexpensive I.C. Figure 11 shows this application. See ICL7660 data sheet for an alternative.

In fact, in selected applications no negative supply is required. The conditions to use a single +5 V supply are:

1. The input signal can be referenced to the center of the common mode range of the converter.
2. The signal is less than ± 1.5 volts in magnitude.
3. An external reference is used.

TYPICAL APPLICATIONS

The 7116 and 7117 may be used in a wide variety of configurations. The circuits which follow show some of the possibilities, and serve to illustrate the exceptional versatility of these A/D converters.

0338-13
Figure 12: 7116 using the internal reference. Values shown are for $\mathbf{2 0 0 . 0 m V}$ full scale, 3 readings per second, floating supply voltage (9 V battery).

0338-14
Figure 13: 7117 using the internal reference. Values shown are for 200.0 mV full scale, 3 readings per second. IN LO may be tied to either COMMON for inputs floating with respect to supplies, or GND for single ended inputs. (See discussion under Analog Common.)

0338-15
Figure 14: 7116/7117: Recommended component values for 2.000 V full scale.

0338-16
Figure 15: 7117 operated from single $+5 V$ supply. An external reference must be used in this application, since the voltage between $V+$ and $\mathbf{V}^{\text {- }}$ is insufficient for correct operation of the internal reference.

[^14]

0338-17
Figure 16: 7117 measuring ratiometric values of Quad Load Cell. The resistor values within the bridge are determined by the desired sensitivity.

0338-18
Figure 17: 7116 used as a digltal centigrade thermometer. A silicon diode-connected transistor has a temperature coefficient of about $-2 \mathrm{mV} /{ }^{\circ} \mathrm{C}$. Calibration is achleved by placing the sensing transistor in ice water and adjusting the zeroing potentiometer for a 000.0 reading. The sensor should then be placed in boiling water and the scale-factor potentiometer adjusted for 100.0 reading.

APPLICATION NOTES

A016 "Selecting A/D Converters," by David Fullagar.
A017 "The Integrating A/D Converter," by Lee Evans.
A018 "Do's and Don'ts of Applying A/D Converters," by Peter Bradshaw and Skip Osgood.
A023 "Low Cost Digital Panel Meter Designs," by David Fullagar and Michael Dufort.
A032 "Understanding the Auto-Zero and Common-Mode Behavior of the ICL7106/7/9 Family," by Peter Bradshaw.
A046 "Building a Battery-Operated Auto Ranging DVM with the ICL7106," by Larry Goff.
A047 "Games People Play with Intersil's A/D Converters," edited by Peter Bradshaw.
A052 "Tips for Using Single-Chip 3½-Digit A/D Converters," by Dan Watson.

[^15]NOTE: All typical values have been characterized but are not tested.

31/2-Digit Low-Power Single-Chip A/D Converter

GENERAL DESCRIPTION

The Intersil ICL7126 is a high performance, very low power $31 / 2$-digit A/D converter. All the necessary active devices are contained on a single CMOS IC, including seven segment decoders, display drivers, reference, and clock. The 7126 is designed to interface with a liquid crystal display (LCD) and includes a backplane drive. The supply current is $100 \mu \mathrm{~A}$, ideally suited for 9 V battery operation.

The 7126 brings together an unprecedented combination of high accuracy, versatility, and true economy. It features auto-zero to less than $10 \mu \mathrm{~V}$, zero drift of less than $1 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$, input bias current of 10pA max., and rollover error of less than one count. The versatility of true differential input and reference is useful in all systems, but gives the designer an uncommon advantage when measuring load cells, strain gauges and other bridge-type transducers. And finally the true economy of single power supply operation allows a high performance panel meter to be built with the addition of only 10 passive components and a display.
The ICL7126 can be used as a plug-in replacement for the ICL7106 in a wide variety of applications, changing only the passive components.

FEATURES

- 8,000 Hours Typical 9 Volt Battery Life
- Guaranteed Zero Reading for 0 Volts Input On All Scales
- True Polarity at Zero for Precise Null Detection
- 1pA Typical Input Current
- True Differential Input and Reference
- Direct LCD Display Drive - No External Components Required
- Pin Compatible With The ICL7106
- Low Noise - Less Than $15 \mu \mathrm{Vp}-\mathrm{p}$
- On-Chlp Clock and Reference
- Low Power Dlssipation Guaranteed Less Than 1mW
- No Additional Active Circuits Required
- Evaluation Kit Available (ICL7126EV/KIT)

ORDERING INFORMATION

Part Number	Temperature Range	Package
ICL7126CPL	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	40 -Pin Plastic DIP
ICL7126CM44	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	40 -Pin Surface Mount
ICL7126RCPL	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	40 -Pin Plastic DIP

[^16]
ABSOLUTE MAXIMUM RATINGS

Supply Voltage (V^{+}to V^{-}) 15 V
Analog Input Voltage (Either Input) (Note 1) V+ to V^{-}
Reference Input Voltage (Either Input) V+ to V^{-}
Clock Input . TEST to V^{+}

Power Dissipation (Note 2)
Ceramic Package
1000 mW
Plastic Package . 800 mW
Operating Temperature . $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature $. \ldots-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10sec) 300${ }^{\circ} \mathrm{C}$

NOTE 1: Input voltages may exceed the supply voltages provided the input current is limited to $\pm 100 \mu \mathrm{~A}$.
NOTE 2: Dissipation rating assumes device is mounted with all leads soldered to printed circuit board.
NOTE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS (Note 3)

Characteristics	Test Conditions	Min	Typ	Max	Unit
Zero Input Reading	$\begin{aligned} & V_{I N}=0.0 \mathrm{~V} \\ & \text { Full Scale }=200.0 \mathrm{mV} \end{aligned}$	-000.0	± 000.0	+000.0	Digital Reading
Ratiometric Reading	$\begin{aligned} & V_{I N}=V_{R E F} \\ & V_{R E F}=100 \mathrm{mV} \end{aligned}$	999	999/1000	1000	Digital Reading
Rollover Error (Difference in reading for equal positive and negative reading near Full Scale)	$\left\|-V_{I N}\right\|=+V_{I N} \cong 200.0 \mathrm{mV}$	-1	± 0.2	+1	Counts
Linearity (Max. deviation from best straight line fit)	Full scale $=200 \mathrm{mV}$ or full scale $=2.000 \mathrm{~V}$	-1	± 0.2	+1	Counts
Common Mode Rejection Ratio (Note 4)	$\begin{aligned} & V_{C M}= \pm 1 \mathrm{~V}, V_{I N}=0 V \\ & \text { Full Scale }=200.0 \mathrm{mV} \end{aligned}$		50		$\mu \mathrm{V} / \mathrm{V}$
Noise (Pk - Pk value not exceeded 95\% of time)	$\begin{aligned} & V_{I N}=0 V \\ & \text { Full Scale }=200.0 \mathrm{mV} \end{aligned}$		15		$\mu \mathrm{V}$
Leakage Current @ Input	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$		1	10	pA
Zero Reading Drift	$\begin{aligned} & \mathrm{V}_{I N}=0 \\ & 0^{\circ} \mathrm{C}<T_{A}<70^{\circ} \mathrm{C} \end{aligned}$		0.2	1	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Scale Factor Temperature Coefficient	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=199.0 \mathrm{mV} \\ & 0^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<70^{\circ} \mathrm{C} \\ & \text { (Ext. Ref. } 0 \mathrm{ppm} /{ }^{\circ} \mathrm{C} \text {) } \\ & \hline \end{aligned}$		1	5	ppm $/{ }^{\circ} \mathrm{C}$
Supply Current (Does not include COMMON current)	$V_{I N}=0$ (Note 6)		70	100	$\mu \mathrm{A}$
Analog COMMON Voltage (With respect to pos. supply)	250k Ω between Common \& pos. Supply	2.4	2.8	3.2	V

[^17]ELECTRICAL CHARACTERISTICS
(Note 3) (Continued)

CHARACTERISTICS	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Temp. Coeff. of Analog COMMON (with respect to pos. Supply)	 pos. Supply		150		$\mathrm{ppm} /{ }^{\circ} \mathrm{C}$
Pk-Pk Segment Drive Voltage (Note 5)	$\mathrm{V}+$ to $\mathrm{V}-=9 \mathrm{~V}$	4	5	6	V
Pk-Pk Backplane Drive Voltage (Note 5)	$\mathrm{V}+$ to $\mathrm{V}-=9 \mathrm{~V}$	4	5	6	V
Power Dissipation Capacitance	vs. Clock Freq.		40		pF

NOTES: 3. Unless otherwise noted, specifications apply at $T_{A}=25^{\circ} \mathrm{C}, \mathrm{f}_{\mathrm{clock}}=16 \mathrm{kHz}$ and are tested in the circuit of Figure 4.
4. Refer to "Differential Input" discussion.
5. Back plane drive is in phase with segment drive for 'off' segment, 180° out of phase for 'on' segment. Frequency is 20 times conversion rate. Average DC component is less than 50 mV .
6. During auto zero phase, current is $10-20 \mu \mathrm{~A}$ higher. 48 kHz oscillator, Figure 5 , increases current by $8 \mu \mathrm{~A}$ (typ).
7. Extra capacitance of CERDIP package changes oscillator resistor value to $470 \mathrm{k} \Omega$ or $150 \mathrm{k} \Omega$ (1 reading/sec or 3 readings/sec).

0339-3
Figure 2: Analog Section of 7126

[^18]NOTE: All typical values have been characterized but are not tested.

TEST CIRCUITS

Figure 3: ICL7126 with Liquid Crystal Display

DETAILED DESCRIPTION

Analog Section

Figure 2 shows the Functional Diagram of the Analog Section for the ICL7126. Each measurement cycle is divided into three phases. They are (1) auto-zero (A-Z), (2) signal integrate (INT) and (3) de-integrate (DE).

Auto-zero phase

During auto-zero three things happen. First, input high and low are disconnected from the pins and internally shorted to analog COMMON. Second, the reference capacitor is charged to the reference voltage. Third, a feedback loop is closed around the system to charge the auto-zero capacitor C_{AZ} to compensate for offset voltages in the buffer amplifier, integrator, and comparator. Since the comparator is included in the loop, the A-Z accuracy is limited only by the noise of the system. In any case, the offset referred to the input is less then $10 \mu \mathrm{~V}$.

Signal Integrate phase

During signal integrate, the auto-zero loop is opened, the internal short is removed, and the internal input high and low are connected to the external pins. The converter then integrates the differential voltage between IN HI and IN LO for a fixed time. This differential voltage can be within a wide common mode range; within one Volt of either supply. If, on the other hand, the input signal has no return with respect to the converter power supply, IN LO can be tied to analog COMMON to establish the correct common-mode voltage. At the end of this phase, the polarity of the integrated signal is determined.

De-integrate phase

The final phase is de-integrate, or reference integrate. Input low is internally connected to analog COMMON and in-

[^19]put high is connected across the previously charged reference capacitor. Circuitry within the chip ensures that the capacitor will be connected with the correct polarity to cause the integrator output to return to zero. The time required for the output to return to zero is proportional to the input signal. Specifically the digital reading displayed is $1000\left(\frac{\mathrm{~V}_{\mathrm{IN}}}{\mathrm{V}_{\mathrm{REF}}}\right)$.

Differential Input

The input can accept differential voltages anywhere within the common mode rante of the input amplifier; or specifically from 0.5 Volts below the positive supply to 1.0 Volt above the negative supply. In this range the system has a CMRR of 86 db typical. However, since the integrator also swings with the common mode voltage, care must be exercised to assure the integrator output does not saturate. A worst case condition would be a large positive commonmode voltage with a near full-scale negative differential input voltage. The negative input signal drives the integrator positive when most of its swing has been used up by the positive common mode voltage. For these critical applications the integrator swing can be reduced to less than the recommended 2V full scale swing with little loss of accuracy. The integrator output can swing within 0.3 Volts of either supply without loss of linearity.

Differential Reference

The reference voltage can be generated anywhere within the power supply voltage of the converter. The main source of common mode error is a roll-over voltage caused by the reference capacitor losing or gaining charge to stray capacity on its nodes. If there is a large common mode voltage, the reference capacitor can gain charge (increase voltage) when called up to de-integrate a positive signal but lose charge (decrease voltage) when called up to deintegrate a negative input signal. This difference in reference for $(+)$ or $(-)$ input voltage will give a roll-over error. However, by selecting the reference capacitor large enough in comparison to the stray capacitance, this error can be held to less than 0.5 count for the worst case condition. (See Component Value Selection.)

Analog COMMON

This pin is included primarily to set the common mode voltage for battery operation or for any system where the input signals are floating with respect to the power supply. The COMMON pin sets a voltage that is approximately 2.8 Volts more negative than the positive supply. This is selected to give a minimum end-of-life battery voltage of about 6 V . However, analog COMMON has some of the attributes of a reference voltage. When the total supply voltage is large enough to cause the zener to regulate $(<7 \mathrm{~V})$, the COMMON voltage will have a low voltage coefficient ($0.001 \% / \%$), low output impedance ($\cong 15 \Omega$), and a temperature coefficient typically less than $80 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$.

The limitations of the on-chip reference should also be recognized, however. The reference temperature coefficient (TC) can cause some degradation in performance. Temper-
ature changes of 2 to $8^{\circ} \mathrm{C}$, typical for instruments, can give a scale factor error of a count or more. Also the common voltage will have a poor voltage coefficient when the total supply voltage is less than that which will cause the zener to regulate $(<7 \mathrm{~V})$. These problems are eliminated if an external reference is used, as shown in Figure 6.

0339-7
Figure 6: Using an External Reference
Analog COMMON is also used as the input low return during auto-zero and de-integrate. If IN LO is different from analog COMMON, a common mode voltage exists in the system and is taken care of by the excellent CMRR of the converter. However, in some applications IN LO will be set at a fixed known voltage (power supply common for instance). In this application, analog COMMON should be tied to the same point, thus removing the common mode voltage from the converter. The same holds true for the reference voltage. If reference can be conveniently referenced to analog COMMON, it should be since this removes the common mode voltage from the reference system.

Within the IC, analog COMMON is tied to an N channel FET that can sink 3 mA or more of current to hold the voltage 2.8 Volts below the positive supply (when a load is trying to pull the common line positive). However, there is only $1 \mu \mathrm{~A}$ of source current, so COMMON may easily be tied to a more negative voltage thus over-riding the internal reference.

TEST

The TEST pin serves two functions. It is coupled to the internally generated digital supply through a 500Ω resistor. Thus it can be used as the negative supply for externally generated segment drivers such as decimal points or any other presentation the user may want to include on the LCD display. Figures 7 and 8 show such an application. No more than a 1 mA load should be applied.

The second function is a "lamp test." When TEST is pulled high (to V^{+}) all segments will be turned on and the display should read - 1888. The TEST pin will sink about 10 mA under these conditions.
Caution: In the lamp test mode, the segments have a constant D-C voltage (no square-wave) and may burn the LCD display if left in this mode for extended periods.

Figure 7: Simple Inverter for Fixed Decimal Point

0339-8

0339-9
Figure 8: Exclusive 'OR' Gate for Decimal Point Drive

DISPLAY FONT

[^20]
DIGITAL SECTION

Figure 9 shows the digital section for the 7126. An internal digital ground is generated from a 6 Volt Zener diode and a large P channel source follower. This supply is made stiff to absorb the relative large capacitive currents when the back plane (BP) voltage is switched. The BP frequency is the clock frequency divided by 800 . For three readings/ second this is a 60 Hz square wave with a nominal amplitude of 5 Volts. The segments are driven at the same frequency and amplitude and are in phase with BP when OFF, but out of phase when ON. In all cases negligible DC voltage exists across the segments. The polarity indication is "ON" for negative analog inputs. If IN LO and IN HI are reversed, this indication can be reversed also, if desired.

System Timing

Figure 10 shows the clocking arrangement used in the 7126. Three basic clocking arrangements can be used:

1. An external oscillator connected to pin 40.
2. A crystal between pins 39 and 40.
3. An R-C oscillator using all three pins.

The oscillator frequency is divided by four before it clocks the decade counters. It is then further divided to form the three convert-cycle phases. These are signal integrate (1000 counts), reference de-integrate (0 to 2000 counts) and auto-zero (1000 to 3000 counts). For signals less than full scale, auto-zero gets the unused portion of reference deintegrate. This makes a complete measure cycle of 4,000 (16,000 clock pulses) independent of input voltage. For three readings/second, an oscillator frequency of 48 kHz would be used.

To achieve maximum rejection of 60 Hz pickup, the signal integrate cycle should be a multiple of 60 Hz . Oscillator frequencies of $60 \mathrm{kHz}, 48 \mathrm{kHz}, 40 \mathrm{kHz}, 33-1 / 3 \mathrm{kHz}$, etc. should be selected. For 50 Hz rejection, oscillator frequencies of $66-$ $2 / 3 \mathrm{kHz}, 50 \mathrm{kHz}, 40 \mathrm{kHz}$, etc. would be suitable. Note that 40 kHz (2.5 readings/second) will reject both 50 and 60 Hz (also 400 and 440 Hz).

COMPONENT VALUE SELECTION
 Integrating Resistor

Both the buffer amplifier and the integrator have a class A output stage with $6 \mu \mathrm{~A}$ of quiescent current. They can supply $\sim 1 \mu \mathrm{~A}$ of drive current with negligible non-linearity. The integrating resistor should be large enough to remain in this very linear region over the input voltage range, but small enough that undue leakage requirements are not placed on the PC board. For 2 Volt full scale, $1.8 \mathrm{~m} \Omega$ is near optimum and similarly $180 \mathrm{k} \Omega$ for a 200.0 mV scale.

Integrating Capacitor

The integrating capacitor should be selected to give the maximum voltage swing that ensures tolerance build-up will not saturate the integrator swing (approx. 0.3 Volt from either supply). When the analog COMMON is used as a reference, a nominal ± 2 Volt full scale integrator swing is fine. For three readings/second (48 kHz clock) nominal values for $\mathrm{C}_{\text {INT }}$ are $0.047 \mu \mathrm{~F}$, for $1 / \mathrm{sec}(16 \mathrm{kHz}) 0.15 \mu \mathrm{~F}$. Of course, if different oscillator frequencies are used, these values should be changed in inverse proportion to maintain the same output swing.
The integrating capacitor should have low dielectric absorption to prevent roll-over errors. While other types may be adequate for this application, polypropylene capacitors give undetectable errors at reasonable cost.
At three readings/sec., a 750Ω resistor should be placed in series with the integrating capacitor, to compensate for comparator delay. See App. Note A017 for a description of the need and effects of this resistor.

Auto-Zero Capacitor

The size of the auto-zero capacitor has some influence on the noise of the system. For 200 mV full scale where noise is very important, a $0.32 \mu \mathrm{~F}$ capacitor is recommended. On the 2 Volt scale, a $0.033 \mu \mathrm{~F}$ capacitor increases the speed of recovery from overload and is adequate for noise on this scale.

Reference Capacitor

A $0.1 \mu \mathrm{~F}$ capacitor gives good results in most applications. However, where a large common mode voltage exists (i.e., the REF LO pin is not analog COMMON) and a 200 mV scale is used, a larger value is required to prevent roll-over error. Generally $1.0 \mu \mathrm{~F}$ will hold the roll-over error to 0.5 count in this instance.

Oscillator Components

For all ranges of frequency a 50 pF capacitor is recommended and the resistor is selected from the approximate equation $\mathrm{f} \sim \frac{0.45}{\mathrm{RC}}$. For 48 kHz clock (3 readings/second), $R=180 \mathrm{k} \Omega$.

[^21]
Reference Voltage

The analog input required to generate full-scale output (2000 counts) is: $\mathrm{V}_{\mathrm{IN}}=2 \mathrm{~V}_{\text {REF }}$. Thus, for the 200.0 mV and 2.000 Volt scale, $V_{\text {REF }}$ should equal 100.0 mV and 1.000 Voit, respectively. However, in many applications where the A/D is connected to a transducer, there will exist a scale factor other than unity between the input voltage and the digital reading. For instance, in a weighing system, the designer might like to have a full scale reading when the voltage from the transducer is 0.682 V . Instead of dividing the input down to 200.0 mV , the designer should use the input voltage directly and select $\mathrm{V}_{\text {REF }}=0.341 \mathrm{~V}$. A suitable value for integrating resistor would be $330 \mathrm{k} \Omega$. This makes the system slightly quieter and also avoids the necessity of a divider network on the input. Another advantage of this system occurs when a digital reading of zero is desired for $\mathrm{V}_{\mathrm{IN}} \neq 0$. Temperature and weighting systems with a variable tare are examples. This offset reading can be conveniently generated by connecting the voltage transducer between IN HI and COMMON and the variable (or fixed) offset voltage between COMMON and IN LO.

TYPICAL APPLICATIONS

The 7126 may be used in a wide variety of configurations. The circuits which follow show some of the possibilities, and serve to illustrate the exceptional versatility of these A/D converters.

0339-12
Figure 11: 7126 using the internal reference.

Values shown are for $\mathbf{2 0 0 . 0 m V}$ full scale, 3 readings per second, floating supply voltage (9 V battery).

0339-13
Figure 12: 7126 with an external band-gap reference (1.2 V type).
IN LO is tied to COMMON, thus establishing the correct common mode voltage. COMMON acts as a pre-regulator for the reference. Values shown are for 1 reading per second.

0339-14
Figure 13: Recommended component values for 2.000 V full scale, 3 readings per second.

For 1 reading per second, delete 750Ω resistor, change $\mathbf{C}_{\mathbf{I N T},}$ R $\mathrm{R}_{\mathrm{OSC}}$ to values of Figure 12.

[^22]

0339-15
Figure 14: 7126 with Zener diode reference.
Since low T.C. zeners have breakdown voltages
$\sim 6.8 \mathrm{~V}$, diode must be placed across the total

0339-17
Figure 16: 7126 measuring ratiometric values of Quad Load Cell.
The resistor values within the bridge are determined by the desired sensitivity.

*Values depend on clock frequency. See Figures 11, 12, 13.
INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. the warranty shall be exclusive and shall be in lieu of all other warranties, express, mplied or statutory, including the implied warranties of MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.
NOTE: All typical values have been characterized but are not tested.

Figure 18: Circult for developing Underrange and Overrange signals from 7126 outputs.

0339-20
Figure 19: AC to DC Converter with 7126. Test is used as a common mode reference level to ensure compatibility with most op-amps.

APPLICATION NOTES

A016 "Selecting A/D Converters", by David Fullagar.
A017 "The Integrating A/D Converter", by Lee Evans.
A018 "Do's and Don'ts of Applying A/D Converters", by Peter Bradshaw and Skip Osgood.
A023 "Low Cost Digital Panel Meter Designs", by David Fullagar and Michael Dufort.
A032 "Understanding the Auto-Zero and Common Mode Performance of the ICL7106/7/9 Family", by Peter Bradshaw.
A046 "Building a Battery-Operated Auto Ranging DVM with the ICL7106", by Larry Goff.
A052 "Tips for Using Single-Chip 3½-Digit A/D Converters", by Dan Watson.

7126 EVALUATION KIT

After purchasing a sample of the 7126, the majority of users will want to build a simple voltmeter. The parts can then be evaluated against the data sheet specifications, and tried out in the intended application.

To facilitate evaluation of this unique circuit, Intersil is offering a kit which contains all the necessary components to build a $31 / 2$-digit panel meter. With the ICL7126EV/KIT and the small number of additional components required, an engineer or technician can have the system "up and running" in about half an hour. The kit contains a circuit board, a display (LCD), passive components, and miscellaneous hardware.

41/2 Digit LCD Single-Chip A/D Converter

GENERAL DESCRIPTION

The Intersil ICL7129 is a very high-performance $41 / 2$-digit analog-to-digital converter that directly drives a multiplexed liquid crystal display. This single-chip CMOS integrated circuit requires only a few passive components and a reference to operate. It is ideal for high-resolution hand-held digital multimeter applications.

The performance of the ICL7129 has not been equaled before in a single-chip A/D converter. The successive integration technique used in the ICL7129 results in accuracy better than 0.005% of full-scale and resolution down to $10 \mu \mathrm{~V} /$ count.

The ICL7129, drawing only 1 mA from a 9V battery, is well suited for battery powered instruments. Provision has been made for the detection and indication of a "LOW/BATTERY' condition. Autoranging instruments can be made with the ICL7129 which provides overrange and underrange outputs and 10:1 range changing input. The ICL7129 instantly checks for continuity, giving both a visual indication and a logic level output which can enable an external audible transducer. These features and the high performance of the ICL7129 make it an extremely versatile and accurate instrument-on-a-chip.

FEATURES

- $\pm 19,999$ Count A/D Converter Accurate to ± 4 Count
- 10 μ V Resolution On 200mV Scale
- 110dB CMRR ${ }^{\prime}$
- Direct LCD Display Drive
- True Differential Input and Reference
- Low Power Consumption
- Decimal Point Drive Outputs
- Overrange and Underrange Outputs
- Low Battery Detection and Indication
- 10:1 Range Change Input

ORDERING INFORMATION

Part Number	Temperature	Package
ICL7129CPL	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	40 -Pin Plastic
ICL7129EV/KIT	-	Evaluation Kit

0340-1

Figure 1: Functional Diagram

0340-2
Figure 2: Pin Configuration (outline dwg PL)

[^23]
ABSOLUTE MAXIMUM RATINGS

Supply Voltages (V^{+}to V^{-}) 15 V
Reference Voltage (REF HI or REF LO) V+ to V^{-}
Input Voltage (Note 1)
(IN HI or IN LO) ${ }^{+}+$to V^{-}
$V_{\text {DISP }}$
.......... DGND -0.3 V to V^{+}
Digital Input Pins
1, 2, 19, 20, 21, 22, 27,
37, 38, 39, 40
Note 1: Input voltages may exceed the supply voltages provided that input current is limited to $\pm 400 \mu \mathrm{~A}$. Currents above this value may result in invalid display readings but will not destroy the device if limited to $\pm 1 \mathrm{~mA}$.
Note 2: Dissipation ratings assume device is mounted with all leads soldered to printed circuit board.
NOTE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

V^{-}to $\mathrm{V}^{+}=9 \mathrm{~V}, \mathrm{~V}_{\text {REF }}=1.00 \mathrm{~V} . \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{f}_{\mathrm{CLK}}=120 \mathrm{kHz}$, unless otherwise noted.

Characteristics	Test Conditions	Min	Typ	Max	Unit
Zero Input Reading	$\begin{aligned} & V_{I N}=0 V \\ & 200 \mathrm{mV} \text { Scale } \end{aligned}$	-0000	0000	+0000	Counts
Zero Reading Drift	$\begin{aligned} & V_{I N}=0 V \\ & 0^{\circ} \mathrm{C}<T_{A}<+70^{\circ} \mathrm{C} \end{aligned}$		± 0.5		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Ratiometric Reading	$\begin{aligned} & V_{I N}=V_{\text {REF }}=1000 \mathrm{mV} \\ & \text { RANGE }=2 \mathrm{~V} \end{aligned}$	9996	9999	10000	Counts
Range Change Accuracy	$\mathrm{V}_{\mathrm{IN}}=0.10000 \mathrm{~V}$ on Low Range \approx $\mathrm{V}_{\mathrm{IN}}=1.0000 \mathrm{~V}$ on High Range	0.9999	1.0000	1.0001	Ratio
Rollover Error	$-\mathrm{V}_{\text {IN }}=+\mathrm{V}_{\text {IN }}=199 \mathrm{mV}$		1.5	3.0	Counts
Linearity Error	200 mV Scale		1.0		
Input Common-Mode Rejection Ratio	$\begin{aligned} & \mathrm{V}_{\mathrm{CM}}=1.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=0 \mathrm{~V} \\ & 200 \mathrm{mV} \text { Scale } \end{aligned}$		110		dB
Input Common-Mode Voltage Range	$\begin{aligned} & V_{I N}=0 V \\ & 200 \mathrm{mV} \text { Scale } \end{aligned}$		$\begin{aligned} & \left(V^{-}\right)+1.5 \\ & \left(V^{+}\right)-1.0 \end{aligned}$		V
Noise (p-p Value not Exceeding 95\% of Time)	$\begin{aligned} & V_{\mathbb{I N}}=0 \mathrm{~V} \\ & 200 \mathrm{mV} \text { Scale } \end{aligned}$		14		$\mu \mathrm{V}$
Input Leakage Current	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$, Pin 32, 33		1	10	pA
Scale Factor Tempco	$\begin{aligned} & V_{I N}=199 \mathrm{mV} \\ & 0^{\circ} \mathrm{C}<T_{A}<+70^{\circ} \mathrm{C} \end{aligned}$ External $\mathrm{V}_{\mathrm{REF}}=\mathrm{Oppm} /{ }^{\circ} \mathrm{C}$		2	7	ppm $/{ }^{\circ} \mathrm{C}$
COMMON Voltage	$\mathrm{V}+$ to Pin 28	2.8	3.2	3.5	V
COMMON Sink Current COMMON Source Current	Δ Common $=+0.1 \mathrm{~V}$		0.6		mA
	Δ Common $=-0.1 \mathrm{~V}$		10		$\mu \mathrm{A}$
DGND Voltage	$\begin{aligned} & V^{+} \text {to } \operatorname{Pin} 36 \\ & V^{+} \text {to } V^{-}=9 V \end{aligned}$	4.5	5.3	5.8	V
DGND Sink Current	Δ DGND $=+0.5 \mathrm{~V}$		1.2		mA
Supply Voltage Range	V ${ }^{\text {+ }}$ to V^{-}(Note 1)	6	9	12	V

ELECTRICAL CHARACTERISTICS

V^{-}to $\mathrm{V}^{+}=9 \mathrm{~V}, \mathrm{~V}_{\mathrm{REF}}=1.00 \mathrm{~V} . \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{f}_{\mathrm{CLK}}=120 \mathrm{kHz}$, unless otherwise noted. (Continued)

Characteristics	Test Conditions	Min	Typ	Max	Unit
Supply Current Excluding COMMON Current	$\mathrm{V}+$ to $\mathrm{V}^{-}=9 \mathrm{~V}$		1.0	1.5	mA
Clock Frequency	(Note 1)		120	360	kHz
$\mathrm{V}_{\text {DISP }}$ Resistance	$\mathrm{V}_{\text {DISP }}$ to V^{+}		50		k Ω
Low Battery Flag Activation Voltage	$\mathrm{V}+$ to V^{-}	6.3	7.2	7.7	V
CONTINUITY Comparator Threshold Voltages	$V_{\text {OUT }}$ Pin $27=\mathrm{HI}$ $V_{\text {OUT }}$ Pin $27=$ LO	100	$\begin{aligned} & 200 \\ & 200 \end{aligned}$	400	mV
Pull-Down Current	Pins 37, 38, 39		2	10	$\mu \mathrm{A}$
"Weak Output" Current	Pin 20, 21 Sink/Source		3/3		$\mu \mathrm{A}$
Sink/Source	Pin 27 Sink/Source		3/9		
Pin 22 Source Current Pin 22 Sink Current			$\begin{gathered} 40 \\ 3 \end{gathered}$		$\mu \mathrm{A}$

NOTES: 1. Device functionality is guaranteed at the stated Min/Max limits. However, accuracy can degrade under these conditions.

[^24]Table 1. Pin Descriptions

Pin	Name	Function
1	OSC1	Input to first clock inverter.
2	OSC3	Output of second clock inverter.
3	ANNUNCIATOR DRIVE	Backplane squarewave output for driving annunciators.
4	$\mathrm{B}_{1}, \mathrm{C}_{1}$, CONT	Output to display segments.
5	$\mathrm{A}_{1}, \mathrm{G}_{1}, \mathrm{D}_{1}$	Output to display segments.
6	$F_{1}, E_{1}, D P_{1}$	Output to display segments.
7	$\mathrm{B}_{2}, \mathrm{C}_{2}$, LO BATT	Output to display segments.
8	A_{2}, G_{2}, D_{2}	Output to display segments.
9	$\mathrm{F}_{2}, \mathrm{E}_{2}, \mathrm{DP}_{2}$	Output to display segments.
10	$\mathrm{B}_{3}, \mathrm{C}_{3}$, MINUS	Output to display segments.
11	A_{3}, G_{3}, D_{3}	Output to display segments.
12	$F_{3}, E_{3}, D P_{3}$	Output to display segments.
13	$\mathrm{B}_{4}, \mathrm{C}_{4}, \mathrm{BC}_{5}$	Output to display segments.
14	$\mathrm{A}_{4}, \mathrm{D}_{4}, \mathrm{G}_{4}$	Output to display segments.
15	$F_{4}, E_{4}, D P_{4}$	Output to display segments.
16	BP3	Backplane \#3 output to display.
17	BP2	Backplane \#2 output to display.
18	BP1	Backplane \#1 output to display.
19	$V_{\text {DISP }}$	Negative rail for display drivers.
20	DP 4_{4} /OR	INPUT: When HI, turns on most significant decimal point. OUTPUT: Pulled HI when result count exceeds $\pm 19,999$.
21	$\mathrm{DP}_{3} / \mathrm{UR}$	INPUT: Second most significant decimal point on when HI. OUTPUT: Pulled HI when result count is less than $\pm 1,000$.
22	LATCH/HOLD	INPUT: When floating, A/D converter operates in the free-run mode. When pulled HI , the last displayed reading is held. When pulled LO, the result counter contents are shown incrementing during the de-integrate phase of cycle. OUTPUT: Negative going edge occurs when the data latches are updated. Can be used for converter status signal.

Pin	Name	Function
23	V-	Negative power supply terminal.
24	V+	Positive power supply terminal, and positive rail for display drivers.
25	INT IN	Input to integrator amplifier.
26	INT OUT	Output of integrator amplifier.
27	CONTINUITY	INPUT: When LO, continuity flag on the display is off. When HI , continuity flag is on. OUTPUT: HI when voltage between inputs is less than +200 mV . LO when voltage between inputs is more than +200 mV .
28	COMMON	Sets common-mode voltage of 3.2 V below V^{+}for DE, 10X, etc. Can be used as pre-regulator for external reference.
29	CREF^{+}	Positive side of external reference capacitor.
30	CREF^{-}	Negative side of external reference capacitor.
31	BUFFER	Output of buffer amplifier.
32	IN LO	Negative input voltage terminal.
33	IN HI	Positive input voltage terminal.
34	REF HI	Positive reference voltage input terminal.
35	REF LO	Negative reference voltage input terminal.
36	DGND	Ground reference for digital section.
37	RANGE	$3 \mu \mathrm{~A}$ pull-down for 200 mV scale. Pulled HIGH externally for 2V scale.
38	DP_{2}	Internal $3 \mu \mathrm{~A}$ pull-down. When HI, decimal point 2 will be on.
39	$D P_{1}$	Internal $3 \mu \mathrm{~A}$ pull-down. When HI, decimal point 1 will be on.
40	OSC2	Output of first clock inverter. Input of second clock inverter.

[^25]
DETAILED DESCRIPTION

Intersil's ICL7129 is a uniquely designed single-chip A/D converter. It features a new "successive integration" technique to achieve $10 \mu \mathrm{~V}$ resolution on a 200 mV full-scale range. To achieve this resolution a 10:1 improvement in noise performance over previous monolithic CMOS A/D converters was accomplished. Previous integrating converters used an external capacitor to store an offset correction voltage. This technique worked well but greatly increased the equivalent noise bandwidth of the converter. The ICL7129 removes this source of error (noise) by not using an auto-zero capacitor. Offsets are cancelled using digital techniques instead. Savings in external parts cost are realized as well as improved noise performance and elimination of a source of electromagnetic and electrostatic pick-up.

The overall functional diagram of the ICL7129 is shown in Figure 1. The heart of this A/D converter is the sequence counter/decoder which drives the control logic and keeps
track of the many separate phases required for each conversion cycle. The sequence counter is constantly running and is a separate counter from the up/down results counter which is activated only when the integrator is de-integrating. At the end of a conversion the data remaining in the results counter is latched, decoded and multiplexed to the liquid crystal display.
The analog section block diagram shown in Figure 4 includes all of the analog switches used to configure the voltage sources and amplifiers in the different phases of the cycle. The input and reference switching schemes are very similar to those in other less accurate integrating A/D converters. There are 5 basic configurations used in the full conversion cycle. Figure 5 illustrates a typical waveform on the integrator output. INT, $\mathbb{I N T}_{1}$, and INT_{2} all refer to the signal integrate phase where the input voltage is applied to the integrator amplifier via the buffer amplifier. In this phase, the integrator ramps over a fixed period of time in a direction opposite to the polarity of the input voltage.

[^26]

0340-5
Figure 5: Integrator Waveform for Negative Input Voltage Showing Successive Integration Phases and Residue Voltage

0340-6
Figure 6: Biasing Structure for COMMON and DGND
$D E_{1}, D E_{2}$, and $D E_{3}$ are the de-integrate phases where the reference capacitor is switched in series with the buffer amplifier and the integrator ramps back down to the level it started from before integrating. However, since the de-integrate phase can terminate only at a clock pulse transition, there is always a small overshoot of the integrator past the starting point. The ICL7129 amplifies this overshoot by 10 and $D E_{2}$ begins. Similarly $D E_{2}$'s overshoot is amplified by 10 and $D E_{3}$ begins. At the end of $D E_{3}$ the results counter holds a number with $51 / 2$ digits of resolution. This was obtained by feeding counts into the results counter at the $31 / 2$ digit level during $D E_{1}$, into the $41 / 2$ digit level during $D E_{2}$ and the $51 / 2$ digit level for $D E_{3}$. The effects of offset in the buffer, integrator, and comparator can now be cancelled by repeating this entire sequence with the inputs shorted and subtracting the results from the original reading. For this phase INT_{2} switch is closed to give the same common-mode voltage as the measurement cycle. This assures excellent CMRR. At the end of the cycle the data in the up/down results counter is accurate to 0.02% of full-scale and is sent to the display driver for decoding and multiplexing.

COMMON, DGND, AND "LOW BATTERY"

The COMMON and DGND (Digital GrouND) outputs of the ICL7129 are generated from internal zener diodes (Figure 6). COMMON is included primarily to set the commonmode voltage for battery operation or for any system where the input signals float with respect to the power supplies. It also functions as a pre-regulator for an external precision reference voltage source. The voltage between DGND and V^{+}is the supply voltage for the logic section of the ICL7129 including the display multiplexer and drivers. Both COMMON and DGND are capable of sinking current from external loads, but caution should be taken to ensure that these outputs are not overloaded. Figure 7 shows the connection of external logic circuitry to the ICL7129. This connection will work providing that the supply current requirements of the logic do not exceed the current sink capability of the DGND pin. If more supply current is required, the buffer in Figure 8 can be used to keep the loading on DGND to a minimum. COMMON can source approximately $12 \mu \mathrm{~A}$ while DGND has no source capability.

The "LOW BATTERY" annunciator of the display is turned on when the voltage between V^{+}and V^{-}drops below 7.2 V typically. The exact point at which this occurs is determined by the 6.3 V zener diode and the threshold voltage of the n -channel transistor connected to the V - rail in Figure 6. As the supply voltage decreases, the n -channel transistor connected to the V -rail eventually turns off and the "LOW BATTERY" input to the logic section is pulled HIGH, turning on the "LOW BATTERY" annunciator.

Figure 7: DGND Sink Current

I/O PORTS

Four pins of the ICL7129 can be used as either inputs or outputs. The specific pin numbers and functions are described in the Pin Description table (Table 1). If the output function of the pin is not desired in an application it can easily be overridden by connecting the pin to $\mathrm{V}^{+}(\mathrm{HI})$ or DGND (LO). This connection will not damage the device because the output impedance of these pins is quite high. A simplified schematic of these input/output pins is shown in Figure 9 . Since there is approximately $500 \mathrm{k} \Omega$ in series with the output driver, the pin (when used as an output) can only drive very light loads such as 4000 series, 74CXX type CMOS logic, or other high input impedance devices. The output drive capability of these four pins is limited to $3 \mu \mathrm{~A}$, nominally, and the input switching threshold is typically DGND+2V.

Figure 9: "Weak Output"

LATCH/HOLD, OVERRANGE, AND UNDERRANGE TIMING

The $\overline{\text { LATCH }} / H O L D$ output (pin 22) will be pulled low during the last 100 clock cycles of each full conversion cycle. During this time the final data from the ICL7129 counter is latched and transferred to the display decoder and multiplexer. The conversion cycle and LATCH/HOLD timing are directly related to the clock frequency. A full conversion cycle takes 30,000 clock cycles which is equivalent to 60,000 oscillator cycles. OverRange (OR pin 20) an UnderRange (UR pin 21) outputs are latched on the falling edge of LATCH/HOLD and remain in that state until the end of the next conversion cycle. In addition, digits 1 through 4 are blanked during overrange. All three of these pins are "weak outputs" and can be overridden with external drivers or pullup resistors to enable their input functions as described in the Pin Description table.

INSTANT CONTINUITY

A comparator with a built-in 200 mV offset is connected directly between INPUT HI and INPUT LO of the ICL7129 (Figure 10). The CONTINUITY output (pin 27) will be pulled high whenever the voltage between the analog inputs is less than 200 mV . This will also turn on the "CONTINUITY" annunciator on the display. The CONTINUITY output may be used to enable an external alarm or buzzer, thereby giving the ICL7129 an audible continuity checking capability.

Figure 10: "Instant Continuity" Comparator and Output Structure
.

Figure 11: Triplexed Liquid Crystal Display Layout for ICL7129

[^27]

Figure 12: Typical Backplane and Annunciator Drive Waveforms

Since the CONTINUITY output is one of the four "weak outputs" of the ICL7129, the "continuity" annunciator on the display can be driven by an external source if desired. The continuity function can be overridden with a pull-down resistor connected between CONTINUITY pin and DGND (pin 36).

DISPLAY CONFIGURATION

The ICL7129 is designed to drive a triplexed liquid crystal display. This type of display has three backplanes and is driven in a multiplexed format similar to the ICM7231 display driver family. The specific display format is shown in Figure 11. Notice that the polarity sign, decimal points, "LOW BATTERY", and "CONTINUITY"' annunciators are directly driven by the ICL7129. The individual segments and annunciators are addressed in a manner similar to row-column addressing. Each backplane (row) is connected to onethird of the total number of segments. BP1 has all F, A, and B segments of the four least significant digits. BP2 has all of
the C, E, and G segments. BP3 has all D segments, decimal points, and annunciators. The segment lines (columns) are connected in groups of three bringing all segments of the display out on just 12 lines.

ANNUNCIATOR DRIVE

A special display driver output is provided on the ICL7129 which is intended to drive various kinds of annunciators on custom multiplexed liquid crystal displays. The ANNUNCIATOR DRIVE output (pin 3) is a squarewave signal running at the backplane frequency, approximately 100 Hz . This signal swings from $\mathrm{V}_{\text {DISP }}$ to V^{+}and is in sync with the three backplane outputs BP1, BP2, and BP3. Figure 12 shows these four outputs on the same time and voltage scales.

Any annunciator associated with any of the three backplanes can be turned on simply by connecting it to the ANNUNCIATOR DRIVE pin. To turn an annunciator off connect it to its backplane. An example of a display and annunciator drive scheme is shown in Figure 13.

DISPLAY TEMPERATURE COMPENSATION

For most applications an adequate display can be obtained by connecting $V_{\text {DISP }}$ (pin 19) to DGND (pin 36). In applications where a wide temperature range is encountered, the voltage drive levels for some triplexed liquid crystal displays may need to vary with temperature in order to maintain good display contrast and viewing angle. The amount of temperature compensation will depend upon the type of liquid crystal used. Display manufacturers can supply the temperature compensation requirements for their displays. Figure 14 shows two circuits that can be adjusted to give a temperature compensation of $\approx+10 \mathrm{mV} /{ }^{\circ} \mathrm{C}$ between V^{+}and $\mathrm{V}_{\text {DISP. }}$. The diode between DGND and $\mathrm{V}_{\text {DISP }}$ should have a low turn-on voltage to assure that no forward current is injected into the chip if $\mathrm{V}_{\text {DISP }}$ is more negative than DGND.

COMPONENT SELECTION

There are only three passive components around the ICL7129 that need special consideration in selection. They are the reference capacitor, integrator resistor, and integrator capacitor. There is no auto-zero capacitor like that found in earlier integrating A/D converter designs.

The integrating resistor is selected to be high enough to assure good current linearity from the buffer amplifier and integrator and low enough that PC board leakage is not a problem. A value of $150 \mathrm{k} \Omega$ should be optimum for most applications. The integrator capacitor is selected to give an
optimum integrator swing at full-scale. A large integrator swing will reduce the effect of noise sources in the comparator but will affect rollover error if the swing gets too close to the positive rail ($\approx 0.7 \mathrm{~V}$). This gives an optimum swing of $\approx 2.5 \mathrm{~V}$ at full-scale. For a $150 \mathrm{k} \Omega$ integrating resistor and 2 conversions per second the value is $0.10 \mu \mathrm{~F}$. For different conversion rates, the value will change in inverse proportion. A second requirement for good linearity is that the capacitor have low dielectric absorption. Polypropylene caps give good performance at a reasonable price. Finally the foil side of the cap should be connected to the integrator output to shield against pick-up.
The only requirement for the reference cap is that it be low leakage. In order to reduce the effects of stray capacitance, a $1.0 \mu \mathrm{~F}$ value is recommended.

CLOCK OSCILLATOR

The ICL7129 achieves its digital range changing by integrating the input signal for 1000 clock pulses (2,000 oscillator cycles) on the 2 V scale and 10,000 clock pulses on the 200 mV scale. To achieve complete rejection of 60 Hz on both scales, an oscillator frequency of 120 kHz is required, giving two conversions per second.
In low resolution applications, where the converter uses only $31 / 2$ digits and $100 \mu \mathrm{~V}$ resolution, an R-C type oscillator is adequate. In this application a C of 51 pF is recommended and the resistor value selected from $\mathrm{fOSC}^{\prime}=0.45 / \mathrm{RC}$. However, when the converter is used to its full potential ($41 / 2$ digits and $10 \mu \mathrm{~V}$ resolution) a crystal oscillator is recom-

[^28]mended to prevent the noise from increasing as the input signal is increased due to frequency jitter of the R-C oscillator. Both R-C and crystal oscillator circuits are shown in Figure 15.

Figure 15: RC and Crystal Oscillator Circuits

POWERING THE ICL7129

The ICL7129 may be operated as a battery powered hand-held instrument or integrated into larger systems that have more sophisticated power supplies. Figures 16, 17, and 18 show various powering modes that may be used with the ICL7129.
The standard supply connection using a 9 V battery is shown in Figure 3.
The power connection for systems with +5 V and -5 V supplies available is shown in Figure 16. Notice that measurements are with respect to ground. COMMON is also tied to INLO to remove any common-mode voltage swing on the integrator amplifier inputs.
It is important to notice that in Figure 16, digital ground of the ICL7129 (DGND pin 36) is not directly connected to power supply ground. DGND is set internally to approximately 5 V less than the V^{+}terminal and is not intended to be used as a power input pin. It may be used as the ground reference for external logic, as shown in Figure 7 and 8. In Figure 7, DGND is used as the negative supply rail for external logic provided that the supply current for the external logic does not cause excessive loading on DGND. The DGND output can be buffered as shown in Figure 8. Here, the logic supply current is shunted away from the ICL7129 keeping the load on DGND low. This treatment of the DGND output is necessary to insure compatibility when the external logic is used to interface directly with the logic inputs and outputs of the ICL7129.

0340-16
Figure 16: Powering the ICL7129 from +5 V and -5V Power Supplies

When a battery voltage between 3.8 V and 7 V is desired for operation, a voltage doubling circuit should be used to bring the voltage on the ICL7129 up to a level within the power supply voltage range. This operating mode is shown in Figure 17.

[^29]NOTE: All typical values have been characterized but are not tested.

Again measurements are made with respect to COMMON since the entire system is floating. Voltage doubling is accomplished by using an ICL7660 CMOS voltage converter and two inexpensive electrolytic capacitors. The same principle applies in Figure 18 where the ICL7129 is being used in a system with only a single +5 V power supply. Here measurements are made with respect to power supply ground.
A single polarity power supply can be used to power the ICL7129 in applications where battery operation is not appropriate or convenient only if the power supply is isolated from system ground. Measurements must be made with respect to COMMON or some other voltage within its input common-mode range.

VOLTAGE REFERENCES

The COMMON output of the ICL7129 has a temperature coefficient of $\pm 80 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ typically. This voltage is only suitable as a reference voltage for applications where ambient temperature variations are expected to be minimal. When the ICL7129 is used in most environments, other voltage references should be considered. The diagram in Figures 3 and 18 show the ICL8069 1.2V band-gap voltage source used as the reference for the ICL7129, and the COMMON output as its pre-regulator. The reference voltage for the ICL7129 is set to 1.000 V for both 2 V and 200 mV full-scale operation.

Figure 18: Powering the ICL7129 from a Single Polarity Power Supply

[^30]NOTE: All typical values have been characterized but are not tested.

GENERAL DESCRIPTION

The Intersil ICL7136 is a high performance, very low power $31 / 2$-digit A/D converter. All the necessary active devices are contained on a single CMOS IC, including seven-segment decoders, display drivers, reference, and clock. The 7136 is designed to interface with a liquid crystal display (LCD) and includes a backplane drive. The supply current is under $100 \mu \mathrm{~A}$, ideally suited for 9 V battery operation.

The 7136 brings together an unprecedented combination of high accuracy, versatility, and true economy. High accuracy, like auto-zero to less than $10 \mu \mathrm{~V}$, zero drift of less than $1 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$, input bias current of 10 pA max., and rollover error of less than one count. The versatility of true differential input and reference is useful in all systems, but gives the designer an uncommon advantage when measuring load cells, strain gauges and other bridge-type transducers. And finally the true economy of single power supply operation allows a high performance panel meter to be built with the addition of only 7 passive components and a display.

The ICL7136 is an improved version of the ICL7126, eliminating the overrange hangover and hysteresis effects, and should be used in its place in all applications. It can also be used as a plug-in replacement for the ICL7106 in a wide variety of applications, changing only the passive components.

FEATURES

- First-Reading Recovery From Overrange Gives Immediate "OHMS" Measurement
- Guaranteed Zero Reading for OV Input
- True Polarity at Zero for Precise Null Detection
- 1pA Typical Input Current
- True Differential Input and Reference
- Direct LCD Display Drive - No External Components Required
- Pin Compatible With The ICL7106, ICL7126
- Low Noise - 15μ Vp-p Without Hysteresis or Overrange Hangover
- On-Chip Clock and Reference
- Low Power Dissipation, Guaranteed Less Than 1mW - Gives 8,000 Hours Typical 9V Battery Life
- No Additional Active Circuits Required
- Evaluation Kit Available (ICL7136EV/Kit)

ORDERING INFORMATION

Part Number	Temperature Range	Package
ICL7136CM44	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	44-Pin Surface Mount
ICL7136CPL	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	40 -Pin Plastic DIP
ICL7136RCPL	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	40 -Pin Plastic DIP
ICL7136EV/KIT		EVALUATION KIT

0343-2

Figure 1: Pin Configurations

[^31]
ABSOLUTE MAXIMUM RATINGS

Supply Voltage (V^{+}to V^{-}) 15 V
Analog Input Voltage (either input)(Note 1) V+ to V^{-}
Reference Input Voltage (either input) V+ to V^{-}
Clock Input
TEST to V^{+}

Power Dissipation (Note 2)	
Ceramic Package	1000 mW
Plastic Package	800 mW
Operating Temperature $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	
Storage Temperature $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	
Lead Temperature (Solde	$300^{\circ} \mathrm{C}$

Note 1: Input voltages may exceed the supply voltages, provided the input current is limited to $\pm 100 \mu \mathrm{~A}$.
Note 2: Dissipation rating assumes device is mounted with all leads soldered to printed circuit board.
NOTE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Figure 2: Functional Diagram
ELECTRICAL CHARACTERISTICS (Notes 3,7)

Parameter	Test Conditions	Min	Typ	Max	Unit
Zero Input Reading	$\begin{aligned} & V_{I N}=0.0 \mathrm{~V} \\ & \text { Full-Scale }=200.0 \mathrm{mV} \end{aligned}$	-000.0	± 000.0	+000.0	Digital Reading
Ratiometric Reading	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {REF }}, \mathrm{V}_{\text {REF }}=100 \mathrm{mV}$	999	999/1000	1000	Digital Reading
Roll-Over Error (Difference in reading for equal positive and negative reading near full-scale)	$-\mathrm{V}_{\mathrm{IN}}=+\mathrm{V}_{\mathrm{IN}} \cong 200.0 \mathrm{mV}$	-1	± 0.2	+1	Counts
Linearity (Max. deviation from best straight line fit)	Full-scale $=200 \mathrm{mV}$ or Full-Scale $=2.000 \mathrm{~V}$	-1	± 0.02	+1	Counts
Common-Mode Rejection Ratio (Note 4)	$\begin{aligned} & V_{C M}= \pm 1 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=0 \mathrm{~V} \\ & \text { Full-Scale }=200.0 \mathrm{mV} \end{aligned}$		50		$\mu \mathrm{V} / \mathrm{V}$
Noise (Pk-Pk value not exceeded 95\% of time)	$\mathrm{V}_{1 \mathrm{~N}}=0 \mathrm{~V}$, Full Scale $=200.0 \mathrm{mV}$		15		$\mu \mathrm{V}$
Leakage Current @ Input	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$		1	10	pA

[^32]ELECTRICAL CHARACTERISTICS
(Notes 3, 7) (Continued)

Parameter	Test Conditions	Min	Typ	Max	Unit
Zero Reading Drift	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}, 0^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<+70^{\circ} \mathrm{C}$		0.2	1	$\mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$
Scale Factor Temperature Coefficient	$\mathrm{V}_{\mathrm{IN}}=199.0 \mathrm{mV}, 0^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<+70^{\circ} \mathrm{C}$ (Ext. Ref. Oppm $\left./{ }^{\circ} \mathrm{C}\right)$		1	5	$\mathrm{ppm} /{ }^{\circ} \mathrm{C}$
Supply Current (Does not include COMMON current)	$\mathrm{V} / \mathrm{IN}=0 \mathrm{~V}$ (Note 6)		70	100	$\mu \mathrm{~A}$
Analog COMMON Voltage (With respect to positive supply)	$250 \mathrm{k} \Omega$ between Common and Positive Supply	2.4	2.8	3.2	V
Temp. Coeff. of Analog COMMON (With respect to positive supply)	$250 \mathrm{k} \Omega$ between Common and Positive Supply		150	$\mathrm{ppm} /{ }^{\circ} \mathrm{C}$	
Pk-Pk Segment Drive Voltage (Note 5)	$\mathrm{V}+$ to $\mathrm{V}-=9 \mathrm{~V}$	4	5	6	V
Pk-Pk Backplane Drive Voltage (Note 5)	$\mathrm{V}+$ to $\mathrm{V}-=9 \mathrm{~V}$	4	5	6	V
Power Dissipation Capacitance	vs Clock Frequency	40	pF		

NOTES: 3. Unless otherwise noted, specifications apply at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}_{\text {clock }}=16 \mathrm{kHz}$ and are tested in the circuit of Figure 4.
4. Refer to "Differential Input" discussion.
5. Backplane drive is in phase with segment drive for "off" segment, 180° out of phase for "on" segment. Frequency is 20 times conversion rate. Average DC component is less than 50 mV .
6. 48 kHz oscillator, Figure 5 , increases current by $20 \mu \mathrm{~A}$ (typ).
7. Extra capacitance of CERDIP package changes oscillator resistor value to $470 \mathrm{k} \Omega$ or $150 \mathrm{k} \Omega$ (1 reading $/ \mathrm{sec}$ or 3 readings $/ \mathrm{sec}$).

TEST CIRCUITS

0343-4
Figure 3: ICL7136 with Liquid Crystal Display

[^33]

DETAILED DESCRIPTION (Analog Section)

Figure 2 shows the Functional Diagram of the Analog Section for the ICL7136. Each measurement cycle is divided into four phases. They are 1) auto-zero (A-Z), 2) signal integrate (iNT), 3) de-integrate (DE) and 4) zero integrator (ZI).

AUTO-ZERO PHASE

During auto-zero three things happen. First, input high and low are disconnected from the pins and internally shorted to analog COMMON. Second, the reference capacitor is charged to the reference voltage. Third, a feedback loop is closed around the system to charge the auto-zero capacitor, C_{AZ}, to compensate for offset voltages in the buffer amplifier, integrator, and comparator. Since the comparator is included in the loop, the A-Z accuracy is limited only by the noise of the system. In any case, the offset referred to the input is less than $10 \mu \mathrm{~V}$.

SIGNAL INTEGRATE PHASE

During signal integrate, the auto-zero loop is opened, the internal short is removed, and the internal input high and low are connected to the external pins. The converter then integrates the differential voltage between IN HI and IN LO for a fixed time. This differential voltage can be within a wide common-mode range; within 1V of either supply. If, on the other hand, the input signal has no return with respect to the converter power supply, IN LO can be tied to analog COMMON to establish the correct common-mode voltage. At the end of this phase, the polarity of the integrated signal is determined.

DE-INTEGRATE PHASE

The next phase is de-integrate, or reference integrate. Input low is internally connected to analog COMMON and input high is connected across the previously charged reference capacitor. Circuitry within the chip ensures that the
capacitor will be connected with the correct polarity to cause the integrator output to return to zero. The time required for the output to return to zero is proportional to the input signal. Specifically, the digital reading displayed is $1000\left(V_{\text {IN }} / V_{\text {REF }}\right)$.

ZERO INTEGRATOR PHASE

The final phase is zero integrator. First, input low is shorted to analog COMMON. Second, the reference capacitor is charged to the reference voltage. Finally, a feedback loop is closed around the system to input high to cause the integrator output to return to zero. Under normal conditions, this phase lasts for between 11 to 140 clock pulses, but after a "heavy" overrange conversion, it is extended to 740 clock pulses.

Differential Input

The input can accept differential voltages anywhere within the common-mode range of the input amplifier; or specifically from 0.5 V below the positive supply to 1.0 V above the negative supply. In this range the system has a CMRR of 86 dB typical. However, since the integrator also swings with the common-mode voltage, care must be exercised to assure the integrator output does not saturate. A worst case condition would be a large positive common-mode voltage with a near full-scale negative differential input voltage. The negative input signal drives the integrator positive when most of its swing has been used up by the positive com-mon-mode voltage. For these critical applications the integrator swing can be reduced to less than the recommended 2 V full-scale swing with little loss of accuracy. The integrator output can swing within 0.3 V of either supply without loss of linearity.

Differential Reference

The reference voltage can be generated anywhere within the power supply voltage of the converter. The main source of common-mode error is a roll-over voltage caused by the reference capacitance losing or gaining charge to stray capacity on its nodes. If there is a large common-mode voltage, the reference capacitor can gain charge (increase voltage) when called up to de-integrate a positive signal but lose charge (decrease voltage) when called up to de-integrate a negative input signal. This difference in reference for $(+)$ or $(-)$ input voltage will give a roll-over error. However, by selecting the reference capacitor large enough in comparison to the stray capacitance, this error can be held to less than 0.5 count for the worst case condition (see Component Values Selection).

Analog Common

This pin is included primarily to set the common-mode voltage for battery operation or for any system where the input signals are floating with respect to the power supply. The COMMON pin sets a voltage that is approximately 3.0 V more negative than the positive supply. This is selected to give a minimum end-of-life battery voltage of about 6 V . However, analog COMMON has some of the attributes of a reference voltage. When the total supply voltage is large enough to cause the zener to regulate ($>7 \mathrm{~V}$), the COMMON voltage will have a low voltage coefficient (0.001% / $\%$), low output impedance ($\cong 35 \Omega$), and a temperature coefficient typically less than $150 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$.

[^34]

0343-7
Figure 6: Using an External Reference

The limitations of the on-chip reference should also be recognized, however. The reference temperature coefficient (TC) can cause some degradation in performance. Temperature changes of $2^{\circ} \mathrm{C}$ to $8^{\circ} \mathrm{C}$, typical for instruments, can give a scale factor error of a count or more. Also, the COMMON voltage will have a poor voltage coefficient when the total supply voltage is less than that which will cause the zener to regulate ($<7 \mathrm{~V}$). These problems are eliminated if an external reference is used, as shown in Figure 6.
Analog COMMON is also used as the input low return during auto-zero and de-integrate. If IN LO is different from analog COMMON, a common-mode voltage exists in the system and is taken care of by the excellent CMRR of the converter. However, in some applications IN LO will be set at a fixed known voltage (power supply common for instance). In this application, analog COMMON should be tied to the same point, thus removing the common-mode voltage from the converter. The same holds true for the reference voltage. If the reference can be conveniently referred to analog COMMON, it should be since this removes the common-mode voltage from the reference system.

Within the IC, analog COMMON is tied to an N channel FET which can sink 3 mA or more of current to hold the voltage 3.0V below the positive supply (when a load is trying to pull the common line positive). However, there is only $1 \mu \mathrm{~A}$ of source current, so COMMON may easily be tied to a more negative voltage, thus overriding the internal reference.

Figure 7: Simple Inverter for Fixed

0343-9
0343-9

TEST

The TEST pin serves two functions. It is coupled to the internally generated digital supply through a 500Ω resistor. Thus, it can be used as the negative supply for external segment drivers such as for decimal points or any other presentation the user may want to include on the LCD display. Figures 7 and 8 show such an application. No more than a 1 mA load should be applied.
The second function is a "lamp test." When TEST is pulled high (to V^{+}) all segments will be turned on and the display should read -1888 . The TEST pin will sink about 10 mA under these conditions.
Caution: In the lamp test mode, the segments have a constant DC voltage (no square-wave). This may burn the LCD display if maintained for extended periods.

Figure 8: Exclusive "OR" Gate for Decimal Point Drive

DETAILED DESCRIPTION (Digital Section)

Figure 9 shows the digital section for the 7136. An internal digital ground is generated from a 6 V Zener diode and a large P channel source follower. This supply is made stiff to absorb the relatively large capacitive currents when the backplane (BP) voltage is switched. The BP frequency is the clock frequency divided by 800 . For three readings/second this is a 60 Hz square-wave with a nominal amplitude of 5 V . The segments are driven at the same frequency and

DISPLAY FONT

amplitude and are in phase with BP when OFF, but out of phase when $O N$. In all cases negligible DC voltage exists across the segments. The polarity indication is "ON" for negative analog inputs. If IN LO and IN HI are reversed, this indication can be reversed also, if desired.

System Timing

Figure 10 shows the clock oscillator provided in the 7136. Three basic clocking arrangements can be used:

1. An external oscillator connected to pin 40.
2. A crystal between pins 39 and 40.
3. An RC oscillator using all three pins.

The oscillator frequency is divided by four before it clocks the decade counters. It is then further divided to form the

[^35]four convert－cycle phases．These are signal integrate（1000 counts），reference de－integrate（ 0 counts to 2000 counts）， zero integrator（ 11 counts to 140 counts＊）and auto－zero （ 910 counts to 2900 counts）．For signals less than full－ scale，auto－zero gets the unused portion of reference de－in－ tegrate and zero integrator．This makes a complete mea－ sure cycle of 4000 （ 16,000 clock pulses）independent of input voltage．For three readings／second，an oscillator fre－ quency of 48 kHz would be used．

To achieve maximum rejection of 60 Hz pickup，the signal integrate cycle should be a multiple of the 60 Hz period．Os－ cillator frequencies of $60 \mathrm{kHz}, 48 \mathrm{kHz}, 40 \mathrm{kHz}, 331 / 3 \mathrm{kHz}$ ，etc． should be selected．For 50 Hz rejection，oscillator frequen－ cies of $662 / 3 \mathrm{kHz}, 50 \mathrm{kHz}, 40 \mathrm{kHz}$ ，etc．would be suitable．Note that 40 kHz （ 2.5 readings／second）will reject both 50 Hz and 60 Hz （also 400 Hz and 440 Hz ）．See also A052．

COMPONENT VALUE SELECTION

（See also A052）

Integrating Resistor

Both the buffer amplifier and the integrator have a class A output stage with $6 \mu \mathrm{~A}$ of quiescent current．They can sup－ ply $\sim 1 \mu \mathrm{~A}$ of drive current with negligible non－linearity．The integrating resistor should be large enough to remain in this very linear region over the input voltage range，but small enough that undue leakage requirements are not placed on the PC board．For 2 V full－scale， $1.8 \mathrm{M} \Omega$ is near optimum， and similarly $180 \mathrm{k} \Omega$ for a 200.0 mV scale．

Integrating Capacitor

The integrating capacitor should be selected to give the maximum voltage swing that ensures tolerance build－up will not saturate the integrator swing（approx． 0.3 V from either supply）．When the analog COMMON is used as a reference， a nominal $\pm 2 \mathrm{~V}$ full－scale integrator swing is fine．For three readings／second（ 48 kHz clock）nominal values for $\mathrm{C}_{\text {INT }}$ are $0.047 \mu \mathrm{~F}$ ，for 1 reading $/$ second（ 16 kHz ） $0.15 \mu \mathrm{~F}$ ．Of course， if different oscillator frequencies are used，these values should be changed in inverse proportion to maintain the same output swing．

The integrating capacitor should have low dielectric ab－ sorption to prevent roll－over errors．While other types may be adequate for this application，polypropylene capacitors give undetectable errors at reasonable cost．

Auto－Zero Capacitor

The size of the auto－zero capacitor has some influence on the noise of the system．For 200 mV full－scale where noise is very important，a $0.47 \mu \mathrm{~F}$ capacitor is recommend－ ed．The Zl phase allows a large auto－zero capacitor to be used without causing the hysteresis or overrange hangover problems that can occur with the ICL7126 or ICL7106（see A032）．

Reference Capacitor

A $0.1 \mu \mathrm{~F}$ capacitor gives good results in most applica－ tions．However，where a large common－mode voltage exists （i．e．，the REF LO pin is not at analog COMMON）and a 200 mV scale is used，a larger value is required to prevent roll－over error．Generally， $1.0 \mu \mathrm{~F}$ will hold the roll－over error to 0.5 count in this instance．
＊After an overranged conversion of more than 2060 counts，the zero inte－ grator phase will last 740 counts，and auto－zero will last 260 counts．

Oscillator Components

For all ranges of frequency a 50pF capacitor is recom－ mended and the resistor is selected from the approximate equation $f \sim 0.45 /$ RC．For 48 kHz clock（ 3 readings $/ \mathrm{sec}$－ ond），$R=180 \mathrm{k} \Omega$ ，for $16 \mathrm{kHz}, \mathrm{R}=560 \mathrm{k} \Omega$ ．

Reference Voltage

The analog input required to generate full－scale output （2000 counts）is $\mathrm{V}_{\text {IN }}=2 \mathrm{~V}_{\text {REF }}$ ．Thus，for the 200.0 mV and 2.000 V scale， $\mathrm{V}_{\text {REF }}$ should equal 100.0 mV and 1.000 V ，re－ spectively．However，in many applications where the A／D is connected to a transducer，there will exist a scale factor other than unity between the input voltage and the digital reading．For instance，in a weighing system，the designer might like to have a full－scale reading when the voltage from the transducer is 0.682 V ．Instead of dividing the input down to 200.0 mV ，the designer should use the input voltage di－ rectly and select $V_{\text {REF }}=0.341 \mathrm{~V}$ ．A suitable value for the integrating resistor would be $330 \mathrm{k} \Omega$ ．This makes the system slightly quieter and also avoids the necessity of a divider network on the input．Another advantage of this system oc－ curs when a digital reading of zero is desired for $\mathrm{V}_{\mathbb{I N}} \neq 0$ ． Temperature and weighing systems with a variable tare are examples．This offset reading can be conveniently generat－ ed by connecting the voltage transducer between IN HI and COMMON and the variable（or fixed）offset voltage between COMMON and IN LO．

TYPICAL APPLICATIONS

The 7136 may be used in a wide variety of configurations． The circuits which follow show some of the possibilities，and serve to illustrate the exceptional versatility of these A / D converters．

0343－13
Figure 11： 7136 Using the Internal Reference

Values shown are for $\mathbf{2 0 0 . 0 m V}$ full－scale， 3 readings／sec，floating supply voltage （9V battery）．

[^36]

0343-14
Figure 12: 7136 with an External Band-Gap Reference (1.2V Type)
IN LO is tied to COMMON, thus establishing the correct common-mode voltage. COMMON acts as a pre-regulator for the reference. Values shown are for 1 reading/sec.

0343-15
Figure 13: Recommended Component Values for 2.000V Full-Scale, 3 Readings/Sec
For 1 reading/sec, change $C_{\text {INT, }}$, Rosc to values of Figure 12.

0343-16
Figure 14: 7136 with Zener Diode Reference

Since low TC zeners have breakdown voltages $\sim 6.8 \mathrm{~V}$, diode must be placed across the total supply (10V). As in the case of Figure 13, IN LO may be tied to COMMON.

0343-17
Figure 15: 7136 Operated from Single +5 V Supply
An external reference must be used in this application, since the voltage between $V+$ and \mathbf{V} - is insufficient for correct operation of the internal reference.

[^37]INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

NOTE: All typical values have been characterized but are not tested.

Figure 16: 7136 Measuring Ratiometric Values of Quad Load Cell
The resistor values within the bridge are determined by the desired sensitivity.

Figure 17: 7136 used as a Digital Centigrade Thermometer
A silicon diode-connected transistor has a temperature coefficient of about $-2 \mathrm{mV} /{ }^{\circ} \mathrm{C}$. Calibration is achieved by placing the sensing transistor in ice water and adjusting the zeroing potentiometer for a 000.0 reading. The sensor should then be placed in boiling water and the scale-factor potentiometer adjusted for a 100.0 reading. See ICL8073/4 and AD590 data sheets for alternative circuits.

[^38]

0343-20
Figure 18: Circuit for Developing Underrange and Overrange Signals from 7136 Outputs

0343-21
Figure 19: AC to DC Converter with 7136
Test is used as a common-mode reference level to ensure compatibility with most op amps.

[^39]
APPLICATION NOTES

A016 "Selecting A/D Converters," by David Fullagar.
A017 "The Integrating A/D Converter," by Lee Evans.
A018 "Do's and Dont's of Applying A/D Converters," by Peter Bradshaw and Skip Osgood.
A023 "Low Cost Digital Panel Meter Designs," by David Fullagar and Michael Dufort.
A032 "Understanding the Auto-Zero and Common-Mode Behavior of the ICL7106/7/9 Family," by Peter Bradshaw.
A046 "Building a Battery-Operated Auto Ranging DVM with the ICL7106," by Larry Goff.
A047 "Games People Play with Intersil's A/D Converters," edited by Peter Bradshaw.
A052 "Tips for Using Single-Chip 3½-Digit A/D Converters," by Dan Watson.

7136 EVALUATION KIT

After purchasing a sample of the 7136, the majority of users will want to build a simple voltmeter. The parts can then be evaluated against the data sheet specifications, and tried out in the intended application.
To facilitate evaluation of this unique circuit, Intersil is offering a kit which contains all the necessary components to build a $31 / 2$-digit panel meter. With the ICL7136EV/Kit and the small number of additional components required, an engineer or technician can have the system "up and running" in about half an hour. The kit contains a circuit board, a display (LCD), passive components, and miscellaneous hardware.

GENERAL DESCRIPTION

The Intersil ICL7137 is a high performance, very low power $31 / 2$-digit A/D converter. All the necessary active devices are contained on a single CMOS IC, including seven-segment decoders, display drivers, reference, and clock. The 7137 is designed to interface with a light emitting diode (LED) display. The supply current (exclusive of display) is under $200 \mu \mathrm{~A}$, ideally suited for battery operation.
The 7137 brings together an unprecedented combination of high accuracy, versatility, and true economy. The device features auto-zero to less than $10 \mu \mathrm{~V}$, zero drift of less than $1 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$, input bias current of 10 pA max., and rollover error of less than one count. The versatility of true differential input and reference is useful in all systems, but gives the designer an uncommon advantage when measuring load cells, strain gauges and other bridge-type transducers. And finally the true economy of the ICL7137 allows a high performance panel meter to be built with the addition of only 10 passive components and a display.
The ICL7137 is an improved version of the ICL7107, eliminating the overrange hangover and hysteresis effects, and should be used in its place in all applications, changing only the passive component values.

FEATURES

- First-Reading Recovery From Overrange allows Immediate "OHMS" Measurement
- Guaranteed Zero Reading for OV Input
- True Polarity at Zero for Precise Null Detection
- 1pA Typical Input Current
- True Differential Input and Reference
- Direct LED Display Drive - No External Components Required
- Pin Compatible With The ICL7107
- Low Noise $-15 \mu \mathrm{Vp}-\mathrm{p}$ Without Hysteresis or Overrange Hangover
- On-Chip Clock and Reference
- Improved Rejection of Voltage On COMMON Pin
- No Additional Active Circuits Required
- Evaluation Kit Available ICL7137EV/Kit

ORDERING INFORMATION*

Part Number	Temperature Range	Package
ICL7137CPL	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	40 -Pin Plastic
ICL7137RCPL	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	40 -Pin Plastic
ICL7137EV/KIT		EVALUATION KIT

Figure 1: Functional Diagram

[^40]ABSOLUTE MAXIMUM RATINGS

Power Dissipation (Note 2)
Ceramic Package 1000mW
Plastic Package . 800 mW
Operating Temperature . $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature............... $.5^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10sec) 300³
Note 1: Input voltages may exceed the supply voltages, provided the input current is limited to $\pm 100 \mu \mathrm{~A}$.
Note 2: Dissipation rating assumes device is mounted with all leads soldered to printed circuit board.
NOTE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS
(Note 3)

Parameter	Test Conditions	Min	Typ	Max	Unit
Zero Input Reading	$\begin{aligned} & V_{\text {IN }}=0.0 \mathrm{~V} \\ & \text { Full-Scale }=200.0 \mathrm{mV} \end{aligned}$	-000.0	± 000.0	+000.0	Digital Reading
Ratiometric Reading	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {REF }}, \mathrm{V}_{\text {REF }}=100 \mathrm{mV}$	998	999/1000	1000	Digital Reading
Roll-Over Error (Difference in reading for equal positive and negative reading near full-scale)	$-\mathrm{V}_{\mathrm{IN}}=+\mathrm{V}_{\mathrm{IN}} \cong 200.0 \mathrm{mV}$	-1	± 0.2	+1	Counts
Linearity (Max. deviation from best straight line fit)	Full-scale $=200 \mathrm{mV}$ or Full-Scale $=2.000 \mathrm{~V}$	-1	± 0.02	+1	Counts
Common-Mode Rejection Ratio (Note 4)	$\begin{aligned} & V_{C M}= \pm 1 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=0 \mathrm{~V} \\ & \text { Full-Scale }=200.0 \mathrm{mV} \end{aligned}$		30		$\mu \mathrm{V} / \mathrm{V}$
Noise (Pk-Pk value not exceeded 95\% of time)	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$, Full-Scale $=200.0 \mathrm{mV}$		15		$\mu \mathrm{V}$
Leakage Current @ Input	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$		1	10	pA
Zero Reading Drift	$\mathrm{V}_{1 \mathrm{~N}}=0 \mathrm{~V}, 0^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<+70^{\circ} \mathrm{C}$		0.2	1	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Scale Factor Temperature Coefficient	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=199.0 \mathrm{mV}, 0^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<+70^{\circ} \mathrm{C} \\ & \text { (Ext. Ref. Oppm } /{ }^{\circ} \mathrm{C} \text {) } \end{aligned}$		1	5	ppm/ ${ }^{\circ} \mathrm{C}$
V+Supply Current (Does not Include LED current)	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$ (Note 5)		70	200	$\mu \mathrm{A}$
V-Supply current			40		
Analog COMMON Voltage (With respect to positive supply)	250k Ω between Common and Positive Supply	2.4	2.8	3.2	V
Temp. Coeff. of Analog COMMON (With respect to positive supply)	250k Ω between Common and Positive Supply		150		ppm $/{ }^{\circ} \mathrm{C}$
Segment Sinking Current (Except Pins 19 \& 20) (Pin 19 only) (Pin 20 only)	$\begin{aligned} & \mathrm{V}+=5.0 \mathrm{~V} \\ & \text { Segment } \text { Voltage }=3 \mathrm{~V} \end{aligned}$	$\begin{gathered} 5 \\ 10 \\ 4 \end{gathered}$	$\begin{gathered} 8.0 \\ 16 \\ 7 \end{gathered}$		mA
Power Dissipation Capacitance	vs. Clock Frequency		40		pF

NOTES: 3 . Unless otherwise noted, specifications apply at $T_{A}=25^{\circ} \mathrm{C}, \mathrm{f}_{\text {clock }}=16 \mathrm{kHz}$ and are tested in the circuit of Figure 4.
4. Refer to "Differential Input" discussion.
5. 48 kHz oscillator, Figure 5 , increases current by $35 \mu \mathrm{~A}$ (typ).
6. Extra capacitance of CERDIP package changes oscillator resistor value to $470 \mathrm{k} \Omega$ or $150 \mathrm{k} \Omega$ (1 reading $/ \mathrm{sec}$ or $3 \mathrm{readings} / \mathrm{sec}$).

TEST CIRCUITS

DETAILED DESCRIPTION (Analog Section)

Figure 1 shows the Functional Diagram of the Analog Section for the ICL7137. Each measurement cycle is divided into four phases. They are 1) auto-zero (A-Z), 2) signal integrate (INT), 3) de-integrate (DE) and 4) zero-integrator (ZI).

AUTO-ZERO PHASE

During auto-zero three things happen. First, input high and low are disconnected from the pins and internally shorted to analog COMMON. Second, the reference capacitor is charged to the reference voltage. Third, a feedback loop is closed around the system to charge the auto-zero capacitor, $\mathrm{C}_{A Z}$, to compensate for offset voltages in the buffer amplifier, integrator, and comparator. Since the comparator is included in the loop, the A-Z accuracy is limited only by the noise of the system. In any case, the offset referred to the input is less than $10 \mu \mathrm{~V}$.

SIGNAL INTEGRATE PHASE

During signal integrate, the auto-zero loop is opened, the internal short is removed, and the internal input high and low are connected to the external pins. The converter then integrates the differential voltage between IN HI and IN LO for a fixed time. This differential voltage can be within a wide common-mode range; within 1V of either supply. If, on the other hand, the input signal has no return with respect to the converter power supply, IN LO can be tied to analog COMMON to establish the correct common-mode voltage. At the end of this phase, the polarity of the integrated signal is determined.

[^41]
DE-INTEGRATE PHASE

The next phase is de-integrate, or reference integrate. Input low is internally connected to analog COMMON and input high is connected across the previously charged reference capacitor. Circuitry within the chip ensures that the capacitor will be connected with the correct polarity to cause the integrator output to return to zero. The time required for the output to return to zero is proportional to the input signal. Specifically; the digital reading displayed is $1000\left(V_{I N} / V_{\text {REF }}\right)$.

ZERO INTEGRATOR PHASE

The final phase is zero integrator. First, input low is shorted to analog COMMON. Second, the reference capacitor is charged to the reference voltage. Finally, a feedback loop is closed around the system to input high to cause the integrator output to return to zero. Under normal conditions, this phase lasts for between 11 to 140 clock pulses, but after a "heavy" overrange conversion, it is extended to 740 clock pulses.

Differential Input

The input can accept differential voltages anywhere within the common-mode range of the input amplifier; or specifically from 0.5 V below the positive supply to 1.0 V above the negative supply. In this range the system has a CMRR of 90 dB typical. However, since the integrator also swings with the common-mode voltage, care must be exercised to assure the integrator output does not saturate. A worst case condition would be a large positive common-mode voltage with a near full-scale negative differential input voltage. The negative input signal drives the integrator positive when most of its swing has been used up by the positive com-mon-mode voltage. For these critical applications the integrator swing can be reduced to less than the recommended 2 V full-scale swing with little loss of accuracy. The integrator output can swing within 0.3 V of either supply without loss of linearity.

Differential Reference

The reference voltage can be generated anywhere within the power supply voltage of the converter. The main source of common-mode error is a roll-over voltage caused by the reference capacitance losing or gaining charge to stray capacity on its nodes. If there is a large common-mode voltage, the reference capacitor can gain charge (increase voltage) when called up to de-integrate a positive signal but lose charge (decrease voltage) when called up to de-integrate a negative input signal. This difference in reference for $(+)$ or $(-)$ input voltage will give a roll-over error. However, by selecting the reference capacitor large enough in comparison to the stray capacitance, this error can be held to less than 0.5 count for the worst case condition (see Component Value Selection).

Analog Common

This pin is included primarily to set the common-mode voltage for battery operation or for any system where the input signals are floating with respect to the power supply. The COMMON pin sets a voltage that is approximately 3.0 V more negative than the positive supply. This is selected to give a minimum end-of-life battery voltage of about 6 V .

However, analog COMMON has some of the attributes of a reference voltage. When the total supply voltage is large enough to cause the zener to regulate ($>7 \mathrm{~V}$), the COMMON voltage will have a low voltage coefficient $(0.001 \% /$ $\%$), low output impedance ($\cong 35 \Omega$), and a temperature coefficient typically less than $150 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$.

The limitations of the on-chip reference should also be recognized, however. The reference temperature coefficient (TC) can cause some degradation in performance. Temperature changes of $2^{\circ} \mathrm{C}$ to $8^{\circ} \mathrm{C}$, typical for instruments, can give a scale factor error of a count or more. Also, the COMMON voltage will have a poor voltage coefficient when the total supply voltage is less than that which will cause the zener to regulate ($<7 \mathrm{~V}$). These problems are eliminated if an external reference is used, as shown in Figure 6.

Analog COMMON is also used as the input low return during auto-zero and de-integrate. If IN LO is different from analog COMMON, a common-mode voltage exists in the system and is taken care of by the excellent CMRR of the converter. However, in some applications IN LO will be set at a fixed known voltage (power supply common for instance). In this application, analog COMMON should be tied to the same point, thus removing the common-mode vnitage from the converter. The same holds true for the reference voltage. If the reference can be conveniently referred to analog COMMON, it should be since this removes the common-mode voltage from the reference system.

[^42]Within the IC, analog COMMON is tied to an N channel FET which can sink $100 \mu \mathrm{~A}$ or more of current to hold the voltage 3.0V below the positive supply (when a load is trying to pull the common line positive). However, there is only $1 \mu \mathrm{~A}$ of source current, so COMMON may easily be tied to a more negative voltage, thus overriding the internal reference.

TEST

The TEST pin is coupled to the internal digital supply through a 500Ω resistor, and functions as a "lamp test." When TEST is pulled high (to V^{+}) all segments will be turned on and the display should read - 1888. The TEST pin will sink about 10 mA under these conditions.

DISPLAY FONT

DETAILED DESCRIPTION (Digital Section)

Figure 7 shows the digital section for the 7137. The segments are driven at 8 mA , suitable for instrument size common anode LED displays. Since the 1000 output (pin 19) must sink current from two LED segments, it has twice the drive capability or 16 mA . The polarity indication is "ON" for negative analog inputs. If IN LO and IN HI are reversed, this indication can be reversed also, if desired.

Figure 8 shows a method of increasing the output drive current, using four DM7407 Hex Buffers. Each buffer is capable of sinking 40 mA .

[^43]
System Timing

Figure 9 shows the clock oscillator provided in the 7137. Three basic clocking arrangements can be used:

1. An external oscillator connected to pin 40.
2. A crystal between pins 39 and 40.
3. An RC oscillator using all three pins.

The oscillator frequency is divided by four before it clocks the decade counters. It is then further divided to form the four convert-cycle phases. These are signal integrate (1000 counts), reference de-integrate (0 counts to 2000 counts), zero integrator (11 counts to 140 counts*) and auto-zero (910 counts to 2900 counts). For signals less than fullscale, auto-zero gets the unused portion of reference de-integrate and zero integrator. This makes a complete measure cycle of 4000 (16,000 clock pulses) independent of input voltage. For three readings/second, an oscillator frequency of 48 kHz would be used.

To achieve maximum rejection of 60 Hz pickup, the signal integrate cycle should be a multiple of the 60 Hz period. Oscillator frequencies of $60 \mathrm{kHz}, 48 \mathrm{kHz}, 40 \mathrm{kHz}, 331 / 3 \mathrm{kHz}$, etc. should be selected. For 50 Hz rejection, oscillator frequencies of $66^{2} / 3 \mathrm{kHz}, 50 \mathrm{kHz}, 40 \mathrm{kHz}$, etc. would be suitable. Note that 40 kHz (2.5 readings/second) will reject both 50 Hz and 60 Hz (also 400 Hz and 440 Hz .) See also A052.
*After an overranged conversion of more than 2060 counts, the zero integrator phase will last 740 counts, and auto-zero will last 260 counts.

COMPONENT VALUE SELECTION

(See Application Note A052)

Integrating Resistor

Both the buffer amplifier and the integrator have a class A output stage with $6 \mu \mathrm{~A}$ of quiescent current. They can supply $\sim 1 \mu \mathrm{~A}$ of drive current with negligible non-linearity. The integrating resistor should be large enough to remain in this very linear region over the input voltage range, but small enough that undue leakage requirements are not placed on the PC board. For 2 V full-scale, $1.8 \mathrm{M} \Omega$ is near optimum, and similarly $180 \mathrm{k} \Omega$ for a 200.0 mV scale.

Integrating Capacitor

The integrating capacitor should be selected to give the maximum voltage swing that ensures tolerance build-up will not saturate the integrator swing (approx. 0.3 V from either
supply). When the analog COMMON is used as a reference, a nominal $\pm 2 \mathrm{~V}$ full-scale integrator swing is fine. For three readings/second (48 kHz clock) nominal values for $\mathrm{C}_{\text {INT }}$ are $0.047 \mu \mathrm{~F}$, for 1 reading $/$ second (16 kHz) $0.15 \mu \mathrm{~F}$. Of course, if different oscillator frequencies are used, these values should be changed in inverse proportion to maintain the same output swing.
The integrating capacitor should have low dielectric absorption to prevent roll-over errors. While other types may be adequate for this application, polypropylene capacitors give undetectable errors at reasonable cost.

Auto-Zero Capacitor

The size of the auto-zero capacitor has some influence on the noise of the system. For 200 mV full-scale where noise is very important, a $0.47 \mu \mathrm{~F}$ capacitor is recommended. The ZI phase allows a large auto-zero capacitor to be used without causing the hysteresis or overrange hangover problems that can occur with the ICL7107 or ICL7117 (See Application Note A032).

Reference Capacitor

A $0.1 \mu \mathrm{~F}$ capacitor gives good results in most applications. However, where a large common-mode voltage exists (i.e., the REF LO pin is not at analog COMMON) and a 200 mV scale is used, a larger value is required to prevent roll-over error. Generally, $1.0 \mu \mathrm{~F}$ will hold the roll-over error to 0.5 count in this instance.

Oscillator Components

For all ranges of frequency a 50 pF capacitor is recommended and the resistor is selected from the approximate equation $f \cong 0.45 / R C$. For 48 kHz clock (3 readings/second), $R=180 \mathrm{k} \Omega$, while for 16 kHz (1 reading/sec), $R=560 \mathrm{k} \Omega$.

Reference Voltage

The analog input required to generate full-scale output (2000 counts) is: $\mathrm{V}_{\mathrm{IN}}=2 \mathrm{~V}_{\text {REF }}$. Thus, for the 200.0 mV and $2,000 \mathrm{~V}$ scale, $\mathrm{V}_{\text {REF }}$ should equal 100.0 mV and 1.000 V , respectively. However, in many applications where the A/D is connected to a transducer, there will exist a scale factor other than unity between the input voltage and the digital reading. For instance, in a weighing system, the designer might like to have a full-scale reading when the voltage from the transducer is 0.682 V . Instead of dividing the input down to 200.0 mV , the designer should use the input voltage directly and select $V_{\text {REF }}=0.341 \mathrm{~V}$. A suitable value for the integrating resistor would be $330 \mathrm{k} \Omega$. This makes the system slightly quieter and also avoids the necessity of a divider network on the input. Another advantage of this system occurs when a digital reading of zero is desired for $\mathrm{V}_{\mathrm{IN}^{\prime}} \neq 0$. Temperature and weighing systems with a variable tare are examples. This offset reading can be conveniently generated by connecting the voltage transducer between IN HI and COMMON and the variable (or fixed) offset voltage between COMMON and IN LO.

TYPICAL APPLICATIONS

The 7137 may be used in a wide variety of configurations. The circuits which follow show some of the possibilities, and serve to illustrate the exceptional versatility of these A / D converters.

0344-13
Figure 12: Recommended Component Values for 2.000V Full-Scale, 3 Readings/Sec.
For 1 reading/sec, change $\mathbf{C}_{\text {INT }}$, Rosc to values of Figure 11.

0344-14
Figure 13: 7137 with Zener Diode Reference.
Since low TC zeners have breakdown voltages $\sim 6.8 \mathrm{~V}$, diode must be placed across the total supply (10V). As in the case of Figure 11, IN LO may be tied to COMMON.

0344-15

Figure 14: 7137 Operated from Single +5 V Supply.

An external reference must be used in this application, since the voltage between $V+$ and

0344-16
Figure 15: Measuring Ratiometric Values of Quad Load Cell.
The resistor values within the bridge are determined by the desired sensitivity. \mathbf{V} - is insufficient for correct operation of the internal reference.

Figure 16: Circuit for developing Underrange and Overrange signals from outputs.
The LM339 is required to ensure logic compatibility with heavy display loading.

[^44]

0344-18
Figure 17: AC to DC Converter with 7137

APPLICATION NOTES

A016 "Selecting A/D converters," by David Fullagar.
A017 "The Integrating A/D Converter," by Lee Evans.
A018 "Do's and Dont's of Applying A/D Converters," by Peter Bradshaw and Skip Osgood.
A023 "Low Cost Digital Panel Meter Designs," by David Fullagar and Michael Dufort.
A032 "Understanding the Auto-Zero and Common-Mode Behavior of the ICL7106/7/9 Family," by Peter Bradshaw.
A046 "Building a Battery-Operated Auto Ranging DVM with the ICL7106," by Larry Goff.
A047 "Games People Play with Intersil's A/D Converters" edited by Peter Bradshaw.
A052 "Tips for Using Single-Chip 3½-Digit A/D Converters," by Dan Watson.

ICL7137 EVALUATION KITS

After purchasing a sample of the 7137, the majority of users will want to build a simple voltmeter. The parts can then be evaluated against the data sheet specifications, and tried out in the intended application.

To facilitate evaluation of this unique circuit, Intersil is offering a kit which contains all the necessary components to build a $31 / 2$-digit panel meter. With the ICL7137EV/Kit, an engineer or technician can have the system "up and running" in about half an hour. The kit contains a circuit board, LED display, passive components, and miscellaneous hardware.

[^45]
GENERAL DESCRIPTION

The Intersil ICL7139 is a high performunce, lawopower, auto-ranging digital multimeter IC. Unlike ofther autoranging multimeter ICs, the ICL7139 always displays the result of a conversion on the correct range. There is no "range hunting" noticeable in the display. The unit will autorange between the four different ranges. A manual switch is used to select the 2 high group ranges. DC current ranges are 4 mA and 40 mA in the low current group, 400 mA and 4 A in the high current group. Resistance measurements are made on 4 ranges, which are divided into two groups. The low resistance ranges are $4 / 40$ kilohms. High resistance ranges are $0.4 / 4$ megohms. Resolution on the lowest range is 1 ohm.
Ranges
ORDERING INFORMATION

Part Number	Temperature Range	Package
ICL7139CPL	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	40 Pin Plastic DIP
${ }^{*} \mathrm{ICL} 7139 \mathrm{CM} 44$	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	44 Pin Surface Mount

*Consult Factory for Details.

Figure 1: Pin Configuration

FEATURES

- 13 Ranges:

4 DC Voltage-400 mV, 4V, 40V, 400V
1 AC Voltage-400V
4 DC Current-4 mA, $40 \mathrm{~mA}, 400 \mathrm{~mA}, 4 \mathrm{~A}$
4 Resistance-4 K $\Omega, 40 \mathrm{~K} \Omega, 400 \mathrm{~K} \Omega, 4 \mathrm{M} \Omega$

- Autoranging-First Reading is Always on Correct Range
- On-Chip Duplex LCD Display Drive Including Three Decimal Points and 11 Annunciators
- No Additional Active Components Required
- Low Power Dissipation-Less than 20 mW -1000 Hour Typical Battery Life
- Average Responding Converter for Sinewave Inputs
- Display Hold Input
- Continuity Output Drives Piezoelectric Beeper
- Low Battery Annunciator with On-Chip Detection
- Guaranteed Zero Reading for 0 Volts Input on All

[^46]
ABSOLUTE MAXIMUM RATINGS

Supply Voltage (V+ to V^{-})15V
Reference Input Voltage (VREF to COM) 3 V
Analog Input Current................................ $100 \mu \mathrm{~A}$
($\mathbb{N}+$ Current or $\operatorname{IN}+$ Voltage)
Clock Input Swing \qquad . ${ }^{+}$to $\mathrm{V}^{+}-3$
Power Dissipation (Plastic Package) 800 mW
Operating Temperature Range $.0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

Storage Temperature Range $\ldots \ldots \ldots . .-65^{\circ} \mathrm{C}$ to $+130^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec) $300^{\circ} \mathrm{C}$
NOTE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS $\mathrm{V}^{+}=+9.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\text {REF }}$ adjusted for -3.700 reading on DC volts, test circuit as shown in Figure 3. Crystal $=120 \mathrm{kHz}$.

Parameter	Test Conditions	Min	Typ	Max	Units
Zero Input Reading	$\mathrm{V}_{\text {IN }}$ or $\mathrm{I}_{\text {IN }}$ or $\mathrm{R}_{\text {IN }}=0.00$	-00.0		+00.0	V, I, Ohms
Rollover Error (Note 1)	$\mathrm{V}_{\mathbb{I N}}$ or $\mathrm{I}_{\mathbb{N}}= \pm$ Full Scale1		4		Counts
Linearity (Best Straight Line) (Note 6)		-1		+1	Counts
Accuracy DC V, 400 Volt Range Only				± 1	$\%$ of RDG + 1
Accuracy DC V, 400 Volt Range Excluded				± 0.2	$\%$ of RDG +1
Accuracy Ohms, 4K and 400K Range				± 0.5	$\%$ of RDG +8
Accuracy Ohms, 40K and 4 Meg Range				± 1	$\%$ of RDG +9
Accuracy DC I, Unadjusted for FS				± 0.5	$\%$ of RDG +1
Accuracy DC I, Adjusted for FS				± 0.2	$\%$ of RDG +1
Accuracy AC V (Note 5)	@60 Hz		± 2		\% of RDG
Open Circuit Voltage for Ohms Measurements	RUNKNOWN $=$ Infinity		$\mathrm{V}_{\text {REF }}$		V
Noise (Note 2,95\% of Time)	$\mathrm{V}_{\text {IN }}=0, \mathrm{DC}$ Volts		0.1		LSB
Noise (Note 2, 95\% of Time)	$\mathrm{V}_{\text {IN }}=0, A C$ Volts		4		LSB
Supply Current	$\mathrm{V}_{\text {IN }}=0, \mathrm{DC}$ Voltage Range		1.5	2.4	mA
Analog Common (with Respect to V^{+})	ICOMMON < $10 \mu \mathrm{~A}$	2.7	2.9	3.1	V
Temperature Coefficient of Analog Common	ICOMMON $<10 \mu \mathrm{~A}$, Temp $=0-70^{\circ} \mathrm{C}$		-100		$\mathrm{ppm} /{ }^{\circ} \mathrm{C}$
Output Impedance of Analog Common	ICOMMON $<100 \mu \mathrm{~A}$		1	10	Ohms
Backplane/Segment Drive Voltage	Average DC < 50 mV	2.8	3.0	3.2	V
Backplane/Segment Display Frequency			75		Hz
Switch Input Current (Note 3)	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}^{+}$to $\mathrm{V}-$	-50		+50	$\mu \mathrm{A}$
Switch Input Levels (High Trip Point)		$\mathrm{V}+-0.5$		V+	V
Switch Input Levels (Mid Trip Point)		V - + 3		$V+-2.5$	V
Switch Input Levels (Low Trip Point)		V -		$V-+0.5$	V
Beeper Output Drive (Rise or Fall Time)	$C_{\text {LOAD }}=10 \mathrm{nF}$		25	100	$\mu \mathrm{S}$
Beeper Output Frequency			2		kHz
Continuity Detect	Range $=$ Low Ohms, $\mathrm{V}_{\text {REF }}=1.00 \mathrm{~V}$	500		2000	Counts
Power Supply Functional Operation	$\mathrm{V}+$ to V -	7	9	11	V
Low Battery Detect (Note 4)	$\mathrm{V}+$ to V -	6.5	7	7.5	V

NOTE 1: Rollover is defined as absolute value of negative reading minus absolute value of positive reading.
2: Noise is defined as the width of the uncertainty window (where the display will flicker) between two adjacent codes.
3: Applies to pins 17-20.
4: Analog Common falls out of regulation when the Low Battery Detect is asserted, however the ICL7139 will continue to operate correctly with a supply voltage above 7 volts and below 11 volts.
5: For 50 Hz use a 100 kHz crystal.
6: Guaranteed by design, not tested.
RDG $=$ Reading
INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. the warranty shall be exclusive and shall be in lieu of all other warranties, express, implied or statutory, including the implied warranties of MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.
NOTE: All typical values have been characterized but are not tested.

Figure 3: ICL7139 Test Circuit

Table 1: Pin Numbers and Function

1/0	Pin Number	Pin Function
0	1	Segment Driver POL/AC
0	2	Backplane 2
0	3	Backplane 1
1	4	V+
1	5	V-
1	6	Reference Input
0	7	Lo Ohms
0	8	Hi Ohms
1/0	9	Deintegrate
$1 / 0$	10	Analog Common
1	11	Int I
1	12	Int V/Ohms
1	13	Triple Point
1	14	Auto Zero Capacitor ($\mathrm{C}_{A Z}$)
1	15	Integrate Capacitor ($\mathrm{C}_{\text {INT }}$)
0	16	Beeper Output
1	17	$\mathrm{mA} / \mu \mathrm{A}$
1	18	Ohms/V/A
1	19	Hi Ohms DC/Lo Ohms AC
1	20	Hold
0	21	Oscillator Out
1	22	Oscillator In
0	23	Segement DRIVER k/m
0	24	Segment Driver Ohms/A
0	25	Segment Driver M Ohms/ $\mu \mathrm{A}$
0	26	Segment Driver Lo Bat/V
0	27	Segment Driver $\mathrm{B}_{0} / \mathrm{C}_{0}$
0	28	Segment Driver A_{0} / D_{0}
0	29	Segment Driver $\mathrm{G}_{0} / \mathrm{E}_{0}$
0	30	Segment Driver $\mathrm{F}_{0} / \mathrm{DP}_{1}$
0	31	Segment Driver $\mathrm{B}_{1} / \mathrm{C}_{1}$
0	32	Segment Driver A_{1} / D_{1}
0	33	Segment Driver G_{1} / E_{1}
0	34	Segment Driver $\mathrm{F}_{1} / \mathrm{DP}_{1}$
0	35	Segment Driver $\mathrm{B}_{2} / \mathrm{C}_{2}$
0	36	Segment Driver $\mathrm{A}_{2} / \mathrm{D}_{2}$
0	37	Segment Driver $\mathrm{G}_{2} / \mathrm{E}_{2}$
0	38	Segment Driver $\mathrm{F}_{2} / \mathrm{DP}_{3}$
0	39	Segment Driver $\mathrm{B}_{3} / \mathrm{C}_{3}$
0	40	Segment Driver $\mathrm{ADG}_{3} / \mathrm{E}_{3}$

NOTE: For segment drivers, segments are listed as (segment for backplane 1)/(segment for backplane 2). Example: pin 27; segment B_{0} is on backplane 1 , segment C_{0} is on backplane 2.

DETAILED DESCRIPTION

General

Figure 2 is a simplified block diagram of the ICL7139. The digital section includes all control logic, counters, and display drivers. The digital section is powered by $\mathrm{V}+$ and Digital Common, which is about 3V below $\mathrm{V}+$. The oscillator is also in the digital section. Normally 120 kHz for rejection of 60 Hz AC interference and 100 kHz for rejection of 50 Hz AC, the oscillator output is divided by two to generate the internal master clock. The analog section contains the integrator, comparator, reference section, analog buffers, and several analog switches which are controlled by the digital logic. The analog section is powered from V^{+}and V^{-}.

DC VOLTAGE MEASUREMENT

Autozero

Only those portions of the analog section which are used during DC voltage measurements are shown in Figure 5. As shown in the timing diagram (Figure 6), each measurement starts with an autozero (AZ) phase. During this phase, the integrator and comparator are configured as unity gain buffers and their non-inverting inputs are connected to Common. The output of the integrator, which is equal to its offset, is stored on $\mathrm{C}_{A Z}$-the autozero capacitor. Similarly, the offset of the comparator in stored in $\mathrm{C}_{\mathrm{INT}}$. The autozero cycle equals 1000 clock cycles which is one 60 Hz line cycle with a 120 kHz oscillator or one 50 Hz line cycle with a 100 kHz crystal.

Range 1 Integrate

The ICL7139 performs a full autorange search for each reading, beginning with range 1 . During the range 1 integrate period, internal switches connect the INT V/Ohm terminal to the Triple Point (Pin 13). The input signal is integrated for 10 clock cycles, which are gated out over a period of 1000 clock cycles to ensure good normal mode rejection of AC line interference.

Range 1 Deintegrate

At the beginning of the deintegrate cycle, the polarity of the voltage on the integrator capacitor ($\mathrm{C}_{\mathrm{INT}}$) is checked, and either the DEINT + or DEINT ${ }^{-}$is asserted. The integrator capacitor $\mathrm{C}_{I N T}$ is then discharged with a current equal to $V_{\text {REF }} /$ RDEINT. The Themparator monitors the voltage on $\mathrm{C}_{\mathrm{INT}}$. When the voltage on $\mathrm{C}_{\mathrm{INT}}$ is reduced to zero (actually to the $\mathrm{V}_{\text {OS }}$ of the comparator), the comparator output switches, and the current count is latched. If the $\mathrm{C}_{\mathrm{INT}}$ voltage zero-crossing does not occur before 4000 counts have elapsed, the overload flag is set. "OL" (overload) is then displayed on the LCD. If the latched result is between 360 and 3999, the count is transferred to the output latches and is displayed. When the count is less than 360, an underrange has occurred, and the ICL7139 then switches to range 2-the 40 V scale.

Range 2

The range 2 measurement begins with an autozero cycle similar to the one that preceded range 1 integration. Range 2 cycle length however, is one AC line cycle, minus 360 clock cycles. When performing the range 2 cycle, the signal is integrated for 100 clock cycles, distributed throughout
one line cycle. This is done to maintain good normal mode rejection. Range 2 sensitivity is ten times greater than range 1 (100 vs. 10 clock cycle integration) and the full scale voltage of range 2 is 40 V . The range 2 deintegrate cycle is identical to the range 1 deintegrate cycle, with the result being displayed only for readings greater than 360 counts. If the reading is below 360 counts, the ICL7139 again asserts the internal underrange signal and proceeds to range 3.

Range 3

The range 3 or 4 V full scale measurement is identical to the range 2 measurement, except that the input signal is integrated during the full 1000 clock cycles (one line frequency cycle). The result is displayed if the reading is greater than 360 counts. Underrange is asserted, and a range 4 measurement is performed if the result is below 360 counts.

Range 4

This measurement is similar to the range 1,2 and 3 measurements, except that the integration period is 10,000 clock cycles (10 line cycles) long. The result of this mea-
surement is transferred to the output latches and displayed even if the reading is less than 360.

Autozero

After finding the first range for which the reading is above 360 counts, the display is updated and an autozero cycle is entered. The length of the autozero cycle is variable which results in a fixed measurement period of 24,000 clock cycles (24 line cycles).

Figure 5: Detailed Circuit Diagram for DC Voltage Measurement
INTERSIL'S SOLE AND EXCLUSIVE WARRANTY ObLIGATION WITH RESPECT TO THIS PRODUCT SHALL bE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. the warranty shall be exclusive and shall be in lieu of all other warranties, express, implied or statutory, including the implied warranties of MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

NOTE: All typical values have been characterized but are not tested.

DC CURRENT

Figure 7 shows a simplified block diagram of the analog section of the ICL7139 during DC current measurement. The DC current measurements are very similar to DC voltage measurements except: 1) The input voltage is developed by passing the input current through a 0.1 ohm (HI current ranges), or 9.9 ohm (LOW current ranges) current sensing resistor; 2) Only those ranges with 1000 and 10,000 clock cycles of integration are used; 3) The $\mathrm{R}_{\mathrm{INT} \mid}$ resistor is 1 megohm, rather than the 10 megohm value used for the $\mathrm{R}_{\text {INT }} \mathrm{V}$ resistor.

By using the lower value integration resistor, and only the 2 most sensitive ranges, the voltage drop across the current sensing resistor is 40 mV maximum on the 4 mA and 400 mA ranges; 400 mV maximum on the 40 mA and 4 A scales. With some increase in noise, these "burden" voltages can be reduced by lowering the value of both the current sense resistors and the R $\mathrm{R}_{\text {INT }}$ | resistor proportionally. The DC current measurement timing diagram is similar to the $D C$ voltage measurement timing diagram, except in the DC current timing diagram, the first and second integrate and deintegrate phases are skipped.

[^47]
AC VOLTAGE MEASUREMENT

As shown in Figure 8, the AC input voltage is applied directly to the ICL7139 input resistor. No separate AC to DC conversion circuitry is needed. The AC measurement cycle is begun by disconnecting the integrator capacitor and using the integrator as an autozeroed comparator to detect the positive-going zero crossing. Once synchronized to the AC input, the autozero loop is closed and a normal integrate/deintegrate cycle begins. The ICL7139 resynchronizes itself to the AC input prior to every reading. Because diode D4 is in series with the integrator capacitor, only positive current from the integrator flows into the integrator capacitor, $\mathrm{C}_{\mathrm{INT}}$. Since the voltage on $\mathrm{C}_{\mathrm{INT}}$ is proportional to the half-wave rectified average AC input voltage, a conversion factor must be applied to convert the reading to RMS. This conversion factor is $\pi / \sqrt{2}=1.107$, and the system clock is manipulated to perform the RMS conversion. As a result the deintegrate and autozero cycle times are reduced by 10%.

Ratiometric Ohms Measurement

The ratiometric ohms measurement is performed by first integrating the voltage across an unknown resistor, Rx, then
effectively deintegrating the voltage across a known resistor (RKNOWN1 or RKNOWN2 of Figure 9). The shunting effect of RINTV does not affect the reading because it cancels exactly between integration and deintegration. Like the current measurements, the ohm measurements are split into two sets of ranges. LO ohms measurements use a 10 kilohm reference resistor, and the full scale ranges are 4 and 40 kilohms. HI ohms measurements use a 1 megohm reference resistor, and the full scale ranges are 0.4 and $4 \mathrm{me}-$ gohms. The measurement phases and timing are the same as the measurement phases and timing for DC current except: 1) During the integrate phases the input voltage is the voltage across the unknown resistor Rx, and; 2) During the deintegate phases, the input voltage is the voltage across the reference resistor RKNOWN1 or R RNOWN2.

Continuity Indication

When the ICL7139 is in the LO ohms measurement mode, the continuity circuit of Figure 10 will be active. When the voltage across Rx is less than approximately 100 mV , the beeper output will be on. When R3 is 10 kilohms, the beeper output will be on when Rx is less than 1 kilohm.

0079-7
Figure 7: Detailed Circuit Diagram for DC Current Measurement

[^48]
Common Voltage

The analog and digital common voltages of the ICL7139 are generated by an on-chip resistor/zener/diode combination, shown in Figure 11. The resistor values are chosen so the coefficient of the diode voltage cancels the positive temperature coefficient of the zener voltage. This voltage is then buffered to provide the analog common and the digital common voltages. The nominal voltage between V^{+}and analog common is 3 V . The analog common buffer can sink about 20 mA , or source 0.01 mA , with an output impedance of 10 ohms. A pullup resistor to V^{+}may be used if more sourcing capability is desired. Analog common may be used to generate the reference voltage, if desired.

Oscillator

The ICL7139 uses a parallel resonant-type crystal in a Pierce oscillator configuration, as shown in Figure 12, and requires no other external components. The crystal eliminates the need to trim the oscillator frequency. An external signal may be capacitively coupled in OSC IN, with a signal level between 0.5 and 3 V pk-pk. Because the OSC OUT
pin is not designed to drive large external loads, loading on this pin should not exceed a single CMOS input. The oscillator frequency is internally divided by two to generate the ICL7139 clock. The frequency should be 120 kHz to reject 60 Hz AC signals, and 100 kHz to reject 50 Hz signals.

Display Drivers

Figure 13 shows typical LCD Drive waveforms, RMS ON, and RMS OFF voltage calculations. Duplex multiplexing is used to minimize the number of connections between the ICL7139 and the LCD. The LCD has two separate backplanes. Each drive line can drive two individual segments, one referenced to each backplane. The ICL7139 drives $33 / 4$ 7 -segment digits, 3 decimal points, and 11 annunciators. Annunciators are used to indicate polarity, low battery condition, and the range in use. Peak drive voltage across the display is approximately $3 V$. An LCD with approximately 1.4V RMS threshold voltage should be used. The third voltage level needed for duplex drive waveforms is generated through an on-chip resistor string. The DC component of the drive waveforms is guaranteed to be less than 50 mV .

[^49]
Ternary Input

The Ohms/Volts/Amps logic input is a ternary, or 3-level input. This input is internally tied to the common voltage through a high-value resistor, and will go to the middle, or "Volts" state, when not externally connected. When connected to V^{-}, approximately $5 \mu \mathrm{~A}$ of current flows out of the input. In this case, the logic level is the "Amps", or low state. When connected to V^{+}, about $5 \mu \mathrm{~A}$ of current flows into the input. Here, the logic level is the "Ohms", or high state. For other pins, see Table 2.

Table 2: Ternary Inputs Connections

Pin Number	$\mathbf{v}+$	OPEN or COM	$\mathbf{v}-$
17	mA	$\mu \mathrm{~A}$	Test
18	Ohms	Volts	Amps
19	$\mathrm{Hi} \Omega / \mathrm{DC}$	Lo $\Omega / A C$	Test
20	Hold	Auto	Test

COMPONENT SELECTION

For optimum performance while maintaining the low-cost advantages of the ICL7139, care must be taken when selecting external components. This section reviews specifications and performance effects of various external components.

Integrator Capacitor, C $_{\text {INT }}$

As with all dual-slope integrating convertors, the integration capacitor must have low dielectric absorption to reduce linearity errors. Polypropylene capacitors add undetectable errors at a reasonable cost, while polystyrene and polycarbonate may be used in less critical applications. The

ICL7139 is designed to use a $3.3 \mathrm{nF}(0.0033 \mu \mathrm{~F}) \mathrm{C}_{\text {INT }}$ with an oscillator frequency of 120 kHz and an RINTV of 10 megohms. With a 100 kHz oscillator frequency (for 50 Hz line frequency rejection), $\mathrm{C}_{\text {INT }}$ and RINTV affects the voltage swing of the integrator. Voltage swing should be as high as possible without saturating the integrator. Saturation occurs when the integrator output is within 1 V of either V^{+}or V^{-}. Integrator voltage swing should be about $\pm 2 \mathrm{~V}$ when using standard component values. For different RINTV and oscillator frequencies the value of $\mathrm{C}_{\mathrm{INT}}$ can be calculated from:

$$
\begin{aligned}
\mathcal{C}_{\text {INT }} & =\frac{(\text { Integrate Time }) \times(\text { Integrate Current })}{(\text { Desired Integrator Swing) }} \\
& =\frac{(10,000 \times 2 \times \text { Oscillator Period }) \times 0.4 \mathrm{~V} / \text { R }_{\text {INTV }}}{(2 \mathrm{~V})}
\end{aligned}
$$

Integrator Resistors

The normal values of the RINT V and $\mathrm{R}_{\text {INT }}$, resistors are 10 megohms and 1 megohm respectively. Though their absolute values are not critical, unless the value of the current sensing resistors are trimmed, their ratio should be 10:1, within 0.05%. Some carbon composition resistors have a large voltage coefficient which will cause linearity errors on the 400 V scale. Also, some carbon composition resistors are very noisy. The class " A " output of the integrator begins to have nonlinearities if required to sink more than $70 \mu \mathrm{~A}$ (the sourcing limit is much higher). Because RINT V drives a virtual ground point, the input impedance of the meter is equal to RINT v.

Deintegration Resistor, RDEINT

Unlike most dual-slope A/D converters, the ICL7139 uses different resistors for integration and deintegration. RDEINT should normally be the same value as RiNTV, and have the same temperature coefficient. Slight errors in matching may be corrected by trimming the reference voltage.

Figure 9: Detailed Circuit Diagram for Ratiometric Ohms Measurement

[^50]
Autozero Capacitor, C_{Az}

The $C_{A Z}$ is charged to the integrator's offset voltage during the autozero phases, and subtracts that voltage from the input signal during the integrate phases. The integrator thus appears to have zero offset voltage. Minimum $\mathrm{C}_{A Z}$ value is determined by: 1) Circuit leakages; 2) $C_{A Z}$ self-discharge; 3) Charge injection from the internal autozero switches. To avoid errors, the $\mathrm{C}_{A Z}$ voltage change should be less than $1 / 10$ of a count during the 10,000 count clock cycle integration period for the 400 mV range. These requirements set a lower limit of $0.047 \mu \mathrm{~F}$ for $\mathrm{C}_{A Z}$ but $0.1 \mu \mathrm{~F}$ is the preferred value. The upper limit on the value of $C_{A Z}$ is set by the time constant of the autozero loop, and the 1 line cycle time period allotted to autozero. $\mathrm{C}_{A Z}$ may be several 10s of microfarads before approaching this limit.

The ideal $\mathrm{C}_{A Z}$ is a low leakage polypropylene or Teflon capacitor. Other film capacitors such as polyester, polystyrene, and polycarbonate introduce negligible errors. If a few seconds of settling time upon power-up is acceptable, the $C_{A Z}$ may be a ceramic capacitor, provided it does not have excessive leakage.

Ohms Measurement Resistors

Because the ICL7139 uses a ratiometric ohms measurement technique, the accuracy of ohms reading is primarily determined by the absolute accuracy of the RKNOWN1 and Rknown2. These should normally be 10 kilohms and 1 megohm, with an absolute accuracy of at least 0.5%.

Current Sensing Resistors

The 0.1 ohm and 9.9 ohm current sensing resistors convert the measured current to a voltage, which is then measured using RINT ।. The two resistors must be closely matched, and the ratio between $\mathrm{R}_{\text {INT }}$ I and these two resistors must be accurate-normally 0.5%. The 0.1 ohm resistor must be capable of handling the full scale current of 4 amps, which requires it to dissipate 1.6 watts.

Continuity Beeper

The Continuity Beeper output is designed to drive a piezoelectric transducer at 2 kHz (using a 120 kHz crystal), with a voltage output swing of V^{+}to V^{-}. The beeper output off state is at the V^{+}rail. When crystals with different frequencies are used, the frequency needed to drive the transducer can be calculated by dividing the crystal frequency by 60.

Display

The ICL7139 uses a custom, duplexed drive display with range, polarity, and low battery annunciators. With a 3 volt peak display voltage, the RMS ON voltage will be 2.37 V minimum; RMS OFF voltage will be 1.06 V maximum. Because the display voltage is not adjustable, the display should have a 10% ON threshold of about 1.4 V . Most display manufacturers supply a graph that shows contrast versus RMS drive voltage. This graph can be used to determine what the contrast ratio will be when driven by the ICL7139. Most display thresholds decrease with increasing temperature. The threshold at the maximum operating temperature should be checked to ensure that the "off" segments will not be turned "on" at high temperatures.

NOTE 1: The ICL7139 contains a comparator that is enabled on the lowest ohms range. It trips at approximately $1 / 4$ of the full scale value of that range and enables the beeper driver to oscillate (between V^{-}and V^{+}) at 2 kHz . The beeper driver is capable of driving a piezo-electric transducer. The beeper output response is independent of the state of the conversion; therefore appears instantaneous to the user. Some applications may require a 150 pF capacitor between pin 4 and pin 8 to insure a sharp on/off continuity detection.

0079-11
Figure 11: Analog and Digital Common Voltage Generator Circuit

Crystal

The ICL7139 is designed to use a parallel resonant 120 kHz or 100 kHz crystal with no additional external components. The Rs parameter should be less than 25 kilohms to ensure oscillation. Initial frequency tolerance of the crystal can be a relatively loose 0.05%.

Switches

Because the logic input draws only about $5 \mu \mathrm{~A}$, switches driving these inputs should be rated for low current, or "dry" operations. The switches on the external inputs must be able to reliably switch low currents, and be able to handle voltages in excess of 400 V AC .

Reference Voltage Source

A voltage divider connected to V^{+}and Common is the simplest source of reference voltage. While minimizing external component count, this approach will provide the same voltage tempco as the ICL7139 Common-about 100 PPM $/{ }^{\circ} \mathrm{C}$. To improve the tempco, an ICL8069 bandgap reference may be used (see Figure 14). The reference voltage source output impedance must be $\leq \mathrm{R}_{\text {DEINT }} / 4000$.

Applications, Examples, and Hints

A complete autoranging $33 / 4$ digit multimeter is shown in Figure 15. The following sections discuss the functions of specific components and various options.

Meter Protection

The ICL7139 and its external circuitry should be protected against accidental application of $110 / 220 \mathrm{~V}$ AC line voltages on the ohms and current ranges. Without the necessary precautions, both the 7139 and its external components could be damaged under such fault conditions. For the current ranges, fast-blow fuses should be used between S5A in Figure 15 and the 0.1 ohm and 9.9 ohm shunt resistors. For the ohms ranges, no additional protection circuitry is required. However, the 10 kilohm resistor connected to pin 7 must be able to dissipate 1.2 W or 4.8 W for short periods of time during accidental application of 110 V or 220 V AC line voltages respectively.

0079-12
Figure 12: Internal Oscillator Circuit Diagram

Printed Circuit Board Layout Considerations

Particular attention must be paid to rollover performance, leakages, and guarding when designing the PCB for a ICL7139-based multimeter.

Rollover Performance, Leakages, and Guarding

Because the ICL7139 system measures very low currents, it is essential that the PCB have low leakage. Boards should be properly cleaned after soldering. Areas of particular importance are: 1) The INT V/ Ω and INT I Pins; 2) The Triple Point; 3) The R REINT and the $\mathrm{C}_{A Z}$ pins.
The conversion scheme used by the ICL7139 changes the common mode voltage on the integrator and the capacitors $\mathrm{C}_{A Z}$ and $\mathrm{C}_{\text {INT }}$ during a positive deintegrate cycle. Stray capacitance to ground is charged when this occurs, removing some of the charge on $\mathrm{C}_{\mathrm{INT}}$ and causing rollover error. Rollover error increases about 1 count for each picofarad of capacitance between $\mathrm{C}_{A Z}$ or the Triple Point and ground, and is seen as a zero offset for positive voltages. Rollover error is not seen as gain error.

The rollover error causes the width of the +0 count to be larger than normal. The ICL7139 will thus read zero until several hundred microvolts are applied in the positive direction. The ICL7139 will read -1 when approximately $-100 \mu \mathrm{~V}$ is applied.

The rollover error can be minimized by guarding the Triple Point and $\mathrm{C}_{A Z}$ nodes with a trace connected to the $\mathrm{C}_{\mathrm{INT}}$ pin, which is driven by the output of the integrator. Guarding these nodes with the output of the integrator reduces the stray capacitance to ground, which minimizes the charge error on $\mathrm{C}_{\text {INT }}$ and $\mathrm{C}_{A Z}$. If possible, the guarding should be used on both sides of the PC board.

Stray Pickup

While the ICL7139 has excellent rejection of line frequency noise and pickup in the DC ranges, any stray coupling will effect the AC reading. Generally, the analog circuitry should be as close as possible to the ICL7139. The analog circuitry should be removed or shielded from any 120V AC power inputs, and any AC sources such as LCD drive waveforms. Keeping the analog circuit section close to the ICL7139 will also help keep the area free of any loops, thus reducing magnetically coupled interference coming from power transformers, or other sources.

[^51]

Figure 14: External Voltage Reference Connection to ICL7139

NOTE 1: Crystal is a Statek or SaRonix CX-IV type.
2: Multimeter protection components have not been shown.
3: Display is from LXD, part number 38D3R02H.
4: Beeper is from muRata, part number PKM24-4A0.

[^52]

Figure 16: PC Board Layout

GENERAL DESCRIPTION

The Intersil ICL7149 is a high performince, lawo power, autoranging digital multimeter IC. Unlike other autoranging multimeter ICs, the ICL7149 always displays the result of a conversion on the correct range. There is no "range hunting" noticeable in the display. The unit will autorange between the four different ranges in the DC voltage, DC current and resistance measurement modes. A manual switch is used to select the 2 high group ranges. DC current ranges are 4 mA and 40 mA in the low current group, 400 mA and 4 A in the high current group. Resistance measurements are made on 4 ranges, which are divided into two groups. The low resistance ranges are $4 / 40$ kilohms. High resistance ranges are 0.4/4 megohms. Resolution on the lowest range is 1 ohm .

FEATURES

- 18 Ranges:

4 DC Voltage- $\mathbf{4 0 0} \mathrm{mV}, 4 \mathrm{~V}, 40 \mathrm{~V}, 400 \mathrm{~V}$ 2 AC Voltage-with Optional AC Circuit 4 DC Current-4 mA, $40 \mathrm{~mA}, 400 \mathrm{~mA}, 4 \mathrm{~A}$ 4 AC Current with Optional AC Circuit 4 Resistance-4 k $\Omega, 40 \mathrm{k} \Omega, 400 \mathrm{k} \Omega, 4 \mathrm{M} \Omega$

- Autoranging-First Reading is Always on Correct Range
- On-Chip Duplex LCD Display Drive Including Three Decimal Points and 11 Annunciators
- Low Power Dissipation-Less than $\mathbf{2 0} \mathbf{~ m W}$-1000 Hour Typical Battery Life
- Display Hold Input
- Continuity Output Drives Piezoelectric Beeper
- Low Battery Annunciator with On-Chip Detection
- Guaranteed Zero Reading for 0 Volts Input on All Ranges
ORDERING INFORMATION

Part Number	Temperature Range	Package
ICL7149CPL	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	40 Pin Plastic DIP
${ }^{*} \mathrm{ICL} 7149 \mathrm{CM} 44$	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	44 Pin Surface Mount

[^53]Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $+130^{\circ} \mathrm{C}$ Lead Temperature (Soldering, 10 sec) $300^{\circ} \mathrm{C}$

NOTE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS $\mathrm{V}^{+}=+9.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\text {REF }}$ adjusted for -3.700 reading on DC volts, test circuit as shown in Figure 3. Crystal Frequency $=120 \mathrm{kHz}$.

Parameter	Test Conditions	Min	Typ	Max	Units
Zero Input Reading	$\mathrm{V}_{\text {IN }}$ or $\mathrm{lin}^{\text {or }} \mathrm{R}_{\text {IN }}=0.00$	-00.0		+00.0	V, I, Ohms
Rollover Error (Note 1)	$\mathrm{V}_{\text {IN }}$ or $\mathrm{l}_{\mathrm{IN}}= \pm$ Full Scale		4		Counts
Linearity (Best Straight Line) (Note 5)		-1		+1	Counts
Accuracy DC V, 400 Volt Range Only				± 1	\% of RDG + 1
Accuracy DC V, 400 Volt Range Excluded				± 0.2	$\%$ of RDG + 1
Accuracy Ohms, 4 K and 400K Range				± 0.5	$\%$ of RDG + 8
Accuracy Ohms, 40K and 4Meg Range				± 1	\% of RDG + 9
Accuracy DC I, Unadjusted for FS				± 0.5	$\%$ of RDG + 1
Accuracy DC I, Adjusted for FS				± 0.2	$\%$ of RDG + 1
Open Circuit Voltage for Ohms Measurements	RUNKNOWN $=$ Infinity		$\mathrm{V}_{\text {REF }}$		V
Noise (Note 2, 95\% of Time)	$\mathrm{V}_{\mathrm{IN}}=0, \mathrm{DC}$ Volts		0.1		LSB
Supply Current	$\mathrm{V}_{\text {IN }}=0, \mathrm{DC}$ Voltage Range		1.5	2.4	mA
Analog Common (with Respect to V^{+})	ICOMMON < $10 \mu \mathrm{~A}$	2.8	3.0	3.2	V
Temperature Coefficient of Analog Common	$\begin{aligned} & \text { ICOMMON }<10 \mu \mathrm{~A}, \\ & \text { Temp }=0^{\circ} \mathrm{C}-70^{\circ} \mathrm{C} \end{aligned}$		-100		$\mathrm{ppm} /{ }^{\circ} \mathrm{C}$
Output Impedance of Analog Common	ICOMMON $<100 \mu \mathrm{~A}$		1	10	Ohms
Backplane/Segment Drive Voltage	Average DC $<50 \mathrm{mV}$	2.7	2.9	3.1	V
Backplane/Segment Display Frequency			75		Hz
Switch Input Current (Note 3)	$\mathrm{V}_{\text {IN }}=\mathrm{V}^{+}$to V^{-}	-50		+50	$\mu \mathrm{A}$
Switch Input Levels (High Trip Point)		$\mathrm{V}^{+}-0.5$		V+	V
Switch Input Levels (Mid Trip Point)		$\mathrm{V}^{-}+3$		$\mathrm{V}^{+}-2.5$	V
Switch Input Levels (Low Trip Point)		V-		$\mathrm{V}-+0.5$	V
Beeper Output Drive (Rise or Fall Time)	$\mathrm{C}_{\text {LOAD }}=10 \mathrm{nF}$		25	100	$\mu \mathrm{s}$
Beeper Output Frequency			2		kHz
Continuity Detect	$\begin{aligned} & \text { Range }=\text { Low Ohms, } \\ & V_{\text {REF }}=1.00 \mathrm{~V} \\ & \hline \end{aligned}$	500		2000	Counts
Power Supply Functional Operation	$\mathrm{V}+$ to V^{-}	7	9	11	V
Low Battery Detect (Note 4)	$\mathrm{V}+$ to $\mathrm{V}-$	6.5	7	7.5	V

NOTE 1: Rollover is defined as absolute value of negative reading minus absolute value of positive reading.
2: Noise is defined as the width of the uncertainty window (where the display will flicker) between two adjacent codes.
3: Applies to pins 17-20.
4: Analog Common falls out of regulation when the Low Battery Detect is asserted, however the ICL7149 will continue to operate correctly with a supply voltage above 7 volts and below 11 volts.
5: Guaranteed by design, not tested.
RDG $=$ Reading

[^54]

0094-2
Figure 2: Functional Diagram

INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.
NOTE: All typical values have been characterized but are not tested.

Table 1: Pin Numbers and Functions

1/0	Pin Number	Pin Function
0	1	Segment Driver, POL/AC
0	2	Backplane 2
0	3	Backplane 1
I	4	V+
1	5	V-
1	6	Reference Input
0	7	Lo Ohms
0	8	Hi Ohms
1/0	9	Deintegrate
1/0	10	Analog Common
1	11	Int I
1	12	Int V/Ohms
1	13	Triple Point
1	14	Auto Zero Capacitor ($\mathrm{C}_{\text {AZ }}$)
1	15	Integrate Capacitor ($\mathrm{C}_{\text {INT }}$)
0	16	Beeper Output
1	17	$\mathrm{mA} / \mu \mathrm{A}$
1	18	Ohms/V/A
1	19	Hi Ohms-DC/Lo Ohms-AC
1	20	Hold
0	21	Oscillator Out
1	22	Oscillator In
0	23	Segment Driver k/m
0	24	Segment Driver Ohms/A
0	25	Segment Driver M Ohms/ $\mu \mathrm{A}$
0	26	Segment Driver Lo Bat/V
0	27	Segment Driver $\mathrm{B}_{0} / \mathrm{C}_{0}$
0	28	Segment Driver $\mathrm{A}_{0} / \mathrm{D}_{0}$
0	29	Segment Driver $\mathrm{G}_{0} / \mathrm{E}_{0}$
0	30	Segment Driver $\mathrm{F}_{0} / \mathrm{DP}_{1}$
0	31	Segment Driver $\mathrm{B}_{1} / \mathrm{C}_{1}$
0	32	Segment Driver $\mathrm{A}_{1} / \mathrm{D}_{1}$
0	33	Segment Driver $\mathrm{G}_{1} / \mathrm{E}_{1}$
0	34	Segment Driver $\mathrm{F}_{1} / \mathrm{DP}_{1}$
0	35	Segment Driver $\mathrm{B}_{2} / \mathrm{C}_{2}$
0	36	Segment Driver A_{2} / D_{2}
0	37	Segment Driver $\mathrm{G}_{2} / \mathrm{E}_{2}$
0	38	Segment Driver $\mathrm{F}_{2} / \mathrm{DP}_{3}$
0	39	Segment Driver $\mathrm{B}_{3} / \mathrm{C}_{3}$
0	40	Segment Driver $\mathrm{ADG}_{3} / \mathrm{E}_{3}$

NOTE: For segment drivers, segments are listed as (segment for backplane 1)/(segment for backplane 2). Example: pin 27; segment BO is on backplane 1, segment CO is on backplane 2.

DETAILED DESCRIPTION

General

Figure 2 is a simplified block diagram of the ICL7149. The digital section includes all control logic, counters, and display drivers. The digital section is powered by V^{+}and Digital Common, which is about 3 V below $\mathrm{V}+$. The oscillator is also in the digital section. Normally 120 kHz for rejection of 60 Hz AC interference and 100 kHz for rejection of 50 Hz AC , the oscillator output is divided by two to generate the internal master clock. The analog section contains the integrator, comparator, reference section, analog buffers, and several analog switches which are controlled by the digital logic. The analog section is powered from V^{+}and V^{-}.

DC VOLTAGE MEASUREMENT

Autozero

Only those portions of the analog section which are used during DC voltage measurements are shown in Figure 5. As shown in the timing diagram (Figure 6), each measurement starts with an autozero (AZ) phase. During this phase, the integrator and comparator are configured as unity gain buffers and their non-inverting inputs are connected to Common. The output of the integrator, which is equal to its offset, is stored on $\mathrm{C}_{A Z}$, the autozero capacitor. Similarly, the offset of the comparator is stored in $\mathrm{C}_{\mathrm{INT}}$. The autozero cycle equals 1000 clock cycles, which is one 60 Hz line cycle with a 120 kHz crystal, or one 50 Hz line cycle with a 100 kHz crystal.

Range 1 Integrate

The ICL7149 performs a full autorange search for each reading, beginning with range 1 . During the range 1 integrate period, internal switches connect the INT V/Ohm terminal to the Triple Point (Pin 13). The input signal is integrated for 10 clock cycles, which are gated out over a period of 1000 clock cycles to ensure good normal mode rejection of $A C$ line interference.

Range 1 Deintegrate

At the beginning of the deintegrate cycle, the polarity of the voltage on the integrator capacitor ($\mathrm{C}_{\mathrm{INT}}$) is checked, and either the DEINT + or DEINT ${ }^{-}$is asserted. The integrator capacitor $\mathrm{C}_{\mathrm{INT}}$ is then discharged with a current equal to $\mathrm{V}_{\text {REF }} / \mathrm{R}_{\text {DEINT. }}$. The comparator monitors the voltage on $\mathrm{C}_{\mathrm{INT}}$. When the voltage on $\mathrm{C}_{\text {INT }}$ is reduced to zero (actually to the $\mathrm{V}_{\text {OS }}$ of the comparator), the comparator output switches, and the current count is latched. If the $\mathrm{C}_{\text {INT }}$ voltage zero-crossing does not occur before 4000 counts have elapsed, the overload flag is set. "OL" (overload) is then displayed on the LCD. If the latched result is between 360 and 3999, the count is transferred to the output latches and is displayed. When the count is less than 360, an underrange has occurred, and the ICL7149 then switches to range 2-the 40 V scale.

Range 2

The range 2 measurement begins with an autozero cycle similar to the one that preceded range 1 integration. range 2 cycle length however, is one AC line cycle, minus 360 clock cycles. When performing the range 2 cycle, the signal is integrated for 100 clock cycles, distributed throughout one line cycle. This is done to maintain good normal mode rejection. Range 2 sensitivity is ten times greater than range 1 (100 vs 10 clock cycle integration) and the full scale voltage of range 2 is 40 V . The range 2 deintegrate cycle is identical to the range 1 deintegrate cycle, with the result being displayed only for readings greater than 360 counts. If the reading is below 360 counts, the ICL7149 again asserts the internal underrange signal and proceeds to range 3.

Range 3

The range 3 or 4 V full scale measurement is identical to the range 2 measurement, except that the input signal is integrated during the full 1000 clock cycles (one line frequency cycle). The result is displayed if the reading is greater than 360 counts. Underrange is asserted, and a range 4 measurement is performed if the result is below 360 counts.

Range 4

This measurement is similar to the range 1, 2 and 3 measurements, except that the integration period is 10,000 clock cycles (10 line cycles) long. The result of this measurement is transferred to the output latches and displayed even if the reading is less than 360.

Autozero

After finding the first range for which the reading is above 360 counts, the display is updated and an autozero cycle is entered. The length of the autozero cycle is variable which results in a fixed measurement period of 24,000 clock cycles (24 line cycles).

Figure 4: Display Segment Nomenclature

0094-5
Figure 5: Detailed Circuit Diagram for DC Voltage Measurement

[^55]

Figure 6: Timing Diagram for DC Voltage Measurement

DC CURRENT

Figure 7 shows a simplified block diagram of the analog section of the ICL7149 during DC current measurement. The DC current measurements are very similar to DC voltage measurements except: 1) The input voltage is developed by passing the input current through a $0.1 \mathrm{ohm}(\mathrm{HI}$ current ranges), or 9.9 ohm (LOW current ranges) current sensing resistor; 2) Only those ranges with 1000 and 10,000 clock cycles of integration are used; 3) The $\mathrm{R}_{\text {INT }}$ I resistor is 1 megohm, rather than the 10 megohm value used for the RINT v resistor.

By using the lower value integration resistor, and only the 2 most sensitive ranges, the voltage drop across the current sensing resistor is 40 mV maximum on the 4 mA and 400 mA ranges; 400 mV maximum on the 40 mA and 4 A scales. With some increase in noise, these "burden" voltages can be reduced by lowering the value of both the current sense resistors and the RINT I resistor proportionally. The DC current measurement timing diagram is similar to the $D C$ voltage measurement timing diagram, except in the DC current timing diagram, the first and second integrate and deintegrate phases are skipped.

AC VOLTAGE MEASUREMENT

The ICL7149 is designed to be used with an optional AC to DC voltage converter circuit. It will autorange through two voltage ranges (400 V and 40 V), and the AC annunciator is enabled as with the ICL7139. A typical averaging AC to DC converter is shown in Figure 8, while an RMS to DC converter is shown in Figure 9. AC current can also be measured with some simple modifications to either of the two circuits in Figures 8 and 9.

Ratiometric Ohms Measurement

The ratiometric ohms measurement is performed by first integrating the voltage across an unknown resistor, Rx, then effectively deintegrating the voltage across a known resistors (RKNOWN1 or RKNOWN2 of Figure 10). The shunting effect of RINTV does not affect the reading because it cancels exactly between integration and deintegration. Like the current measurements, the ohm measurements are split into two sets of two ranges. LO ohms measurements use a 10 kilohm reference resistor, and the full scale ranges are 4 and 40 kilohms. HI ohms measurements use a 1 megohm reference resistor, and the full scale ranges are 0.4 and 4 megohms. The measurement phases and timing are the same as the measurement phases and timing for DC current except: 1) During the integrate phases the input voltage is the voltage across the unknown resistor Rx, and; 2) During the deintegrate phases, the input voltage is the voltage across the reference resistor R RNOWN1 or RKNOWN2.

Continuity Indication

When the ICL7149 is in the LO ohms measurement mode, the continuity circuit of Figure 11 will be active. When the voltage across $R x$ is less than approximately 100 mV , the beeper output will be on. When R3 is 10 kilohms, the beeper output will be on when $R x$ is less than 1 kilohm.

Common Voltage

The analog and digital common voltages of the ICL7149 are generated by an on-chip resistor/zener/diode combination, shown in Figure 12. The resistor values are chosen so the coefficient of the diode voltage cancels the positive temperature coefficient of the zener voltage. This voltage is then buffered to provide the analog common and the digital common voltages. The nominal voltage between V^{+}and analog common is 3 V . The analog common buffer can sink about 20 mA , or source 0.01 mA , with an output impedance of 10 ohms. A pullup resistor to $\mathrm{V}+$ may be used if more sourcing capability is desired. Analog common may be used to generate the reference voltage, if desired.

Oscillator

The ICL7149 uses a parallel resonant-type crystal in a Pierce oscillator configuration, as shown in Figure 13, and requires no other external components. The crystal eliminates the need to trim the oscillator frequency. An external signal may be capacitively coupled to OSC IN, with a signal level between 0.5 V and 3 V pk-pk. Because the OSC OUT pin is not designed to drive large external loads, loading on this pin should not exceed a single CMOS input. The oscillator frequency is internally divided by two to generate the ICL7149 clock. The frequency should be 120 kHz to reject 60 Hz AC signals, and 100 kHz to reject 50 Hz signals.

Display Drivers

Figure 14 shows typical LCD Drive waveforms, RMS ON, and RMS OFF voltage calculations. Duplex multiplexing is used to minimize the number of connections between the ICL7149 and the LCD. The LCD has two separate backplanes. Each drive line can drive two individual segments, one referenced to each backplane. The ICL7149 drives $33 / 4$ 7 -segment digits, 3 decimal points, and 11 annunciators. Annunciators are used to indicate polarity, low battery condition, and the range in use. Peak drive voltage across the display is approximately 3 V . An LCD with approximately 1.4V RMS threshold voltage should be used. The third voltage level needed for duplex drive waveforms is generated through an on-chip resistor string and the DC component of the drive waveforms is guaranteed to be less than 50 mV .

Ternary Input

The Ohms/Volts/Amps logic input is a ternary, or 3-level input. This input is internally tied to the common voltage through a high-value resistor, and will go to the middle, or "Volts" state, when not externally connected. When connected to V^{-}, approximately $5 \mu \mathrm{~A}$ of current flows out of the input. In this case, the logic level is the "Amps", or low state. When connected to V^{+}, about $5 \mu \mathrm{~A}$ of current flows into the input. Here, the logic level is the "Ohms", or high state. For other pins, see Table 2.

Table 2: Ternary Inputs Connections

Pin Number	$\mathbf{v}+$	OPEN or COM	\mathbf{v}^{-}
17	mA	$\mu \mathrm{~A}$	Test
18	Ohms	Volts	Amps
19	Hi Ω / DC	Lo Ω / AC	Test
20	Hold	Auto	Test

[^56]
COMPONENT SELECTION

For optimum performance while maintaining the low-cost advantages of the ICL7149, care must be taken when selecting external components. This section reviews specifications and performance effects of various external components.

Integrator Capacitor, C $_{\text {INT }}$

As with all dual-slope integrating convertors, the integration capacitor must have low dielectric absorption to reduce linearity errors. Polypropylene capacitors add undetectable errors at a reasonable cost, while polystyrene and polycarbonate may be used in less critical applications. The ICL7149 is designed to use a $3.3 \mathrm{nF}(0.0033 \mu \mathrm{~F}) \mathrm{C}_{\text {INT }}$ with
an oscillator frequency of 120 kHz and an RINTV of 10 megohms. With a 100 kHz oscillator frequency (for 50 Hz line frequency rejection), both $\mathrm{C}_{\text {INT }}$ and RINTV affect the voltage swing of the integrator. Voltage swing should be as high as possible without saturating the integrator, which occurs when the integrator output is within 1 V of either $\mathrm{V}+$ or $\mathrm{V}-$. Integrator voltage swing should be about $\pm 2 \mathrm{~V}$ when using standard component values. For different $\mathrm{R}_{\text {INTV }}$ and oscillator frequencies the value of $\mathrm{C}_{\mathrm{INT}}$ can be calculated from:

$$
\begin{aligned}
\mathrm{C}_{\mathrm{INT}} & =\frac{(\text { Integrate Time }) \times \text { (Integrate Current) }}{(\text { Desired Integrator Swing) }} \\
& =\frac{(10,000 \times 2 \times \text { Oscillator Period }) \times 0.4 \mathrm{~V} / \mathrm{R}_{\text {INTV }}}{(2 \mathrm{~V})}
\end{aligned}
$$

0094-7
Figure 7: Detailed Circuit Diagram for DC Current Measurement

[^57]

NOTE: Diodes are low-leakage ID100.
Figure 8: AC Voltage Measurement Using Optional Averaging Circuit

[^58]

0094-10
Figure 10: Detailed Circuit Diagram for Ratiometric Ohms Measurement

0094-11

NOTE: The ICL7139 contains a comparator that is enabled on the lowest ohms range. It trips at approximately $1 / 4$ of the full scale value of that range and enables the beeper driver to oscillate (between V^{-}and V^{+}) at 2 kHz . The beeper driver is capable of driving a piezo-electric transducer. The beeper output response is independent of the state of the conversion; therefore appears instantaneous to the user. Some applications may require a 150 pF capacitor between pin 4 and pin 8 to insure a sharp on/off continuity detection.

[^59]
Integrator Resistors

The normal values of the RINT v and RINTI resistors are 10 megohms and 1 megohm respectively. Though their absolute values are not critical, unless the value of the current sensing resistors are trimmed, their ratio should be 10:1, within 0.05%. Some carbon composition resistors have a large voltage coefficient which will cause linearity errors on the 400V scale. Also, some carbon composition resistors are very noisy. The class " A " output of the integrator begins to have nonlinearities if required to sink more than $70 \mu \mathrm{~A}$ (the sourcing limit is much higher). Because $\mathrm{R}_{\text {INT }}$ v drives a virtual ground point, the input impedance of the meter is equal to $\mathrm{R}_{\text {INT }} \mathrm{v}$.

Deintegration Resistor, RDEINT

Unlike most dual-slope A/D converters, the ICL7149 uses different resistors for integration and deintegration. RDEINT should normally be the same value as RINTV, and have the same temperature coefficient. Slight errors in matching may be corrected by trimming the reference voltage.

Autozero Capacitor, CAZ

The $\mathrm{C}_{A Z}$ is charged to the integrator's offset voltage during the autozero phases, and subtracts that voltage from the input signal during the integrate phases. The integrator thus appears to have zero offset voltage. Minimum $C_{A Z}$ value is determined by: 1) Circuit leakages; 2) $\mathrm{C}_{A Z}$ self-discharge; 3) Charge injection from the internal autozero switches. To avoid errors, the $\mathrm{C}_{A Z}$ voltage change should be less than $1 / 10$ of a count during the 10,000 count clock cycle integration period for the 400 mV range. These requirements set a lower limit of $0.047 \mu \mathrm{~F}$ for C_{AZ} but $0.1 \mu \mathrm{~F}$ is the preferred value. The upper limit on the value of $\mathrm{C}_{A Z}$ is set by the time constant of the autozero loop, and the line cycle time period allotted to autozero. $C_{A Z}$ may be several 10 s of microfarads before approaching this limit.

The ideal $\mathrm{C}_{A Z}$ is a low leakage polypropylene or Teflon capacitor. Other film capacitors such as polyester, polystyrene, and polycarbonate introduce negligible errors. If a few seconds of settling time upon power-up is acceptable, the C_{AZ} may be a ceramic capacitor, provided it does not have excessive leakage.

Ohms Measurement Resistors

Because the ICL7149 uses a ratiometric ohms measurement technique, the accuracy of ohms reading is primarily determined by the absolute accuracy of the RKNOWN1 and Rknown2. These should normally be 10 kilohms and 1 megohm, with an absolute accuracy of at least 0.5%.

Current Sensing Resistors

The 0.1 ohm and 9.9 ohm current sensing resistors convert the measured current to a voltage, which is then measured using RINT I. The two resistors must be closely matched, and the ratio between $\mathrm{R}_{\text {INT }}$ and these two resistors must be accurate-normally 0.5%. The 0.1 ohm resistor must be capable of handling the full scale current of 4 amps, which requires it to dissipate 1.6 watts.

Continuity Beeper

The Continuity Beeper output is designed to drive a piezoelectric transducer at 2 kHz (using a 120 kHz crystal), with a voltage output swing of $\mathrm{V}+$ to $\mathrm{V}-$. The beeper output off state is at the V^{+}rail. When crystals with different frequencies are used, the frequency needed to drive the transducer can be calculated by dividing the crystal frequency by 60.

Display

The ICL7149 uses a custom, duplexed drive display with range, polarity, and low battery annunciators. With a 3 volt peak display voltage, the RMS ON voltage will be 2.37 V minimum; RMS OFF voltage will be 1.06 V maximum. Because the display voltage is not adjustable, the display should have a 10% ON threshold of about 1.4 V . Most

Figure 12: Analog and Digital Common Voltage Generator Circuit
display manufacturers supply a graph that shows contrast versus RMS drive voltage. This graph can be used to determine what the contrast ratio will be when driven by the ICL7149. Most display thresholds decrease with increasing temperature, and the threshold at the maximum operating temperature should be checked to ensure that the "off" segments will not be turned "on" at high temperatures.

Crystal

The ICL7149 is designed to use a parallel resonant 120 kHz or 100 kHz crystal with no additional external components. The Rs parameter should be less than 25 kilohms to ensure oscillation. Initial frequency tolerance of the crystal can be a relatively loose 0.05%

Switches

Because the logic input draws only about $5 \mu \mathrm{~A}$, switches driving these inputs should be rated for low current, or "dry" operations. The switches on the external inputs must be able to reliably switch low currents, and be able to handle voltages in excess of 400 V AC.

Reference Voltage Source

A voltage divider connected to V^{+}and Common is the simplest source of reference voltage. While minimizing external component count, this approach will provide the same voltage tempco as the ICL7149 Common-about $100 \mathrm{PPM} /{ }^{\circ} \mathrm{C}$. To improve the tempco, an ICL8069 bandgap reference may be used (see Figure 15). The reference voltage source output impedance must be $\leq \mathrm{R}_{\text {DEINT }} / 4000$.

Applications, Examples, and Hints

A complete autoranging $33 / 4$ digit multimeter is shown in Figure 16. The following sections discuss the functions of specific components and various options.

Meter Protection

The ICL7149 and its external circuitry should be protected against accidental application of $110 / 220 \mathrm{~V}$ AC line voltages on the ohms and current ranges. Without the necessary precautions, both the 7149 and its external components could be damaged under such fault conditions. For the current ranges, fast-blow fuses should be used between S5A in Figure 16 and the 0.1 ohm and 9.9 ohm shunt resistors. For the ohms ranges, no additional protection circuitry is required. However, the 10 kilohm resistor connected to pin 7 must be able to dissipate 1.2 W or 4.8 W for short periods of time during accidental application of 110 V or 220 V AC line voltages respectively.

0094-13
Figure 13: Internal Oscillator Circuit Diagram

INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

NOTE: All typical values have been characterized but are not tested.

Printed Circuit Board Layout Considerations

Particular attention must be paid to rollover performance, leakages, and guarding when designing the PCB for a ICL7149-based multimeter.

Rollover Performance, Leakages, and Guarding

Because the ICL7139 system measures very low currents, it is essential that the PCB have low leakage. Boards should be properly cleaned after soldering. Areas of particular importance are: 1) The INT V/ Ω and INT I Pins; 2) The Triple Point; 3) The RDEINT and the $\mathrm{C}_{A Z}$ pins.

The conversion scheme used by the ICL7139 changes the common mode voltage on the integrator and the capacitors $\mathrm{C}_{A Z}$ and $\mathrm{C}_{\text {INT }}$ during a positive deintegrate cycle. Stray capacitance to ground is charged when this occurs, removing some of the charge on $\mathrm{C}_{\text {INT }}$ and causing rollover error. Rollover error increases about 1 count for each picofarad of capacitance between $\mathrm{C}_{A Z}$ or the Triple Point and ground, and is seen as a zero offset for positive voltages. Rollover error is not seen as gain error.

The rollover error causes the width of the +0 count to be larger than normal. The ICL7139 will thus read zero until several hundred microvolts are applied in the positive direction. The ICL7139 will read -1 when approximately $-100 \mu \mathrm{~V}$ are applied.
The rollover error can be minimized by guarding the Triple Point and $\mathrm{C}_{A Z}$ nodes with a trace connected to the $\mathrm{C}_{\text {INT }}$ pin, which is driven by the output of the integrator. Guarding these nodes with the output of the integrator reduces the stray capacitance to ground, which minimizes the charge error on $\mathrm{C}_{\text {INT }}$ and $\mathrm{C}_{A Z}$. If possible, the guarding should be used on both sides of the PC board.

Stray Pickup

While the ICL7149 has excellent rejection of line frequency noise and pickup in the DC ranges, any stray coupling will affect the AC reading. Generally, the analog circuitry should be as close as possible to the ICL7149. The analog circuitry should be removed or shielded from any 120V AC power inputs, and any AC sources such as LCD drive waveforms. Keeping the analog circuit section close to the ICL7149 will also help keep the area free of any loops, thus reducing magnetically coupled interference coming from power transformers, or other sources.

Figure 15: External Voltage Reference Connection to ICL7149

[^60]

0094-16

> S2 Closed: Hi Ω-DC
> S3 Closed: Hold Reading

Figure 16: Basic Multimeter Application Circuit for ICL7149

NOTE 1: Crystal is a Statek CX-1V type.
2: Multimeter protection components have not been shown.
3: Display is from LXD, part number 38D3R02H.
4: Beeper is from muRata, part number PKM24-4A0.

0094-17
Figure 17: PC Board Layout

[^61]
ICL7182

101 Segment LCD Bargraph

A/D Converter
 GENERAL DESCRIPTION
 FEATURES

The Intersil ICL7182 is a complete anaiog-to-digital converter (ADC) that directly drives a multiplexpedilquid crystal display (LCD). Included are a charge-balanced ADC, a 2.56 V bandgap reference, display decode and driver, and a 50 kHz oscillator. Only a display and three passive components are required for a complete analog bargraph.

The fully differential analog and reference inputs may be operated anywhere between and including the supply rails. This allows sensing either ground-referenced signals or bridge configurations. Linearity and zero offset errors are guaranteed to be less than 0.5% for a 1 V full-scale input. The full-scale differential input range is 200 mV to 1.1 V .

The low drift $50 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ reference is trimmed to 1.5% accuracy and, when used with a simple resistor divider, can set the full-scale input voltage. The reference, when used with an Intersil ICL7660, extends the operating supply range from 3 V to 40 V and allows sensing input signals below ground.

The backplane and segment drivers supply the LCD with the proper waveforms to create a discrete series of segments forming a 101 segment bar which is proportional to the input voltage, with a plus or minus annunciator to indicate the polarity. In addition, three independent TTL controllable annunciators are provided for limit or unit indication. The bargraph multiplexing scheme provides duplex contrast ratio and allows the complete system to be placed in a standard 40 pin DIP. The LCD operating voltage is externally set to adjust contrast for a range of fluid types and temperature.

The internal oscillator requires no external components and establishes the conversion rate and backplane clock frequency. The nominal conversion rate of 25 per second can be easily changed between 15 to 40 conversions per second by adding a single capacitor or overdriving the oscillator.

ORDERING INFORMATION

Part Number	Temperature Range	Package
ICL7182CPL	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	40 Pin Plastic
ICL7182IPL	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	40 Pin Plastic
${ }^{*}$ ICL 7182 CM 44	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	44 Pin Plastic

[^62]- 1\% Resolution ... 100 Data Segments Plus Zero
- No Missing Segments Guaranteed
- Single 5V Supply Operation
- Only Three Passive Components Required
- True Differential Input and Reference
- Direct LCD Display Drive Provides Duplex Contrast Ratio
- Overrange and Polarity Indication
- Three User Defined Annunclators-Easily Expandable
- Precision On-Chip Reference . . . 50 ppm/ ${ }^{\circ} \mathrm{C}$
- Low Average Power Consumption . . . 1.8 mW
- 40 Pin DIP or 44 Pin Surface Mount Package
- Extended Temperature Range Operation

ABSOLUTE MAXIMUM RATINGS
Supply Voltage (Vcc to V_{ss}) 10 V
Supply Voltage (V_{CC} to V_{DS}) 11 V
Display Drive Pin Voltage...... $\left(\mathrm{V}_{\mathrm{CC}}+0.3 \mathrm{~V}\right)$ to ($\mathrm{V}_{\mathrm{DS}}-0.3 \mathrm{~V}$)
Analog or Reference Inputs.... $\left(\mathrm{V}_{\mathrm{CC}}+0.3 \mathrm{~V}\right)$ to ($\mathrm{V}_{\mathrm{SS}}-0.3 \mathrm{~V}$)
Com, Osc, Ax, Ay,
Az, T1, T5 Pins. ($\mathrm{V}_{\mathrm{CC}}+0.3 \mathrm{~V}$) to ($\mathrm{V}_{\mathrm{SS}}-0.3 \mathrm{~V}$)
Reference Output Current .8 mA
Lead Temperature (Soldering, 10 sec). $.300^{\circ} \mathrm{C}$
Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Operating Temperature Range $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Continuous Total Power Dissipation ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$)
40 Pin DIP Plastic Package 500 mW
NOTE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS
Unless otherwise stated: $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=\mathrm{V}_{\mathrm{DS}}=\mathrm{GND}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$,
$\mathrm{V}_{\text {REF }}=1.000 \mathrm{~V}, \mathrm{VIN}_{\mathrm{CM}}=\mathrm{VREF}_{\mathrm{CM}}=2.5 \mathrm{~V}$, pin 6 open (Note 1)

Parameter	Test Conditions	Limits			Units
		Min	Typ	Max	
Zero Input Reading Unadjusted Gain Error Linearity Error Rollover Error Conversion Time Display Update Rate Input Referred Noise DC Power Supply Rejection	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=0.0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{REF}} \end{aligned}$ (Note 2) $V_{I N}=-V_{\text {REF }}(\text { Note } 3)$ (Note 4) $V_{C C}=4.5 \text { to } 6.0 \mathrm{~V}$	$\begin{gathered} -0 \\ -1 \\ -0.63 \\ -0.5 \end{gathered}$	$\begin{gathered} \pm 0 \\ \pm 0 \\ \pm 0.2 \\ \pm 0.1 \\ 400 \\ 25 \\ 500 \\ 0.02 \\ \hline \end{gathered}$	$\begin{gathered} +0 \\ +1 \\ +0.63 \\ +0.5 \end{gathered}$	$\begin{gathered} \hline \text { Segs } \\ \mu \mathrm{s} \\ \mathrm{~Hz} \\ \mu \mathrm{~V} \\ \text { Segs } / \mathrm{V} \\ \hline \end{gathered}$
ANALOG INPUT					
Common Mode Rejection Ratio Differential Mode Input Average Input Current	$\begin{aligned} & \mathrm{VIN}_{\mathrm{CM}}=0 \mathrm{~V} \text { to } 5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}} \cong 0 \mathrm{~V} \\ & \left.\mathrm{~V}_{\mathrm{IN}}=1.0 \mathrm{~V} \text { (Note } 5\right) \end{aligned}$		$\begin{gathered} 0.02 \\ 1.0 \\ 1.3 \\ \hline \end{gathered}$	$\begin{aligned} & 0.1 \\ & 1.1 \end{aligned}$	Segs/V V nA
REFERENCE INPUT					
Common Mode Rejection Ratio Average Input Current	$\begin{aligned} & \text { VREF }_{\text {CM }}=0.5 \mathrm{~V} \text { to } 4.5 \mathrm{~V} \\ & \text { (Note 6) } \end{aligned}$		$\begin{gathered} 0.01 \\ 6 \end{gathered}$	0.1	$\begin{gathered} \text { Segs/V } \\ \text { nA } \end{gathered}$
REFERENCE OUTPUT					
Output Voltage Temperature Coefficient Output Impedance Current Into VRout Pin Current Out of VRout Output Noise	$\begin{aligned} & V_{C C}-\text { VRout, lout }=0 \mu \mathrm{~A} \\ & -25^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<85^{\circ} \mathrm{C}, \text { lout }=0 \mu \mathrm{~A} \\ & \text { lout }=+10 \mu \mathrm{~A} \text { to }-2 \mathrm{~mA} \end{aligned}$ 0.1 Hz to 10 Hz (Note 4)	2.520 10	$\begin{gathered} 2.560 \\ 50 \\ 1.3 \\ 20 \\ 8 \\ 110 \\ \hline \end{gathered}$	$\begin{gathered} 2.590 \\ 200 \\ 5 \\ 2 \end{gathered}$	ppm $/{ }^{\circ} \mathrm{C}$ Ω $\mu \mathrm{A}$ mA $\mu \mathrm{V}$
POWER SUPPLY					
Supply Current Average Supply Current Peak Supply Voltage Range	(Note 6) (Note 6) Guaranteed by PSRR	4.5	$\begin{array}{r} 350 \\ 1.5 \\ 5.0 \\ \hline \end{array}$	$\begin{aligned} & 500 \\ & 2.0 \\ & 6.0 \end{aligned}$	$\mu \mathrm{A}$ mA V
OSCILLATOR					
Oscillator Frequency Backplane Frequency	Osc Pin Open Osc Pin Open	$\begin{aligned} & 26 \\ & 25 \end{aligned}$	$\begin{aligned} & 51 \\ & 50 \end{aligned}$	$\begin{aligned} & 72 \\ & 70 \end{aligned}$	$\begin{gathered} \mathrm{kHz} \\ \mathrm{~Hz} \end{gathered}$
DISPLAY DRIVE					
Display Output Impedance DC Component of Display $V_{D S}$ Supply Current	$\begin{aligned} & V_{C C}-V_{D S}=3 V \text { to } 7 V \\ & V_{C C}-V_{D S}=3 V \text { to } 7 V \\ & V_{C C}-V_{D S}=3 V \text { to } 7 V \text { (Note } 7 \text {) } \end{aligned}$	-50	$\begin{gathered} 70 \\ \pm 10 \\ 60 \\ \hline \end{gathered}$	$\begin{gathered} 200 \\ 50 \\ 120 \\ \hline \end{gathered}$	k Ω mV $\mu \mathrm{A}$

[^63]ELECTRICAL CHARACTERISTICS (Continued) Unless otherwise stated: $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=\mathrm{V}_{\mathrm{DS}}=\mathrm{GND}$,
$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\text {REF }}=1.000 \mathrm{~V}, \mathrm{VIN}_{\mathrm{CM}}=\mathrm{VREF}_{\mathrm{CM}}=2.5 \mathrm{~V}$, pin 6 open (Note 1)

NOTE 1: The differential mode input voltages are defined as: $\mathrm{V}_{\mathbb{N}}=(\mathbb{N} H I-I N L O)$ and $\mathrm{VREF}=($ REF HI - REF LO). The common mode input voltage, VIN $C M$ and VREF $_{\mathrm{CM}}$, is defined as the average differential input voltage with respect to ground.

2: The linearity error is the deviation from a straight line which passes through negative full scale and postive full scale readings.
3: The rollover error is defined as the difference in reading for equal positive and negative inputs near full-scale.
4: Peak to peak value not exceeded 95% of the time (± 2 standard deviations).
5: Defined as the average current flowing into the input with a $1.0 \mu \mathrm{~F}$ capacitor across $\mathrm{V}_{\mathbb{I N}}$ or $\mathrm{V}_{\mathrm{REF}}$ inputs and the common mode voltage at $1 / 2 \mathrm{VCC}$.
6: The average supply current is measured with a supply bypass capacitor and annunciator inputs tied to $\mathrm{V}_{\text {SS }}$.
7: The supply current for $V_{D S}$ flows from the $V_{C C}$ pin.

PIN DESCRIPTION AND FUNCTION

Pin No.	Symbol	Description
1	T5	Test pin \# 5, buffered oscillator frequency divided by two that can typically source and sink 2 mA .
2	Ax	Annunciator Segx select, low turns on Segx, high turns off Segx.
3	Ay	Annunciator Segy select, low turns on Segy, high turns off Segy.
4	Az	Annunciator Segz select, low turns on Segz, high turns off Segz.
5	T1	Test pin \# 1, normally left open or tied to $\mathrm{V}_{\text {SS }}$.
6	Osc	50 kHz free running oscillator control and clock input pin. The internal oscillator may be overdriven by a 30 to 80 kHz external clock driving pin 6, or the free running frequency can be reduced by adding an external capacitor between pin 6 and V_{CC}.
7	V_{CC}	Positive supply voltage.
8	VRout	Bandgap reference buffered output, down 2.56 V from V_{CC}.
9	REF HI	Positive Reference Input.
10	REF LO	Negative Reference Input.
11	IN HI	Positive Analog Input.
12	IN LO	Negative Analog Input.
13	Common	Internally generated voltage which is typically within $\pm 50 \mathrm{mV}$ of $1 / 2\left(\mathrm{~V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{SS}}\right)$ and has $1.4 \mathrm{k} \Omega$ output impedance. This pin is normally left open or bypassed with a $0.1 \mu \mathrm{~F}$ capacitor to signal ground.
14	$V_{S S}$	Negative supply voltage, normally ground.
15	V_{DS}	Display negative voltage, establishes the pk-pk display drive.
16-28	BP13-BP1	LCD backplane drivers.
29-36	Seg0-Seg7	LCD segment drivers.
37	Sign	Positive sign segment driver.
38	Segz	Annunciator driver selected by Az.
39	Segy	Annunciator driver selected by Ay.
40	Segx	Annunciator driver selected by Ax.

0093-2
Figure 2: Functional Diagram

Figure 3: ICL7182 using the internal reference.
Values shown are for 1.000 V full-scale, 25 readings per second, single 5 V supply.

TYPICAL PERFORMANCE CHARACTERISTICS

Average Analog Input Current vs.
Frequency and Common Mode Voltage

0093-4

Average Reference Input Current vs. Frequency and Common Mode Voltage

0093-5

INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

NOTE: All typical values have been characterized but are not tested.

TYPICAL PERFORMANCE CHARACTERISTICS
 (Continued)

FUNCTIONAL DESCRIPTION

A functional diagram of the ICL7182 A/D converter is shown in Figure 2. The device operates on the cyclic converter principle implemented with switched capacitor amplifiers. Analog switches are closed sequentially by state machine control logic to sample the input and perform a multi-ply-by-two and delay function. The sampled input charge is recirculated and compared to the reference to determine the weight of each bit. The sign is determined first and after 18 cycles a 9-bit binary code is latched and the display is updated.
Under normal operation the conversion requires 32 clock cycles and the display updates once every 2048 clock cycles. Before and during the conversion the supply current for the analog section increases from typically $300 \mu \mathrm{~A}$ to 1.3 mA and remains high for a total of 96 clock cycles. The operation proceeds as follows:

Clock Cycle	Operation
$0-96$	Supply current increases from $300 \mu \mathrm{~A}$ to $0-47$ 48
49	Converter autozero begins
$50-70$	IN LO is sampled
IN HI is sampled	
$75-77$	REF LO and REF HI are sampled once per clock cycle Converter output is latched and display is updated
$96-2048$	Supply current decreases from 1.3 mA to $300 \mu \mathrm{~A}$
2048	New conversion begins

The changing supply current may result in a noisy reading if the supply dynamic impedance is high. This can be resolved by using a supply bypass capacitor.

Analog Inputs

The analog and reference inputs are guaranteed to correctly operate within the supply voltage. Both inputs will continue to function 200 mV to 400 mV outside of the supplies but the converter specifications degrade as the input protection diodes become forward biased.

As the reference and analog inputs are sampled, transient currents flow from the inputs to charge small internal capacitors.

These transient currents occur at the leading edge of the internal clock and decay at a rate determined by the input capacitance of the convertor and the source resistance. Source resistances larger than Rs given in the equation below will cause conversion errors.

$$
\text { Rs }(\max)=\frac{1}{6(\mathrm{Fosc})(\mathrm{Cin})}
$$

Where: Fosc $=$ Oscillator frequency
Cin $=40 \mathrm{pF}$, typical input capacitance
Rs = Source resistance

Input Bypass Capacitor

For source resistances larger than Rs above (typically $80 \mathrm{k} \Omega$) bypass capacitors across the inputs will average these charging currents and cause a small DC current to flow through the output resistance of the analog and reference source signals. The average input current is a function of the common mode voltage and the oscillator frequency (see typical graphs). This current is typically 2 nA for the analog input and 6 nA for the reference input. The effects of the voltage drops across source resistances, due to the average value of input current, can be compensated by fullscale adjustment while the given source resistor and input bypass capacitor are in place.

Reference Output

The internal bandgap reference behaves like a 2.56 V zener with the cathode tied to $V_{C C}$ and the anode tied to VRout. The regulator circuitry maintains a low 1.3Ω output impedance for bias currents through the zener between $90 \mu \mathrm{~A}$ and 2 mA . At minimum supply voltage the internal $20 \mathrm{k} \Omega$ resistor will provide $10 \mu \mathrm{~A}$ of current sink into VRout. The minimum sink current may be increased by adding an external resistor from VRout to $V_{\text {SS }}$.

The reference is internally trimmed to within 1.5% of 2.56 V . The reference output can be externally divided (see Figure 3) to establish the full-scale input. Two fixed value resistors with 1% tolerance will relate to a system accuracy of 2% RMS.

With VRout pin tied to ground the reference becomes a shunt supply regulator for the ICL7182. Connections for this application are shown in the EV kit schematic, Figure 6.

Display Drive

The binary output of the A/D converter is encoded to drive 8 segments that serpentine across thirteen backplanes of an LCD display. The backplanes are driven with three level signals and the segment lines are driven with two level signals. The three levels of the backplane are set by the V_{CC} supply, the V_{DS} supply, and the output of a voltage divider which is connected between $V_{C C}$ and $V_{D S}$. The two levels of the segment drive are set by the V_{CC} and $V_{D S}$ supplies.
The bargraph takes advantage of the fact that above a particular segment all segments will be off and below that segment all segments will be on, also that only one backplane will have segments which are both on and off. The backplanes with all segments off are driven with an "off backplane" waveform, the backplanes with all segments on are driven with an "on backplane" waveform, and the one backplane with both on and off segments is driven with a "unique backplane" waveform. The off segments are driven with an off segment waveform and the on segments are driven with an on segment waveform with respect to the unique backplane. The sign segment and annunciator segment drives are designed for use with respect to BP1. The phasing between display waveforms is shown in Figure 4.

The LCD segments appear ON when the RMS voltage between the backplane and segment drives is greater than the 90%-ON voltage of the LCD fluid, and they appear OFF when the RMS voltage is less than 10%-ON voltage of the LCD fluid. For the $1 / 2$ multiplexed (duplex) waveforms used on the ICL7182 a $2.25: 1$ contrast ratio is achieved.

Display Set Voltage

The V_{DS} pin sets the peak-to-peak amplitude of the display drive waveforms. This voltage should be selected to give maximum contrast for a particular LCD fluid type and temperature. Good contrast ratio is obtained if V_{DS} is set within the range determined by the equation below.
$(1.27)\left(V^{\left(h_{90 \%}\right.}\right) \leq\left(V_{C C}-V_{D S}\right) \leq(2.26)\left(V^{2} h_{10 \%}\right)$
Where: $\mathrm{Vth}_{90 \%}=90 \%$ ON Visual Threshold

$$
\text { Vth } 10 \%=10 \% \text { ON Visual Threshold }
$$

For example the Hamlin Inc. type 02 LCD fluid has $\mathrm{Vt} \mathrm{g}_{90 \%}=3.05 \mathrm{~V}$ and $\mathrm{Vth}_{10 \%}=2.2 \mathrm{~V}$, therefore the best contrast is achieved when $V_{C C}-V_{D S}$ is set between 3.9 V and 5 V . For most applications where V_{CC} is tied to $\mathrm{a}+5 \mathrm{~V}$ supply the $V_{D S}$ pin can be tied to ground.

To accommodate a large range of temperatures and fluid types the V_{DS} pin can be driven above or below V_{SS}. The voltage difference between $V_{C C}$ and $V_{D S}$ can vary from from $3 V$ to 7 V . For $\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{DS}}$ less than 3 V the output impedance of the backplane drivers increase substantially. The dependence of display drive output impedance on $V_{D S}$ and temperature is shown in the typical performance curves.

0093-13
Figure 5: Contrast vs. Applied RMS Voltage

[^64]Display Set Voltage (Continued)

Temperature Effects and Temperature Compensation

The performance of the IC material is affected by temperature in two ways. The response time of the display to changes in applied RMS voltage gets longer as the display temperature drops. At very low temperatures $\left(-20^{\circ} \mathrm{C}\right)$ some displays may take several seconds to change a new character after the new information appears at the outputs. However, for most applications above $0^{\circ} \mathrm{C}$ this will not be a problem with available multiplexed LCD materials, and for low-temperature applications, high-speed liquid crystal materials are available. One high temperature effect to consider deals with plastic materials used to make the polarizer. Some polarizers become soft at high temperatures and permanently lose their polarizing ability, thereby seriously degrading display contrast. Some displays also use sealing materials unsuitable for high temperature use. Thus, when specifying displays the following must be kept in mind: liquid crystal material, polarizer, and seal materials.
A more important effect of temperature is the variation of threshold voltage. For typical liquid crystal materials suitable for multiplexing, the peak voltage has a temperature coefficient of -7 to $-14 \mathrm{mV} /{ }^{\circ} \mathrm{C}$. This means that as tem-
perature rises, the threshold voltage goes down. Assuming a fixed value for V_{p}, when the threshold voltage drops below $V_{p} / 3$ OFF segments begin to be visible. Figure 6 shows the temperature dependence of peak voltage for the same liquid crystal material of Figure 5.
For applications where the display temperature does not vary widely, V_{P} may be set at a fixed voltage chosen to make the RMS OFF voltage, $\mathrm{V}_{\mathrm{p}} / 3$, just below the threshold voltage at the highest temperature expected. This will prevent OFF segments turning ON at high temperature (this at the cost of reduced contrast for ON segments at low temperatures).
For applications where the display temperature may vary to wider extremes, the display voltage $\mathrm{V}_{\text {DISP }}$ (and thus V_{P}) may require temperature compensation to maintain sufficient contrast without OFF segments becoming visible.

Display Voltage and Temperature Compensation

These circuits allow control of the display peak voltage by bringing the bottom of the voltage divider resistor string out at pin 15. The simplest means for generating a display voltage suitable to a particular display is to connect a potentiometer from pin 15 to $\mathrm{V}_{\text {SS }}$ as shown in Figure 7. A potentiometer with a maximum value of $100 \mathrm{k} \Omega$ should give sufficient range of adjustment to suit most displays. This method for generating display voltage should be used only in applications where the temperature of the chip and display won't vary more than $\pm 5^{\circ} \mathrm{C}\left(\pm 9^{\circ} \mathrm{F}\right)$, as the resistors on the chip have a positive temperature coefficient, which will tend to increase the display peak voltage with an increase in temperature. The display voltage also depends on the power supply voltage, leading to tighter tolerances for wider temperature ranges.

[^65]

0093-16
Figure 8A: Temperature compensation and contrast adjustment for LCD fluid types which have visual threshold tempcos of $\sim-10 \mathrm{mV} /{ }^{\circ} \mathrm{C}$ and operate with 3 V to 4.0 V .

0093-17
Figure 8B: Generating a negative supply from +5 V to drive the display voltage pin below ground. This allows use of wide temperature LCD fluids which require peak-peak display drives of 3.5 V to 7 V . For LCD fluids which have threshold tempcos of $\sim-8 \mathrm{mV} /{ }^{\circ} \mathrm{C}$ the collector of Q1 and $200 \mathrm{k} \Omega$ resistor should be tied to $\mathrm{V}_{\text {ROUT }}$, for larger threshold tempcos of $\sim-16 \mathrm{mV} /{ }^{\circ} \mathrm{C}$ this point should be tied to $\mathrm{V}_{\mathbf{c c}}$.

Figure 9: Conceptually a flexible LCD contrast and temperature compensation using an ICL7664 can be designed in this manner. This technique allows adjusting the display voltage and temperature compensation independently.

[^66]
Display Layout

Custom displays developed for the ICL7182 need to be arranged such that the 8 segment lines serpentine across 13 backplanes. The annunciators and first eight data segments share a common backplane (BP1). An example layout is shown in Figure 10. This $1.3^{\prime \prime}$ by $4.5^{\prime \prime}$ display is available from Hamlin Inc. (part \# 4464-363-921) for prototyping and evaluation.
Custom Display

[^67]
APPLICATIONS

0093-20
Figure 11: 7182 using the internal reference. Values shown are for 1.00 V full-scale, 1% adjustment sensitivity, 24 readings per second, 6 V floating supply (four stacked 1.5 V dry cells).*

0093-21
Figure 12: 7182 using the internal reference and ICL7660 as a supply regulator. This allows sensing ground reference bipolar inputs with a single +5 V supply. Values shown for 1.00 V full-scale, 0.25% adjustment sensitivity.

[^68]

APPLICATIONS (Continued)

Figure 13: Using Exclusive 'OR' Gate for additional annunciator drivers.

0093-23
Figure 14: 7182 measuring ratiometric values of Quad Load Cell. The resistor values within bridge are determined by the desired sensitivity.

[^69]

Figure 15: Tachometer with Set Point

APPLICATIONS (Continued)

Figure 16: Basic digital thermometer, Celsius and Fahrenheit scales. This VDS pin can be connected as shown in Figure 11.

Section 3 - A/D Converters $\mu \mathrm{P}$ Type

ADC0802 3-1
ADC0803 3-1
ADC0804 3-1
ICL7104/ICL8052 3-19
ICL7104/ICL8068 3-19
ICL7109 3-39
ICL7112 3-58
ICL7115 3-60
ICL7135 3-74

ADC0802 - ADC0804 8 -Bit μ P-Compatible A/D Converters

GENERAL DESCRIPTION

The ADC0802 family are CMOS 8-bit successive approximation A/D converters which use a modified potentiometric ladder, and are designed to operate with the 8080A control bus via three-state outputs. These converters appear to the processor as memory locations or I/O ports, and hence no interfacing logic is required.
The differential analog voltage input has good common-mode-rejection, and permits offsetting the analog zero-in-put-voltage value. In addition, the voltage reference input can be adjusted to allow encoding any smaller analog voltage span to the full 8 bits of resolution.

FEATURES

- 80C48 and 80C80/85 Bus Compatible - No Interfacing Logic Required
- Conversion Time<100 $\boldsymbol{\mu}$ s
- Easy Interface to Most Microprocessors
- Will Operate in a "Stand Alone" Mode
- Differential Analog Voltage Inputs
- Works With Bandgap Voltage References
- TTL Compatible Inputs and Outputs
- On-Chip Clock Generator
- OV to 5V Analog Voltage Input Range (Single +5 V Supply)
- No Zero-Adjust Required

ORDERING INFORMATION

Part Number	Error	Temperature Range	Package
ADC0802LCN	$\pm 1 / 2$ bit no adjust		
ADC0802LCD	$\pm 3 / 4$ bit no adjust		
ADC0802LD	± 1 bit no adjust	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	20 pin Plastic DIP
ADC0803LCN	$\pm 1 / 2$ bit adjusted full-scale	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	20 pin CERDIP
ADC0803LCD	$\pm 3 / 4$ bit adjusted full-scale	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	20 pin CERDIP
ADC0803LD	± 1 bit adjusted full-scale	$-40^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	20 pin Plastic DIP
ADC0804LCN	± 1 bit no adjust	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	20 pin CERDIP
ADC0804LCD	± 1 bit no adjust	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	20 pin CERDIP

0334-1

Figure 1: Typical Application

0334-2
(Outline dwg. CD, CN) Figure 2: Pin Configuration

Figure 3: Functional Diagram of ADC0802-ADC0804

ABSOLUTE MAXIMUM RATINGS
Supply Voltage 6.5V
Voltage at Any Input -0.3 V to $(\mathrm{V}++0.3 \mathrm{~V})$
Storage Temperature Range $\ldots . . \ldots . . .-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Package Dissipation at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \ldots \ldots . . \ldots . .875 \mathrm{~mW}$
Lead Temperature (Soldering, 10sec) $300^{\circ} \mathrm{C}$

OPERATING RATINGS

Temperature Range
ADC0802/03LD . $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

ADC0802/03/04LCD $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
ADC0802/03/04LCN
$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Supply Voltage Range
4.5 V to 6.3 V

NOTE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS (Notes 1 and 7)
Converter Specifications: $\mathrm{V}^{+}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{REF}} / 2=2.500 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ and $\mathrm{f}_{\mathrm{CLK}}=640 \mathrm{kHz}$ unless otherwise stated.

Parameter	Test Conditions	Min	Typ	Max	Unit
ADC0802: Total Unadjusted Error	Completely Unadjusted			$\pm 1 / 2$	LSB
ADC0803: Total Adjusted Error	With Full Scale Adjust			$\pm 1 / 2$	LSB
ADC0804: Total Unadjusted Error	Completely Unadjusted			± 1	LSB
VREF/2 Input Resistance	Input Resistance at Pin 9	1.0	1.3		$\mathrm{k} \Omega$
Analog Input Voltage Range	(Note 2)	GND -0.05		$\mathrm{~V}++0.05$	V
DC Common-Mode Rejection	Over Analog Input Voltage Range		$\pm 1 / 16$	$\pm 1 / 8$	LSB
Power Supply Sensitivity	V $+=5 \mathrm{~V}$ (10\% Over Allowed Input Voltage Range		$\pm 1 / 16$	$\pm 1 / 8$	LSB

Converter Specifications: $\mathrm{V}^{+}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{REF}} / 2=2.500 \mathrm{~V}, 0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}$ and $\mathrm{f}_{\mathrm{CLK}}=640 \mathrm{kHz}$ unless otherwise stated.

Parameter	Test Conditions	Min	Typ	Max	Unit
ADC0802: Total Unadjusted Error	Completely Unadjusted			$\pm 1 / 2$	LSB
ADC0803: Total Adjusted Error	With Full Scale Adjust			$\pm 1 / 2$	LSB
ADC0804: Total Unadjusted Error	Completely Unadjusted			± 1	LSB
VREF/2 Input Resistance	Input Resistance at Pin 9	1.0	1.3		$\mathrm{k} \Omega$
Analog Input Voltage Range	(Note 2)	$\mathrm{GND}-0.05$		$\mathrm{~V}+ \pm 0.05$	V
DC Common-Mode Rejection	Over Analog Input Voltage Range		$\pm 1 / 16$	$\pm 1 / 8$	LSB
Power Supply Sensitivity	V $+=5 \mathrm{~V}$ Input Voltage Range		$\pm 1 / 16$	$\pm 1 / 4$	LSB

Converter Specifications: $\mathrm{V}^{+}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{REF}} / 2=2.500 \mathrm{~V},-25^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}$ and $\mathrm{fCLK}=640 \mathrm{kHz}$ unless otherwise stated.

Parameter	Test Conditions	Min	Typ	Max	Unit
ADC0802: Total Unadjusted Error	Completely Unadjusted			$\pm 3 / 4$	LSB
ADC0803: Total Adjusted Error	With Full Scale Adjust			$\pm 3 / 4$	LSB
ADC0804: Total Unadjusted Error	Completely Unadjusted			± 1	LSB
$V_{\text {REF }} / 2$ Input Resistance	Input Resistance at Pin 9	1.0	1.3		k Ω
Analog Input Voltage Range	(Note 2)	GND-0.05		$\mathrm{V}++0.05$	V
DC Common-Mode Rejection	Over Analog Input Voltage Range		$\pm 1 / 8$	$\pm 1 / 4$	LSB
Power Supply Sensitivity	V $+=5 \mathrm{~V} \pm 10 \%$ Over Allowed Input Voltage Range		$\pm 1 / 16$	$\pm 1 / 8$	LSB

Converter Specifications: $\mathrm{V}^{+}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{REF}} / 2=2.500 \mathrm{~V},-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$ and f CLK $=640 \mathrm{kHz}$ unless otherwise stated.

Parameter	Test Conditions	Min	Typ	Max	Unit
ADC0802: Total Unadjusted Error	Completely Unadjusted			± 1	LSB
ADC0803: Total Adjusted Error	With Full Scale Adjust			± 1	LSB
ADC0804: Total Unadjusted Error	Completely Unadjusted			$\pm 11 / 4$	LSB
VREF/2 Input Resistance	Input Resistance at Pin 9	1.0	1.3		$\mathrm{k} \Omega$
Analog Input Voltage Range	(Note 2)	GND-0.05		$\mathrm{V}++0.05$	V
DC Common-Mode Rejection	Over Analog Input Voltage Range		$\pm 1 / 8$	$\pm 1 / 4$	LSB
Power Supply Sensitivity	V+=5V $\pm 10 \%$ Over Allowed Input Voltage Range		$\pm 1 / 8$	$\pm 1 / 4$	LSB

DC ELECTRICAL CHARACTERISTICS
Digital Levels and DC Specifications: $\quad \mathrm{V}+=5 \mathrm{~V}$ and $T_{M I N} \leq T_{A} \leq T_{M A X}$, unless otherwise noted.

Symbol	Parameter	Test Conditions	Min	Typ	Max	Unit
CONTROL INPUTS (Note 6)						
VINH	Logical "1" Input Voltage (Except Pin 4 CLK IN)	$\mathrm{V}+=5.25 \mathrm{~V}$	2.0		V+	V
$\mathrm{V}_{\text {INL }}$	Logical " 0 " Input Voltage (Except Pin 4 CLK IN)	$\mathrm{V}+=4.75 \mathrm{~V}$			0.8	V
V+ CLK	CLK IN (Pin 4) Positive Going Threshold Voltage		2.7	3.1	3.5	V
V- CLK	CLK IN (Pin 4) Negative Going Threshold Voltage		1.5	1.8	2.1	V
V_{H}	CLK IN (Pin 4) Hysteresis $\left(\mathrm{V}_{\mathrm{CLK}}{ }^{+}\right)-\left(\mathrm{V}_{\mathrm{CLK}}{ }^{-}\right)$		0.6	1.3	2.0	V
IINHI	Logical "1" Input Current (All Inputs)	$\mathrm{V}_{1 \mathrm{~N}}=5 \mathrm{~V}$		0.005	1	$\mu \mathrm{A}$
IINLO	Logical " 0 " Input Current (All Inputs)	$\mathrm{V}_{1 \mathrm{~N}}=0 \mathrm{~V}$	-1	-0.005		$\mu \mathrm{A}$
1+	Supply Current (Includes Ladder Current)	$\begin{gathered} \mathrm{f} \mathrm{CLK}=640 \mathrm{kHz}, \\ \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \text { and } \overline{\mathrm{CS}}=\mathrm{HI} \end{gathered}$		1.3	2.5	mA

DC ELECTRICAL CHARACTERISTICS

Digital Levels and DC Specifications: $\mathrm{V}^{+}=5 \mathrm{~V}$ and $\mathrm{T}_{\text {MIN }} \leq T_{A} \leq T_{M A X}$, unless otherwise noted. (Continued)

Symbol	Parameter	Test Conditions	Min	Typ	Max	Unit
DATA OUTPUTS AND INTR						
V_{OL}	Logical "0" Output Voltage	$\begin{aligned} & \mathrm{I}_{0}=1.6 \mathrm{~mA} \\ & \mathrm{~V}+=4.75 \mathrm{~V} \end{aligned}$			0.4	V
V_{OH}	Logical "1" Output Voltage	$\begin{aligned} & \mathrm{I}_{\mathrm{O}}=-360 \mu \mathrm{~A} \\ & \mathrm{~V}+=4.75 \mathrm{~V} \end{aligned}$	2.4			V
lo	3-State Disabled Output Leakage (All Data Buffers)	$\begin{aligned} & \mathrm{V}_{\text {OUT }}=0 \mathrm{~V} \\ & \mathrm{~V}_{\text {OUT }}=5 \mathrm{~V} \end{aligned}$	-3		3	$\mu \mathrm{A}$ $\mu \mathrm{A}$
ISOURCE	Output Short Circuit Current	$V_{\text {OUT }}$ Short to Gnd $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	4.5	6		mA
ISINK	Output Short Circuit Current	$V_{\text {OUT }}$ Short to $\mathrm{V}+\mathrm{T}_{A}=+25^{\circ} \mathrm{C}$	9.0	16		mA

NOTES: 1. All voltages are measured with respect to GND, unless otherwise specified. The separate AGND point should always be wired to the DGND, being careful to avoid ground loops.
2. For $\mathrm{V}_{\mathbb{I N}(-)} \geq \mathrm{V}_{\mathbb{I N}(+)}$ the digital output code will be 0000 0000. Two on-chip diodes are tied to each analog input (see Block Dlagram) which will forward conduct for analog input voltages one diode drop below ground or one diode drop greater than the $\mathrm{V}+$ supply. Be careful, during testing at low $\mathrm{V}+$ levels (4.5V), as high level analog inputs (5 V) can cause this input diode to conduct-especially at elevated temperatures, and cause errors for analog inputs near full-scale. As long as the analog $\mathrm{V}_{\mathbb{N}}$ does not exceed the supply voltage by more than 50 mV , the output code will be correct. To achieve an absolute 0 V to 5 V input voltage range will therefore require a minimum supply voltage of 4.950 V over temperature variations, initial tolerance and loading.
3. With $\mathrm{V}^{+}=6 \mathrm{~V}$, the digital logic interfaces are no longer TTL compatible.
4. With an asynchronous start pulse, up to 8 clock periods may be required before the internal clock phases are proper to start the conversion process.
5. The $\overline{C S}$ input is assumed to bracket the $\overline{\text { WR }}$ strobe input so that timing is dependent on the $\overline{W R}$ pulse width. An arbitrarily wide pulse width will hold the converter in a reset mode and the start of conversion is initiated by the low to high transition of the $\overline{W R}$ pulse (see Timing Diagrams).
6. CLK \mathbb{N} (pin 4) is the input of a Schmitt trigger circuit and is therefore specified separately.
7. None of these A/Ds requires a zero-adjust. However, if an all zero code is desired for an analog input other than 0.0 V , or if a narrow full-scale span exists (for example: 0.5 V to 4.0 V full-scale) the $\mathrm{V}_{\mathrm{IN}(-)}$ input can be adjusted to achieve this. See Zero Error on page 10 of this data sheet.

[^70]NOTE: All typical values have been characterized but are not tested.

AC ELECTRICAL CHARACTERISTICS

Timing Specifications: $\mathrm{V}+=5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ unless otherwise stated.

Symbol	Parameter	Test Conditions	Min	Typ	Max	Unit
$f_{\text {flk }}$	Clock Frequency	$\begin{aligned} & \mathrm{V}+=6 \mathrm{~V}(\text { Note } 3) \\ & \mathrm{V}+=5 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 100 \\ & 100 \end{aligned}$	$\begin{aligned} & 640 \\ & 640 \end{aligned}$	$\begin{gathered} 1280 \\ 800 \end{gathered}$	$\begin{aligned} & \mathrm{kHz} \\ & \mathrm{kHz} \end{aligned}$
$\mathrm{t}_{\text {conv }}$	Clock Periods per Conversion (Note 4)		62		73	
CR	Conversion Rate In Free-Running Mode	$\overline{\mathrm{NTR}}$ tied to $\overline{\mathrm{WR}}$ with $\overline{\mathrm{CS}}=0 \mathrm{~V}, \mathrm{f}_{\mathrm{CLK}}=640 \mathrm{kHz}$			8888	conv/s
$t_{W}(\overline{W R})$ I	Width of $\overline{\text { WR }}$ Input (Start Pulse Width)	$\overline{\mathrm{CS}}=0 \mathrm{~V}$ (Note 5)	100			ns
$t_{\text {acc }}$	Access Time (Delay from Falling Edge of $\overline{\mathrm{RD}}$ to Output Data Valid)	$\mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$ (Use Bus Driver IC for Larger C_{L})		135	200	ns
$\mathrm{t}_{1 \mathrm{~h}}, \mathrm{t}_{0} \mathrm{~h}$	3-State Control (Delay from Rising Edge of $\overline{\mathrm{RD}}$ to $\mathrm{HI}-\mathrm{Z}$ State)	$C_{L}=10 p F, R_{L}=10 k$ (See 3-State Test Circuits)		125	250	ns
$t_{\text {Wl }}, \mathrm{t}_{\mathrm{RI}}$	Delay from Falling Edge of $\overline{W R}$ to Reset of INTR			300	450	ns
CIN_{1}	Input Capacitance of Logic Control Inputs			5		pF
Cout	3-State Output Capacitance (Data Buffers)			5		pF

[^71]
TYPICAL PERFORMANCE CHARACTERISTICS

[^72]NOTE: All typical values have been characterized but are not tested.

0334-19
a) Accuracy $= \pm 0$ LSB; A Perfect A/D

Error Plot

b) Accuracy $= \pm 1 / 2$ LSB

Figure 6: Clarifying the Error Specs of an A/D Converter

UNDERSTANDING A/D ERROR SPECS

A perfect A/D transfer characteristic (staircase waveform) is shown in Figure 6a. The horizontal scale is analog input voltage and the particular points labeled are in steps of 1 LSB (19.53 mV with 2.5 V tied to the $\mathrm{V}_{\text {REF }} / 2 \mathrm{pin}$). The digital output codes which correspond to these inputs are shown as $D-1, D$, and $D+1$. For the perfect A / D, not only will center-value ($A-1, A, A+1$, . . .) analog inputs produce the correct output digital codes, but also each riser (the transitions between adjacent output codes) will be located $\pm 1 / 2$ LSB away from each center-value. As shown, the risers are ideal and have no width. Correct digital output codes will be provided for a range of analog input voltages which extend $\pm 1 / 2$ LSB from the ideal center-values. Each tread (the range of analog input voltage which provides the same digital output code) is therefore 1LSB wide.

The error curve of Figure 6b shows the worst case transfer function for the ADC0802. Here the specification guarantees that if we apply an analog input equal to the LSB analog voltage center-value, the A/D will produce the correct digital code.

Next to each transfer function is shown the corresponding error plot. Notice that the error includes the quantization uncertainty of the A/D. For example, the error at point 1 of Figure $6 \mathbf{a}$ is $+1 / 2$ LSB because the digital code appeared $1 / 2$ LSB in advance of the center-value of the tread. The error plots always have a constant negative slope and the abrupt upside steps are always 1LSB in magnitude, unless the device has missing codes.

[^73]
FUNCTIONAL DESCRIPTION

A functional diagram of the ADC0802 series of A/D converters is shown in Figure 3. All of the package pinouts are shown and the major logic control paths are drawn in heavi-er-weight lines. The device operates on the successive approximation principle (see APPLICATION NOTE A016 and A020 for a more detailed description of this principle). Analog switches are closed sequentially by successive-approximation logic until the analog differential input voltage $\left[\mathrm{V}_{\text {IN }(+)}-\mathrm{V}_{\text {IN }(-)}\right]$ matches a voltage derived from a tapped resistor string across the reference voltage. The most significant bit is tested first and after 8 comparisons (64 clock cycles), an 8 -bit binary code (1111 $1111=$ full-scale) is transferred to an output latch.

The normal operation proceeds as follows. On the high-to-low transition of the WR input, the internal SAR latches and the shift-register stages are reset, and the INTR output will be set high. As long as the $\overline{\mathrm{CS}}$ input and $\overline{\mathrm{WR}}$ input remain low, the A/D will remain in a reset state. Conversion will start from 1 to 8 clock periods after at least one of these inputs makes a low-to-high transition. After the requisite number of clock pulses to complete the conversion, the INTR pin will make a high-to-low transition. This can be used to interrupt a processor, or otherwise signal the availability of a new conversion. A $\overline{R D}$ operation (with $\overline{C S}$ low) will clear the INTR line high again. The device may be operated in the free-running mode by connecting INTR to the $\overline{W R}$ input with $\overline{C S}=0$. To ensure start-up under all possible conditions, an external $\overline{W R}$ pulse is required during the first power-up cycle. A conversion-in-process can be interrupted by issuing a second start command.

Digital Details

The converter is started by having $\overline{\mathrm{CS}}$ and $\overline{\mathrm{WR}}$ simultaneously low. This sets the start flip-flop (F/F) and the resulting " 1 " level resets the 8 -bit shift register, resets the Interrupt (INTR) F/F and inputs a "1" to the D flip-flop, DFF1, which is at the input end of the 8 -bit shift register. Internal clock signals then transfer this " 1 " to the Q output of DFF1. The AND gate, G1, combines this " 1 " output with a clock signal to provide a reset signal to the start F / F. If the set signal is no longer present (either WR or CS is a "1"), the start F/F is reset and the 8 -bit shift register then can have the " 1 " clocked in, which starts the conversion process. If the set signal were to still be present, this reset pulse would have no effect (both outputs of the start F/F would be at a " 1 " level) and the 8 -bit shift register would continue to be held in the reset mode. This allows for asynchronous or wide $\overline{\mathrm{CS}}$ and $\overline{W R}$ signals.
After the " 1 " is clocked through the 8 -bit shift register (which completes the SAR operation) it appears as the input to DFF2. As soon as this " 1 " is output from the shift register, the AND gate, G2, causes the new digital word to transfer to the 3-state output latches. When DFF2 is subsequently clocked, the \bar{Q} output makes a high-to-low transition which causes the INTR F/F to set. An inverting buffer then supplies the INTR output signal.
When data is to be read, the combination of both $\overline{C S}$ and $\overline{\mathrm{RD}}$ being low will cause the INTR F/F to be reset and the 3state output latches will be enabled to provide the 8 -bit digital outputs.

Digital Control Inputs

The digital control inputs ($\overline{\mathrm{CS}}, \overline{\mathrm{RD}}$, and $\overline{\mathrm{WR}}$) meet standard TTL logic voltage levels. These signals are essentially equivalent to the standard A/D Start and Output Enable control signals, and are active low to allow an easy interface to microprocessor control busses. For non-microprocessor based applications, the $\overline{\mathrm{CS}}$ input (pin 1) can be grounded and the standard A/D Start function obtained by an active low pulse at the $\overline{W R}$ input (pin 3). The Output Enable function is achieved by an active low pulse at the RD input (pin 2).

Analog Operation

The analog comparisons are performed by a capacitive charge summing circuit. Three capacitors (with precise ratioed values) share a common node with the input to an auto-zeroed comparator. The input capacitor is switched between $\mathrm{V}_{\mathbb{I}(+)}$ and $\mathrm{V}_{\mathrm{IN}(-)}$, while two ratioed reference capacitors are switched between taps on the reference voltage divider string. The net charge corresponds to the weighted difference between the input and the current total value set by the successive approximation register. A correction is made to offset the comparison by $1 / 2$ LSB (see Figure 6a).

Analog Differential Voltage Inputs and Common-Mode Rejection

This A/D gains considerable applications flexibility from the analog differential voltage input. The $\mathrm{V}_{\mathrm{IN}(-)}$ input (pin 7) can be used to automatically subtract a fixed voltage value from the input reading (tare correction). This is also useful in $4 \mathrm{~mA}-20 \mathrm{~mA}$ current loop conversion. In addition, commonmode noise can be reduced by use of the differential input.

The time interval between sampling $\mathrm{V}_{\mathrm{IN}(+)}$ and $\mathrm{V}_{\mathbf{I N}(-)}$ is $41 / 2$ clock periods. The maximum error voltage due to this slight time difference between the input voltage samples is given by:

$$
\Delta V_{e}(\mathrm{MAX})=\left(\mathrm{V}_{\mathrm{p}}\right)\left(2 \pi \mathrm{f}_{\mathrm{cm}}\right)\left[\frac{4.5}{f_{\mathrm{CLK}}}\right]
$$

where:
ΔV_{θ} is the error voltage due to sampling delay
V_{P} is the peak value of the common-mode voltage
f_{cm} is the common-mode frequency
For example, with a 60 Hz common-mode frequency, $f_{c m}$, and a 640 kHz A/D clock, fCLK, keeping this error to $1 / 4$ LSB $(\sim 5 \mathrm{mV})$ would allow a common-mode voltage, V_{p}, given by:

$$
V_{p}=\frac{\left[\Delta V_{e}(\mathrm{MAX})\left(\mathrm{f}_{\mathrm{CLK}}\right)\right]}{\left(2 \pi \mathrm{f}_{\mathrm{cm}}\right)(4.5)}
$$

or

$$
V_{p}=\frac{\left(5 \times 10^{-3}\right)\left(640 \times 10^{3}\right)}{(6.28)(60)(4.5)} \cong 1.9 \mathrm{~V}
$$

The allowed range of analog input voltage usually places more severe restrictions on input common-mode voltage levels than this.

An analog input voltage with a reduced span and a relatively large zero offset can be easily handled by making use of the differential input (see Reference Voltage Span Adjust).

Analog Input Current

The internal switching action causes displacement currents to flow at the analog inputs. The voltage on the onchip capacitance to ground is switched through the analog differential input voltage, resulting in proportional currents entering the $\mathrm{V}_{\operatorname{IN}(+)}$ input and leaving the $\mathrm{V}_{\operatorname{IN}(-)}$ input. These current transients occur at the leading edge of the internal clocks. They rapidly decay and do not inherently cause errors as the on-chip comparator is strobed at the end of the clock period.

Input Bypass Capacitors

Bypass capacitors at the inputs will average these charges and cause a DC current to flow through the output resistances of the analog signal sources. This charge pumping action is worse for continuous conversions with the $\mathrm{V}_{\mathrm{IN}(+)}$ input voltage at full-scale. For a 640 kHz clock frequency with the $\mathrm{V}_{\mathrm{IN}(+)}$ input at 5 V , this DC current is at a maximum of approximately $5 \mu \mathrm{~A}$. Therefore, bypass capacitors should not be used at the analog inputs or the $\mathbf{V}_{\mathbf{R E F}} / 2$ pin for high resistance sources ($>1 \mathrm{k} \Omega$). If input bypass capacitors are necessary for noise filtering and high source resistance is desirable to minimize capacitor size, the effects of the voltage drop across this input resistance, due to the average value of the input current, can be compensated by a full-scale adjustment while the given source resistor and input bypass capacitor are both in place. This is possible because the average value of the input current is a precise linear function of the differential input voltage at a constant conversion rate.

Input Source Resistance

Large values of source resistance where an input bypass capacitor is not used, will not cause errors since the input currents settle out prior to the comparison time. If a lowpass filter is required in the system, use a low-value series resistor ($\leq 1 \mathrm{k} \Omega$) for a passive RC section or add an op amp RC active low-pass filter. For low-source-resistance applications, ($\leq 1 \mathrm{k} \Omega$), a $0.1 \mu \mathrm{~F}$ bypass capacitor at the inputs will minimize EMI due to the series lead inductance of a long wire. A 100Ω series resistor can be used to isolate this capacitor (both the R and C are placed outside the feedback loop) from the output of an op amp, if used.

Stray Pickup

The leads to the analog inputs (pins 6 and 7) should be kept as short as possible to minimize stray signal pickup (EMI). Both EMI and undesired digital-clock coupling to these inputs can cause system errors. The source resistance for these inputs should, in general, be kept below $5 \mathrm{k} \Omega$. Larger values of source resistance can cause undesired signal pickup. Input bypass capacitors, placed from the analog inputs to ground, will eliminate this pickup but can create analog scale errors as these capcitors will average the transient input switching currents of the A/D (see Analog Input Current). This scale error depends on both a large source resistance and the use of an input bypass capacitor. This error can be compensated by a full-scale adjustment of the A/D (see Full-Scale Adjustment) with the source resistance and input bypass capacitor in place, and the desired conversion rate.

Reference Voltage Span Adjust

For maximum application flexibility, these A/Ds have been designed to accommodate a $5 \mathrm{~V}, 2.5 \mathrm{~V}$ or an adjusted voltage reference. This has been achieved in the design of the IC as shown in Figure 7.

Figure 7: The VREference Design on the IC
Notice that the reference voltage for the IC is either $1 / 2$ of the voltage which is applied to the V^{+}supply pin, or is equal to the voltage which is externally forced at the $V_{\text {REF }} /$ 2 pin . This allows for a pseudo-ratiometric voltage reference using, for the V^{+}supply, a 5 V reference voltage. Alternatively, a voltage less than 2.5 V can be applied to the $\mathrm{V}_{\mathrm{REF}} /$ 2 input. The internal gain to the $\mathrm{V}_{\mathrm{REF}} / 2$ input is 2 to allow this factor of 2 reduction in the reference voltage.

Such an adjusted reference voltage can accommodate a reduced span or dynamic voltage range of the analog input voltage. If the analog input voltage were to range from 0.5 V to 3.5 V , instead of 0 V to 5 V , the span would be 3 V . With 0.5 V applied to the $\mathrm{V}_{\mathrm{IN}(-)}$ pin to absorb the offset, the reference voltage can be made equal to $1 / 2$ of the 3 V span or 1.5 V . The A / D now will encode the $\mathrm{V}_{1 N(+)}$ signal from 0.5 V to 3.5 V with the 0.5 V input corresponding to zero and the 3.5 V input corresponding to full-scale. The full 8 bits of resolution are therefore applied over this reduced analog input voltage range. The requisite connections are shown in Figure 8. For expanded scale inputs, the circuits of Figures 9 and 10 can be used.

[^74]

0334-23
Figure 8: Offsetting the Zero of the ADC0802 and Performing an Input Range (Span) Adjustment

0334-24
Figure 9: Handling \pm 10V Analog Input Range

0334-25
Figure 10: Handling $\pm \mathbf{5 V}$ Analog Input Range

Reference Accuracy Requirements

The converter can be operated in a pseudo-ratiometric mode or an absolute mode. In ratiometric converter applications, the magnitude of the reference voltage is a factor in both the output of the source transducer and the output of the A/D converter and therefore cancels out in the final
digital output code. In absolute conversion applications, both the initial value and the temperature stability of the reference voltage are important accuracy factors in the operation of the A / D converter. For $V_{\text {REF }} / 2$ voltages of 2.5 V nominal value, initial errors of $\pm 10 \mathrm{mV}$ will cause conversion errors of ± 1 LSB due to the gain of 2 of the $\mathrm{V}_{\text {REF }} / 2$ input. In reduced span applications, the initial value and the stability of the $\mathrm{V}_{\text {REF }} / 2$ input voltage become even more important. For example, if the span is reduced to 2.5 V , the analog input LSB voltage value is correspondingly reduced from 20 mV (5 V span) to 10 mV and 1 LSB at the $\mathrm{V}_{\text {REF }} / 2$ input becomes 5 mV . As can be seen, this reduces the allowed initial tolerance of the reference voltage and requires correspondingly less absolute change with temperature variations. Note that spans smaller than 2.5 V place even tighter requirements on the initial accuracy and stability of the reference source.
In general, the reference voltage will require an initial adjustment. Errors due to an improper value of reference voltage appear as full-scale errors in the A/D transfer function. IC voltage regulators may be used for references if the ambient temperature changes are not excessive.

Zero Error

The zero of the A/D does not require adjustment. If the minimum analog input voltage value, $\mathrm{V}_{\operatorname{IN}(\mathrm{MIN})}$, is not ground, a zero offset can be done. The converter can be made to output 00000000 digital code for this minimum input voltage by biasing the $A / D V_{I N(-)}$ input at this $V_{I N(M I N)}$ value (see Applications section). This utilizes the differential mode operation of the A/D.

The zero error of the A/D converter relates to the location of the first riser of the transfer function and can be measured by grounding the $\mathrm{V}_{\mathrm{IN}(-)}$ input and applying a small magnitude positive voltage to the $\mathrm{V}_{\mathrm{IN}(+)}$ input. Zero error is the difference between the actual DC input voltage which is necessary to just cause an output digital code transition from 00000000 to 00000001 and the ideal $1 / 2$ LSB value ($1 / 2 \mathrm{LSB}=9.8 \mathrm{mV}$ for $\mathrm{V}_{\text {REF }} / 2=2.500 \mathrm{~V}$).

Full-Scale Adjust

The full-scale adjustment can be made by applying a differential input voltage which is $11 / 2$ LSB down from the desired analog full-scale voltage range and then adjusting the magnitude of the $\mathrm{V}_{\text {REF }} / 2$ input (pin 9) for a digital output code which is just changing from 11111110 to 11111111. When offsetting the zero and using a span-adjusted $\mathrm{V}_{\text {REF }} / 2$ voltage, the full-scale adjustment is made by inputting $\mathrm{V}_{\text {MIN }}$ to the $\mathrm{V}_{\mathbb{I N}(-)}$ input of the A / D and applying a voltage to the $V_{I N(+)}$ input which is given by:

$$
\mathrm{V}_{\mathrm{IN}(+)^{\mathrm{fsadj}}=} \mathrm{V}_{\mathrm{MAX}}-1.5\left[\frac{\left(\mathrm{~V}_{\mathrm{MAX}}-\mathrm{V}_{\mathrm{MIN}}\right)}{256}\right],
$$

where:
$V_{M A X}=$ the high end of the analog input range
and
$\mathrm{V}_{\text {MIN }}=$ the low end (the offset zero) of the analog range. (Both are ground referenced.)

Clocking Option

The clock for the A/D can be derived from an external source such as the CPU clock or an external RC network can be added to provide self-clocking. The CLK IN (pin 4) makes use of a Schmitt trigger as shown in Figure 11

Heavy capacitive or DC loading of the CLocK R pin should be avoided as this will disturb normal converter operation. Loads less than 50 pF , such as driving up to $7 \mathrm{~A} / \mathrm{D}$ converter clock inputs from a single CLK R pin of 1 converter, are allowed. For larger clock line loading, a CMOS or low power TTL buffer or PNP input logic should be used to minimize the loading on the CLK R pin (do not use a standard TTL buffer).

Restart During a Conversion

If the A/D is restarted ($\overline{\mathrm{CS}}$ and $\overline{\mathrm{WR}}$ go low and return high) during a conversion, the converter is reset and a new conversion is started. The output data latch is not updated if the conversion in progress is not completed. The data from the previous conversion remain in this latch.

Continuous Conversions

In this application, the $\overline{\mathrm{CS}}$ input is grounded and the $\overline{\mathrm{WR}}$ input is tied to the $\overline{\text { INTR }}$ output. This $\overline{\text { WR }}$ and $\overline{\text { INTR }}$ node should be momentarily forced to logic low following a pow-er-up cycle to insure circuit operation. See Figure 12 for details.

Figure 11: Self-Clocking the A/D

Figure 12: Free-Running Connection

Driving the Data Bus

This CMOS A/D, like MOS microprocessors and memories, will require a bus driver when the total capacitance of the data bus gets large. Other circuitry, which is tied to the data bus, will add to the total capacitive loading, even in 3state (high-impedance mode). Backplane bussing also greatly adds to the stray capacitance of the data bus.

There are some alternatives available to the designer to handle this problem. Basically, the capacitive loading of the data bus slows down the response time, even though DC specifications are still met. For systems operating with a relatively slow CPU clock frequency, more time is available in which to establish proper logic levels on the bus and therefore higher capacitive loads can be driven (see Typical Performance Characteristics).

At higher CPU clock frequencies time can be extended for I/O reads (and/or writes) by inserting wait states (8080) or using clock-extending circuits (6800).

Finally, if time is short and capacitive loading is high, external bus drivers must be used. These can be 3 -state buffers (low power Schottky is recommended, such as the 74LS240 series) or special higher-drive-current products which are designed as bus drivers. High-current bipolar bus drivers with PNP inputs are recommended.

Power Supplies

Noise spikes on the V^{+}supply line can cause conversion errors as the comparator will respond to this noise. A low-inductance tantalum filter capacitor should be used close to the converter V^{+}pin, and values of $1 \mu \mathrm{~F}$ or greater are recommended. If an unregulated voltage is available in the system, a separate 5 V voltage regulator for the converter (and other analog circuitry) will greatly reduce digital noise on the $V+$ supply. An ICL7663 can be used to regulate such a supply from an input as low as 5.2 V .

Wiring and Hook-Up Precautions

Standard digital wire-wrap sockets are not satisfactory for breadboarding with this A/D converter. Sockets on PC boards can be used. All logic signal wires and leads should be grouped and kept as far away as possible from the analog signal leads. Exposed leads to the analog inputs can cause undesired digital noise and hum pickup; therefore, shielded leads may be necessary in many applications.

A single-point analog ground should be used which is separate from the logic ground points. The power supply bypass capacitor and the self-clocking capacitor (if used) should both be returned to digital ground. Any $\mathbb{V}_{\text {REF }} / 2$ bypass capacitors, analog input filter capacitors, or input signal shielding should be returned to the analog ground point. A test for proper grounding is to measure the zero error of the A/D converter. Zero errors in excess of $1 / 4$ LSB can usually be traced to improper board layout and wiring (see Zero Error for measurement). Further information can be found in A018.

TESTING THE A/D CONVERTER

There are many degrees of complexity associated with testing an A/D converter. One of the simplest tests is to apply a known analog input voltage to the converter and use LEDs to display the resulting digital output code as shown in Figure 13.

For ease of testing, the $\mathrm{V}_{\text {REF }} / 2$ (pin 9) should be supplied with 2.560 V and a V^{+}supply voltage of 5.12 V should be used. This provides an LSB value of 20 mV .

If a full-scale adjustment is to be made, an analog input voltage of 5.090 V ($5.120-11 / 2 \mathrm{LSB}$) should be applied to the $V_{I N(+)}$ pin with the $V_{I N(-)}$ pin grounded. The value of the $\mathrm{V}_{\text {REF }} / 2$ input voltage should be adjusted until the digital output code is just changing from 11111110 to 11111111. This value of $V_{\text {REF }} / 2$ should then be used for all the tests.

0334-28
Figure 13: Basic Tester for the A/D
The digital-output LED display can be decoded by dividing the 8 bits into 2 hex characters, one with the 4 most-significant bits (MS) and one with the 4 least-significant bits (LS). The output is then interpreted as a sum of fractions times the full-scale voltage:

$$
V_{\text {OUT }}=\left(\frac{M S}{16}+\frac{L S}{256}\right)(5.12) \mathrm{V} .
$$

For example, for an output LED display of 10110110 , the MS character is hex B (decimal 11) and the LS character is hex (and decimal) 6, so

$$
V_{\mathrm{OUT}}=\left(\frac{11}{16}+\frac{6}{256}\right)(5.12)=3.64 \mathrm{~V}
$$

Figures 14 and 15 show more sophisticated test circuits.

Figure 14: A/D Tester with Analog Error Output.
This circuit can be used to generate "error plots" of Figure 6.

APPLICATIONS

Interfacing 8080/85 or Z-80 Microprocessors

This converter has been designed to directly interface with 8080/85 or Z-80 Microprocessors. The 3-state output capability of the A/D eliminates the need for a peripheral interface device, although address decoding is still required to generate the appropriate $\overline{\mathrm{CS}}$ for the converter. The A/D can be mapped into memory space (using standard memo-ry-address decoding for CS and the MEMR and MEMW strobes) or it can be controlled as an I/O device by using the $\overline{/ \mathrm{OR}}$ and $\overline{\mathrm{IOW}}$ strobes and decoding the address bits $A 0 \rightarrow A 7$ (or address bits A8 \rightarrow A15, since they will contain the same 8 -bit address information) to obtain the $\overline{\mathrm{CS}}$ input. Using the I/O space provides 256 additional addresses and may allow a simpler 8 -bit address decoder, but the data can only be input to the accumulator. To make use of the additional memory reference instructions, the A/D should be mapped into memory space. See A020 for more discussion of memory-mapped vs I/O-mapped interfaces. An example of an A/D in I/O space is shown in Figure 16.

The standard control-bus signals of the 8080 ($\overline{\mathrm{CS}}, \overline{\mathrm{RD}}$ and $\overline{W R}$) can be directly wired to the digital control inputs of the A / D, since the bus timing requirements, to allow both starting the converter, and outputting the data onto the data bus, are met. A bus driver should be used for larger microprocessor systems where the data bus leaves the PC board and/or must drive capacitive loads larger than 100pF.

It is useful to note that in systems where the A/D converter is 1 of 8 or fewer I/O-mapped devices, no address-decoding circuitry is necessary. Each of the 8 address bits (A0 to A7) can be directly used as $\overline{\mathrm{CS}}$ inputs, one for each I/O device.

Interfacing the Z-80 and 8085

The Z-80 and 8085 control buses are slightly different from that of the 8080. General $\overline{\mathrm{RD}}$ and $\overline{\mathrm{WR}}$ strobes are provided and separate memory request, $\overline{M R E Q}$, and I/O request, $\overline{\mathrm{IORQ}}$, signals have to be combined with the generalized strobes to provide the appropriate signals. An advantage of operating the A/D in I/O space with the Z-80 is that the CPU will automatically insert one wait state (the RD and $\overline{W R}$ strobes are extended one clock period) to allow more time for the I/O devices to respond. Logic to map the A/D in I/O space is shown in Figure 17. By using MREQ in place of $\overline{O R Q}$, a memory-mapped configuration results.

Additional I/O advantages exist as software DMA routines are available and use can be made of the output data transfer which exists on the upper 8 address lines (A8 to A15) during I/O input instructions. For example, MUX channel selection for the A/D can be accomplished with this operating mode.
The 8085 also provides a generalized $\overline{\mathrm{RD}}$ and $\overline{\mathrm{WR}}$ strobe, with an $10 / \bar{M}$ line to distinguish I/O and memory requests. The circuit of Figure 17 can again be used, with $10 / \bar{M}$ in place of $\overline{\mathrm{IORQ}}$ for a memory-mapped interface, and an extra inverter (or the logic equivalent) to provide $\overline{\mathrm{IO}} / \mathrm{M}$ for an 1/O-mapped connection.

Interfacing 6800 Microprocessor Derivatives (6502, etc.)

The control bus for the 6800 microprocessor derivatives does not use the $\overline{R D}$ and $\overline{W R}$ strobe signals. Instead it employs a single R/ \bar{W} line and additional timing, if needed, can be derived from the $\phi 2$ clock. All I/O devices are memorymapped in the 6800 system, and a special signal, VMA, indicates that the current address is valid. Figure 16 shows an interface schematic where the A/D is memory-mapped in the 6800 system. For simplicity, the $\overline{\mathrm{CS}}$ decoding is shown using $1 / 2$ DM8092. Note that in many 6800 systems, an already decoded $4 / 5$ line is brought out to the common bus at pin 21 . This can be tied directly to the $\overline{\mathrm{CS}}$ pin of the A/D, provided that no other devices are addressed at HEX ADDR: 4 XXX or 5 XXX .

In Figure 19 the ADC0802 series is interfaced to the MC6800 microprocessor through (the arbitrarily chosen) Port B of the MC6820 or MC6821 Peripheral Interface Adapter (PIA). Here the $\overline{C S}$ pin of the A / D is grounded since the PIA is already memory-mapped in the MC6800 system and no $\overline{\mathrm{CS}}$ decoding is necessary. Also notice that the A/D output data lines are connected to the microprocessor bus under program control through the PIA and therefore the A/ $\mathrm{D} \overline{\mathrm{RD}}$ pin can be grounded.

INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL. BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

NOTE: All typical values have been characterized but are not tested.

0334-31
Note: Pin numbers for 8228 system controller: others are 8080A
Figure 16: ADC0802 to 8080A CPU Interface

APPLICATION NOTES

Some applications bulletins that may be found useful are listed here:
A016 "Selecting A/D Converters," by Dave Fullagar.
A018 "Do's and Dont's of Applying A/D Converters," by Peter Bradshaw and Skip Osgood.
A020 "A Cookbook Approach to High Speed Data Acquisition and Microprocessor Interfacing," by Ed Sliger.
A030 "The ICL7104 - A Binary Output A/D Converter for Microprocessors," by Peter Bradshaw.
R005 "Interfacing Data Converters \& Microprocessors," by Peter Bradshaw et al, Electronics, Dec. 9, 1976.

0334-32
Figure 17: Mapping the A/D as an I/O device for use with the Z-80 CPU

*Note 1: Numbers in parentheses refer to MC6800 CPU pinout.
**Note 2: Numbers or letters in brackets refer to standard MC6800 system common bus code.
Figure 18: ADC0802 to MC6800 CPU Interface

[^75]
ADC0802-ADC0804

ICL8052／ICL7104 and ICL8068／ICL7104 14／16－Bit μ P－Compatible 2－Chip A／D Converter

GENERAL DESCRIPTION

The ICL7104，combined with the ICL8052 or ICL8068， forms a member of Intersil＇s high performance A／D convert－ er family．The ICL7104－16，performs the analog switching and digital function for a 16 －bit binary A / D converter，with full three－state output，UART handshake capability，and oth－ er outputs for easy interfacing．The ICL7014－14 is a 14 －bit version．The analog section，as with all Intersil＇s integrating converters，provides fully precise Auto－Zero，Auto－Polarity （including ± 0 null indication），single reference operation， very high input impedance，true input integration over a con－ stant period for maximum EMI rejection，fully ratiometric op－ eration，over－range indication，and a medium quality built－in reference．The chip pair also offers optional input buffer gain for high sensitivity applications，a built－in clock oscilla－ tor，and output signals for providing an external Auto－Zero capability in preconditioning circuitry，synchronizing external multiplexers，etc．

FEATURES

－16／14 Bit Binary Three－State Latched Outputs Plus Polarity and Overrange
－Ideally Suited for Interface to UARTs and Microprocessors
－Conversion On Demand or Continuously
－Guaranteed Zero Reading for Zero Volts Input
－True Polarity at Zero Count for Precise Null Detection
－Single Reference Voltage for True Ratiometric Operation
－Onboard Clock and Reference
－Auto－Zero；Auto－Polarity
－Accuracy Guaranteed to 1 Count
－All Outputs TTL Compatible
－$\pm 4 \mathrm{~V}$ Analog Input Range
－Status Signal Available for External Sync，A／Z in Preamp，etc

Part Number	Temp．Range	Package
ICL7104－14CJL	$0^{\circ} \mathrm{C}$ to $-70^{\circ} \mathrm{C}$	40－Pin CERDIP
ICL7104－14CPL	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	40－Pin Plastic DIP
ICL7104－14CDL	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	40－Pin Ceramic DIP
ICL7104－16CJL	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	40－Pin CERDIP
ICL7104－16CPL	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	40－Pin Plastic DIP
ICL7104－16CDL	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	40－Pin Ceramic DIP

ORDERING INFORMATION

Part Number	Temp．Range	Package
ICL8052CPD	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	14－Pin Plastic DIP
ICL8052CDD	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	14－Pin Ceramic DIP
ICL8052ACPD	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	14－Pin Plastic DIP
ICL8052ACDD	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	14－Pin Ceramic DIP
ICL8068CJD	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	14－Pin CERDIP
ICL8068ACJD	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	14－Pin CERDIP

0346－1

Figure 1：ICL8052A（8068A）／ICL7104 16／14 Bit A／D Converter Functional Diagram

[^76]
ICL8052/ICL7104 and ICL8068/ICL7104

ABSOLUTE MAXIMUM RATINGS

Power Dissipation (1) All Devices 500mW

Storage Temperature $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Operating Temperature . $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10sec) $300^{\circ} \mathrm{C}$
ICL8052, 8068
Supply Voltage
$\pm 18 \mathrm{~V}$
Differential Input Voltage (8068) $\pm 30 \mathrm{~V}$
(8052) $\pm 6 \mathrm{~V}$

Input Voltage (2) . $\pm 15 \mathrm{~V}$
Output Short Circuit Duration,
All Outputs (3) \qquad Indefinite
NOTE 1 Dissipation rating assumes device is mounted with all leads welded or soldered to printed circuit board in ambient temperature below $+70^{\circ} \mathrm{C}$. For higher temperatures, derate $10 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.
2: For supply voltages less than $\pm 15 \mathrm{~V}$, the absolute maximum input voltage is equal to the supply voltage.
3: Short circuit may be to ground or either supply. Rating applies to $+70^{\circ} \mathrm{C}$ ambient temperature.
4 Input voltages may exceed the supply voltages provided the input current is limited to $\pm 100 \mu \mathrm{~A}$.
5: Connecting any digital inputs or outputs to voltages greater than $\mathrm{V}+$ or less than GND may cause destructive device latchup. For this reason it is recommended that no inputs from sources not on the same power supply be applied to the ICL7104 before its power supply is established.
NOTE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

0346-2
(OUTLINE DWGS DD, JD, PD)

0346-3
(OUTLINE DWGS DL, JL, PL)
Figure 2: Pin Configurations
ICL7104 ELECTRICAL CHARACTERISTICS $\left(\mathrm{V}+=+5 \mathrm{~V}, \mathrm{~V}++=+15 \mathrm{~V}, \mathrm{~V}-=-15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)$

Symbol	Characteristics		Test Conditions	Min	Typ	Max	Unit
IN	Clock Input	CLOCK 1	$\mathrm{V}_{\text {in }}=+5 \mathrm{~V}$ to 0 V	± 2	± 7	± 30	$\mu \mathrm{A}$
IN	Comparator I/P	COMP IN (Note 1)	$\mathrm{V}_{\text {in }}=0 \mathrm{~V}$ to +5 V	-10	± 0.001	+10	$\mu \mathrm{A}$
$\mathrm{IIH}^{\text {H }}$	Inputs with Pulldown	MODE	$\mathrm{V}_{\text {IN }}=+5 \mathrm{~V}$	+1	+5	+30	$\mu \mathrm{A}$
ILL			$\mathrm{V}_{\text {in }}=0 \mathrm{~V}$	-10	± 0.01	$+10$	$\mu \mathrm{A}$
$\mathrm{IIH}^{\text {H }}$	Inputs with Pullups	$\begin{aligned} & \text { SEN, R/̄ } \\ & \left.\begin{array}{l} \overline{\text { LBEN }}, \overline{\mathrm{MBEN}}, \\ \overline{\mathrm{HBEN}}, \overline{\mathrm{CE} / \mathrm{LD}} \end{array}\right\} \quad \text { (Note 2) } \end{aligned}$	$\mathrm{V}_{\text {in }}=+5 \mathrm{~V}$	-10	± 0.01	+10	$\mu \mathrm{A}$
ILL			$\mathrm{V}_{\text {in }}=0 \mathrm{~V}$	-30	-5	-1	$\mu \mathrm{A}$

ICL7104 ELECTRICAL CHARACTERISTICS
$\left(\mathrm{V}+=+5 \mathrm{~V}, \mathrm{~V}++=+15 \mathrm{~V}, \mathrm{~V}-=-15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)$
(Continued)

Symbol	Characteristics		Test Conditions	Min	Typ	Max	Unit
V_{IH}	Input High Voltage	All Digital Inputs		2.5	2.0	-	V
$\mathrm{V}_{\text {IL }}$	Input Low Voltage	All Digital Inputs			1.5	1.0	V
V OL	Digital Outputs Three-Stated On		$\mathrm{l}_{\mathrm{OL}}=1.6 \mathrm{~mA}$	-	0.27	. 4	V
V_{OH}			$\mathrm{l}_{\mathrm{OH}}=-10 \mu \mathrm{~A}$		4.5	-	V
V_{OH}			$\mathrm{IOH}=-240 \mu \mathrm{~A}$	2.4	3.5	-	V
lol	Digital Outputs Three-Stated Off	BIT n, POL, OR	$0 \leq \mathrm{V}_{\text {out }} \leq \mathrm{V}+$	-10	$\pm .001$	+10	$\mu \mathrm{A}$
V_{OL}	Non-Three State Digital Output	STTS	O	-	0.3	. 4	V
V_{OH}			$\mathrm{IOH}=-400 \mu \mathrm{~A}$	2.4	3.3	-	V
V_{OL}		CLOCK 2	$\mathrm{l}_{\mathrm{OL}}=320 \mu \mathrm{~A}$		0.5		V
V_{OH}			$\mathrm{IOH}=-320 \mu \mathrm{~A}$		4.5		V
V_{OL}		CLOCK 3 (-14 ONLY)	$\mathrm{l}_{\mathrm{OL}}=1.6 \mathrm{~mA}$		0.27	. 4	V
V_{OH}			$\mathrm{lOH}=-320 \mu \mathrm{~A}$	2.4	3.5		V
$\mathrm{R}_{\mathrm{DS} \text { (on) }}$	Switch	Switch 1		-	25k		Ω
$\mathrm{R}_{\mathrm{DS} \text { (on) }}$		Switches 2,3		-	4k	20k	Ω
$\mathrm{R}_{\mathrm{DS} \text { (on) }}$		Switches 4,5,6,7,8,9		-	2k	10k	Ω
$l_{\text {(}}$ (off)		Switch Leakage		-	15		pA
	Clock	Clock Freq. (Note 4)		DC	200	400	kHz
I+	Supply Currents	+5 V Supply Current All outputs high impedance	Freq. $=200 \mathrm{kHz}$		200	600	$\mu \mathrm{A}$
$1++$		+15V Supply Current	Freq. $=200 \mathrm{kHz}$. 3	1.0	mA
1-		-15V Supply Current	Freq. $=200 \mathrm{kHz}$		25	200	$\mu \mathrm{A}$
V+	Supply Voltage Range	Logic Supply	Note 5	4.0		+11.0	V
$\mathrm{V}++$		Positive Supply		+10.0		+16.0	V
V -		Negative Supply		-16.0		-10.0	V

NOTES: 1. This spec applies when not in Auto-Zero phase.
2. Apply only when these pins are inputs, i.e., the mode pin is low, and the 7104 is not in handshake mode.
3. Apply only when these pins are outputs, i.e., the mode pin is high or the 7104 is in handshake mode.
4. Clock circuit shown in Figs. 15 and 16.
5. $\mathrm{V}+$ must not be more positive than $\mathrm{V}++$.

[^77]NOTE: All typical values have been characterized but are not tested.

ICL8052/ICL7104 and ICL8068/ICL7104

ICL8068 ELECTRICAL CHARACTERISTICS
($V_{\text {SUPPLY }}= \pm 15 \mathrm{~V}$ unless otherwise specified)

Symbol	Characteristics	Test Conditions	8068			8068A			Unit
			Min	Typ	Max	Min	Typ	Max	
EACH OPERATIONAL AMPLIFIER									
Vos	Input Offset Voltage	$\mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}$		20	65		20	65	mV
In	Input Current (either input) (Note 1)	$\mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}$		175	250		80	150	pA
CMRR	Common-Mode Rejection Ratio	$\mathrm{V}_{\mathrm{CM}}= \pm 10 \mathrm{~V}$	70	90		70	90		dB
	Non-Linear Component of CommonMode Rejection Ratio (Note 2)	$\mathrm{V}_{\mathrm{CM}}= \pm 2 \mathrm{~V}$		110			110		dB
A_{V}	Large Signal Voltage Gain	$\mathrm{R}_{\mathrm{L}}=50 \mathrm{k} \Omega$	20,000			20,000			V/V
SR	Slew Rate			6			6		$\mathrm{V} / \mu \mathrm{s}$
GBW	Unity Gain Bandwidth			2			2		MHz
Isc	Output Short-Circuit Current			5			5		mA
COMPARATOR AMPLIFIER									
Avol	Small-signal Voltage Gain	$\mathrm{R}_{\mathrm{L}}=30 \mathrm{k} \Omega$		4000					V/V
$+\mathrm{V}_{0}$	Positive Output Voltage Swing		+12	+13		+12	+13		V
$-\mathrm{V}_{\mathrm{O}}$	Negative Output Voltage Swing		-2.0	-2.6		-2.0	-2.6		V
VOLTAGE REFERENCE									
V_{0}	Output Voltage		1.5	1.75	2.0	1.60	1.75	1.90	V
Ro	Output Resistance			5			5		Ω
TC	Temperature Coefficient			50			40		ppm $/{ }^{\circ} \mathrm{C}$
V SUPPLY	Supply Voltage Range		± 10		± 16	± 10		± 16	V
ISUPPLY	Supply Current Total				14		8	14	mA

ICL8052 ELECTRICAL CHARACTERISTICS ($V_{\text {SUPPLY }}= \pm 15 \mathrm{~V}$ unless otherwise specified)

Symbol	Characteristics	Test Conditions	8052			8052A			Unit
			Min	Typ	Max	Min	Typ	Max	
EACH OPERATIONAL AMPLIFIER									
V_{OS}	Input Offset Voltage	$\mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}$		20	75		20	75	mV
IN	Input Current (either input) (Note 1)	$\mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}$		5	50		2	10	pA
CMRR	Common-Mode Rejection Ratio	$\mathrm{V}_{\mathrm{CM}}= \pm 10 \mathrm{~V}$	70	90		70	90		dB
	Non-Linear Component of CommonMode Rejection Ratio (Note 2)	$\mathrm{V}_{\mathrm{CM}}= \pm 2 \mathrm{~V}$		110			110		dB
A_{V}	Large Signal Voltage Gain	$\mathrm{R}_{\mathrm{L}}=50 \mathrm{k} \Omega$	20,000			20,000			V/V
SR	Slew Rate			6			6		$\mathrm{V} / \mu \mathrm{s}$
GBW	Unity Gain Bandwidth			1			1		MHz
ISC	Output Short-Circuit Current			20			20		mA
COMPARATOR AMPLIFIER									
Avol	Small-signal Voltage Gain	$\mathrm{R}_{\mathrm{L}}=30 \mathrm{k} \Omega$		4000					V/V
$+\mathrm{V}_{\mathrm{O}}$	Positive Output Voltage Swing		+12	+13		+ 12	+13		V
$-\mathrm{V}_{0}$	Negative Output Voltage Swing		-2.0	-2.6		-2.0	-2.6		V

[^78]ICL8052 ELECTRICAL CHARACTERISTICS（VSUPPLY $= \pm 15 \mathrm{~V}$ unless otherwise specified）（Continued）

Symbol	Characteristics	Test Conditions	8052			8052A			Unit
			Min	Typ	Max	Min	Typ	Max	
VOLTAGE REFERENCE									
Vo	Output Voltage		1.5	1.75	2.0	1.60	1.75	1.90	V
R_{0}	Output Resistance			5			5		Ω
TC	Temperature Coefficient			50			40		ppm $/{ }^{\circ} \mathrm{C}$
$V_{\text {SUPPLY }}$	Supply Voltage Range		± 10		± 16	± 10		± 16	V
ISUPPLY	Supply Current Total			6	12		6	12	mA

NOTES：1．The input bias currents are junction leakage currents which approximately double for every $10^{\circ} \mathrm{C}$ increase in the junction temperature， T_{J} ．Due to limited production test time，the input bias currents are measured with junctions at ambient temperature．In normal operation the junction temperature rises above the ambient temperature as a result of internal power dissipation，$P d . T_{J}=T_{A}+R_{\theta J A} P d$ where $R_{\theta J A}$ is the thermal resistance from junction to ambient．A heat sink can be used to reduce temperature rise．
2．This is the only component that causes error in dual－slope converter．
SYSTEM ELECTRICAL CHARACTERISTICS：ICL8068／7104 $\mathrm{V}++=+15 \mathrm{~V}, \mathrm{~V}+=+5 \mathrm{~V}$ ，
$V^{-}=-15 \mathrm{~V}$ ，Clock Frequency $=200 \mathrm{kHz}$ ）

Characteristics	Test Conditions	8068A／7104－14			8068A／7104－16			Unit
		Min	Typ	Max	Min	Typ	Max	
Zero Input Reading（4）	$\begin{aligned} & \mathrm{V}_{\text {in }}=0.0 \mathrm{~V} \\ & \text { Full Scale }=4.000 \mathrm{~V} \end{aligned}$	－0．0000	± 0.0000	＋0．0000	－0．0000	－0．0000	＋0．0000	Hexadecimal Reading
Ratiometric Reading（1）（4）	$\begin{aligned} & V_{\text {in }}=V_{\text {Ref. }} \\ & \text { Full Scale }=4.000 \mathrm{~V} \end{aligned}$	1FFF	2000	2001	7FFF	8000	8001	Hexadecimal Reading
Linearity over \pm Full Scale（error of reading from best straight line） （4）	$-4 \mathrm{~V} \leq \mathrm{V}_{\text {in }} \leq+4 \mathrm{~V}$		0.5	1		0.5	1	LSB
Differential Linearity（difference between worst case step of adjacent counts and ideal step）	$-4 \mathrm{~V} \leq \mathrm{V}_{\text {in }} \leq+4 \mathrm{~V}$		． 01			． 01		LSB
Rollover error（Difference in reading for equal positive \＆neg－ ative voltage near full scale）（4）	$-V_{\text {in }}=+V_{\text {in }} \cong 4 \mathrm{~V}$		0.5	1		0.5	1	LSB
Noise（P－P value not exceeded 95\％of time）	$\begin{aligned} & \mathrm{V}_{\text {in }}=0 \mathrm{~V} \\ & \text { Full scale }=4.000 \mathrm{~V} \end{aligned}$		2			2		$\mu \mathrm{V}$
Leakage Current at Input（2）（4）	$\mathrm{V}_{\text {in }}=0 \mathrm{~V}$		100	165		100	165	pA
Zero Reading Drift（A）	$\begin{aligned} & V_{\text {in }}=0 V \\ & 0^{\circ} \mathrm{C} \leq T_{A} \leq 70^{\circ} \mathrm{C} \end{aligned}$		0.5			0.5		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Scale Factor Temperature（3）（4） Coefficient	$\begin{aligned} & V_{\text {in }}=+4 \mathrm{~V} \\ & 0 \leq T_{A} \leq 50^{\circ} \mathrm{C} \\ & \text { ext. ref. } 0 \mathrm{ppm} /{ }^{\circ} \mathrm{C} \\ & \hline \end{aligned}$		2	5		2	5	ppm $/{ }^{\circ} \mathrm{C}$

```
SYSTEM ELECTRICAL CHARACTERISTICS: ICL8052/7104 (V ++=+15V, v+=+5V,
\(\mathrm{V}^{-}=-15 \mathrm{~V}\), Clock Frequency=200kHz)
```

Characteristics	Test Conditions	8052A/7104-14			8052A/7104-16			Unit
		Min	Typ	Max	Min	Typ	Max	
Zero Input Reading	$\begin{array}{\|l\|} \mathrm{V}_{\text {in }}=0.0 \mathrm{~V} \\ \text { Full Scale }=4.000 \mathrm{~V} \end{array}$	-0.0000	± 0.0000	+0.0000	-0.0000	± 0.0000	$+0.0000$	Hexadecimal Reading
Ratiometric Reading (3) (4)	$\begin{aligned} & V_{\text {in }}=V_{\text {Ref. }} \\ & \text { Full Scale }=4.000 \mathrm{~V} \end{aligned}$	1FFF	2000	2001	7FFF	8000	8001	Hexadecimal Reading
Linearity over \pm Full Scale (error of reading from best straight line) (4)	$-4 V \leq V_{\text {in }} \leq+4 V$		0.5	1		0.5	1	LSB
Differential Linearity (difference between worst case step of adjacent counts and ideal step)	$-4 \mathrm{~V} \leq \mathrm{V}_{\text {in }} \leq+4 \mathrm{~V}$. 01			. 01		LSB
Rollover error (Difference in reading for equal positive \& negative voltage near full scale)	$-\mathrm{V}_{\text {in }}=+\mathrm{V}_{\text {in }} \approx 4 \mathrm{~V}$		0.5	1		0.5	1	LSB
Noise (P-P value not exceeded 95\% of time)	$\begin{aligned} & \mathrm{V}_{\text {in }}=0 \mathrm{~V} \\ & \text { Full scale }=4.000 \mathrm{~V} \end{aligned}$		30			30		$\mu \mathrm{V}$
Leakage Current at Input (2) (4)	$\mathrm{V}_{\mathrm{in}}=0 \mathrm{~V}$		20	30		20	30	pA
Zero Reading Drift (4)	$\begin{aligned} & V_{\text {in }}=0 \mathrm{~V} \\ & 0 \leq T_{A} \leq 70^{\circ} \mathrm{C} \end{aligned}$		0.5			0.5		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Scale Factor Temperature Coefficient (4)	$\begin{aligned} & V_{\text {in }}=+4 \mathrm{~V} \\ & 0 \leq T_{A} \leq 70^{\circ} \mathrm{C} \\ & \text { (ext. ref. } 0 \mathrm{ppm} /{ }^{\circ} \mathrm{C} \text {) } \end{aligned}$		2			2		ppm $/{ }^{\circ} \mathrm{C}$

NOTES: 1. Tested with low dielectric absorption integrating capacitor.
2. the input bias currents are junction leakage currents which approximately double for every $10^{\circ} \mathrm{C}$ increase in the junction temperature, T_{J}. Due to limited production test time, the input bias currents are measured with junctions at ambient temperature. In normal operation the junction temperature rises above the ambient temperature as a result of internal power dissipation, $\mathrm{Pd} . \mathrm{T}_{J}=\mathrm{T}_{\mathrm{A}}+\mathrm{R}_{\theta \mathrm{JA}} \mathrm{Pd}$ where $\mathrm{R}_{\theta \mathrm{JA}}$ is the thermal resistance from junction to ambient. A heat sink can be used to reduce temperature rise.
3. The temperature range can be extended to $70^{\circ} \mathrm{C}$ and beyond if the Auto-Zero and Reference capacitors are increased to absorb the high temperature leakage of the 8068 . See note 2 above.
4. Parameter has been characterized but is not production tested.

Figure 4: Various Combinations of Byte Disables

AC CHARACTERISTICS $(\mathrm{V}++=+15 \mathrm{~V}, \mathrm{~V}+=+5 \mathrm{~V}, \mathrm{~V}-=-15 \mathrm{~V})$

Table 1: Direct Mode Timing Requirements (Note: Not tested in production)

Symbol	Description	Min	Typ	Max	Unit
$\mathrm{t}_{\text {bea }}$	$\overline{\text { XBEN }}$ Min. Pulse Width		300		ns
$\mathrm{t}_{\text {dab }}$	Data Access Time from XBEN		300		
$\mathrm{t}_{\text {dhb }}$	Data Hold Time from XBEN		200		
$\mathrm{t}_{\text {cea }}$	$\overline{\mathrm{CE} / \mathrm{LD}}$ Min. Pulse Width		350		
$\mathrm{t}_{\text {dac }}$	Data Access Time from $\overline{C E / L D}$		350		
$\mathrm{t}_{\text {dhc }}$	Data Hold Time from CE/LD		280		
$\mathrm{t}_{\text {cwh }}$	CLOCK 1 High Time		1000		

Table 2: Handshake Timing Requirements (Note: Not tested in production.)

Name	Description	Min	Typ	Max	Unit
t_{mw}	MODE Pulse (minimum)		20		ns
$t_{\text {sm }}$	MODE pin set-up time		-150		
$t_{\text {me }}$	MODE pin high to low $Z \overline{C E / L D}$ high delay		200		
$t_{\text {mb }}$	MODE pin high to XBEN low Z (high) delay		200		
$t_{\text {cel }}$	CLOCK 1 high to $\overline{C E / L D}$ low delay		700		
$\mathrm{t}_{\text {ceh }}$	CLOCK 1 high to CE/LD high delay		600		
$t_{c b l}$	CLOCK 1 high to XBEN low delay		900		
$\mathrm{t}_{\text {cbh }}$	CLOCK 1 high to XBEN high delay		700		
$\mathrm{t}_{\text {cah }}$	CLOCK 1 high to data enabled delay		1100		
$\mathrm{t}_{\text {cdl }}$	CLOCK 1 low to data disabled delay		1100		
$\mathrm{t}_{\text {ss }}$	Send ENable set-up time		-350		
$\mathrm{t}_{\mathrm{cbz}}$	CLOCK 1 high to XBEN disabled delay		2000		
$t_{\text {cez }}$	CLOCK 1 high to $\overline{C E / L D}$ disabled delay		2000		
$\mathrm{t}_{\mathrm{cwh}}$	CLOCK 1 High Time	1250	1000		

[^79]

Table 3: Pin Descriptions

Pin	Symbol	Option	Description
1	$\mathrm{V}(++$)		Positive Supply Voltage Nominally +15 V
2	GND		Digital Ground . OV , ground return
3	STTS		STaTuS output. HI during Integrate and Deintegrate until data is latched. LO when analog section is in Auto-Zero configuration.
4	POL		POLarity. Three-state output. HI for positive input.
5	OR		OverRange. Three-state output.
6	$\begin{array}{\|l\|} \hline \text { BIT } 16 \\ \text { BIT } 14 \end{array}$	$\begin{aligned} & -16 \\ & -14 \end{aligned}$	(Most significant bit)
7	$\begin{aligned} & \hline \text { BIT } 15 \\ & \text { BIT } 13 \end{aligned}$	$\begin{aligned} & -16 \\ & -14 \end{aligned}$	Data Bits, Three-state outputs. See Table 4 for format of ENables and bytes.HIGH = true
8	$\begin{array}{\|l\|} \hline \text { BIT } 14 \\ \text { BIT } 12 \end{array}$	$\begin{aligned} & -16 \\ & -14 \end{aligned}$	
9	$\begin{array}{\|l} \hline \text { BIT } 13 \\ \text { BIT } 11 \end{array}$	$\begin{aligned} & -16 \\ & -14 \\ & \hline \end{aligned}$	
10	BIT 12 BIT 10	$\begin{aligned} & -16 \\ & -14 \end{aligned}$	
11	$\begin{aligned} & \text { BIT } 11 \\ & \text { BIT } 9 \end{aligned}$	$\begin{aligned} & -16 \\ & -14 \end{aligned}$	
12	$\text { BIT } 10$ nc	$\begin{aligned} & -16 \\ & -14 \end{aligned}$	
13	$\begin{aligned} & \text { BIT } 9 \\ & \text { nc } \end{aligned}$	$\begin{aligned} & -16 \\ & -14 \end{aligned}$	
14	BIT 8		
15	BIT 7		
16	BIT 6		
17	BIT 5		
18	BIT 4		
19	BIT 3		
20	BIT 2		
21	BIT 1		Least significant bit.
22	LBEN		Low Byte ENable. If not in handshake mode (see pin 27) when LO (with $\overline{C E} / \overline{\mathrm{LD}}, \operatorname{pin} 30$) activates low-order byte outputs, BITS 1-8 When in handshake mode (see pin 27), serves as a low-byte flag output. See Figures 12, 13, 14.
23	MBEN HBEN	-16 -14	Mid $\bar{B} y t e ~ \overline{E N a b l e . ~ A c t i v a t e s ~ B I T S ~}$ 9-16, see $\overline{\text { LBEN }}$ (pin 22) Figh Byte ENable. Activates BITS 9-14, POL, OR, see $\overline{\mathrm{LBEN}}$ (pin 22)

Pin	Symbol	Option	Description
24	HBEN CLOCK3	$\begin{aligned} & -16 \\ & -14 \end{aligned}$	High Byte ENable. Activates POL, OR, see $\overline{\mathrm{LBEN}}$ (pin 22). RC oscillator pin. Can be used as clock output.
Pin	Symbol		Description
25	CLOCK1	Clock input. External clock or ocsillator.	
26	CLOCK2	Clock output. Crystal or RC oscillator.	
27	MODE	Input LO; Direct output mode where $\overline{\mathrm{CE}} /$ $\overline{L D}, \overline{H B E N}, \overline{M B E N}$ and $\overline{\text { LBEN }}$ act as inputs directly controlling byte outputs. If pulsed HI causes immediate entry into handshake mode (see Figure 14). If HI , enables $\overline{\mathrm{CE} / \mathrm{LD}}, \overline{\mathrm{HBEN}}, \overline{\mathrm{MBEN}}$, and $\overline{\text { LBEN }}$ as outputs. Handshake mode will be entered and data output as in Figures 12 \& 13 at conversion completion.	
28	R/ \bar{H}	Run/Hold: Input HI-conversions continously performed every $2^{17}(-16)$ or $2^{15}(-14)$ clock pulses. Input LOconversion in progress completed, converter will stop in Auto-Zero 7 counts before input integrate.	
29	SEN	Send-ENable: Input controls timing of byte transmission in handshake mode. HI indicates 'send'.	
30	$\overline{C E} / \overline{L D}$	$\overline{\text { Chip-Ēnable/ }}$ Loā. With MODE (pin 27) LO, $\overline{C E} / \overline{L D}$ serves as a master output enable; when HI, the bit outputs and POL, OR are disabled. With MODE HI, pin serves as a $\bar{L} o a \bar{D}$ strobe (-ve going) used in handshake mode. See Figures 12 \& 13 .	
31	$V(+)$	Positive Logic Supply Voltage. Nominally$+5 \mathrm{~V}$	
32	AN, IN	ANalog INput. High side.	
33	BUF IN	BUFfer INput to analog chip (ICL8052 or ICL8068)	
34	REFCAP2	REFerence CAPacitor (negative side)	
35	AN.GND.	ANalog GrouND. Input low side and reference low side.	
36	A-Z	Auto-Zero node.	
37	VREF	Voltage REFerence input (positive side).	
38	REFCAP1	REFerence CAPacitor (positive side).	
39	COMP-IN	COMParator INput from 8052/8068	
40	$V(-)$	Negative Supply Voltage. Nominally -15 V .	

INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.
NOTE: All typical values have been characterized but are not tested.

7104－16	$\overline{C E / L D}$																	
	HBEN		MBEN								$\overline{\text { LBEN }}$							
	POL	O／R	B16	B15	B14	B13	B12	B11	B10	B9	B8	B7	B6	B5	B4	B3	B2	B1
			HBEN								LBEN							
7104－14			POL	O／R	B14	B13	B12	B11	B10	B9	B8	B7	B6	B5	B4	B3	B2	B1

Figure 1 shows the functional block diagram of the operating system．For a detailed explanation，refer to Figure 7 below．

0346－9
Figure 7B：Phase II Integrate Input

DETAILED DESCRIPTION

Analog Section

Figure 7 shows the equivalent Circuit of the Analog Section of both the ICL7104/8052 and the ICL7104/8068 in the 3 different phases of operation. If the Run/Hold pin is left open or tied to $\mathrm{V}+$, the system will perform conversions at a rate determined by the clock frequency: 131,072 for - 16 and 32,368 for -14 clock periods per cycle (see Figure 9 conversion timing).

Auto-Zero Phase I Figure 7A

During Auto-Zero, the input of the buffer is shorted to analog ground thru switch 2, and switch 1 closes a loop around the integrator and comparator. The purpose of the loop is to charge the Auto-Zero capacitor until the integrator output no longer changes with time. Also, switches 4 and 9 recharge the reference capacitor to $\mathrm{V}_{\text {REF }}$.

0346-10
Figure 7C: Phase III + Deintegrate

0346-11
Figure 7D: Phase III - Deintegrate

[^80]
Input Integrate Phase II Figure 7B

During input integrate the Auto-Zero loop is opened and the analog input is connected to the buffer input thru switch 3. (The reference capacitor is still being charged to $V_{\text {REF }}$ during this time.) If the input signal is zero, the buffer, integrator and comparator will see the same voltage that existed in the previous state (Auto-Zero). Thus the integrator output will not change but will remain stationary during the entire Input Integrate cycle. If $\mathrm{V}_{\mathbb{I N}}$ is not equal to zero, an unbalanced condition exists compared to the Auto-Zero phase, and the integrator will generate a ramp whose slope is proportional to V_{IN}. At the end of this phase, the sign of the ramp is latched into the polarity F / F.

Deintegrate Phase III Figure 7C \& D

During the Deintegrate phase, the switch drive logic uses the output of the polarity F/F in determining whether to close switches 6 and 9 or 7 and 8 . If the input signal was positive, switches 7 and 8 are closed and a voltage which is $\mathrm{V}_{\text {REF }}$ more negative than during Auto-Zero is impressed on the buffer input. Negative inputs will cause $+V_{\text {REF }}$ to be applied to the buffer input via switches 6 and 9 . Thus, the reference capacitor generates the equivalent of $a(+)$ reference or a (-) reference from the single reference voltage with negligible error. The reference voltage returns the output of the integrator to the zero-crossing point established in Phase I. The time, or number of counts, required to do this is proportional to the input voltage. Since the Deintegrate phase can be twice as long as the input integrate
phase, the input voltage required to give a full scale reading $=2 \mathrm{~V}_{\text {REF }}$.
Note: Once a zero crossing is detected, the system automatically reverts to Auto-Zero phase for the leftover Deintegrate time (unless Run/Hold is manipulated, see Run/Hold Input in detailed description, digital section).

Buffer Gain

At the end of the auto-zero interval, the instantaneous noise voltage on the auto-zero capacitor is stored, and subtracts from the input voltage while adding to the reference voltage during the next cycle. The result is that this noise voltage effectively is somewhat greater than the input noise voltage of the buffer itself during integration. By introducing some voltage gain into the buffer, the effect of the auto-zero noise (referred to the input) can be reduced to the level of the inherent buffer noise. This generally occurs with a buffer gain of between 3 and 10. Further increase in buffer gain merely increases the total offset to be handled by the autozero loop, and reduces the available buffer and integrator swings, without improving the noise performance of the system. The circuit recommended for doing this with the ICL8068/ICL7104 is shown in Figure 8. With careful layout, the circuit shown can achieve effective input noise voltages on the order of 1 to $2 \mu \mathrm{~V}$, allowing full 16 -bit use with full scale inputs of as low as 150 mV . Note that at this level, thermoelectric EMFs between PC boards, IC pins, etc., due to local temperature changes can be very troublesome. For further discussion, see App. Note A030.

Figure 8: Adding Buffer Gain to ICL8068

Table 5: Typical Component Values ($\mathrm{V}++=+15 \mathrm{~V}, \mathrm{~V}+=5 \mathrm{~V}, \mathrm{~V}^{-}=-15 \mathrm{~V}$, Clock Freq $=200 \mathrm{kHz}$)

ICL8052/8068 with	ICL7104-16			ICL7104-14		Unit
Full scale $\mathrm{V}_{\text {IN }}$	200	800	4000	100	4000	mV
Buffer Gain	10	1	1	10	1	$\mathrm{~V} / \mathrm{V}$
$\mathrm{R}_{\mathrm{INT}}$	100	43	200	47	180	$\mathrm{k} \Omega$
$\mathrm{C}_{\mathrm{INT}}$.33	.33	.33	0.1	0.1	$\mu \mathrm{~F}$
$\mathrm{C}_{A Z}$	1.0	1.0	1.0	1.0	1.0	$\mu \mathrm{~F}$
$\mathrm{C}_{\text {ref }}$	10	1.0	1.0	10	1.0	$\mu \mathrm{~F}$
$\mathrm{~V}_{\text {REF }}$	100	400	2000	50	2000	mV
Resolution	3.1	12	61	6.1	244	$\mu \mathrm{~V}$

[^81]

COUNTS			
	PHASE I	PHASE II	PHASE III
-16	32768	32768	65536
-14	8192	8192	16384

Figure 9: Conversion Timing

ICL8052 vs ICL8068

The ICL8052 offers significantly lower input leakage currents than the ICL8068, and may be found preferable in systems with high input impedances. However, the ICL8068 has substantially lower noise voltage, and for systems where system noise is a limiting factor, particularly in low signal level conditions, will give better performance.

COMPONENT VALUE SELECTION

For optimum performance of the analog section, care must be taken in the selection of values for the integrator capacitor and resistor, auto-zero capacitor, reference voltage, and conversion rate. These values must be chosen to suit the particular application.

Integrating Resistor

The integrating resistor is determined by the full scale input voltage and the output current of the buffer used to charge the integrator capacitor. This current should be small compared to the output short circuit current such that thermal effects are kept to a minimum and linearity is not affected. Values of 5 to $40 \mu \mathrm{~A}$ give good results with a nominal of $20 \mu \mathrm{~A}$. The exact value may be chosen by

$$
\mathrm{R}_{\mathrm{INT}}=\frac{\text { full scale voltage }}{}{ }^{*}
$$

*Note: If gain is used in the buffer amplifier then -

$$
R_{I N T}=\frac{\text { (Buffer gain) (full scale voltage) }}{20 \mu \mathrm{~A}}
$$

Integrating Capacitor

The product of integrating resistor and capacitor is selected to give 9 volt swing for full scale inputs. This is a compromise between possibly saturating the integrator (at +14
volts) due to tolerance build-up between the resistor, capacitor and clock and the errors a lower voltage swing could induce due to offsets referred to the output of the comparator. In general, the value of $\mathrm{C}_{\mathrm{INT}}$ is given by

A very important characteristic of the integrating capacitor is that it have low dielectric absorption to prevent roll-over or ratiometric errors. A good test for dielectric absorption is to use the capacitor with the input tied to the reference.

This ratiometric condition should read half scale ($100 \ldots 000$) and any deviation is probably due to dielectric absorption. Polypropylene capacitors give undetectable errors at reasonable cost. Polystyrene and polycarbonate capacitors may also be used in less critical applications.

Auto-Zero and Reference Capacitor

The size of the auto-zero capacitor has some influence on the noise of the system, a large capacitor giving less noise. The reference capacitor should be large enough such that stray capacitance to ground from its nodes is negligible.
Note: When gain is used in the buffer amplifier the reference capacitor should be substantially larger than the autozero capacitor. As a rule of thumb, the reference capacitor should be approximately the gain times the value of the auto-zero capacitor. The dielectric absorption of the reference cap and auto-zero cap are only important at power-on or when the circuit is recovering from an overload. Thus, smaller or cheaper caps can be used here if accurate readings are not required for the first few seconds of recovery.

[^82]
ICL8052/ICL7104 and ICL8068/ICL7104

Reference Voltage

The analog input required to generate a full scale output is $\mathrm{V}_{\mathrm{IN}}=2 \mathrm{~V}_{\mathrm{REF}}$.

The stability of the reference voltage is a major factor in the overall absolute accuracy of the converter. The resolution of the ICL7104 at 16 bits is one part in 65536, or 15.26 ppm . Thus, if the reference has a temperature coefficient of $50 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ (on board reference) a temperature change of $1 / 3^{\circ} \mathrm{C}$ will introduce a one-bit absolute error. For this reason, it is recommended that an external high quality reference be used where the ambient temperature is not controlled or where high-accuracy absolute measurements are being made.

DETAILED DESCRIPTION

Digital Section

The digital section includes the clock oscillator circuit, a 16 or 14 bit binary counter with output latches and TTLcompatible three-state output drivers, polarity, over-range and control logic and UART handshake logic, as shown in the Block Diagram Figure 10 (16 bit version shown).

Throughout this description, logic levels will be referred to as "low" or "high". The actual logic levels are defined under "ICL7104 Electrical Characteristics". For minimum pow-
er consumption, all inputs should swing from GND (low) to V+ (high). Inputs driven from TTL gates should have 3$5 \mathrm{k} \Omega$ pullup resistors added for maximum noise immunity.

MODE Input

The MODE input is used to control the output mode of the converter. When the MODE pin is connected to GND or left open (this input is provided with a pulldown resistor to ensure a low level when the pin is left open), the converter is in its "Direct" output mode, where the output data is directly accessible under the control of the chip and byte enable inputs. When the MODE input is pulsed high, the converter enters the UART handshake mode and outputs the data in three bytes for the 7104-16 or two bytes for the 7104-14 then returns to "direct" mode. When the MODE input is left high, the converter will output data in the handshake mode at the end of every conversion cycle. (See section entitled "Handshake Mode" for further details).

STaTuS Output

During a conversion cycle, the STaTuS output goes high at the beginning of Input Integrate (Phase II), and goes low one-half clock period after new data from the conversion has been stored in the output latches. See Figure 9 for details of this timing. This signal may be used as a "data valid" flag (data never changes while STaTuS is low) to drive interrupts, or for monitoring the status of the converter.

[^83]

Run/Hold Input

When the Run/Hold input is connected to V^{+}or left open (this input has a pullup resistor to ensure a high level when the pin is left open), the circuit will continuously perform conversion cycles, updating the output latches at the end of every Deintegrate (Phase III) portion of the conversion cycle (See Figure 9). (See under "Handshake Mode" for exception.) In this mode of operation, the conversion cycle will be performed in 131,072 for 7104-16 and 32768 for 7104-14 clock periods, regardless of the resulting value.
If Run/Hold goes low at any time during Deintegrate (Phase III) after the zero crossing has occurred, the circuit will immediately terminate Deintegrate and jump to AutoZero. This feature can be used to eliminate the time spent in Deintegrate after the zero-crossing. If Run/Hold stays or goes low, the converter will ensure a minimum Auto-Zero time, and then wait in Auto-Zero until the Run/Hold input goes high. The converter will begin the Integrate (Phase II) portion of the next conversion (and the STaTuS output will go high) seven clock periods after the high level is detected at Run//̈old. See Figure 11 for details.
Using the Run/Hold input in this manner allows an easy "convert on demand" interface to be used. The converter may be held at idle in Auto-Zero with Run/Hold low. When Run/Hold goes high the conversion is started, and when the STaTuS output goes low the new data is valid (or transferred) to the UART - see Handshake Mode). Run/Hold may now go low terminating Deintegrate and ensuring a minimum Auto-Zero time before stopping to wait for the next conversion. Alternately, Run/Hold can be used to minimize conversion time by ensuring that it goes low during Deintegrate, after zero crossing, and goes high after the hold point is reached. The required activity on the Run/Hold input can be provided by connecting it to the CLOCK3 (-14), CLOCK2 (-16) Output. In this mode the conversion time is dependent on the input value measured. Also refer to Intersil Application Bulletin A030 for a discussion of the effects this will have on Auto-Zero performance.

If the Run/Hold input goes low and stays low during AutoZero (Phase I), the converter will simply stop at the end of Auto-Zero and wait for Run/Hold to go high. As above, Inte-
grate (Phase II) begins seven clock periods after the high level is detected.

Direct Mode

When the MODE pin is left at a low level, the data outputs [bits 1 through 8 low order byte, see Table 4 for format of middle (-16) and high order bytes] are accessible under control of the byte and chip ENable terminals as inputs. These ENable inputs are all active low, and are provided with pullup resistors to ensure an inactive high level when left open. When the chip ENable input is low, taking a byte ENable input low will allow the outputs of that byte to become active (three-stated on). This allows a variety of parallel data accessing techniques to be used. The timing requirements for these outputs are shown under AC Characteristics and Table 1.

It should be noted that these control inputs are asynchronous with respect to the converter clock - the data may be accessed at any time. Thus it is possible to access the data while it is being updated, which could lead to scrambled data. Synchronizing the access of data with the conversion cycle by monitoring the STaTuS output will prevent this. Data is never updated while STaTuS is low. Also note the potential bus conflict described under "Initial Clear Circuitry".

Handshake Mode

The handshake output mode is provided as an alternative means of interfacing the ICL7104 to digital systems, where the A/D converter becomes active in controlling the flow of data instead of passively responding to chip and byte ENable inputs. This mode is specifically designed to allow a direct interface between the ICL7104 and industry-standard UARTs (such as the Intersil CMOS UARTs, IM6402/3) with no external logic required. When triggered into the handshake mode, the ICL7104 provides all the control and flag signals necessary to sequence the three (ICL7106-16) or two (ICL7104-14) bytes of data into the UART and initiate their transmission in serial form. This greatly eases the task and reduces the cost of designing remote data acquisition stations using serial data transmission to minimize the number of lines to the central controlling processor.

ICL8052/ICL7104 and ICL8068/ICL7104

Entry into the handshake mode will occur if either of two conditions are fulfilled; first, if new data is latched (i.e. a conversion is completed) while MODE pin (pin 27) is high, in which case entry occurs at the end of the latch cycle; or secondly, if the MODE pin goes from low to high, when entry will occur immediately (if new data is being latched, entry is delayed to the end of the latch cycle). While in the handshake mode, data latching is inhibited, and the MODE pin is ignored. (Note that conversion cycles will continue in the normal manner). This allows versatile initiation of handshake operation without danger of false data generation; if the MODE pin is held high, every conversion (other than those completed during handshake operations) will start a new handshake operation, while if the MODE pin is pulsed high, handshake operations can be obtained "on demand."
When the converter enters the handshake mode, or when the MODE input is high, the chip and byte ENable terminals become TTL-compatible outputs which provide the control signals for the output cycle. The Send ENable pin (SEN) (pin 29) is used as an indication of the ability of the external device to receive data. The condition of the line is sensed
once every clock pulse, and if it is high, the next (or first) byte is enabled on the next rising CLOCK 1 (pin 25) clock edge, the corresponding byte ENable line goes low, and the Chip ENable/LoaD pin (pin 30) (CE/LD) goes low for one full clock pulse only, returning high.
On the next falling CLOCK 1 clock pulse edge, if SEN remains high, or after it goes high again, the byte output lines will be put in the high impedance state (or three-stated off). One half pulse later, the byte ENable pin will be cleared high, and (unless finished) the $\overline{C E} / \overline{L D}$ and the next byte ENable pin will go low. This will continue until all three (2 in the case of the 14 bit device) bytes have been sent. The bytes are individually put into the low impedance state i.e.: three-stated on during most of the time that their byte ENable pin is (active) low. When receipt of the last byte has been acknowledged by a high SEN, the handshake mode will be cleared, re-enabling data latching from conversions, and recognizing the condition of the MODE pin again. The byte and chip ENable will be three-stated off, if MODE is low, but held high by their (weak) pullups. These timing relationships are illustrated in Figure 12, 13, and 14, and Table 2.

[^84] the warranty shall be exclusive and shall be in lieu of all other warranties, express, implied or statutory, including the implied warranties of MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

NOTE: All typical values have been characterized but are not tested.

Figure 12 shows the sequence of the output cycle with SEN held high. The handshake mode (Internal MODE high) is entered after the data latch pulse (since MODE remains high the $\overline{C E} / \overline{L D}, \overline{L B E N}, \overline{M B E N}$ and $\overline{\mathrm{HBEN}}$ terminals are active as outputs). The high level at the SEN input is sensed on the same high to low internal clock edge. On the next to high internal clock edge, the $\overline{\mathrm{CE}} / \overline{\mathrm{LD}}$ and the HBEN outputs assume a low level and the high-order byte (POL and OR, and except for -16 , Bits $9-14$) outputs are enabled. The $\overline{C E} / \overline{L D}$ output remains low for one full internal clock period only, the data outputs remain active for $1-1 / 2$ internal clock periods, and the high byte ENable remains low for two clock periods. Thus the $\overline{C E} / \overline{L D}$ output low level or low to high edge may be used as a synchronizing signal to ensure valid data, and the byte ENable as an output may be used as a byte identification flag. With SEN remaining high the converter completes the output cycle using $\overline{\mathrm{CE}} / \overline{\mathrm{LD}}, \overline{\mathrm{MBEN}}$ and LBEN while the remaining byte outputs (see Table 4) are activated. The handshake mode is terminated when all bytes are sent (3 for -16, 2 for -14).

Figure 13 shows an output sequence where the SEN input is used to delay portions of the sequence, or handshake, to ensure correct data transfer. This timing diagram shows the relationships that occur using an industry-standard IM6402/3 CMOS UART to interface to serial data channels. In this interface, the SEN input to the ICL7104 is driven by the TBRE (Transmitter Buffer Register Empty) output of the UART, and the $\overline{\mathrm{CE}} / \overline{\mathrm{LD}}$ terminal of the ICL7104
drives the TBRL (Transmitter Buffer Register Load) input to the UART. The data outputs are paralleled into the eight Transmitter Buffer Register inputs.

Assuming the UART Transmitter Buffer Register is empty, the SEN input will be high when the handshake mode is entered after new data is stored. The $\overline{\mathrm{CE}} / \overline{\mathrm{LD}}$ and HBEN terminals will go low after SEN is sensed, and the high order byte outputs become active. When $\overline{C E} / \overline{\mathrm{LD}}$ goes high at the end of one clock period, the high order byte data is clocked into the UART Transmitter Buffer Register. The UART TBRE output will now go low, which halts the output cycle with the HBEN output low, and the high order byte outputs active. When the UART has transferred the data to the Transmitter Register and cleared the Transmitter Buffer Register, the TBRE returns high. On the next ICL7104 internal clock high to low edge, the high order byte outputs are disabled, and one-half internal clock later, the HBEN output returns high. At the same time, the $\overline{\mathrm{CE}} / \overline{\mathrm{LD}}$ and $\overline{\mathrm{MBEN}}(-16)$ or LBEN outputs go low, and the corresponding byte outputs become active. Similarly, when the $\overline{C E} / \overline{\mathrm{LD}}$ returns high at the end of one clock period, the enabled data is clocked into the UART Transmitter Buffer Register, and TBRE again goes low. When TBRE returns to a high it will be sensed on the next ICL7104 internal clock high to low edge, disabling the data outputs. For the 16 bit device, the sequence is repeated for LBEN. One-half internal clock later, the handshake mode will be cleared, and the chip and byte ENable terminals return high and stay active (as long as MODE stays high).

[^85]

With the MODE input remaining high as in these examples, the converter will output the results of every conversion except those completed during a handshake operation. By triggering the converter into handshake mode with a low to high edge on the MODE input, handshake output sequences may be performed on demand. Figure 14 shows a handshake output sequence triggered by such an edge. In addition, the SEN input is shown as being low when the converter enters handshake mode. In this case, the whole output sequence is controlled by the SEN input, and the sequence for the first (high order) byte is similar to the sequence for the other bytes. This diagram also shows the output sequence taking longer than a conversion cycle. Note that the converter still makes conversions, with the STaTuS output and Run/Hold input functioning normally. The only difference is that new data will not be latched when in handshake mode, and is therefore lost.

Initial Clear Circuitry

The internal logic of the 7104 is supplied by an internal regulator between $\mathrm{V}++$ and Digital Ground. The regulator includes a low-voltage detector that will clear various registers. This is intended to ensure that on initial power-up, the control logic comes up in Auto-Zero, with the 2nd, 3rd, and 4th MSB bits cleared, and the "mode" F/F cleared (i.e. in "direct" mode). This, however, will also clear these regis-
ters if the supply voltage "glitches" to a low enough value. Additionally, if the supply voltage comes up too fast, this clear pulse may be too narrow for reliable clearing. In general, this is not a problem, but if the UART internal "MODE" F/F should come up set, the byte and chip ENable lines will become active outputs. In many systems this could lead to bus conflicts, especially in non-handshake systems. In any case, SEN should be high (held high for non-handshake systems) to ensure that the MODE F/F will be cleared as fast as possible (see Figure 12 for timing). For these and other reasons, adequate supply bypass is recommended.

Oscillator

The ICL7104-14 is provided with a versatile three terminal oscillator to generate the internal clock. The oscillator may be overdriven, or may be operated as an RC or crystal oscillator.
Figure 15 shows the oscillator configured for RC operation. The internal clock will be of the same frequency and phase as the voltage on the CLOCK 3 pin. The resistor and capacitor should be connected as shown. The circuit will oscillate at a frequency given by $f=.45 / R C$. A $50-100 \mathrm{k} \Omega$ resistor is recommended for useful ranges of frequency. For optimum 60 Hz line rejection, the capacitor value should be chosen such that $32768(-16), 8192(-14)$ clock periods is close to an integral multiple of the 60 Hz period.

Figure 15: RC Oscillator
0346-19
Note that CLOCK 3 has the same output drive as the bit outputs.
As a result of pin count limitations, the ICL7104-16 has only CLOCK 1 and CLOCK 2 available, and cannot be used as an RC oscillator. The internal clock will correspond to the inverse of the signal on CLOCK 2. Figure 16 shows a crystal oscillator circuit, which can be used with both 7104 versions. If an external clock is to be used, it should be applied to CLOCK 1. The internal clock will correspond to the signal applied to this pin.

POWER SUPPLY SEQUENCING

Because of the nature of the CMOS process used to fabricate the ICL7104, and the multiple power supplies used, there are certain conditions of these supplies under which a disabling and potentially damaging SCR action can occur. All of these conditions involve the $\mathrm{V}+$ supply (nom. +5 V) being more positive than the $\mathrm{V}++$ supply. If there is any possibility of this occuring during start-up, shut down, under transient conditions during operation, or when inserting a PC board into a "hot" socket, etc., a diode should be placed between $\mathrm{V}+$ and $\mathrm{V}++$ to prevent it. A germanium or Schottky rectifier diode would be best, but in most cases a silicon rectifier diode is adequate.

ANALOG AND DIGITAL GROUNDS

Extreme care must be taken to avoid ground loops in the layout of ICL8068 or ICL8052/7104 circuits, especially in 16 -bit and high sensitivity circuits. It is most important that return currents from digital loads are not fed into the analog ground line. A recommended connection sequence for the ground lines is shown in Figure 17.

APPLICATIONS INFORMATION

Some applications bulletins that may be found useful are listed here:
A016 "Selecting A/D Converters", by Dave Fullagar
A017 "The Integrating A/D Converter", by Lee Evans
A018 "Do's and Dont's of Applying A/D Converters", by Peter Bradshaw and Skip Osgood
A025 "Building a Remote Data Logging Station", by Peter Bradshaw
A030 "The ICL7104 - A Binary Output A/D Converter for Microprocessors", by Peter Bradshaw
R005 "Interfacing Data Converter \& Microprocessors", by Peter Bradshaw et al, Electronics, Dec. 9, 1976.

[^86]
ICL7109

12-Bit μ P-Compatible A/D Converter

GENERAL DESCRIPTION

The ICL7109 is a high performance, CMOS, low power integrating A/D converter designed to easily interface with microprocessors.
The output data (12 bits, polarity and overrange) may be directly accessed under control of two byte enable inputs and a chip select input for a simple parallel bus interface. A UART handshake mode is provided to allow the ICL7109 to work with industry-standard UARTs in providing serial data transmission, ideal for remote data logging applications. The RUN/HOLD input and STATUS output allow monitoring and control of conversion timing.

The ICL7109 provides the user with the high accuracy, low noise, low drift, versatility and economy of the dualslope integrating A/D converter. Features like true differential input and reference, drift of less than $1 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$, maximum input bias current of 10 pA , and typical power consumption of 20 mW make the ICL7109 an attractive per-channel alternative to analog multiplexing for many data acquisition applications.

FEATURES

- 12 Bit Binary (Plus Polarity and Overrange) Dual Slope Integrating Analog-to-Digital Converter
- Byte-Organized TTL-Compatible Three-State Outputs and UART Handshake Mode for Simple Parallel or Serial Interfacing to Microprocessor Systems
- RUN/HOLD Input and STATUS Output Can Be Used to Monitor and Control Conversion Timing
- True Differential Input and Differential Reference
- Low Noise - Typically $15 \mu \mathrm{~V}$ p-p
- 1pA Typical Input Current
- Operates At Up to 30 Conversions Per Second
- On-Chip Oscillator Operates With Inexpensive 3.58MHz TV Crystal Giving 7.5 Conversions Per Second for 60 Hz Rejection May Also Be Used With An RC Network Oscillator for Other Clock Frequencies

ORDERING INFORMATION

Part Number	Temp. Range	Package
ICL7109MDL	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	40 -Pin Ceramic DIP
ICL7109IDL	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	40 -Pin Ceramic DIP
ICL7109IJL	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	40 -Pin CERDIP
ICL7109CPL	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	40 -Pin Plastic DIP

[^87]
ABSOLUTE MAXIMUM RATINGS

Positive Supply Voltage (GND to V^{+})
$+6.2 V$
Negative Supply Voltage (GND to V^{-}) $-9 \mathrm{~V}$
Analog Input Voltage (Lo or Hi) (Note 1) V+ to V^{-}
Reference Input Voltage (Lo or Hi) (Note 1) V+ to V^{-}
Digital Input Voltage
$\mathrm{V}++0.3 \mathrm{~V}$
(Pins 2-27) (Note 2)
GND - 0.3 V

```
Power Dissipation (Note 3)
    Ceramic Package
        1 W @ \(+85^{\circ} \mathrm{C}\)
        Plastic Package ........................ 500 mW @ \(+70^{\circ} \mathrm{C}\)
Operating Temperature
        Ceramic Package (MDL) \(\ldots . . . . . . . .-55^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\)
    Ceramic Package (IDL) . . . . . . . . . . . . . . . \(-25^{\circ} \mathrm{C}\) to \(+85^{\circ} \mathrm{C}\)
    Plastic Package (CPL) . . . . . . . . . . . . . . . . . . . \(0^{\circ} \mathrm{C}\) to \(+70^{\circ} \mathrm{C}\)
Storage Temperature .................. \(-65^{\circ} \mathrm{C}\) to \(+150^{\circ} \mathrm{C}\)
Lead Temperature (Soldering, 10 sec ) \(\ldots . . . . . . .+300^{\circ} \mathrm{C}\)
```

NOTE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
ELECTRICAL CHARACTERISTICS $\quad\left(\mathrm{V}^{+}=+5 \mathrm{~V}, \mathrm{~V}^{-}=-5 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}_{\mathrm{CLK}}=3.58 \mathrm{MHz}\right.$, unless otherwise indicated.) Test circuit as shown on first page of this data sheet.

ANALOG SECTION

Symbol	Parameter	Test Conditions	Min	Typ	Max	Unit
	Zero Input Reading	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=0.0 \mathrm{~V} \\ & \text { Full Scale }=409.6 \mathrm{mV} \end{aligned}$	-00008	± 00008	$+00008$	Octal Reading
	Ratiometric Reading	$\begin{aligned} & V_{I N}=V_{\text {REF }} \\ & V_{\text {REF }}=204.8 \mathrm{mV} \end{aligned}$	37778	$\begin{aligned} & 3777_{8} \\ & 4000_{8} \end{aligned}$	40008	Octal Reading
	Non-Linearity (Max deviation from best straight line fit)	Full Scale $=409.6 \mathrm{mV}$ to 2.048 V Over full operating temperature range. (Note 4), (Note 6)	-1	$\pm .2$	+1	Counts
	Roll-over Error (difference in reading for equal pos. and neg. inputs near full scale)	Full Scale $=409.6 \mathrm{mV}$ to 2.048 V (Note 5), (Note 6)	-1	$\pm .2$	+1	Counts
CMRR	Common Mode Rejection Ratio	$\begin{aligned} & V_{\mathrm{CM}} \pm 1 \mathrm{~V} \mathrm{~V}_{\mathrm{IN}}=0 \mathrm{~V} \\ & \text { Full Scale }=409.6 \mathrm{mV} \end{aligned}$		50		$\mu \mathrm{V} / \mathrm{V}$
VCMR	Input Common Mode Range	Input Hi, Input Lo, Comrnon (Note 4)	$V^{-+1.5}$		$v+-1.0$	V
e_{n}	Noise (p-p value not exceeded 95% of time)	$\begin{aligned} & V_{I N}=0 V \\ & \text { Full Scale }=409.6 \mathrm{mV} \end{aligned}$		15		$\mu \mathrm{V}$
IILK	Leakage current at Input	$\mathrm{V}_{\mathrm{IN}}=0$ All devices at $25^{\circ} \mathrm{C}$ ICL7109CPL $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}$ (Note 4) ICL7109IDL $-25^{\circ} \mathrm{C} \leq \mathrm{T}_{A} \leq+85^{\circ} \mathrm{C}$ (Note 4) ICL7109MDL $-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$		$\begin{gathered} 1 \\ 20 \\ 100 \\ 2 \end{gathered}$	$\begin{gathered} 10 \\ 100 \\ 250 \\ 5 \end{gathered}$	pA pA pA nA
	Zero Reading Drift	$\mathrm{V}_{\text {IN }}=0 \mathrm{VR}_{1}=0 \Omega$ (Note 4)		0.2	1	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
	Scale Factor Temperature Coefficient	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=408.9 \mathrm{mV}=>7770_{8} \\ & \text { reading } \\ & \text { Ext. Ref. } 0 \mathrm{ppm} /{ }^{\circ} \mathrm{C} \text { (Note 4) } \\ & \hline \end{aligned}$		1	5	ppm $/{ }^{\circ} \mathrm{C}$
I+	Supply Current V + to GND	$\mathrm{V}_{\mathrm{IN}}=0$, Crystal Osc 3.58 MHz test circuit		700	1500	$\mu \mathrm{A}$
ISUPP	Supply Current V+ to V-			700	1500	$\mu \mathrm{A}$
$V_{\text {REF }}$	Ref Out Voltage	Referred to $\mathrm{V}^{+}, 25 \mathrm{k} \Omega$ between V^{+}and REF OUT	-2.4	-2.8	-3.2	V
	Ref Out Temp. Coefficient	$25 \mathrm{k} \Omega$ between V^{+}and REF OUT		80		ppm $/{ }^{\circ} \mathrm{C}$

[^88]ELECTRICAL CHARACTERISTICS ($\mathrm{V}^{+}=+5 \mathrm{~V}, \mathrm{~V}^{-}=-5 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise indicated.) Test circuit as shown on first page of this data sheet. (Continued)
DIGITAL SECTION

Symbol	Parameter		Test Conditions	Min	Typ	Max	Unit
V_{OH}	Output High Voitage		$\begin{aligned} & \text { louT }=100 \mu \mathrm{~A} \\ & \text { Pins } 2-16,18,19,20 \end{aligned}$	3.5	4.3		V
V_{OL}	Output Low Voltage		lout $=1.6 \mathrm{~mA}$		0.2	0.4	V
	Output Leakage Current		Pins 3-16 high impedance		$\pm .01$	± 1	$\mu \mathrm{A}$
	Control I/O Pullup Current		Pins 18, 19, $20 \mathrm{~V}_{\mathrm{OUT}}=\mathrm{V}+-3 \mathrm{~V}$ MODE input at GND		5		$\mu \mathrm{A}$
	Control I/O Loading		HBEN Pin 19 LBEN Pin 18 (Note 4)			50	pF
V_{IH}	Input High Voltage		Pins 18-21, 26, 27 referred to GND	2.5			V
$\mathrm{V}_{\text {IL }}$	Input Low Voltage		Pins 18-21, 26, 27 referred to GND			1	V
	Input Pull-up Current		Pins 26, $27 \mathrm{~V}_{\text {OUT }}=\mathrm{V}+-3 \mathrm{~V}$		5		$\mu \mathrm{A}$
	Input Pull-up Current		Pins 17, $24 \mathrm{~V}_{\text {OUT }}=\mathrm{V}+-3 \mathrm{~V}$		25		$\mu \mathrm{A}$
	Input Pull-down Current		Pin $21 \mathrm{~V}_{\text {OUT }}=\mathrm{GND}+3 \mathrm{~V}$		5		$\mu \mathrm{A}$
O_{OH}	Oscillator Output Current	High	$\mathrm{V}_{\text {OUT }}=2.5 \mathrm{~V}$		1		mA
O OL		Low	$\mathrm{V}_{\text {OUT }}=2.5 \mathrm{~V}$		1.5		mA
$\mathrm{BO}_{\mathrm{OH}}$	Buffered Oscillator Output Current	High	$\mathrm{V}_{\text {OUT }}=2.5 \mathrm{~V}$		2		mA
$\mathrm{BO}_{\mathrm{OL}}$		Low	$\mathrm{V}_{\text {OUT }}=2.5 \mathrm{~V}$		5		mA
tw	MODE Input Pulse Width		(Note 4)	50			ns

NOTES: 1. Input voltages may exceed the supply voltages provided the input current is limited to $\pm 100 \mu \mathrm{~A}$
2. Due to the SCR structure inherent in the process used to fabricate these devices, connecting any digital inputs or outputs to voltages greater than V^{+} or less than GND may cause destructive device latchup. For this reason it is recommended that no inputs from sources other than the same power supply be applied to the ICL7109 before its power supply is established, and that in multiple supply systems the supply to the ICL7109 be activated first.
3. This limit refers to that of the package and will not be obtained during normal operation.
4. This parameter is not production tested, but is guaranteed by design.
5. Roll-over error for $T_{A}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ is ± 3 counts maximum.
6. A full scale voltage of 2.048 V is used because a full scale voltage of 4.096 V exceeds the devices Common Mode Voltage Range.

[^89]NOTE: All typical values have been characterized but are not tested.

TABLE 1: Pin Assignment and Function Description

Pin	Symbol	Description		
1	GND	Digital Ground, OV. Ground return for all digital logic.		
2	STATUS	Output High during integrate and deintegrate until data is latched. Output Low when analog section is in AutoZero configuration.		
3	POL	Polarity - HI for Positive input.		All three state output data bits
4	OR	Overrange - HI if Overranged.		
5	B12	Bit 12	(Most Significant Bit)	
6	B11	Bit 11	$H I=$ true	
7	B10	Bit 10		
8	B9	Bit 9		
9	B8	Bit 8		
10	B7	Bit 7		
11	B6	Bit 6		
12	B5	Bit 5		
13	B4	Bit 4		
14	B3	Bit 3		
15	B2	Bit 2		
16	B1	Bit 1	(Least Significant Bit)	
17	TEST	Input High - Normal Operation. Input Low - Forces all bit outputs high. Note: This input is used for test purposes only. Tie high if not used.		
18	LBEN	Low Byte Enable - With Mode (Pin 21) low, and $\overline{C E / L O A D}$ (Pin 20) low, taking this pin low activates low order byte outputs B1-B8. - With Mode (Pin 21) high, this pin serves as a low byte flag output used in handshake mode. See Figures 8, 9, 10.		
19	HBEN	High Byte Enable - With Mode (Pin 21) low, and $\overline{C E / L O A D}$ (Pin 20) low, taking this pin low activates high order byte outputs B9 - B12, POL, OR. - With Mode (Pin 21) high, this pin serves as a high byte flag output used in handshake mode. See Figures 8, 9, 10.		
20	CE/LOAD	Chip Enable Load - With Mode (Pin 21) low. $\overline{C E / L O A D}$ serves as a master output enable. When high, B1-B12, POL, OR outputs are disabled. - With Mode (Pin 21) high, this pin serves as a load strobe used in handshake mode. See Figures 8, 9, 10.		

Pin	Symbol	Description
21	MODE	Input Low - Direct output mode where CE/LOAD (Pin 20), पBEN (Pin 19) and LBEN (Pin 18) act as inputs directly controlling byte outputs. Input Pulsed High - Causes immediate entry into handshake mode and output of data as in Figure 10. Input High - Enables CE/LOAD (Pin 20), $\overline{\text { HBEN (Pin 19), and LBEN (Pin 18) as }}$ outputs, handshake mode will be entered and data output as in Figures 8 and 9 at conversion completion.
22	OSC IN	Oscillator Input
23	OSC OUT	Oscillator Output
24	OSC SEL	Oscillator Select - Input high configures OSC IN, OSC OUT, BUF OSC OUT as RC oscillator - clock will be same phase and duty cycle as BUF OSC OUT. - Input low configures OSC IN, OSC OUT for crystal oscillator - clock frequency will be $1 / 58$ of frequency at BUF OSC OUT.
25	BUF OSC OUT	Buffered Oscillator Output
26	RUN/ $/$ HOLD	Input High - Conversions continuously performed every 8192 clock pulses. Input Low - Conversion in progress completed, converter will stop in Auto-Zero 7 counts before integrate.
27	SEND	Input - Used in handshake mode to indicate ability of an external device to accept data. Connect to +5 V if not used.
28	V-	Analog Negative Supply - Nominally - 5V with respect to GND (Pin 1).
29	REF OUT	Reference Voltage Output - Nominally 2.8 V down from V^{*} (Pin 40).
30	BUFFER	Buffer Amplifier Output
31	AUTO-ZERO	Auto-Zero Node - Inside foil of $\mathrm{C}_{A Z}$
32	INTEGRATOR	Integrator Output - Outside foil of C ClNT
33	COMMON	Analog Common - System is Auto-Zeroed to COMMON
34	INPUT LO	Differential Input Low Side
35	INPUT HI	Differential Input High Side
36	REF IN +	Differential Reference Input Positive
37	REF CAP +	Reference Capacitor Positive
38	REF CAP	Reference Capacitor Negative
39	REF IN	Differential Reference Input Negative
40	V+	Positive Supply Voltage - Nominally +5 V with respect to GND (Pin 1).

Note: All digital levels are positive true.

[^90]

0336-2
Figure 2A: Typical Connection Diagram UART Interface - To transmit latest result, send any word to UART

0336-3
Figure 2B: Typical Connection Diagram Parallel Interface With 8048 Microcomputer

DETAILED DESCRIPTION

Analog Section

Figure 3 shows the equivalent circuit of the Analog Section of the ICL7109. When the RUN/HOLD input is left open or connected to V^{+}, the circuit will perform conversions at a rate determined by the clock frequency (8192 clock periods per cycle). Each measurement cycle is divided into three phases as shown in Figure 4. They are (1) Auto-Zero (AZ), (2) Signal Integrate (INT) and (3) Deintegrate (DE).

Auto-Zero Phase

During auto-zero three things happen. First, input high and low are disconnected from their pins and internally shorted to analog COMMON. Second, the reference capacitor is charged to the reference voltage. Third, a feedback loop is closed around the system to charge the auto-zero capacitor $\mathrm{C}_{A Z}$ to compensate for offset voltages in the buffer amplifier, integrator, and comparator. Since the comparator is included in the loop, the AZ accuracy is limited only by the noise of the system. In any case, the offset referred to the input is less than $10 \mu \mathrm{~V}$.

[^91]

Figure 4: Conversion Timing (RUN/ $\overline{H O L D}$ Pin High)

Signal Integrate Phase

During signal integrate the auto-zero loop is opened, the internal short is removed and the internal high and low inputs are connected to the external pins. The converter then integrates the differential voltage between IN HI and IN LO for a fixed time of 2048 clock periods. Note that this differential voltage must be within the common mode range of the inputs. At the end of this phase, the polarity of the integrated signal is determined.

De-Integrate Phase

The final phase is de-integrate, or reference integrate. Input low is internally connected to analog COMMON and input high is connected across the previously charged (during auto-zero) reference capacitor. Circuitry within the chip ensures that the capacitor will be connected with the correct polarity to cause the integrator output to return to zero crossing (established in Auto Zero) with a fixed slope. Thus the time for the output to return to zero (represented by the number of clock periods counted) is proportional to the input signal.

[^92]
Differential Input

The input can accept differential voltages anywhere within the common mode range of the input amplifier; or specifically from 1.0 volts below the positive supply to 1.5 volts above the negative supply. In this range the system has a CMRR of 86 dB typical. However, since the integrator also swings with the common mode voltage, care must be exercised to assure the integrator output does not saturate. A worst case condition would be a large positive common mode voltage with a near full-scale negative differential input voltage. The negative input signal drives the integrator positive when most of its swing has been used up by the positive common mode voltage. For these critical applications the integrator swing can be reduced to less than the recommended 4 V full scale with some loss of accuracy. The integrator output can swing within 0.3 volts of either supply without loss of linearity.

The ICL7109 has, however, been optimized for operation with analog common near digital ground. With power supplies of +5 V and -5 V , this allows a 4 V full scale integrator swing positive or negative thus maximizing the performance of the analog section.

Differential Reference

The reference voltage can be generated anywhere within the power supply voltage of the converter. The main source of common mode error is a roll-over voltage caused by the reference capacitor losing or gaining charge to stray capacity on its nodes. If there is a large common mode voltage, the reference capacitor can gain charge (increase voltage) when called up to deintegrate a positive signal but lose charge (decrease voltage) when called up to deintegrate a negative input signal. This difference in reference for $(+)$ or $(-)$ input voltage will give a roll-over error. However, by selecting the reference capacitor large enough in comparison to the stray capacitance, this error can be held to less than 0.5 count for the worst case condition (see Component Values Selection below).

The roll-over error from these sources is minimized by having the reference common mode voltage near or at analog COMMON.

Component Value Selection

For optimum performance of the analog section, care must be taken in the selection of values for the integrator capacitor and resistor, auto-zero capacitor, reference voltage, and conversion rate. These values must be chosen to suit the particular application.

The most important consideration is that the integrator output swing (for full-scale input) be as large as possible. For example, with $\pm 5 \mathrm{~V}$ supplies and COMMON connected to GND, the nominal integrator output swing at full scale is $\pm 4 \mathrm{~V}$. Since the integrator output can go to 0.3 V from either supply without significantly affecting linearity, a 4 V integrator output swing allows 0.7 V for variations in output swing due to component value and oscillator tolerances. With $\pm 5 \mathrm{~V}$ supplies and a common mode range of $\pm 1 \mathrm{~V}$ required, the component values should be selected to provide $\pm 3 \mathrm{~V}$ integrator output swing. Noise and rollover errors will be slightly worse than in the $\pm 4 \mathrm{~V}$ case. For larger common mode voltage ranges, the integrator output swing must be
reduced further. This will increase both noise and rollover errors. To improve the performance, supplies of $\pm 6 \mathrm{~V}$ may be used.

Integrating Resistor

Both the buffer amplifier and the integrator have a class A output stage with $100 \mu \mathrm{~A}$ of quiescent current. They supply $20 \mu \mathrm{~A}$ of drive current with negligible non-linearity. The integrating resistor should be large enough to remain in this very linear region over the input voltage range, but small enough that undue leakage requirements are not placed on the PC board. For 4.096 volt full scale, $200 \mathrm{k} \Omega$ is near optimum and similarly a $20 \mathrm{k} \Omega$ for a 409.6 mV scale. For other values of full scale voltage, RINT should be chosen by the relation

$$
R_{\mathrm{INT}}=\frac{\text { full scale voltage }}{20 \mu \mathrm{~A}}
$$

Integrating Capacitor

The integrating capacitor $\mathrm{C}_{\mathrm{INT}}$ should be selected to give the maximum integrator output voltage swing without saturating the integrator (approximately 0.3 volt from either supply). For the ICL7109 with ± 5 volt supplies and analog common connected to GND, a ± 3.5 to ± 4 volt integrator output swing is nominal. For $7-1 / 2$ conversions per second (61.72 kHz clock frequency) as provided by the crystal oscillator, nominal values for $\mathrm{C}_{\mathrm{INT}}$ and $\mathrm{C}_{A Z}$ are $0.15 \mu \mathrm{~F}$ and $0.33 \mu \mathrm{~F}$, respectively. If different clock frequencies are used, these values should be changed to maintain the integrator output voltage swing. In general, the value of $\mathrm{C}_{\mathrm{INT}}$ is given by

$$
\mathrm{C}_{\mathrm{INT}}=\frac{(2048 \times \text { clock period) }(20 \mu \mathrm{~A})}{\text { integrator output voltage swing }}
$$

An additional requirement of the integrating capacitor is that it have low dielectric absorption to prevent roll-over errors. While other types of capacitors are adequate for this application, polypropylene capacitors give undetectable errors at reasonable cost up to $85^{\circ} \mathrm{C}$. For the military temperature range, Teflon ${ }^{\circledR}$ capacitors are recommended. While their dielectric absorption characteristics vary somewhat from unit to unit, selected devices should give less than 0.5 count of error due to dielectric absorption.

Auto-Zero Capacitor

The size of the auto-zero capacitor has some influence on the noise of the system: the smaller the capacitor the lower the overall system noise. However, $\mathrm{C}_{A Z}$ cannot be increased without limits since it, in parallel with the integrating capacitor forms an R-C time constant that determines the speed of recovery from overloads and more important the error that exists at the end of an auto-zero cycle. For 409.6 mV full scale where noise is very important and the integrating resistor small, a value of $\mathrm{C}_{A Z}$ twice $\mathrm{C}_{\text {INT }}$ is optimum. Similarly for 4.096 V full scale where recovery is more important than noise, a value of $\mathrm{C}_{A Z}$ equal to half of $\mathrm{C}_{I N T}$ is recommended.

For optimal rejection of stray pickup, the outer foil of $\mathrm{C}_{A Z}$ should be connected to the R-C summing junction and the inner foil to pin 31. Similarly the outer foil of $\mathrm{C}_{\text {INT }}$ should be connected to pin 32 and the inner foil to the R-C summing junction. Teflon ${ }^{\circledR}$, or equivalent, capacitors are recommended above $85^{\circ} \mathrm{C}$ for their low leakage characteristics.

Reference Capacitor

A $1 \mu \mathrm{~F}$ capacitor gives good results in most applications. However, where a large reference common mode voltage exists (i.e. the reference low is not at analog common) and a 409.6 mV scale is used, a larger value is required to prevent roll-over error. Generally $10 \mu \mathrm{~F}$ will hold the roll-over error to 0.5 count in this instance. Again, Teflon ${ }^{\oplus}$, or equivalent capacitors should be used for temperatures above $85^{\circ} \mathrm{C}$ for their low leakage characteristics.

Reference Voltage

The analog input required to generate a full scale output of 4096 counts is $\mathrm{V}_{\text {IN }}=2 \mathrm{~V}_{\text {REF }}$. Thus for a normalized scale, a reference of 2.048 V should be used for a 4.096 V full scale, and 204.8 mV should be used for a 0.4096 V full scale. However, in many applications where the A/D is sensing the output of a transducer, there will exist a scale factor other than unity between the absolute output voltage to be measured and a desired digital output. For instance, in a weighing system, the designer might like to have a full scale reading when the voltage from the transducer is 0.682 V . Instead of dividing the input down to 409.6 mV , the input voltage should be measured directly and a reference voltage of 0.341 V should be used. Suitable values for integrating resistor and capacitor are $33 \mathrm{k} \Omega$ and $0.15 \mu \mathrm{~F}$. This avoids a divider on the input. Another advantage of this system occurs when a zero reading is desired for non-zero input. Temperature and weight measurements with an offset or tare are examples. The offset may be introduced by connecting the voltage output of the transducer between common and analog high, and the offset voltage between common and analog low, observing polarities carefully. However, in processor-based systems using the ICL7109, it may be more efficient to perform this type of scaling or tare subtraction digitally using software.

Reference Sources

The stability of the reference voltage is a major factor in the overall absolute accuracy of the converter. The resolution of the ICL7109 at 12 bits is one part in 4096, or 244 ppm . Thus if the reference has a temperature coefficient of $80 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ (onboard reference) a temperature difference of $3^{\circ} \mathrm{C}$ will introduce a one-bit absolute error.

For this reason, it is recommended that an external highquality reference be used where the ambient temperature is not controlled or where high-accuracy absolute measurements are being made.

The ICL7109 provides a REFerence OUTput (pin 29) which may be used with a resistive divider to generate a suitable reference voltage. This output will sink up to about 20 mA without significant variation in output voltage, and is provided with a pullup bias device which sources about $10 \mu \mathrm{~A}$. The output voltage is nominally 2.8 V below V^{+}, and has a temperature coefficient of $\pm 80 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ typ. When using the onboard reference, REF OUT (Pin 29) should be connected to REF - (pin 39), and REF + should be connected to the wiper of a precision potentiometer between REF OUT and V^{+}. The circuit for a 204.8 mV reference is shown in the test circuit. For a 2.048 mV reference, the fixed resistor should be removed, and a $25 \mathrm{k} \Omega$ precision potentiometer between REF OUT and $\mathrm{V}+$ should be used.

Note that if pins 29 and 39 are tied together and pins 39 and 40 accidentally shorted (e.g., during testing), the reference supply will sink enough current to destroy the device. This can be avoided by placing a $1 \mathrm{k} \Omega$ resistor in series with pin 39.

DETAILED DESCRIPTION

Digital Selection

The digital section includes the clock oscillator and scaling circuit, a 12-bit binary counter with output latches and TTL-compatible three-state output drivers, polarity, overrange and control logic, and UART handshake logic, as shown in Figure 5.
Throughout this description, logic levels will be referred to as "low" or "high". The actual logic levels are defined in the Electrical Characteristics Table. For minimum power consumption, all inputs should swing from GND (low) to V^{+} (high). Inputs driven from TTL gates should have $3-5 \mathrm{k} \Omega$ pullup resistors added for maximum noise immunity.

MODE Input

The MODE input is used to control the output mode of the converter. When the MODE pin is low or left open (this input is provided with a pulldown resistor to ensure a low level when the pin is left open), the converter is in its "Direct" output mode, where the output data is directly accessible under the control of the chip and byte enable inputs. When the MODE input is pulsed high, the converter enters the UART handshake mode and outputs the data in two bytes, then returns to "direct" mode. When the MODE input is left high, the converter will output data in the handshake mode at the end of every conversion cycle. (See section entitled "Handshake Mode" for further details).

STATUS Output

During a conversion cycle, the STATUS output goes high at the beginning of Signal Integrate (Phase II), and goes low one-half clock period after new data from the conversion has been stored in the output latches. See Figure 4 for details of this timing. This signal may be used as a "data valid" flag (data never changes while STATUS is low) to drive interrupts, or for monitoring the status of the converter.

RUN/ $\overline{H O L D}$ Input

When the RUN/ $\overline{H O L D}$ input is high, or left open, the circuit will continuously perform conversion cycles, updating the output latches after zero crossing during the Deintegrate (Phase III) portion of the conversion cycle (See Figure 4). In this mode of operation, the conversion cycle will be performed in 8192 clock periods, regardless of the resulting value.

If RUN/FOLD goes low at any time during Deintegrate (Phase III) after the zero crossing has occurred, the circuit will immediately terminate Deintegrate and jump to AutoZero. This feature can be used to eliminate the time spent in Deintegrate after the zero-crossing. If RUN/HOLD stays or goes low, the converter will ensure minimum Auto-Zero time, and then wait in Auto-Zero until the RUN/ $\overline{H O L D}$ input goes high. The converter will begin the Integrate (Phase II) portion of the next conversion (and the STATUS output will go high) seven clock periods after the high level is detected at RUN/HOLD. See Figure 6 for details.

Figure 5: Digital Section

Using the RUN/ $\overline{\text { HOLD }}$ input in this manner allows an easy "convert on demand" interface to be used. The converter may be held at idle in auto-zero with RUN/ $\overline{H O L D}$ low. When RUN/HOLD goes high the conversion is started, and when the STATUS output goes low the new data is valid (or transferred to the UART - see Handshake Mode). RUN/ HOLD may now be taken low which terminates deintegrate and ensures a minimum Auto-Zero time before the next conversion.

Alternately, RUN/ $\overline{H O L D}$ can be used to minimize conversion time by ensuring that it goes low during Deintegrate, after zero crossing, and goes high after the hold point is reached. The required activity on the RUN/HOLD input can be provided by connecting it to the Buffered Oscillator Output. In this mode the conversion time is dependent on the input value measured. Also refer to Intersil Application Bulletin A032 for a discussion of the effects this will have on Auto-Zero performance.

If the RUN/ $\overline{H O L D}$ input goes low and stays low during Auto-Zero (Phase I), the converter will simply stop at the end of Auto-Zero and wait for RUN/ $\overline{\text { HOLD }}$ to go high. As above, Integrate (Phase II) begins seven clock periods after the high level is detected.

Direct Mode

When the MODE pin is left at a low level, the data outputs (bits 1 through 8 low order byte, bits 9 through 12, polarity and over-range high order byte) are accessible under control of the byte and chip enable terminals as inputs. These three inputs are all active low, and are provided with pullup resistors to ensure an inactive high level when left open. When the chip enable input is low, taking a byte enable input low will allow the outputs of that byte to become active (three-stated on). This allows a variety of parallel data accessing techniques to be used, as shown in the section entitled "Interfacing." The timing requirements for these outputs are shown in Figure 7 and Table 2.

[^93]NOTE: All typical values have been characterized but are not tested.

Table 2 - Direct Mode Timing Requirements

(See Note 4 of Electrical Characteristics)

SYMBOL	DESCRIPTION	MIN	TYP	MAX	UNIT
t BEA	Byte Enable Width	350	220		ns
t $_{\text {DAB }}$	Data Access Time from Byte Enable		210	350	ns
t $_{\text {DHB }}$	Data Hold Time from Byte Enable		150	300	ns
$t_{\text {CEA }}$	Chip Enable Width	400	260		ns
t $_{\text {DAC }}$	Data Access Time from Chip Enable		260	400	ns
t DHC	Data Hold Time from Chip Enable		240	400	ns

Figure 7: Direct Mode Output Timing
It should be noted that these control inputs are asynchronous with respect to the converter clock - the data may be accessed at any time. Thus it is possible to access the latches while they are being updated, which could lead to erroneous data. Synchronizing the access of the latches with the conversion cycle by monitoring the STATUS output will prevent this. Data is never updated while STATUS is low.

Handshake Mode

The handshake output mode is provided as an alternative means of interfacing the ICL7109 to digital systems, where the A/D converter becomes active in controlling the flow of data instead of passively responding to chip and byte enable inputs. This mode is specifically designed to allow a direct interface between the ICL7109 and industry-standard UARTs (such as the Intersil IM6402/3) with no external logic required. When triggered into the handshake mode, the

ICL7109 provides all the control and flag signals necessary to sequentially transfer two bytes of data into the UART and initiate their transmission in serial form. This greatly eases the task and reduces the cost of designing remote data acquisition stations using serial data transmission.

Entry into the handshake mode is controlled by the MODE pin. When the MODE terminal is held high, the ICL7109 will enter the handshake mode after new data has been stored in the output latches at the end of a conversion (See Figures 8 and 9). The MODE terminal may also be used to trigger entry into the handshake mode on demand. At any time during the conversion cycle, the low to high transition of a short pulse at the MODE input will cause immediate entry into the handshake mode. If this pulse occurs while new data is being stored, the entry into handshake mode is delayed until the data is stable. While the converter is in the handshake mode, the MODE input is ignored, and although conversions will still be performed, data updating will be inhibited (See Figure 10) until the converter completes the output cycle and clears the handshake mode.

When the converter enters the handshake mode, or when the MODE input is high, the chip and byte enable terminals become TTL-compatible outputs which provide the control signals for the output cycle (See Figures 8, 9, and 10).

In handshake mode, the SEND input is used by the converter as an indication of the ability of the receiving device (such as a UART) to accept data.

Figure 8 shows the sequence of the output cycle with SEND held high. The handshake mode (Internal MODE high) is entered after the data latch pulse, and since MODE remains high the CE/LOAD, LBEN and HBEN terminals are active as outputs. The high level at the SEND input is sensed on the same high to low internal clock edge that terminates the data latch pulse. On the next low to high internal clock edge the $\overline{C E / L O A D}$ and the HBEN outputs assume a low level, and the high-order byte (bits 9 through 12, POL, and OR) outputs are enabled. The CE/LOAD output remains low for one full internal clock period only, the data outputs remain active for $1-1 / 2$ internal clock periods, and the high byte enable remains low for two clock periods. Thus the CE/LOAD output low level or low to high edge may be used as a synchronizing signal to ensure valid data, and the byte enable as an output may be used as a byte identification flag. With SEND remaining high the converter completes the output cycle using CE/LOAD and LBEN while the low order byte outputs (bits 1 through 8) are activated. The handshake mode is terminated when both bytes are sent.

Figure 9 shows an output sequence where the SEND input is used to delay portions of the sequence, or handshake to ensure correct data transfer. This timing diagram shows the relationships that occur using an industry-standard IM640 $2 / 3$ CMOS UART to interface to serial data channels. In this interface, the SEND input to the ICL7109 is driven by the TBRE (Transmitter Buffer Register Empty) output of the UART, and the CE/LOAD terminal of the ICL7109 drives the TBRL (Transmitter Buffer Register Load) input to the UART. The data outputs are paralleled into the eight Transmitter Buffer Register inputs.

Figure 8: Handshake With Send Held Positive

Figure 9: Handshake - Typical UART Interface Timing

Assuming the UART Transmitter Buffer Register is empty, the SEND input will be high when the handshake mode is entered after new data is stored. The $\overline{C E / L O A D}$ and HBEN terminals will go low after SEND is sensed, and the high order byte outputs become active. When CE/LOAD goes high at the end of one clock period, the high order byte data is clocked into the UART Transmitter Buffer Register. The UART TBRE output will now go low, which halts the output cycle with the HBEN output low, and the high order byte outputs active. When the UART has transferred the data to the Transmitter Register and cleared the Transmitter Buffer Register, the TBRE returns high. On the next ICL7109 internal clock high to low edge, the high order byte outputs are disabled, and one-half internal clock later, the HBEN output returns high. At the same time, the CE/LOAD and LBEN outputs go low, and the low order byte outputs become active. Similarly, when the $\overline{C E / L O A D}$ returns high at the end of one clock period, the low order data is clocked into the UART Transmitter Buffer Register, and TBRE again goes low. When TBRE returns to a high it will be sensed on the next ICL7109 internal clock high to low edge, disabling the data outputs. One-half internal clock later, the handshake mode will be cleared, and the CE/LOAD, $\overline{\text { HBEN }}$, and $\overline{\text { LBEN }}$ terminals return high and stay active (as long as MODE stays high).

With the MODE input remaining high as in these examples, the converter will output the results of every conversion except those completed during a handshake operation. By triggering the converter into handshake mode with a low to high edge on the MODE input, handshake output sequences may be performed on demand. Figure 9 shows a handshake output sequence triggered by such an edge. In addition, the SEND input is shown as being low when the converter enters handshake mode. In this case, the whole output sequence is controlled by the SEND input, and the sequence for the first (high order) byte is similar to the sequence for the second byte. This diagram also shows the output sequence taking longer than a conversion cycle. Note that the converter still makes conversions, with the STATUS output and RUN/HOLD input functioning normally. The only difference is that new data will not be latched when in handshake mode, and is therefore lost.

Oscillator

The ICL7109 is provided with a versatile three terminal oscillator to generate the internal clock. The oscillator may be overdriven, or may be operated with an RC network or crystal. The OSCILLATOR SELECT input changes the internal configuration of the oscillator to optimize it for RC or crystal operation.

When the OSCILLATOR SELECT input is high or left open (the input is provided with a pullup resistor), the oscillator is configured for RC operation, and the internal clock will be of the same frequency and phase as the signal at the BUFFERED OSCILLATOR OUTPUT. The resistor and capacitor should be connected as in Figure 11. The circuit will oscillate at a frequency given by $\mathrm{f}=0.45 /$ RC. A $100 \mathrm{k} \Omega$ resistor is recommended for useful ranges of frequency. For optimum 60 Hz line rejection, the capacitor value should be chosen such that 2048 clock periods is close to an integral multiple of the 60 Hz period (but should not be less than 50pF).

When the OSCILLATOR SELECT input is low a feedback device and output and input capacitors are added to the oscillator. In this configuration, as shown in Figure 12, the oscillator will operate with most crystals in the 1 to 5 MHz range with no external components. Taking the OSCILLATOR SELECT input low also inserts a fixed $\div 58$ divider circuit between the BUFFERED OSCILLATOR OUTPUT and the internal clock. Using an inexpensive 3.58 MHz TV crystal, this division ratio provides an integration time given by:

$$
\mathrm{T}=(2048 \text { clock periods }) \times\left[\frac{58}{3.58 \mathrm{MHz}}\right]=33.18 \mathrm{~ms}
$$

This time is very close to two 60 Hz periods or 33.33 ms . The error is less than one percent, which will give better than 40 dB 60 Hz rejection. The converter will operate reliably at conversion rates of up to 30 per second, which corresponds to a clock frequency of 245.8 kHz .

0336-13
Figure 12: Crystal Oscillator

If at any time the oscillator is to be overdriven, the overdriving signal should be applied at the OSCILLATOR INPUT, and the OSCILLATOR OUTPUT should be left open. The internal clock will be of the same frequency, duty cycle, and phase as the input signal when OSCILLATOR SELECT is left open. When OSCILLATOR SELECT is at GND, the clock will be a factor of 58 below the input frequency.

When using the ICL7109 with the IM6403 UART, it is possible to use one 3.58 MHz crystal for both devices. The BUFFERED OSCILLATOR OUTPUT of the ICL7109 may be used to drive the OSCILLATOR INPUT of the UART, saving the need for a second crystal. However, the BUFFERED OSCILLATOR OUTPUT does not have a great deal of drive capability, and when driving more than one slave device, external buffering should be used.

Test Input

When the TEST input is taken to a level halfway between V^{+}and GND, the counter output latches are enabled, allowing the counter contents to be examined anytime.

When the TEST input is connected to GND, the counter outputs are all forced into the high state, and the internal clock is disabled. When the input returns to the $1 / 2(\mathrm{~V}+$ - GND) voltage (or to V^{+}) and one clock is applied, all the counter outputs will be clocked to the low state. This allows easy testing of the counter and its outputs.

INTERFACING

Direct Mode

Figure 13 shows some of the combinations of chip enable and byte enable control signals which may be used when interfacing the ICL7109 to parallel data lines. The $\overline{C E / L O A D}$ input may be tied low, allowing either byte to be controlled by its own enable as in Figure 13A. Figure 13B shows a configuration where the two byte enables are connected together. In this configuration, the CE/LOAD serves as a chip enable, and the HBEN and LBEN may be connected to GND or serve as a second chip enable. The 14 data outputs will all be enabled simultaneously. Figure 13C shows the $\overline{\text { HBEN }}$ and $\overline{\text { LBEN }}$ as flag inputs, and CE/LOAD as a master enable, which could be the READ strobe available from most microprocessors.

Figure 14 shows an approach to interfacing several ICL7109s to a bus, ganging the $\overline{\text { HBEN }}$ and $\overline{\text { LBEN }}$ signals to several converters together, and using the CE/LOAD inputs (perhaps decoded from an address) to select the desired converter.

Figure 13: Direct Mode Chip and Byte Enable Combinations

Some practical circuits utilizing the parallel three-state output capabilities of the ICL7109 are shown in Figures 15 through 20. Figure 15 shows a straightforward application to the intel 8048/80/85 microprocessors via an 8255PPI, where the ICL7109 data outputs are active at all times. The I/O ports of an 8155 may be used in the same way. This interface can be usec: in a read-anytime mode, although a read performed while the uicta latches are being updated will lead to scrambled data. This will occur very rarely, in the proportion of setup-skew times to conversion time. One way to overcome this is to read the STATUS output as well, and if it is high, read the data again after a delay of more than $1 / 2$
converter clock period. If STATUS is now low, the second reading is correct, and if it is still high, the first reading is correct. Alternatively, this timing problem is completely avoided by using a read-after-update sequence, as shown in Figure 16. Here the high to low transition of the STATUS output drives an interrupt to the microprocessor causing it to access the data latches. This application also shows the RUN/ $\overline{\text { HOLD }}$ input being used to initiate conversions under software control.

A similar interface to Motorola MC6800 or Rockwell R650X systems is shown in Figure 17. The high to low transition of the STATUS output generates an interrupt via the

[^94]

Figure 15: Full-time Parallel Interface to 8048/80/85 Microprocessors

Control Register B CB1 line. Note that CB2 controls the RUN/HOLD pin through Control Register B, allowing soft-ware-controlled initiation of conversions in this system as well.
The three-state output capability of the ICL7109 allows direct interfacing to most microprocessor busses. Examples of this are shown in Figures 18 and 19. It is necessary to carefully consider the system timing in this type of interface,
to be sure that requirements for setup and hold times, and minimum pulse widths are met. Note also the drive limitations on long buses. Generally this type of interface is only favored if the memory peripheral address density is low so that simple address decoding can be used. Interrupt handling can also require many additional components, and using an interface device will usually simplify the system in this case.

INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.
NOTE: All typical values have been characterized but are not tested.

[^95]Figure 19: Direct ICL7109 - MC680X Bus Interface

Handshake Mode

The handshake mode allows ready interface with a wide variety of external devices. For instance, external latches may be clocked by the rising edge of $\overline{C E / L O A D}$, and the byte enables may be used as byte identification flags or as load enables.

Figure 20 shows a handshake interface to Intel microprocessors again using an 8255 PPI . The handshake operation with the 8255 is controlled by inverting its Input Buffer Full (IBF) flag to drive the SEND input to the ICL7109, and using the CE/LOAD to drive the 8255 strobe. The internal control register of the PPI should be set in MODE 1 for the port used. If the 7109 is in handshake mode and the 8255 IBF flag is low, the next word will be strobed into the port. The strobe will cause IBF to go high (SEND goes low), which will keep the enabled byte outputs active. The PPI will generate an interrupt which when executed will result in the data being read. When the byte is read, the IBF will be reset low, which causes the ICL7109 to sequence into the next byte. This figure shows the MODE input to the ICL7109 connected to a control line on the PPI. If this output is left high, or tied high separately, the data from every conversion (provided the data access takes less time than a conversion) will be sequenced in two bytes into the system.

If this output is made to go from low to high, the output sequence can be obtained on demand, and the interrupt may be used to reset the MODE bit. Note that the RUN/ HOLD input to the ICL7109 may also be driven by a bit of the 8255 so that conversions may be obtained on command
under software control. Note that one port of the 8255 is not used, and can service another peripheral device. The same arrangement can also be used with the 8155.

Figure 21 shows a similar arrangement with the MC6800 or MCS650X microprocessors, except that both MODE and RUN/HOLD are tied high to save port outputs.
The handshake mode is particularly convenient for directly interfacing to industry standard UARTs (such as the Intersil IM6402/6403 or Western Digital TR1602) providing a minimum component count means of serially transmitting converted data. A typical UART connection is shown in Figure 2A. In this circuit, any word received by the UART causes the UART DR (Data Ready) output to go high. This drives the MODE input to the ICL7109 high, triggering the ICL7109 into handshake mode. The high order byte is output to the UART first, and when the UART has transferred the data to the Transmitter Register, TBRE (SEND) goes high and the second byte is output. When TBRE (SEND) goes high again, LBEN will go high, driving the UART DRR (Data Ready Reset) which will signal the end of the transfer of data from the ICL7109 to the UART.
Figure 22 shows an extension of the one converter one UART scheme to several ICL7109s with one UART. In this circuit, the word received by the UART (available at the RBR outputs when DR is high) is used to select which converter will handshake with the UART. With no external components, this scheme will allow up to eight ICL7109s to interface with one UART. Using a few more components to decode the received word will allow up to 256 converters to be accessed on one serial line.

[^96]

0336-23
Figure 20: Handshake Interface - ICL7109 to 8048, 80/85

0336-24
Figure 21: Handshake Interface - ICL7109 to MC6800, MCS650X

0336-25
Figure 22: Multiplexing Converters with Mode Input
The applications of the ICL7109 are not limited to those shown here. The purpose of these examples is to provide a starting point for users to develop useful systems, and to show some of the variety of interfaces and uses of the ICL7109. Many of the ideas suggested here may be used in combination; in particular the uses of the STATUS, RUN/ HOLD, and MODE signals may be mixed.

APPLICATION NOTES

A016 "Selecting A/D Converters," by David Fullagar
A017 "The Integrating A/D Converters," by Lee Evans
A018 "Do's and Don'ts of Applying A/D Converters," by Peter Bradshaw and Skip Osgood
A030 "The ICL7104 - A Binary Output A/D Converter for Microprocessors," by Peter Bradshaw
A032 "Understanding the Auto-Zero and Common Mode Performance of the ICL7106 Family," by Peter Bradshaw
R005 "Interfacing Data Converters \& Microprocessors," by Peter Bradshaw et al, Electronics, Dec. 9, 1976.

[^97]NOTE: All typical values have been characterized but are not tested.

12-Bit High-Speed
 CMOS μ P-Compatible A/D Converter

GENERAL DESCRIPTION

The ICL7112 is a monolithic 12-bit resolution, fast successive approximation A/D converter. It uses thin film resistors and CMOS circuitry combined with an on-chip PROM calibration table to achieve 12-bit linearity without laser trimming. Special design techniques used in the DAC and comparator result in high speed operation, while the fully static silicon-gate CMOS circuitry keeps the power dissipation very low.

Microprocessor bus interfacing is eased by the use of standard memory WRite and ReaD cycle timing and control signals, combined with Chip Select and Address pins. The digital output pins are byte-organized and three-state gated for bus interface to 8 - and 16 -bit systems.
The ICL7112 provides separate Analog and Digital grounds for increased system accuracy. Operating with $\pm 5 \mathrm{~V}$ supplies, the ICL7112 accepts 0 V to +10 V input with a -10 V reference or 0 V to -10 V input with a +10 V reference.

FEATURES

- 12-Bit Resolution and Accuracy
- No Missing Codes
- Microprocessor Compatible Byte-Organized Buffered Outputs
- Auto-Zeroed Comparator for Low Offset Voltage
- Low Linearity and Gain Temperature Coefficients
- Low Power Consumption (60 mW)
- No Gain or Offset Adjustment Necessary
- Provides 3\% Useable Overrange
- Fast Conversion ($30 \mu \mathrm{sec}$.)

ORDERING INFORMATION

Part Number	Resolution with No Missing Codes	Temperature Range	Package
$I C L 7112 \mathrm{JCDL}$	11 Bits 12 Bits	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	40 Pin Ceramic
$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	40 Pin Ceramic		
ICL 7112 KCDL	ICL 7112 JIDL	11 Bits	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
$\mathrm{I} C L 7112 \mathrm{KIDL}$	12 Bits	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	40 Pin Ceramic Ceramic
ICL 7112 JMDL	11 Bits	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	40 Pin Ceramic
ICL 7112 KMDL	12 Bits	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	40 Pin Ceramic

[^98]Kinnlircil

ABSOLUTE MAXIMUM RATINGS (1)

Supply Voltage $\mathrm{V}+$ to DGND \ldots.
Supply Voltage V - to DGND +0.3 V to -6.5 V
$V_{\text {REF }}, V_{\text {IN }}$ to DGND . $\pm 25 \mathrm{~V}$
AGND to DGND . +1 iV to - $1 V$
V $_{\text {REF }}$, VIN , AGND Current 25 mA
Digital I/O Pin Voltages -0.3 V to ($\mathrm{V}++0.3 \mathrm{~V}$)
PROG to DGND Voltage V^{-}to ($\mathrm{V}^{+}+0.3$)
Note 1: All voltages with respect to DGND, unless otherwise noted.
2: Assumes all leads soldered or welded to printed circuit board.

Operating Temperature
ICL7112XCXX
$.0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

ICL7112XIXX $-25^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
ICL7112XMXX $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Storage Temperature $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Power Dissipation (Note 2) . 500 mW derate above $70^{\circ} \mathrm{C}$ @ $10 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
Lead Temperature (soldering, 10 sec .)
$300^{\circ} \mathrm{C}$

NOTE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

D.C. ELECTRICAL CHARACTERISTICS

$\mathrm{V}^{+}=+5 \mathrm{~V}, \mathrm{~V}^{-}=-5 \mathrm{~V}, \mathrm{~V}_{\text {REF }}=-10.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{f}_{\mathrm{Clk}}=500 \mathrm{kHz}$ unless otherwise noted.

Symbol	Parameter	Test Conditions		Min	Typ	Max	Units
	Resolution			12			
ILE	Integral Linearity Error	Note 1	J			$\pm .024$	\%FSR
			K			$\pm .012$	\%FSR
TC(ILE)	Temperature Coefficient of $\mathrm{ILE}^{\text {L }}$	$\mathrm{T}_{\mathrm{A}}=$ Operating Range			1	1.5	ppm/ ${ }^{\circ} \mathrm{C}$
RES ${ }_{(\text {NMC }}$	Resolution with No Missing Codes		J	11			Bits
			K	12			
FSE	Full Scale Calibration Error	Adjustable to Zero				± 0.1	\%FSR
ZE	Zero Error	Notes $3^{4} \mathrm{CHO}$				± 1	LSB
PSRR	Power Supply Rejection Ratio					± 1	LSB
$\mathrm{V}_{\text {IN }}$	Analog Input Range ($\mathrm{V}_{\text {IN }}, \mathrm{V}_{\text {REF }}$)			0		10	V
R_{IN}	Input Resistance ($\mathrm{V}_{\text {IN }}, \mathrm{V}_{\mathrm{REF}}$)			4		9	k Ω
ISUPPLY	Supply Current $\mathrm{I}^{+}, 1^{-}$				2	4	mA
V SUPPLY	Supply Voltage Range	Functional Operation Only		± 4.5		± 6.0	V
$\mathrm{V}_{\text {IL }}$	Low State Input Voltage					0.8	V
$\mathrm{V}_{\text {IH }}$	High State Input Voltage			2.4			V
$\mathrm{I}_{\text {LIH }}$	Logic Input Current	$0<\mathrm{V}_{\text {IN }}$			1	10	$\mu \mathrm{A}$
V_{OL}	Low State Output Voltage	IOUT $=$				0.4	V
V_{OH}	High State Output Voltage	IOUT $=$		2.8			V
lox	Three-State Output Current	$0<\mathrm{V}_{\text {O }}$			1		$\mu \mathrm{A}$
CR	Conversion Rate				30		$\mu \mathrm{S}$

Note 1: Full Scale Range (FSR) is 10 V (reference adjusted). 2: Assume all leads soldered or welded to printed circuit board.

[^99]
GENERAL DESCRIPTION

The ICL7115 is the first monolithic 14-bit resolution, fast successive approximation A/D converter. It uses thin film resistors and CMOS circuitry combined with an on-chip PROM calibration table to achieve 13-bit linearity without laser trimming. Special design techniques used in the DAC and comparator result in high speed operation, while the fully static silicon-gate CMOS circuitry keeps the power dissipation very low.
Microprocessor bus interfacing is made easy by the use of standard WRite and ReaD cycle timing and control signals, combined with Chip Select and Address pins. The digital output pins are byte-organized and three-state gated for bus interface to 8 and 16-bit systems.
The ICL7115 provides separate Analog and Digital grounds. Analog ground, voltage reference and input voltage pins are separated into force and sense lines for increased system accuracy. Operating with $\pm 5 \mathrm{~V}$ supplies, the ICL7115 accepts 0 V to +5 V input with a -5 V reference or 0 V to -5 V input with a +5 V reference.

FEATURES

- 14-Bit Resolution (LSB $=305 \mu \mathrm{~V}$)
- No Missing Codes
- Microprocessor Compatible Byte-Organized Buffered Outputs
- Fast Conversion ($40 \mu \mathrm{~s}$)
- Auto-Zeroed Comparator for Low Offset Voltage
- Low Linearity and Gain Tempco (1.5ppm $/{ }^{\circ} \mathrm{C}, 5 p p m /{ }^{\circ} \mathrm{C}$)
- Low Power Consumption (60 mW)
- No Gain or Offset Adjustment Necessary
- Provides 3\% Useable Overrange
- FORCE/SENSE and Separate Digital and Analog Ground Pins for Increased System Accuracy

ORDERING INFORMATION

Part Number	Resolution with No Missing Codes	Temp. Range	Package
ICL7115JCDL	12 Bits	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	40 Pin Ceramic
ICL7115KCDL	13 Bits	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	40 Pin Ceramic
ICL7115JIDL	12 Bits	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	40 Pin Ceramic
ICL7115KIDL	13 Bits	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	40 Pin Ceramic
ICL7115JMDL	12 Bits	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	40 Pin Ceramic
ICL7115KMDL	13 Bits	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	40 Pin Ceramic
ICL7115JMLL	12 Bits	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	40 Pin LCC
ICL7115KMLL	13 Bits	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	40 Pin LCC

Operating Temperature Range	
ICL7115XCXX	to $+70^{\circ}$
ICL7115XIXX	$25^{\circ} \mathrm{C}$ to $+85^{\circ}$
ICL7115XMXX	$55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	
Power Dissipation $\ldots \ldots \ldots \ldots$. derate above $70^{\circ} \mathrm{C} @ 100 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$	
ead Temperature (Soldering, 10sec)	30

NOTE 1: All voltages with respect to DGND, unless otherwise noted.
NOTE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Figure 1: Pin Configuration

[^100]

ELECTRICAL CHARACTERISTICS
DC ELECTRICAL CHARACTERISTICS $\mathrm{V}^{+}=+5.0 \mathrm{~V}, \mathrm{~V}^{-}=-5.0 \mathrm{~V}, \mathrm{~V}_{\text {REFs }}=-5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{f}_{\mathrm{CLK}}=500 \mathrm{kHz}$,
$\overline{\mathrm{SC}}=\mathrm{V}_{\mathrm{IH}}$ unless otherwise noted.

Symbol	Parameter	Test Conditions		Min	Typ	Max	Unit
	Resolution	$\overline{\mathrm{SC}}=\mathrm{V}_{\mathrm{IH}}$		14			Bits
		$\overline{\mathrm{SC}}=\mathrm{V}_{\text {IL }}$		12			
Le	Integral Linearity Error	Note 1	J			± 0.018	\%FSR
			K			± 0.012	
$\mathrm{T}_{\text {C(ILE) }}$	Temperature Coefficient of ILE	TA = Operating Range			1	1.5	$\mathrm{ppm} /{ }^{\circ} \mathrm{C}$
$\mathrm{RES}_{(\text {(NMC) }}$	Min Resolution with No Missing Codes	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	J	12			Bits
			K	13			
		$\mathrm{T}_{\mathrm{A}}=$ Operating Range (Note 2)	J	11			
			K	12			
FSE	Full Scale Calibration Error (Adjustable to Zero)		J			± 0.1	\%FSR
			K			± 0.08	
$\mathrm{T}_{\text {C(FSE) }}$	Temperature Coefficient of FSE	$\mathrm{T}_{\mathrm{A}}=$ Operating Range			2	5	ppm $/{ }^{\circ} \mathrm{C}$
ZE	Zero Error	Notes 1,2				± 1	LSB
$\mathrm{T}_{\mathrm{C} \text { (ZE) }}$	Temperature Coefficient of ZE	$\mathrm{T}_{\mathrm{A}}=$ Operating Range				1	ppm $/{ }^{\circ} \mathrm{C}$
PSRR	Power Supply Rejection Ratio	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			$\pm 1 / 2$	± 1	LSB
		$\mathrm{T}_{\mathrm{A}}=$ Operating Range				± 2	
V_{IN}	Analog Input Range ($\mathrm{V}_{\text {INs }}, \mathrm{V}_{\text {REFs }}$)			0 to +5			V
RIN	Input Resistance ($\mathrm{V}_{\text {INs }}, \mathrm{V}_{\text {REFS }}$)	Note 3		4		9	$\mathrm{k} \Omega$
$\mathrm{T}_{\mathrm{C}}\left(\mathrm{R}_{\text {IN }}\right)$		$\mathrm{T}_{\mathrm{A}}=$ Operating Range			-300		$\mathrm{ppm} /{ }^{\circ} \mathrm{C}$
ISUPPLY	Supply Current, I + , 1-	$\begin{aligned} & T_{A}=25^{\circ} \mathrm{C} \\ & T_{A}=\text { Operating Range } \end{aligned}$			2	4	mA
						6	
$V_{\text {SUPPLY }}$	Supply Voltage Range	Functional Operation Only		± 4.5		± 6.0	V
$V_{\text {IL }}$	Low State Input Voltage	Operating Temperature Range				0.8	V
V_{IH}	High State Input Voltage	Operating Temperature Range		2.4			V
$\mathrm{ILIH}^{\text {L }}$	Logic Input Current	$0<\mathrm{V}_{\text {IN }}>\mathrm{V}^{+}$			1	10	$\mu \mathrm{A}$
V_{OL}	Low State Output Voltage	$\mathrm{I} \mathrm{OUT}=1.6 \mathrm{~mA}$ Operating Temperature Range				0.4	V
V_{OH}	High State Output Voltage	$\text { IOUT }=-200 \mu \mathrm{~A}$ Operating Temperature Range		2.8			V
lox	Three-State Output Current Logic Input Capacitance	$0<V_{\text {OUT }}>\mathrm{V}_{+}$			1		$\mu \mathrm{A}$ pF
$\mathrm{C}_{\text {IN }}$					15		
Cout	Logic Output Capacitance	Three-State			15		

NOTES: 1. Full-scale range (FSR) is 5 V (reference adjusted).
2. Assume all leads soldered or welded to printed circuit board.
3. Assume all leads soldered or welded to printed circuit board.

[^101]

0337-4
Figure 4: Write Cycle Timing
AC ELECTRICAL CHARACTERISTICS $\mathrm{V}^{+}=+5.0 \mathrm{~V}, \mathrm{~V}^{-}=-5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{f}_{\mathrm{clk}}=500 \mathrm{kHz}$ unless otherwise noted. Data derived from extensive characterization testing. Parameters are not 100% production tested.

Symbol	Parameter	Test Conditions	Min	Typ	Max	Unit
READ CYCLE TIMING						
t_{cd}	Prop. Delay $\overline{C S}$ to Data	$\overline{\text { RD Low, } A_{0} \text { Valid }}$			200	ns
$\mathrm{tad}_{\text {ad }}$	Prop. Delay A_{0} to Data	$\overline{\mathrm{CS}}$ Low, $\overline{\mathrm{RD}}$ Low			200	
$t_{\text {rd }}$	Prop. Delay $\overline{\mathrm{RD}}$ to Data	$\overline{\text { CS Low, } A_{0} \text { Valid }}$			200	
t_{x}	Prop. Delay Data to Three State				100	
$t_{\text {ed }}$	Prop. Delay EOC High to Data				200	
WRITE CYCLE TIMING						
t_{wr}	WR Low Time		100			ns
$t_{\text {we }}$	Prop. Delay $\overline{\text { WR }}$ Low to EOC Low	Wait Mode	1		2	1/fclk
t_{80}	EOC High Time	Free-Run Mode	0.5		1.5	
$\mathrm{t}_{\text {conv }}$	Conversion Time	$\overline{\mathrm{SC}}=\mathrm{V}_{\mathrm{IH}}$			20	
		$\overline{\mathrm{SC}}=\mathrm{V}_{\mathrm{IL}}$			18	

intersil's sole and exclusive warranty obligation with respect to this product shall be that stated in the warranty article of the condition of sale. the warranty shall be exclusive and shall be in lieu of all. other warranties, express, implied or statutory, including the implied warranties of MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.
NOTE: All typical values have been characterized but are not tested.

TABLE 1: PIN DESCRIPTIONS

PIN	NAME	FUNCTION
30	OSC1	Oscillator inverter input
31	OSC2	Oscillator inverter output
32	$\overline{\mathrm{SC}}$	Short cycle input (high = 14-bit, low = 12-bit operation)
33	$\overline{W R}$	$\overline{\text { WRite pulse input (low starts new }}$ conversion)
34	$\mathrm{C}_{\text {AZ }}$	Auto-zero capacitor connection
35	V-	Negative power supply input
36	COMP	Used in test, tie to V^{-}
37	$\mathrm{V}_{\text {INs }}$	SENSE line for input voltage
38	$\mathrm{V}_{\text {REFs }}$	SENSE line for reference input
39	$\mathrm{AGND}_{\text {S }}$	SENSE line for analog ground
40	$\mathrm{V}_{\text {INf }}$	FORCE line for input voltage

TABLE 2: I/O CONTROL

$\overline{\text { CS }}$	$\overline{W R}$	$\overline{R D}$	A_{0}	BUS	FUNCTION
0	0	x	x	x	Initiates a Conversion
1	x	x	x	x	Disables all Chip Commands
0	x	0	0	0	Low Byte is Enabled
0	x	0	1	0	High Byte is Enabled
0	x	0	x	1	Low and High Bytes Enabled Together
x	x	1	x	x	Disables Outputs (High-Impedance)

TABLE 3: TRANSFER FUNCTION

INPUT VOLTAGE	EXPECTED OUTPUT CODE				
$\mathrm{V}_{\text {REF }}=-5.0 \mathrm{~V}$	OVR	MSB			
0	0	0	0	0	

[^102]
DETAILED DESCRIPTION

The ICL7115 is basically a successive approximation A/D converter with an internal structure much more complex than a standard SAR-type converter. Figure 2 shows the functional diagram of the ICL7115 14-bit A/D converter. The additional circuitry incorporated into the ICL7115 is used to perform error correction and to maintain the operating speed in the $40 \mu s$ range.

The internal 17-bit DAC of the ICL7115 is designed around a radix of 1.85 rather than the traditional 2.00 . This radix gives each bit of the DAC a weight of approximately 54% of the previous bit. The result is a useable range that extends to 3% beyond the full-scale input of the A/D. The actual value of each bit is measured and stored in the onchip PROM. The absolute value of each bit weight then becomes relatively unimportant because of the error correction action of the ICL7115.

The output of the high-speed auto-zeroed comparator is fed to the data input of a 17-bit successive approximation register (SAR). This register is uniquely designed for the ICL7115 in that it tests bit pairs instead of individual bits in the manner of a standard SAR. At the beginning of the conversion cycle, the SAR turns on the MSB (B_{16}) and the MSB-4 bit $\left(B_{12}\right)$. The sequence continues for each bit pair, B_{x} and B_{x-4}, until only the four LSBs remain. The sequence concludes by testing the four LSBs individually.

The SAR output is fed to the DAC register and to the preprogrammed 17-word by 17-bit PROM where it acts as PROM address. PROM data is fed to a 17-bit full-adder/accumulator where the decoded results from each successive phase of the conversion are summed with the previous results. After 20 clock cycles, the accumulator contains the final binary data which is latched and sent to the three-state output buffers. The accuracy of the A/D converter depends primarily upon the accuracy of the data that has been programmed into the PROM during the final test portion of the manufacturing process.

The error correcting algorithm built into the ICL7115 reduces the initial accuracy requirements of the DAC. The overlap in the testing of bit pairs reduces the accuracy requirements on the comparator which has been optimized for speed. Since the comparator is auto-zeroed, no external adjustment is required to get ZERO code for ZERO input voltage.

Twenty clock cycles are required for the complete 14-bit conversion. The auto-zero circuitry associated with the comparator is employed during the last three clock cycles of the conversion to cancel the effect of offset voltage. Also during this time, the SAR and accumulator are reset in preparation for the start of the next conversion. When the Short Cycle ($\overline{\mathrm{SC}}$) input is low, 18 clock cycles are required to complete a 12-bit conversion.

The overflow output of the 17-bit full-adder is also the OVerRange (OVR) output of the ICL7115. Unlike standard SAR-type A/D converters, the ICL7115 has the capability of providing valid useable data for inputs that exceed the fullscale range by as much as 3%.

OPTIMIZING SYSTEM PERFORMANCE

The FORCE and SENSE inputs for $V_{I N}$ and $V_{\text {REF }}$ are also shown driven by external op-amps. This technique elimi-
nates the effect of small voltage drops which can appear between the input pin of the IC package and the actual resistor on the chip. If the small gauge wire and the bonds that connect the chip to its package have more than $300 \mathrm{~m} \Omega$ of total series resistance, the result can be a voltage error equivalent to 1LSB. If no op-amps are used for $V_{I N}$ and $V_{\text {REF }}$, connections should be made directly to the SENSE lines. The external op-amps also serve to transform the relatively low impedance at the $\mathrm{V}_{I N}$ and $\mathrm{V}_{\text {REF }}$ pins into a high impedance. The input offset voltages of these amplifiers should be kept low in order to maintain the overall A/D converter system accuracy.

When using A / D converters with more than 12 bits of resolution, special attention must be paid to grounding and the elimination of potential ground loops. A ground loop can be formed by allowing the return current from the ICL7115's DAC to flow through traces that are common to other analog circuitry. If care is not taken, this current can generate small unwanted voltages that add to or detract from the reference or input voltages of the A/D converter.

Ground loops can be eliminated by the use of the analog ground FORCE and SENSE lines provided on the ICL7115 as shown in Figures 5 and 6. In Figure 5 the FORCE line is the only point that is connected to system analog ground. In Figure 6, the op-amp A_{3} forces the voltage at AGND to be equal to analog system ground. The addition of this op-amp overcomes the main deficiency of the arrangement in Figure 5: the $\mathrm{V}_{1 \mathrm{~N}}$ and $\mathrm{V}_{\text {REF }}$ sources are not referenced to true analog system ground.

The clamp diodes in Figure 6 are required because spurious op-amp output on AGNDf during power-on can exceed the absolute max rating of $\pm 1.0 \mathrm{~V}$ between AGDf and DGND. The two inverse-parallel diodes clamp the voltage between AGNDs and DGND to $\pm 0.7 \mathrm{~V}$.

INPUT WARNING

As with any CMOS integrated circuit, no input voltages should be applied to the ICL 7115 until the $\pm 5 \mathrm{~V}$ power supplies have stabilized.

INTERFACING TO DIGITAL SYSTEMS

The ICL7115 provides three-state data output buffers, $\overline{\mathrm{CS}}, \overline{\mathrm{RD}}, \overline{\mathrm{WR}}$, and bus select inputs (A_{0} and BUS) for interfacing to a wide variety of microcomputers and digital systems. The I/O Control Truth Table shows the functions of the digital control lines. The BUS select and A_{0} lines are provided to enable the output data onto either 8 -bit or 16 -bit data buses. A conversion is initiated by a $\overline{W R}$ pulse (pin 33) when $\overline{\mathrm{CS}}$ (pin 3) is low. Data is enabled on the bus when the chip is selected and $\overline{\mathrm{RD}}$ (pin 4) is low.

Figure 7 illustrates a typical interface to an 8-bit microcomputer. The "Start and Wait" operation requires the fewest external components and is initiated by a low level on the $\overline{W R}$ input to the ICL7115 after the I/O or memorymapped address decoder has brought the $\overline{\mathrm{CS}}$ input low. After executing a delay or utility routine for a period of time greater than the conversion time of the ICL7115, the processor issues two consecutive bus addresses to read output data into two bytes of memory. A low level on A_{0} enables the LSBs and a high level enables the MSBs.

[^103]

Figure 5: $\mathbf{V}_{\text {IN }}$ and $\mathbf{V}_{\text {REF }}$ Input Buffers

0337-6
Figure 6: Using a Forced Ground

Figure 7: "Start and Wait" Operation

By adding a three-state buffer and two control gates, the End-of-Conversion (EOC) output can be used to control a "Start and Poll" interface (Figure 8). In this mode, the A_{0} and $\overline{\mathrm{CS}}$ lines connect the EOC output to the data bus along with the most significant byte of data. After pulsing the WR line to initiate a conversion, the microprocessor continually reads the most significant byte until it detects a high level on the EOC bit. The "Start and Poll" interface increases data throughput compared with the "Start and Wait" method by eliminating delays between the conversion termination and the microprocessor read operation.

Other interface configurations can be used to increase data throughput without monopolizing the microprocessor during waiting or polling operations by using the EOC line as an interrupt generator as shown in Figure 9. After the conversion cycle is initiated, the microprocessor can continue to execute routines that are independent of the A/D converter until the converter's output register actually holds valid data. For fastest data throughput, the ICL7115 can be connected directly to the data bus but controlled by way of a Direct Memory Access (DMA) controller as shown in Figure 9.

APPLICATIONS

Figure 11 shows a typical application of the ICL7115 14bit A/D converter. A bipolar input voltage range of +5 V to -5 V is the result of using the current through R_{2} to force a $1 / 2$ scale offset on the input amplifier (A_{2}). The output of A_{2} swings from 0 V to -5 V . The overall gain of the A / D is varied by adjusting the $100 \mathrm{k} \Omega$ trim resistor, R_{5}. Since the ICL7115 is automatically zeroed every conversion, the system gain and offset stability will be superb as long as a reference with a tempco of $1 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ and stable external resistors are used.

In Figure 11, note that the $0.22 \mu \mathrm{~F}$ auto-zero capacitor is connected directly between the C_{AZ} pin and analog ground SENSE. A ${ }_{3}$ forces the analog ground of the ICL7115 to be the zero reference for the input signal. Its offset voltage is not important in this example because the voltage to be digitized is referred to the analog ground SENSE line rather than system analog ground. It is important to note that since the 7115's DAC current flows in A_{1}, A_{2} and A_{3} these amplifiers should be wideband ($G B W>20 \mathrm{MHz}$) types to minimize errors.

The clock for the ICL7115 is taken from whatever system clock is available and divided down to the 500 kHz level for
a conversion time of $40 \mu \mathrm{~s}$. Output data is controlled by the BUS and A_{0} inputs. Here they are set for 8 -bit bus operation with BUS grounded and A_{0} under the control of the address decode section of the external system.

Because the ICL7115's internal accumulator generates accurate output data for input signals as much as 3% greater than full-scale, and because the converter's OVR output flags overrange inputs, a simple microprocessor routine can be employed to precisely measure and correct for system gain and offset errors. Figure 12 shows a typical data acquisition system that uses a 5.0 V reference, input signal multiplexer, and input signal Track/Hold amplifier. Two of the multiplexer's input channels are dedicated to sampling the system analog ground and reference voltage. Here, as in Figure 11, bipolar operation is accommodated by an offset resistor between the reference voltage and the summing junction of A_{1}. A flip-flop in IC_{3} sets IC_{2} 's Track/Hold input after the microprocessor has initiated a WR command, and resets when EOC goes high at the end of the conversion.
The first step in the system calibration routine is to select the multiplexer channel that is connected to system analog ground and initiate a conversion cycle for the ICL7115. The results represent the system offset error which comes from the sum of the offsets from $I C_{1}, I C_{2}$, and A_{1}. Next the channel connected to the reference voltage is selected and measured. These results, minus the system offset error, represent the system full-scale range. A gain error correction factor can be derived from this data. Since the ICL7115 provides valid data for inputs that exceed full-scale by as much as 3%, the OVR output can be thought of as a valid 15th data bit. Whenever the OVR bit is high, however, the total 14-bit result should be checked to insure that it falls within 100% and 103% of full-scale. Data beyond 103% of full-scale should be discarded.
The ICL7115 provides an internal inverter which is brought out to pins OSC1 and OSC2, for crystal or ceramic resonator oscillator operation. The clock frequency is calculated from:

$$
f_{C L K}=\frac{20}{t_{\text {conv }}} \text { for 14-bit operation }
$$

and

$$
\mathrm{f}_{\mathrm{CLK}}=\frac{18}{\mathrm{t}_{\text {conv }}} \text { for } 12 \text {-bit operation }
$$

INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

NOTE: All typical values have been characterized but are not tested.

0337-15
Figure 11: Typical Application with Bipolar Input Range, Forced Ground, and 5 Volt Ultra-Stable Reference

0337-16
Figure 12: Multi-Channel Data Acquisition System with Zero and Reference Lines Brought to Multiplexer for System Gain and Offset Error Correction

[^104]
GENERAL DESCRIPTION

The Intersil ICL7135 precision A/D converter, with its multiplexed BCD output and digit drivers, combines dualslope conversion reliability with ± 1 in 20,000 count accuracy and is ideally suited for the visual display DVM/DPM market. The 2.0000 V full scale capability, auto-zero and auto-polarity are combined with true ratiometric operation, almost ideal differential linearity and true differential input. All necessary active devices are contained on a single CMOS I.C., with the exception of display drivers, reference, and a clock.
The intersil ICL7135 brings together an unprecedented combination of high accuracy, versatility, and true economy. It features auto-zero to less than $10 \mu \mathrm{~V}$, zero drift of less than $1 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$, input bias current of 10 pA max., and rollover error of less than one count. The versatility of multiplexed BCD outputs is increased by the addition of several pins which allow it to operate in more sophisticated systems. These include STROBE, OVERRANGE, UNDER-RANGE, RUN/HOLD and BUSY lines, making it possible to interface the circuit to a microprocessor or UART.

FEATURES

- Accuracy Guaranteed to ± 1 Count Over Entire $\pm 20,000$ Counts (2.0000 Volts Full Scale)
- Guaranteed Zero Reading for 0 Volts Input
- 1pA Typical Input Current
- True Differential Input
- True Polarity at Zero Count for Precise Null Detection
- Single Reference Voltage Required
- Over-Range and Under-Range Signals Available for Auto-Range Capability
- All Outputs TTL Compatible
- Blinking Outputs Gives Visual Indication of Overrange
- Six Auxiliary Inputs/Outputs Are Available for Interfacing to UARTs, Microprocessors or Other Circuitry
- Multiplexed BCD Outputs

ORDERING INFORMATION

Part Number	Temp. Range	Package
ICL7135CJI	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	28-Pin CERDIP
ICL7135CPI	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	28-Pin Plastic DIP
ICL7135EV/KIT	Evaluation Kit	
(PC Board, active, passive components)		

0342-1
Figure 1: ICL7135 Connection Diagram

[^105]
ABSOLUTE MAXIMUM RATINGS

Supply Voltage V^{+}. +6 V
V- -9V

Analog Input Voltage (either input) (Note 1) V+ to V^{-}
Reference Input Voltage (either input) V+ to V^{-}
Clock Input . Gnd to $\mathrm{V}+$

Power Dissipation (Note 2)	
Ceramic Package	1000 mW
Plastic Package	800 mW
Operating Temperature $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	
Storage Temperature $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	
Lead Temperature (Solder	$300^{\circ} \mathrm{C}$

Power Dissipation (Note 2)
Ceramic Package 1000 mW Plastic Package . 800 mW Operating Temperature $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ Lead Temperature (Soldering, 10sec) $300^{\circ} \mathrm{C}$

Note 1: Input voltages may exceed the supply voltages provided the input current is limited to $+100 \mu \mathrm{~A}$.
Note 2: Dissipation rating assumes device is mounted with all leads soldered to printed circuit board.
NOTE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

		20 underrange
Reference	ICL7135	27 overrange
ANALOG COMMMON 3		\% ${ }^{\text {® STROEE }}$
INT OUT 4		$2{ }^{26} \mathbf{R} / \mathbf{H}$
A 2 IN 5		20 digital ond
BuFF OUT 6		2 POL
REF. CAP. ${ }^{-7}$		22 Clock in
REF. CAP. ${ }^{+8}$		21 Busy
IN LO 9		20 (LSD) D1
IN H1 10		19 D2
$v^{+} 11$		18 D3
(msD) DS 12		17 D4
(LSB) 81		$16{ }^{16}$ (MSB) 88
82		15 B4

Figure 2: Pin Configuration
Outline dwgs JI, PI)
ELECTRICAL CHARACTERISTICS (Note 1)
$\left(\mathrm{V}^{+}=+5 \mathrm{~V}, \mathrm{~V}^{-}=-5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right.$, Clock Frequency Set for 3 Reading/Sec)

Symbol	Characteristics	Test Conditions	Min	Typ	Max	Unit
ANALOG (Note 1) (Note 2)						
	Zero Input Reading	$\begin{aligned} & \qquad V_{\text {IN }}=0.0 \mathrm{~V} \\ & \text { Full Scale }=2.000 \mathrm{~V} \end{aligned}$	-0.0000	± 0.0000	$+0.0000$	Digital Reading
	Ratiometric Reading (2)	$\begin{gathered} V_{I N} \equiv V_{\text {REF }} \\ \text { Full Scale }=2.000 \mathrm{~V} \end{gathered}$	+0.9998	+0.9999	+1.0000	Digital Reading
	Linearity over \pm Full Scale (error of reading from best straight line)	$-2 \mathrm{~V} \leq \mathrm{V}_{1 \mathrm{~N}} \leq+2 \mathrm{~V}$		0.5	1	Digital Count Error
	Differential Linearity (difference between worse case step of adjacent counts and ideal step)	$-2 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq+2 \mathrm{~V}$. 01		LSB
	Rollover error (Difference in reading for equal positive \& negative voltage near full scale)	$-\mathrm{V}_{\mathrm{IN}} \equiv+\mathrm{V}_{\mathrm{IN}} \approx 2 \mathrm{~V}$		0.5	1	Digital Count Error

INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE the warranty shall be exclusive and shall be in lieu of all other warranties, express, implied or statutory, including the implied warranties of MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.
NOTE: All typical values have been characterized but are not tested.

ELECTRICAL CHARACTERISTICS (Note 1)
$\left(\mathrm{V}^{+}=+5 \mathrm{~V}, \mathrm{~V}^{-}=-5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right.$, Clock Frequency Set for 3 Reading $/ \mathrm{Sec}$) (Continued)

Symbol	Characteristics	Test Conditions	Min	Typ	Max	Unit
e_{n}	Noise (P-P value not exceeded 95\% of time)	$\begin{gathered} V_{I N}=0 \mathrm{~V} \\ \text { Full scale }=2.000 \mathrm{~V} \end{gathered}$		15		$\mu \mathrm{V}$
IILK	Leakage Current at Input	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$		1	10	pA
	Zero Reading Drift	$\begin{gathered} \mathrm{V}_{I N}=0 \mathrm{~V} \\ 0^{\circ} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C} \\ \hline \end{gathered}$		0.5	2	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
TC	Scale Factor Temperature Coefficient (3)	$\begin{gathered} \mathrm{V}_{\mathbb{I N}}=+2 \mathrm{~V} \\ 0 \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C} \\ \text { (ext. ref. } 0 \mathrm{ppm} /{ }^{\circ} \mathrm{C} \text {) } \end{gathered}$		2	5	ppm $/{ }^{\circ} \mathrm{C}$
DIGITAL						
INPUTS						
VINH $\mathrm{V}_{\mathrm{INL}}$ $\mathrm{I}_{\mathrm{INL}}$ IINH	Clock in, Run/Hold, See Figure 4	$\begin{gathered} V_{I N}=0 \\ V_{I N}=+5 \mathrm{~V} \end{gathered}$	2.8	$\begin{gathered} 2.2 \\ 1.6 \\ 0.02 \\ 0.1 \end{gathered}$	$\begin{gathered} 0.8 \\ 0.1 \\ 10 \end{gathered}$	V mA $\mu \mathrm{A}$

OUTPUTS

NOTES: 1. Tested in $4-1 / 2$ digit (20,000 count) circuit shown in Figure 3, clock frequency 120 kHz .
2. Tested with a low dielectric absorption integrating capacitor and $\mathrm{R}_{\mathrm{INT}}=0$. See Component Selection Section.
3. The temperature range can be extended to $+70^{\circ} \mathrm{C}$ and beyond as long as the auto-zero and reference capacitors are increased to absorb the higher leakage of the ICL7135.
4. This specification relates to the clock frequency range over which the ICL7135 will correctly perform its various functions. See "Max Clock Frequency" section for limitations on the clock frequency range in a system.

[^106]

Figure 3: $\mathbf{7 1 3 5}$ Test Circuit

Figure 5: Analog Section of ICL7135

[^107]
DETAILED DESCRIPTION

 Analog SectionFigure 5 shows the Block Diagram of the Analog Section for the ICL7135. Each measurement cycle is divided into four phases. They are (1) auto-zero (A-Z), (2) signal-integrate (INT), (3) deintegrate (DE) and (4) zero-integrator (ZI).

AUTO-ZERO PHASE

During auto-zero three things happen. First, input high and low are disconnected from the pins and internally shorted to analog COMMON. Second, the reference capacitor is charged to the reference voltage. Third, a feedback loop is closed around the system to charge the auto-zero capacitor $\mathrm{C}_{A Z}$ to compensate for offset voltages in the buffer amplifier, integrator, and comparator. Since the comparator is included in the loop, the A-Z accuracy is limited only by the noise of the system. In any case, the offset referred to the input is less than $10 \mu \mathrm{~V}$.

SIGNAL INTEGRATE PHASE

During signal integrate, the auto-zero loop is opened, the internal short is removed, and the internal input high and low are connected to the external pins. The converter then integrates the differential voltage between IN HI and IN LO for a fixed time. This differential voltage can be within a wide common mode range; within one volt of either supply. If, on the other hand, the input signal has no return with respect to the converter power supply, IN LO can be tied to analog COMMON to establish the correct common-mode voltage. At the end of this phase, the polarity of the integrated signal is latched into the polarity F/F.

DE-INTEGRATE PHASE

The Third phase is de-integrate, or reference integrate. Input LOW is internally connected to analog COMMON and input high is connected across the previously charged reference capacitor. Circuitry within the chip ensures that the capacitor will be connected with the correct polarity to cause the integrator output to return to zero. The time required for the output to return to zero is proportional to the input signal. Specifically the digital reading displayed is $10,000\left(\frac{V_{\text {IN }}}{V_{\text {REF }}}\right)$.

ZERO INTEGRATOR PHASE

The final phase is zero integrator. First, input low is shorted to analog COMMON. Second, a feedback loop is closed around the system to input high to cause the integrator output to return to zero. Under normal condition, this phase lasts from 100 to 200 clock pulses, but after an overrange conversion, it is extended to 6200 clock pulses.

Differential Input

The input can accept differential voltages anywhere within the common mode range of the input amplifier; or specifically from 0.5 volts below the positive supply to 1.0 volt above the negative supply. In this range the system has a CMRR of 86 dB typical. However, since the integrator also swings with the common mode voltage, care must be exercised to assure the integrator output does not saturate. A worst case condition would be a large positive commonmode voltage with a near full-scale negative differential input voltage. The negative input signal drives the integrator positive when most of its swing has been used up by the positive common mode voltage. For these critical applications the integrator swing can be reduced to less than the recommended 4 V full scale swing with some loss of accuracy. The integrator output can swing within 0.3 volts of either supply without loss of linearity.

INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

Analog Common

Analog COMMON is used as the input low return during auto-zero and de-integrate. If IN LO is different from analog COMMON, a common mode voltage exists in the system and is taken care of by the excellent CMRR of the converter. However, in most applications IN LO will be set at a fixed known voltage (power supply common for instance). In this application, analog COMMON should be tied to the same point, thus removing the common mode voltage from the converter. The reference voltage is referenced to analog COMMON.

Reference

The reference input must be generated as a positive voltage with respect to COMMON, as shown in Figure 6.

DETAILED DESCRIPTION

Digital Section

Figure 7 shows the Digital Section of the 7135. The 7135 includes several pins which allow it to operate conveniently in more sophisticated systems. These include:
Run/HOLD (Pin 25). When high (or open) the A/D will freerun with equally spaced measurement cycles every 40,002 clock pulses. It taken low, the converter will continue the full measurement cycle that it is doing and then hold this reading as long as R/H is held low. A short positive pulse (greater than 300 ns) will now initiate a new measurement cycle, beginning with between 1 and 10,001 counts of auto zero. If the pulse occurs before the full measurement cycle $(40,002$ counts) is completed, it will not be recognized and the converter will simply complete the measurement it is doing. An external indication that a full measurement cycle has been completed is that the first strobe pulse (see below) will occur 101 counts after the end of this cycle. Thus, if Run/ HOLD is low and has been low for at least 101 counts, the converter is holding and ready to start a new measurement when pulsed high.
STROBE (Pin 26). This is a negative going output pulse that aids in transferring the BCD data to external latches, UARTs or microprocessors. There are 5 negative going STROBE pulses that occur in the center of each of the digit drive pulses and occur once and only once for each measurement cycle starting 101 pulses after the end of the full measurement cycle. Digit 5 (MSD) goes high at the end of the measurement cycle and stays on for 201 counts. In the center of this digit pulse (to avoid race conditions between changing BCD and digit drives) the first STROBE pulse goes negative for $1 / 2$ clock pulse width. Similarly, after digit 5 , digit 4 goes high (for 200 clock pulses) and 100 pulses later the STROBE goes negative for the second time. This continues through digit 1 (LSD) when the fifth and last STROBE pulse is sent. The digit drive will continue to scan (unless the previous signal was overrange) but no additional STROBE pulses will be sent until a new measurement is available.
BUSY (Pin 21). BUSY goes high at the beginning of signal integrate and stays high until the first clock pulse after zerocrossing (or after end of measurement in the case of an overrange). The internal latches are enabled (i.e., loaded) during the first clock pulse after busy and are latched at the end of this clock pulse. The circuit automatically reverts to
auto-zero when not BUSY, so it may also be considered a (ZI + AZ) signal. A very simple means for transmitting the data down a single wire pair from a remote location would be to AND BUSY with clock and subtract 10,001 counts from the number of pulses received - as mentioned previously there is one "NO-count" pulse in each reference integrate cycle.

Figure 7: Digital Section of the $\mathbf{7 1 3 5}$
OVER-RANGE (Pin 27). This pin goes positive when the input signal exceeds the range $(20,000)$ of the converter. The output F/F is set at the end of BUSY and is reset to zero at the beginning of Reference integrate in the next measurement cycle.
UNDER-RANGE (Pin 28). This pin goes positive when the reading is 9% of range or less. The output F / F is set at the end of BUSY (if the new reading is 1800 or less) and is reset at the beginning of signal integrate of the next reading.
POLARITY (Pin 23). This pin is positive for a positive input signal. It is valid even for a zero reading. In other words, +0000 means the signal is positive but less than the least significant bit. The converter can be used as a null detector by forcing equal frequency of $(+)$ and (-) readings. The null at this point should be less than 0.1 LSB. This output becomes valid at the beginning of reference integrate and remains correct until it is re-validated for the next measurement.
Digit Drives (Pins 12, 17, 18, 19 and 20). Each digit drive is a positive going signal that lasts for 200 clock pulses. The scan sequence is $D_{5}(M S D), D_{4}, D_{3}, D_{2}$ and D_{1} (LSD). All five digits are scanned and this scan is continuous unless an over-range occurs. Then all digit drives are blanked from the end of the strobe sequence until the beginning of Reference Integrate when D_{5} will start the scan again. This can give a blinking display as a visual indication of over-range.
BCD (Pins 13, 14, 15 and 16). The Binary coded Decimal bits B_{8}, B_{4}, B_{2} and B_{1} are positive logic signals that go on simultaneously with the digit driver signal.

[^108]
COMPONENT VALUE SELECTION

For optimum performance of the analog section, care must be taken in the selection of values for the integrator capacitor and resistor, auto-zero capacitor, reference voltage, and conversion rate. These values must be chosen to suit the particular application.

Integrating Resistor

The integrating resistor is determined by the full scale input voltage and the output current of the buffer used to charge the integrator capacitor. Both the buffer amplifier and the integrator have a class A output stage with $100 \mu \mathrm{~A}$ of quiescent current. They can supply $20 \mu \mathrm{~A}$ of drive current with negligible non-linearity. Values of 5 to $40 \mu \mathrm{~A}$ give good results, with a nominal of $20 \mu \mathrm{~A}$, and the exact value of integrating resistor may be chosen by

$$
R_{I N T}=\frac{\text { full scale voltage }}{20 \mu \mathrm{~A}}
$$

Integrating Capacitor

The product of integrating resistor and capacitor should be selected to give the maximum voltage swing which ensures that the tolerance built-up will not saturate the integrator swing (approx. 0.3 volt from either supply). For ± 5 volt supplies and analog COMMON tied to supply ground, a ± 3.5 to ± 4 volt full scale integrator swing is fine, and $0.47 \mu \mathrm{~F}$ is nominal. In general, the value of $\mathrm{C}_{\text {INT }}$ is given by

$$
\begin{aligned}
\mathrm{C}_{\mathrm{INT}} & =\left(\frac{[10,000 \times \text { clock period }] \times\left.\right|_{\mathrm{INT}}}{\text { integrator output voltage swing }}\right) \\
& =\frac{(10,000) \text { (clock period) }(20 \mu \mathrm{~A})}{\text { integrator output voltage swing }}
\end{aligned}
$$

A very important characteristic of the integrating capacitor is that it has low dielectric absorption to prevent roll-over or ratiometric errors. A good test for dielectric absorption is to use the capacitor with the input tied to the reference.

This ratiometric condition should read half scale 0.9999 , and any deviation is probably due to dielectric absorption. Polypropylene capacitors give undetectable errors at reasonable cost. Polystyrene and polycarbonate capacitors may also be used in less critical applications.

0342-9
Figure 8: Timing Diagram for Outputs

Auto-Zero and Reference Capacitor

The size of the auto-zero capacitor has some influence on the noise of the system, a large capacitor giving less noise. The reference capacitor should be large enough such that stray capacitance to ground from its nodes is negligible.

[^109]The dielectric absorption of the reference cap and autozero cap are only important at power-on or when the circuit is recovering from an overload. Thus, smaller or cheaper caps can be used here if accurate readings are not required for the first few seconds of recovery.

Reference Voltage

The analog input required to generate a full-scale output is $\mathrm{V}_{\mathrm{IN}}=2 \mathrm{~V}_{\mathrm{REF}}$.

The stability of the reference voltage is a major factor in the overall absolute accuracy of the converter. For this reason, it is recommended that a high quality reference be used where high-accuracy absolute measurements are being made.

Rollover Resistor and Diode

A small rollover error occurs in the 7135, but this can be easily corrected by adding a diode and resistor in series between the INTegrator OUTput and analog COMMON or ground. The value shown in the schematics is optimum for the recommended conditions, but if integrator swing or clock frequency is modified, adjustment may be needed. The diode can be any silicon diode, such as 1N914. These components can be eliminated if rollover error is not important, and may be altered in value to correct other (small) sources of rollover as needed.

Max Clock Frequency

The maximum conversion rate of most dual-slope A/D converters is limited by the frequency response of the comparator. The comparator in this circuit follows the integrator ramp with a 3μ s delay, and at a clock frequency of 160 kHz ($6 \mu \mathrm{~s}$ period) half of the first reference integrate clock period is lost in delay. This means that the meter reading will change from 0 to 1 with a $50 \mu \mathrm{~V}$ input, 1 to 2 with $150 \mu \mathrm{~V}$, 2 to 3 at $250 \mu \mathrm{~V}$, etc. This transition at mid-point is considered desirable by most users; however, if the clock frequency is increased appreciably above 160 kHz , the instrument will flash " 1 " on noise peaks even when the input is shorted.

For many-dedicated applications where the input signal is always of one polarity, the delay of the comparator need not be a limitation. Since the non-linearity and noise do not increase substantially with frequency, clock rates of up to $\sim 1 \mathrm{MHz}$ may be used. For a fixed clock frequency, the extra count or counts caused by comparator delay will be constant and can be subtracted out digitally.

The clock frequency may be extended above 160 kHz without this error, however, by using a low value resistor in series with the integrating capacitor. The effect of the resistor is to introduce a small pedestal voltage on to the integrator output at the beginning of the reference integrate phase. By careful selection of the ratio between this resistor and the integrating resistor (a few tens of ohms in the recommended circuit), the comparator delay can be compensated and the maximum clock frequency extended by approximately a factor of 3 . At higher frequencies, ringing and second order breaks will cause significant nonlinearities in the first few counts of the instrument - see Application Note A017.

The minimum clock frequency is established by leakage on the auto-zero and reference caps. With most devices, measurement cycles as long as 10 seconds give no measurable leakage error.

To achieve maximum rejection of 60 Hz pickup, the signal integrate cycle should be a multiple of 60 Hz . Oscillator frequencies of $300 \mathrm{kHz}, 200 \mathrm{kHz}, 150 \mathrm{kHz}, 120 \mathrm{kHz}, 100 \mathrm{kHz}$, $40 \mathrm{kHz}, 331 / 3 \mathrm{kHz}$, etc. should be selected. For 50 Hz rejection, oscillator frequencies of $250 \mathrm{kHz}, 1662 / 3 \mathrm{kHz}, 125 \mathrm{kHz}$, 100 kHz , etc. would be suitable. Note that 100 kHz (2.5 readings/second) will reject both 50 and 60 Hz .

The clock used should be free from significant phase or frequency jitter. Several suitable low-cost oscillators are shown in the Applications section. The multiplexed output means that if the display takes significant current from the logic supply, the clock should have good PSRR.

Zero-Crossing Flip-Flop

The flip-flop interrogates the data once every clock pulse after the transients of the previous clock pulse and halfclock pulse have died down. False zero-crossings caused by clock pulses are not recognized. Of course, the flip-flop delays the true zero-crossing by up to one count in every instance, and if a correction were not made, the display would always be one count too high. Therefore, the counter is disabled for one clock pulse at the beginning of phase 3. This one-count delay compensates for the delay of the zero-crossing flip-flop, and allows the correct number to be latched into the display. Similarly, a one-count delay at the beginning of phase 1 gives an overload display of 0000 instead of 0001. No delay occurs during phase 2, so that true ratiometric readings result.

EVALUATING THE ERROR SOURCES

Errors from the "ideal" cycle are caused by:

1. Capacitor droop due to leakage.
2. Capacitor voltage change due to charge "suck-out" (the reverse of charge injection) when the switches turn off.
3. Non-linearity of buffer and integrator.
4. High-frequency limitations of buffer, integrator and comparator.
5. Integrating capacitor non-linearity (dielectric absorption.)
6. Charge lost by $\mathrm{C}_{\text {REF }}$ in charging $\mathrm{C}_{\text {stray }}$.
7. Charge lost by $C_{A Z}$ and $C_{I N T}$ to charge $C_{\text {stray }}$.

Each of these errors is analyzed for its error contribution to the converter in application notes listed on the back page, specifically A017 and A032.

NOISE

The peak-to-peak noise around zero is approximately $15 \mu \mathrm{~V}$ (pk-to-pk value not exceeded 95% of the time). Near full scale, this value increases to approximately $30 \mu \mathrm{~V}$. Much of the noise originates in the auto-zero loop, and is proportional to the ratio of the input signal to the reference.

ANALOG AND DIGITAL GROUNDS

Extreme care must be taken to avoid ground loops in the layout of ICL7135 circuits, especially in high-sensitivity circuits. It is most important that return currents from digital loads are not fed into the analog ground line.

POWER SUPPLIES

The 7135 is designed to work from $\pm 5 \mathrm{~V}$ supplies. However, in selected applications no negative supply is required. The conditions to use a single +5 V supply are:

1. The input signal can be referenced to the center of the common mode range of the converter.
2. The signal is less than ± 1.5 volts.

See "differential input" for a discussion of the effects this will have on the integrator swing without loss of linearity.

TYPICAL APPLICATIONS

The circuits which follow show some of the wide variety of possibilities, and serve to illustrate the exceptional versatility of this A/D converter.

Figure 9 shows the complete circuit for a $4-1 / 2$ digit ($\pm 2.000 \mathrm{~V}$) full scale) A/D with LED readout using the ICL8069 as a 1.2 V temperature compensated voltage reference. It uses the band-gap principal to achieve excellent stability and low noise at reverse currents down to $50 \mu \mathrm{~A}$. The circuit also shows a typical R-C input filter. Depending on the application, the time-constant of this filter can be made faster, slower, or the filter deleted completely. The $1 / 2$ digit LED is driven from the 7 segment decoder, with a zero reading blanked by connecting a D5 signal to RBI input of the decoder. The 2 -gate clock circuit should use CMOS gates to maintain good power supply rejection.

A suitable circuit for driving a plasma-type display is shown in Figure 10. The high voltage anode driver buffer is made by Dionics. The 3 AND gates and caps driving ' Bl ' are needed for interdigit blanking of multiple-digit display elements, and can be omitted if not needed. The $2.5 \mathrm{k} \Omega$ \& $3 \mathrm{k} \Omega$ resistors set the current levels in the display. A similar arrangement can be used with Nixie ${ }^{\text {® }}$ tubes.
The popular LCD displays can be interfaced to the O/P of the ICL7135 with suitable display drivers, such as the ICM7211A as shown in Figure 11. A standard CMOS 4030 QUAD XOR gate is used for displaying the $1 / 2$ digit, the polarity, and an 'overrange' flag. A similar circuit can be used with the ICL7212A LED driver and the ICM7235A vacuum fluorescent driver with appropriate arrangements made for the 'extra' outputs. Of course, another full driver circuit could be ganged to the one shown if required. This would be useful if additional annunciators were needed. The Figure shows the complete circuit for a $4-1 / 2$ digit $(\pm 2,000 \mathrm{~V})$ A/D.
Figure 12 shows a more complicated circuit for driving LCD displays. Here the data is latched into the ICM7211 by the STROBE signal and 'Overrange' is indicated by blanking the 4 full digits.

0342-10
Figure 9: 4-1/2 Digit A/D Converter with a Multiplexed Common Anode LED Display

0342-12
Figure 10: ICL7135 Plasma Display Circuit

0342-13
Figure 11: LCD Display with Digit Blanking on Overrange

[^110]A problem sometimes encountered with both LED \& plas-ma-type display driving is that of clock source supply line variations. Since the supply is shared with the display, any variation in voltage due to the display reading may cause clock supply voltage modulation. When in overrange the display alternates between a blank display and the 0000 overrange indication. This shift occurs during the reference integrate phase of conversion causing a low display reading just after overrange recovery. Both of the above circuits have considerable current flowing in the digital supply from drivers, etc. A clock source using an LM311 voltage comparator with positive feedback (Figure 13) could minimize any clock frequency shift problem.

The 7135 is designed to work from ± 5 volt supplies. However, if a negative supply is not available, it can be generated with an ICL7660 and two capacitors (Figure 14).

0342-15
Figure 13: LM311 Clock Source

INTERFACING WITH UARTS AND MICROPROCESSORS

Figure 15 shows a very simple interface between a freerunning ICL7135 and a UART. The five STROBE pulses start the transmission of the five data words. The digit 5 word is $0000 \times X X X$, digit 4 is $1000 \times \mathrm{XXX}$, digit 3 is 0100 XXXX , etc. Also the polarity is transmitted indirectly by using it to drive the Even Parity Enable Pin (EPE). If EPE of the receiver is held low, a parity flag at the receiver can be decoded as a positive signal, no flag as negative. A complex arrangement is shown in Figure 16. Here the UART can instruct the A/D to begin a measurement sequence by a word on RRI. The BUSY signal resets the Data Ready Reset (DRR). Again STROBE starts the transmit sequence. A quad 2 input multiplexer is used to superimpose polarity, over-range, and under-range onto the D_{5} word since in this instance it is known that $\mathrm{B}_{2}=\mathrm{B}_{4}=\mathrm{B}_{8}=0$.

Figure 15: ICL7135 to UART Interface

[^111]

Figure 16: Complex ICL7135 to UART Interface

0342-19
Figure 17: ICL7135 to MC6800, MCS650X Interface

[^112]

0342-20
Figure 18: ICL7135 to MCS-48, -80, 85 Interface

For correct operation it is important that the UART clock be fast enough that each word is transmitted before the next STROBE pulse arrives. Parity is locked into the UART at load time but does not change in this connection during an output stream.

Circuits to interface the ICL7135 directly with three popular microprocessors are shown in Figures 17 and 18. The $8080 / 8048$ and the MC6800 groups with 8 bit buses need to have polarity, over-range and under-range multiplexed onto the Digit 5 word - as in the UART circuit. In each case the microprocessor can instruct the A/D when to begin a measurement and when to hold this measurement.

APPLICATION NOTES

A016 "Selecting A/D Converters," by David Fullagar
A017 "The Integrating A/D Converters," by Lee Evans

A018 "Do's and Don'ts of Applying A/D Converters," by Peter Bradshaw and Skip Osgood
A019 "4-1/2 Digit Plan Meter Demonstrator/Instrumentation Boards," by Michael Dufort
A023 "Low Cost Digital Panel Meter Designs," by David Fullager and Michael Dufort
A028 "Building an Auto-Ranging DMM Using the 8052A/ 7103A A/D Converter Pair," by Larry Goff
A030 "The ICL7104 - A Binary Output A/D Converter for Microprocessors', by Peter Bradshaw
A032 "Understanding the Auto-Zero and Common Mode Performance of the ICL7106 Family", by Peter Bradshaw
R005 "Interfacing Data Converters \& Microprocessors," by Peter Bradshaw et al, Electronics, Dec. 9, 1976

[^113]
Section 4 - D/A Converters

AD7520 4-1
AD7521 4-1
AD7530 4-1
AD7531 4-1
AD7523 4-8
AD7533 4-13
AD7541 4-18
ICL7121 4-25
ICL7134 4-32
IM2110 4-46

AD7520/AD7530 AD7521/AD7531 10/12-Bit Multiplying D/A Converters

GENERAL DESCRIPTION

The AD7520/AD7530 and AD7521/AD7531 are monolithic, high accuracy, low cost 10-bit and 12-bit resolution, multiplying digital-to-analog converters (DAC). Intersil's thinfilm on CMOS processing gives up to 10-bit accuracy with TTL/CMOS compatible operation. Digital inputs are fully protected against static discharge by diodes to ground and positive supply.

Typical applications include digital/analog interfacing, multiplication and division, programmable power supplies, CRT character generation, digitally controlled gain circuits, integrators and attenuators, etc.

The AD7530 and AD7531 are identical to the AD7520 and AD7521, respectively, with the exception of output leakage current and feedthrough specifications.

FEATURES

- AD7520/AD7530: 10 Bit Resolution; 8, 9 and 10 Blt Linearity
- AD7521/AD7531: 12 Bit Resolution; 8, 9 and 10 Bit Linearity
- Low Power Dissipation: 20mW (Max)
- Low Nonlinearity Tempco: 2 ppm of FSR/ ${ }^{\circ} \mathrm{C}$
- Current Settling Time: 500ns to 0.05\% of FSR
- Supply Voltage Range: +5 V to +15 V
- TTL/CMOS Compatlble
- Full Input Static Protection
- /883B Processed Versions Avallable

ORDERING INFORMATION

Nonlinearity	Part Number/Package		
	Plastic DIP	CERDIP	CERDIP
0.2\% (8-Bit)	AD7520JN AD7530JN AD7521JN AD7531JN	AD7520JD AD7530JD AD7521JD AD7521JD	AD7520SD AD7521SD
0.1\% (9-Bit)	AD7520KN AD7530KN AD7521KN AD7531KN	AD7520KD AD7530KD AD7521KD AD7531KD	AD7520TD AD7521TD
0.05\% (10-Bit)	AD7520LN AD7530LN AD7521LN AD7531LN	AD7520LD AD7530LD AD7521LD AD7531LD	AD7520UD AD7521UD
TEMPERATURE RANGE	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

(Switches shown for Digital Inputs "High")
(Resistor values are nominal)
Figure 1: Functional Diagram

[^114]
AD7520/AD7530
 AD7521/AD7531

ABSOLUTE MAXIMUM RATINGS
 ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted)

$V_{\text {REF }}$. $\pm 25 \mathrm{~V}$
Digital Input Voltage Range V+ to GND
Output Voltage Compliance -100 mV to $\mathrm{V}+$
Power Dissipation (package)
up to $+75^{\circ} \mathrm{C}$..................................... . 450 mW
derate above $+75^{\circ} \mathrm{C}$ @
.......................
$6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$

Operating Temperature	
JN, KN, LN Versions	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
JD, KD, LD Versions $-25^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$	$-25^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
SD, TD, UD Versions	
Storage Temperature	$-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$

CAUTION:

1) The digital control inputs are zener protected; however, permanent damage may occur on unconnected units under high energy electrostatic fields. Keep unused units in conductive foam at all times.
2) Do not apply voltages higher than $V_{D D}$ or less than GND potential on any terminal except $V_{\text {REF }}$ and RFEEDBACK

NOTE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

TOP VIEW		AD7521 (AD7531)	
AD7520 (AD7530) Lours			
louti 1	16 Rfeediack	Iout2 2	17 V VEF
IOUT2 2	[15] Vref	GND 3	$16 \mathrm{~V}^{+}$
GND 3	$14 \mathrm{~V}+$	BIT 1 (MSB) 4	15 BIT 12 (LSB)
BIT 1 (MSB) 4	13 BIT 10 (LSB)	BIT 25	(14) BIT 11
BIT 25	12 BIT 9	Bit 3 [13 BIT 10
BIT 3 [11 BIT 8	BIT 47	[12 BIT 9
$81 T 4$	10 BIT 7	BIT 5	(11) BIT 8
BIT 5	(2) BIT 6	BIT 6	10] BIT 7
Figure 2: Pin Configurations			

ELECTRICAL CHARACTERISTICS ($\mathrm{V}+=+15 \mathrm{~V}, \mathrm{~V}_{\mathrm{REF}}=+10 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise specified)

\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|c|}{Parameter} \& \multicolumn{2}{|l|}{Test Conditions} \& \[
\begin{aligned}
\& \text { AD7520 } \\
\& \text { (AD7530) }
\end{aligned}
\] \& \begin{tabular}{l}
AD7521 \\
(AD7531)
\end{tabular} \& Unit \& Limit \\
\hline \multicolumn{9}{|l|}{DC ACCURACY (Note 1)} \\
\hline \multicolumn{3}{|l|}{Resolution} \& \& \& 10 \& 12 \& Bits \& \\
\hline \multirow[t]{3}{*}{Nonlinearity (Note 2)} \& \multirow{3}{*}{VERSION} \& J \& \multirow[t]{3}{*}{\(\mathrm{S}, \mathrm{T}, \mathrm{U}:\) over \(-55^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\)

$-10 \mathrm{~V} \leq \mathrm{V}_{\text {REF }} \leq+10 \mathrm{~V}$} \& Fig. 3 \& \multicolumn{2}{|c|}{0.2 (8-Bit)} \& \% of FSR \& Max

\hline \& \& K \& \& Fig. 3 \& \multicolumn{2}{|c|}{0.1 (9-Bit)} \& \% of FSR \& Max

\hline \& \& L \& \& Fig. 3 \& \multicolumn{2}{|r|}{0.05 (10-Bit)} \& \% of FSR \& Max

\hline \multicolumn{3}{|l|}{Nonlinearity Tempco (Notes 2 and 3)} \& \multirow{3}{*}{$-10 \mathrm{~V} \leq \mathrm{V}_{\text {REF }} \leq+10 \mathrm{~V}$} \& \& \& \& ppm of FSR $/{ }^{\circ} \mathrm{C}$ \& Max

\hline \multicolumn{3}{|l|}{Gain Error (Note 2)} \& \& \& \& \& \% of FSR \& Typ

\hline \multicolumn{3}{|l|}{Gain Error Tempco (Notes 2 and 3)} \& \& \& \& \& ppm of FSR $/{ }^{\circ} \mathrm{C}$ \& Max

\hline
\end{tabular}

[^115]AD7521/AD7531

ELECTRICAL CHARACTERISTICS ($\mathrm{V}^{+}=+15 \mathrm{~V}, \mathrm{~V}_{\mathrm{REF}}=+10 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise specified)
(Continued)

| Parameter | Test Conditions | AD7520
 (AD7530) | AD7521
 (AD7531) | Unit | Limit |
| :--- | :--- | :--- | :---: | :---: | :---: | :---: |
| Output Leakage Current
 (either output) | Over the specified temperature
 range | 200
 (300) | nA | Max | |
| Power Supply Rejection (Note 2) | | Fig. 4 | ± 0.005 | $\%$ of FSR/\% | Typ |

AC ACCURACY (Note 3)

Output Current Settling Time	To 0.05% of FSR (All digital inputs low to high and high to low)	Fig. 8	500	ns	Typ
Feedthrough Error	$V_{R E F}=20 \mathrm{~V} \mathrm{pp}, \mathrm{100kHz}$ $(50 \mathrm{kHz})$ All digital inputs low	Fig. 7	10	mV pp	Max

REFERENCE INPUT

Input Resistance		All digital inputs high louT1 at ground.		5k 10k 20k	Ω	Min Typ Max
ANALOG OUTPUT						
Voltage Compliance (both outputs)		(Note 3)		See absolute max. ratings		
Output Capacitance (Note 3)	IOUT1 lout2	All digital inputs high	Fig. 6	$\begin{gathered} 120 \\ 37 \\ \hline \end{gathered}$	$\begin{aligned} & \mathrm{pF} \\ & \mathrm{pF} \end{aligned}$	$\begin{aligned} & \text { Typ } \\ & \text { Typ } \\ & \hline \end{aligned}$
	IOUT1 lout2	All digital inputs low	Fig. 6	$\begin{gathered} 37 \\ 120 \end{gathered}$	$\begin{aligned} & \mathrm{pF} \\ & \mathrm{pF} \end{aligned}$	$\begin{aligned} & \text { Typ } \\ & \text { Typ } \\ & \hline \end{aligned}$
Output Noise (both outputs) (Note 3)			Fig. 5	Equivalent to $10 \mathrm{k} \Omega$ Johnson noise		Typ

DIGITAL INPUTS

Low State Threshold	Over the specified temp range	0.8	V	Max
High State Threshold		2.4	V	Min
Input Current (low to high state)		1	$\mu \mathrm{A}$	Typ
Input Coding	See Tables 1 \& 2	Binary/Offset Binary		

POWER REQUIREMENTS

Power Supply Voltage Range			+5 to +15	V	
+	All digital inputs at 0V or V +		1	$\mu \mathrm{~A}$	Typ
	All digital inputs high or low		2	mA	Max
Total Power Dissipation (Including the ladder network)		20	mW	Typ	

NOTES: 1. Full scale range (FSR) is 10 V for unipolar and $\pm 10 \mathrm{~V}$ for bipolar modes.
2. Using internal feedback resistor, RfEEDBACK.
3. Guaranteed by design, not subject to test.
4. Accuracy not guaranteed unless outputs at GND potential.

[^116]TEST CIRCUITS NOTE: The following test circuits apply for the AD7520. Similar circuits are used for the AD7530, AD7521 and AD7531.

0330-7
Figure 6: Output Capacitance

DEFINITION OF TERMS

NONLINEARITY: Error contributed by deviation of the DAC transfer function from a best straight line function. Normally expressed as a percentage of full scale range. For a multiplying DAC, this should hold true over the entire VREF range.
RESOLUTION: Value of the LSB. For example, a unipolar converter with n bits has a resolution of $\left(2^{-n}\right)\left(V_{\text {REF }}\right)$. A bipolar converter of n bits has a resolution of [2-(n-1)] [$V_{\text {REF }}$]. Resolution in no way implies linearity.
SETTLING TIME: Time required for the output function of the DAC to settle to within $1 / 2$ LSB for a given digital input stimulus, i.e., 0 to Full Scale.
GAIN: Ratio of the DAC's operational amplifier output voltage to the nominal input voltage value.
FEEDTHROUGH ERROR: Error caused by capacitive coupling from $V_{\text {REF }}$ to output with all switches OFF.

[^117]OUTPUT CAPACITANCE: Capacitance from lout1 and lout2 terminals to ground.
OUTPUT LEAKAGE CURRENT: Current which appears on lout1 terminal with all digital inputs LOW or on lout2 terminal when all inputs are HIGH.

DETAILED DESCRIPTION

The AD7520 (AD7530) and AD7521 (AD7531) are monolithic, multiplying D/A converters. A highly stable thin film R2R resistor ladder network and NMOS SPDT switches form the basis of the converter circuit, CMOS level shifters permit low power TTL/CMOS compatible operation. An external voltage or current reference and an operational amplifier are all that is required for most voltage output applications.
A simplified equivalent circuit of the DAC is shown in Figure 9. The NMOS SPDT switches steer the ladder leg currents between lout1 and louta buses which must be held either at ground potential. This configuration maintains a constant current in each ladder leg independent of the input code.

0330-10
(Switches shown for Digital Inputs "High")
Figure 9: 7520/7521 Functional Diagram
Converter errors are further reduced by using separate metal interconnections between the major bits and the outputs. Use of high threshold switches reduces the offset (leakage) errors to a negligible level.
The level shifter circuits are comprised of three inverters with a positive feedback from the output of the second to the first, (Figure 10). This configuration results in TTL/ CMOS compatible operation over the full military temperature range. With the ladder SPDT switches driven by the level shifter, each switch is binarily weighted for an ON resistance proportional to the respective ladder leg current. This assures a constant voltage drop across each switch, creating equipotential terminations for the 2R ladder resistors and highly accurate leg currents.

0330-11
Figure 10: CMOS Switch

0330-12
Figure 11: Unipolar Binary Operation (2-Quadrant Multiplication)

TABLE 1
CODE TABLE - UNIPOLAR BINARY OPERATION

Digital Input	Analog Output
1111111111	$-V_{\text {REF }}(1-2-n)$
1000000001	$-V_{\text {REF }}(1 / 2+2-n)$
1000000000	$-V_{\text {REF }} / 2$
0111111111	$-V_{\text {REF }}\left(1 / 2-2^{-n}\right)$
0000000001	$-V_{\text {REF }}(2-n)$
0000000000	0

NOTE: 1. LSB $=2^{-n} V_{\text {REF }}$
2. $n=10$ for 7520,7530
$\mathrm{n}=12$ for 7521,7531

APPLICATIONS

Unipolar Binary Operation

The circuit configuration for operating the AD7520 (AD7530) and AD7521 (AD7531) in unipolar mode is shown in Figure 11. With positive and negative $\mathrm{V}_{\text {REF }}$ values the circuit is capable of 2-Quadrant multiplication. The "Digital Input Code/Analog Output Value" table for unipolar mode is given in Table 1.

[^118]NOTE: All typical values have been characterized but are not tested.

ZERO OFFSET ADJUSTMENT

1. Connect all digital inputs to GND.
2. Adjust the offset zero adjust trimpot of the output operational amplifier for $0 \mathrm{~V} \pm 1 \mathrm{mV}$ at $\mathrm{V}_{\text {OUT }}$.

GAIN ADJUSTMENT

1. Connect all AD7520 (AD7530) or AD7521 (AD7531) digital inputs to V^{+}.
2. Monitor $V_{\text {OUT }}$ for $a-V_{\text {REF }}(1-2-n)$ reading. ($n=10$ for AD7520 (AD7530) and $n=12$ for AD7521 (AD7531)).
3. To decrease $\mathrm{V}_{\text {OUT }}$, connect a series resistor (0 to 500Ω) between the reference voltage and the VREF terminal.
4. To increase VOUT, connect a series resistor (0 to 500Ω) in the louT1 amplifier feedback loop.

Bipolar (Offset Binary) Operation

The circuit configuration for operating the AD7520 (AD7530) or AD7521 (AD7531) in the bipolar mode is given in Figure 12. Using offset binary digital input codes and positive and negative reference voltage values, 4-Quadrant multiplication can be realized. The "Digital Input Code/Analog Output Value" table for bipolar mode is given in Table 2.

0330-13
Figure 12: Bipolar Operation (4-Quadrant Multiplication)

TABLE 2
CODE TABLE - BIPOLAR (OFFSET BINARY) OPERATION

DIGITAL INPUT	ANALOG OUTPUT
1111111111	$-\mathrm{V}_{\text {REF }}\left(1-2^{-(n-1))}\right.$
1000000001	$-\mathrm{V}_{\text {REF }}\left(2^{-(n-1)}\right)$
1000000000	0
011111111	$\mathrm{~V}_{\text {REF }}\left(2^{-(n-1)}\right)$
0000000001	$\operatorname{V}_{\text {REF }}\left(1-2^{-(n-1)}\right)$
0000000000	$\operatorname{V}_{\text {REF }}$

NOTE: 1. LSB $=2^{-(n-1)} V_{\text {REF }}$
2. $n=10$ for 7520 and 7521
$=12$ for 7530 and 7531

A "Logic 1" input at any digital input forces the corresponding ladder switch to steer the bit current to lout1 bus. A "Logic 0" input forces the bit current to lout2 bus. For any code the lout1 and louta bus currents are complements of one another. The current amplifier at lout2 changes the polarity of louT2 current and the transconductance amplifier at lout1 output sums the two currents. This configuration doubles the output range but halves the resolution of the DAC. The difference current resulting at zero offset binary code, (MSB = "Logic 1", All other bits = "Logic 0"), is corrected by using an external resistor, (10 Megohm), from VREF to lout2.

OFFSET ADJUSTMENT

1. Adjust $V_{\text {REF }}$ to approximately +10 V .
2. Connect all digital inputs to "Logic 1".
3. Adjust lOUT2 amplifier offset adjust trimpot for OV $\pm 1 \mathrm{mV}$ at lOUT2 amplifier output.
4. Connect MSB (Bit 1) to "Logic 1" and all other bits to "Logic 0".
5. Adjust lout1 amplifier offset adjust trimpot for OV $\pm 1 \mathrm{mV}$ at $\mathrm{V}_{\text {OUT. }}$

GAIN ADJUSTMENT

1. Connect all digital inputs to V^{+}.
2. Monitor VOUT for a - $\mathrm{V}_{\text {REF }}(1-2-(n-1))$ volts reading. ($n=10$ for AD7520 and AD7530, and $n=12$ for AD7521 and AD7531).
3. To increase $V_{\text {OUT }}$, connect a series resistor of up to 500Ω between Vout and RFEEDBACK.
4. To decrease $V_{\text {OUT }}$, connect a series resistor of up to 500Ω between the reference voltage and the $V_{\text {REF }}$ terminal.

POWER DAC DESIGN USING AD7520

A typical power DAC designed for 8 bit accuracy and 10 bit resolution is shown in Figure 13. An INTERSIL ICH8510 power operational amplifier (1 Amp continuous output at up to $\pm 25 \mathrm{~V}$) is driven by the AD7520.

A summing amplifier between the AD7520 and the ICH8510 is used to separate the gain block containing the AD7520 on-chip resistors from the power amplifier gain stage whose gain is set only by the external resistors. This approach minimizes drift since the resistor pairs will track properly. Otherwise the AD7520 can be directly connected to the ICH8510, by using a 25 V reference for the DAC.

An important note on the AD7520/101A interface concerns the connection of pin 1 of the DAC and pin 2 of the 101A. Since this point is the summing junction of an amplifier with an AC gain of 50,000 or better, stray capacitance should be minimized; otherwise instabilities and poor noise performance will result. Note that the output of the 101A is fed into an inverting amplifier with a gain of -3 , which can be easily changed to a non-inverting configuration. (For more information see: INTERSIL Application Bulletin A021: Power D/A Converters Using The IH8510 by Dick Wilenken.) AD7521/AD7531

0330-14
Figure 13: Basic Power DAC

Analog/Digital Division

With the AD7520 connected in its normal multiplying configuration as shown in Figure 13, the transfer function is:

$$
V_{O}=-V_{I N}\left(\frac{A_{1}}{2^{1}}+\frac{A_{2}}{2^{2}}+\frac{A_{3}}{2^{3}}+\cdots \cdot \frac{A_{n}}{2^{n}}\right)
$$

where the coefficients A_{x} assume a value of 1 for an $O N$ bit and 0 for an OFF bit.

By connecting the DAC in the feedback of an operational amplifier, as shown in Figure 14, the transfer function becomes:

$$
V_{O}=\left(\frac{-V_{I N}}{\frac{A_{1}}{2^{1}}+\frac{A_{2}}{2^{2}}+\frac{A_{3}}{2^{3}}+\ldots \frac{A_{n}}{2^{n}}}\right)
$$

This is division of an analog variable $\left(V_{I N}\right)$ by a digital word. With all bits off, the amplifier saturates to its bound, since division by zero isn't defined. With the LSB (Bit-10) ON, the gain is 1023 . With all bits $O N$, the gain is $1(\pm 1$ LSB).

0330-15
Figure 14: Analog/Digital Divider
For further information on the use of this device, see the following Application Bulletins:

A016 "Selecting A/D Converters," by David Fullagar
A018 "Do's and Don'ts of Applying A/D Converters," by Peter Bradshaw and Skip Osgood
A020 "A Cookbook Approach to High-Speed Data Acquisition and Microprocessor Interfacing" by Ed Sliger
A021 "Power D/A Converters Using the IH8510," by Dick Wilenken

GENERAL DESCRIPTION

The AD7523 is a monolithic, low cost, high performance, 10 bit accurate, multiplying digital-to-analog converter (DAC), in a 16-pin DIP.
Intersil's thin-film resistors on CMOS circuitry provide 8bit resolution (8, 9 and 10-bit accuracy), with TTL/CMOS compatible operation.
The AD7523's accurate four quadrant multiplication, full military temperature range operation, full input protection from damage due to static discharge by clamps to $\mathrm{V}+$ and GND, and very low power dissipation make it a very versatile converter.
Low noise audio gain controls, motor speed controls, digitally controlled gain and attenuators are a few of the wide range of applications of the 7523.

FEATURES

- 8, 9 and 10 Bit Linearity
- Low Gain and Linearity Temperature Coefficients
- Full Temperature Range Operation
- Static Discharge Input Protection
- DTL/TTL/CMOS Compatible
- +5 to + 15 Volts Supply Range
- Fast Settling Time: 150ns Max at $\mathbf{2 5}^{\circ} \mathrm{C}$
- Four Quadrant Multiplication

ORDERING INFORMATION

Nonlinearity	Part Number/Package		
	Plastic DIP	CERDIP	CERDIP
0.2% (8 Bit)	AD7523JN	AD7523AD	AD7523SD
0.1% (9 Bit)	AD7523KN	AD7523BD	AD7523TD
0.05% (10 Bit)	AD7523LN	AD7523CD	AD7523UD
TEMPERATURE RANGE	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

0331-1
0331-2
Figure 2: Pin Configuration Outline Drawings DE, PE

[^119]

CAUTION:

1. The digital control inputs are zener protected; however, permanent damage may occur on unconnected units under high energy electrostatic fields. Keep unused units in conductive foam at all times.
2. Do not apply voltages higher than VDD and lower than GND to any terminal except $\mathrm{V}_{\text {REF }}+\mathrm{R}_{\text {FEEDBACK }}$.

NOTE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS $\quad\left(\mathrm{V}+=+15 \mathrm{~V}, \mathrm{~V}_{\text {REF }}=+10 \mathrm{~V}\right.$ unless otherwise specified)

Parameter	Test Conditions	T_{A} $+25^{\circ} C$	T_{A} Min-Max	Unit	Limit
DC ACCURACY (Note 1)					

Resolution			8	8	Bits	Min
Nonlinearity (Note 2)	($\pm 1 / 2 \mathrm{LSB}$)	$\begin{aligned} & -10 \mathrm{~V} \leq \mathrm{V}_{\text {REF }} \leq+10 \mathrm{~V} \\ & \mathrm{~V}_{\text {OUT } 1}=\mathrm{V}_{\text {OUT } 2}=0 \mathrm{~V} \end{aligned}$	± 0.2	± 0.2	\% of FSR	Max
	($\pm 1 / 4$ LSB)		± 0.1	± 0.1	\% of FSR	Max
	($\pm 1 / 8$ LSB)		± 0.05	± 0.05	\% of FSR	Max
Monotonicity			Guaranteed			
Gain Error (Note 2)		Digital Inputs high.	± 1.5	± 1.8	\% of FSR	Max
Nonlinearity Tempco (Notes 2 and 3)		$-10 \mathrm{~V} \mathrm{~V}_{\text {REF }}+10 \mathrm{~V}$			ppm of FSR $/{ }^{\circ} \mathrm{C}$	Max
Gain Error Tempco (Notes 2 and 3)					ppm of FSR $/{ }^{\circ} \mathrm{C}$	Max
Output Leakage Current (either output)		$\mathrm{V}_{\text {OUT1 }}=\mathrm{V}_{\text {OUT2 }}=0$	± 50	± 200	nA	Max

AC ACCURACY

Power Supply Rejection (Note 2)	V $+=14.0$ to 15.0 V	0.02	0.03	$\%$ of FSR	Max
Output Current Settling Time (Note 3)	To 0.2\% of FSR, $\mathrm{R}_{\mathrm{L}}=100 \Omega$	150	200	ns	Max
Feedthrough Error (Note 3)	$\mathrm{V}_{\text {REF }}=20 \mathrm{~V}$ pp, 200kHz sine wave. All digital inputs low.	$\pm 1 / 2$	± 1	LSB	Max

REFERENCE INPUT

Input Resistance (Pin 15)		All digital inputs high. lout1 at ground.	5K	Ω	Min	
		20K	Max			
Temperature Coefficient (Note 3)			-500	ppm $/{ }^{\circ} \mathrm{C}$	Max	
ANALOG OUTPUT						
Output Capacitance (Note 3)	Cout1		All digital inputs high (VINH)	100	pF	Max
	Cout2	30		pF	Max	
	Cout1	All digital inputs low (VINL)	30	pF	Max	
	COUT2		100	pF	Max	

[^120]ELECTRICAL CHARACTERISTICS $\quad\left(\mathrm{V}^{+}=+15 \mathrm{~V}, \mathrm{~V}_{\text {REF }}=+10 \mathrm{~V}\right.$ unless otherwise specified) (Continued)

Parameter	Test Conditions	$\begin{gathered} \mathrm{T}_{\mathrm{A}} \\ +25^{\circ} \mathrm{C} \end{gathered}$	$\underset{\text { Min-Max }}{\mathbf{T}_{\mathbf{A}}}$	Unit	Limit
DIGITAL INPUTS					
Low State Threshold ($\mathrm{V}_{\text {INL }}$)		0.8		V	Max
High State Threshold ($\mathrm{V}_{\text {INH }}$)		2.4		V	Min
Input Current (Low or high)	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$ or +15 V	± 1		$\mu \mathrm{A}$	Max
Input Coding	See Tables 1 \& 2	Binary/Offset Binary			
Input Capacitance (Note 3)		4		pF	Max
POWER REQUIREMENTS					
Power Supply Voltage Range	Accuracy is tested and guaranteed at $\mathrm{V}^{+}=+15 \mathrm{~V}$, only.	+5 to +16		V	
$1+$	All digital inputs low or high.	2	2.5	mA	Max

NOTES: 1. Full scale range (FSR) is 10 V for unipolar and $\pm 10 \mathrm{~V}$ for bipolar modes.
2. Using internal feedback resistor, Rfeedback.
3. Guaranteed by design; not subject to test.
4. Accuracy not guaranteed unless outputs at ground potential.

APPLICATIONS

UNIPOLAR OPERATION

Table 1. Unipolar Binary Code Table

Digital Input MSB LSB	Analog Output
11111111	$-V_{\text {REF }}\left(\frac{255}{256}\right)$
10000001	$-V_{\text {REF }}\left(\frac{129}{256}\right)$
10000000	$-V_{\text {REF }}\left(\frac{128}{256}\right)=-\frac{V_{\text {REF }}}{2}$
01111111	$-V_{\text {REF }}\left(\frac{127}{256}\right)$
00000001	$-V_{\text {REF }}\left(\frac{1}{256}\right)$
00000000	$-V_{\text {REF }}$

NOTE: $1 \mathrm{LSB}=\left(2^{-8}\right) \quad\left(\mathrm{V}_{\mathrm{REF}}\right)=\left(\frac{1}{256}\right) \quad\left(\mathrm{V}_{\mathrm{REF}}\right)$

BIPOLAR OPERATION

NOTES:

1. R3/R4 MATCH 0.1% OR BETTER.
2. R1, R2 USED ONLY IF GAIN ADJUSTMENT IS REQUIRED.
3. R5-R7 USED TO ADJUST $V_{\text {OUT }}=0 \mathrm{~V}$ AT INPUT CODE 10000000.
4. CR1 \& CR2 PROTECT AD7523 AGAINST NEGATIVE TRANSIENTS.

Figure 4: Bipolar Operation

Table 2. Bipolar (Offset Binary) Code Table

Digital Input MSB LSB	Analog Output	
11111111	$-V_{\text {REF }}$	$\left(\frac{127}{128}\right)$
10000001	$-V_{\text {REF }}$	$\left(\frac{1}{128}\right)$
10000000	0	
01111111	$+V_{\text {REF }}$	$\left(\frac{1}{128}\right)$
00000001	$+V_{\text {REF }}$	$\left(\frac{127}{128}\right)$
00000000		$+V_{\text {REF }}$

NOTE: $1 \mathrm{LSB}=\left(2^{-7}\right) \quad\left(\mathrm{V}_{\mathrm{REF}}\right)=\left(\frac{1}{128}\right) \quad\left(\mathrm{V}_{\text {REF }}\right)$
A typical power DAC designed for 10 bit accuracy and 8 bit resolution is shown in Figure 5. The Intersil ICH8510 power operational amplifier (1 Amp continuous output with up to +25 V) is driven by the AD7523.

A summing amplifier between the AD7523 and the ICH8510 is used to separate the gain block containing the AD7520 on-chip resistors from the power amplifier gain stage, whose gain is set only by the external resistors. This approach minimizes drift since the resistor pairs will track properly. Otherwise AD7523 can be directly connected to the ICH8510, by using a 25 volt reference for the DAC.

POWER DAC DESIGN USING AD7523

[^121]

0331-6
Figure 6: Divider (Digitally Controlled Gain)

0331-7
Figure 7: Modified Scale Factor and Offset

DEFINITION OF TERMS

NONLINEARITY: Error contributed by deviation of the DAC transfer function from a best straight line function. Normally expressed as a percentage of full scale range. For a multiplying DAC, this should hold true over the entire VREF range.
RESOLUTION: Value of the LSB. For example, a unipolar converter with n bits has a resolution of (2-n) (VREF). A bipolar converter of n bits has a resolution of [2-($n-1)$] [$\mathrm{V}_{\mathrm{REF}}$]. Resolution in no way implies linearity.
SETTLING TIME: Time required for the output function of the DAC to settle to within $1 / 2$ LSB for a given digital input stimulus, i.e., 0 to Full Scale.
GAIN: Ratio of the DAC's operational amplifier output voltage to the nominal input voltage value.
FEEDTHROUGH ERROR: Error caused by capacitive coupling from $V_{\text {REF }}$ to output with all switches OFF.
OUTPUT CAPACITANCE: Capacity from lout1 and IOUT2 terminals to ground.
OUTPUT LEAKAGE CURRENT: Current which appears on lout1 terminal with all digital inputs LOW or on louT2 terminal when all inputs are HIGH.

For further information on the use of this device, see the following Application Notes:

A016 "Selecting A/D Converters," by David Fullagar
A018 "Do's and Don'ts of Applying A/D Converters," by Peter Bradshaw and Skip Osgood
A020 "A Cookbook Approach to High-Speed Data Acquisition and Microprocessor Interfacing" by Ed Sliger
A021 "Power D/A Converters Using the IH8510," by Dick Wilenken

[^122]
GENERAL DESCRIPTION

The Intersil AD7533 is a low cost, monolithic 10-bit, fourquadrant multiplying digital-to-analog converter (DAC). Intersil's thin-film resistor on CMOS circuitry provide 10, 9 and 8 bit accuracy, full temperature range operation, +5 V to +15 V supply voltage range, full input protection from damage due to static discharge by clamps to $\mathrm{V}+$ and ground and very low power dissipation.

Pin and function equivalent to the industry standard AD7520, the AD7533 is recommended as a lower cost alternative for old or new 10-bit DAC designs.

Applications for the AD7533 include programmable gain amplifiers, digitally controlled attenuators, function generators and control systems.

ORDERING INFORMATION

Nonlinearity	Temperature Range		
	$\mathbf{0}^{\circ} \mathbf{C}$ to $+\mathbf{7 0} \mathbf{C}$	$-\mathbf{2 5}{ }^{\circ} \mathrm{C}$ to $+85^{\circ} \mathbf{C}$	$-\mathbf{5 5}{ }^{\circ} \mathrm{C}$ to $+\mathbf{1 2 5}$
	AD7533JN	AD7533AD	AD7533SD
$\pm 0.1 \%$ (9-bit)	AD7533KN	AD7533BD	AD7533TD
$\pm 0.05 \%$ (10-bit)	AD7533LN	AD7533CD	AD7533UD

FEATURES

- Lowest Cost 10-Bit DAC
- 8, 9 and 10 Bit Linearity
- Low Gain and Linearity Tempcos
- Full Temperature Range Operation
- Full Input Static Protection
- TTL/CMOS Direct Interface
- +5 to +15 Volts Supply Range
- Low Power Dissipation
- Fast Settling Time
- Four Quadrant Multiplication
- Direct AD7520 Equivalent
- 883B Processed Versions Available

PACKAGE IDENTIFICATION AD7533

D-18-Pin CERDIP DIP
N - 18-Pin Plastic DIP
Nonlinearity and Temperature Range
J,K,L - Commercial $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
A, B - Industrial
$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
S,T - Military
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.
NOTE: All typical values have been characterized but are not tested.
ABSOLUTE MAXIMUM RATINGS ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted)
V+ .. +17 V Plastic Package

Digital Input Voltage Range V ${ }^{+}$to GND
Output Voltage Compliance -0.1 V to $\mathrm{V}+$
Power Dissipation
Ceramic Package: up to $+75^{\circ} \mathrm{C}$ 450mW
derates above $+75^{\circ} \mathrm{C}$ by $6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
Plastic Package: up to $70^{\circ} \mathrm{C}$ 670 mW derates above $70^{\circ} \mathrm{C}$ by . $8.3 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ Operating Temperature Range:
$\mathrm{JN}, \mathrm{KN}, \mathrm{LN}$ Versions $\ldots \ldots0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
AD, BD, CD Versions . $-25^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
SD, TD, UD Versions $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10sec) $+300^{\circ} \mathrm{C}$

CAUTION:

1. The digital control inputs are zener protected; however, permanent damage may occur on unconnected units under high energy electrostatic fields. Keep unused units in conductive foam at all times.
2. Do not apply voltages lower than ground or higher than V^{+}to any pin except $\mathrm{V}_{\text {REF }}$ and R_{FB}.
NOTE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

$\left(\mathrm{V}^{+}=+15 \mathrm{~V}, \mathrm{~V}_{\text {REF }}=+10 \mathrm{~V}, \mathrm{~V}_{\text {OUT1 }}=\mathrm{V}_{\text {OUT2 }}=0\right.$ unless otherwise specified. $)$

Parameter	Test Conditions	$\begin{gathered} T_{\mathbf{A}} \\ +25^{\circ} \mathrm{C} \end{gathered}$	$\begin{gathered} T_{A} \\ \operatorname{Min}-\operatorname{Max} \end{gathered}$	Limit	Unit
DC ACCURACY (Note 1)					
Resolution		10	10	Min	Bits
Nonlinearity (Note 2)	$\begin{aligned} & -10 \mathrm{~V} \leq \mathrm{V}_{\text {REF }} \leq+10 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{OUT} 1}=\mathrm{V}_{\mathrm{OUT} 2}=0 \mathrm{~V} \end{aligned}$	± 0.2	± 0.2	Max	\% of FSR
		± 0.1	± 0.1	Max	\% of FSR
		± 0.05	± 0.05	Max	\% of FSR
Gain Error (Note 2 and 5)	Digital Inputs $=\mathrm{V}_{\text {INH }}$	± 1.4	± 1.5	Max	\% of FS
Output Leakage Current (either output)	$\mathrm{V}_{\text {REF }}= \pm 10 \mathrm{~V}$	± 50	± 200	Max	nA
AC ACCURACY					
Power Supply Rejection (Note 2)	$\mathrm{V}+=14.0$ to 17.0 V	0.005	0.008	Max	\% of FSR/\%
Output Current Settling Time (Note 3)	To 0.05% of FSR, $\mathrm{R}_{\mathrm{L}}=100 \Omega$	600	800	Max	ns
Feedthrough Error (Note 3)	$V_{\text {REF }}= \pm 10 \mathrm{~V}, 100 \mathrm{kHz}$ sine wave. Digital inputs low.	± 0.05	± 0.1	Max	\% FSR

REFERENCE INPUT

		5 k	Min	
Input Resistance (Pin 15)	All digital inputs high.	20 k	Max	Ω
Temperature Coefficient		-300	Typ	$\mathrm{ppm} /{ }^{\circ} \mathrm{C}$

ANALOG OUTPUT

Voltage Compliance (Note 3)		Both outputs. See maximum ratings	-100 mV to $\mathrm{V}+$		
Output Capacitance (Note 3)	Cout1	All digital inputs high ($\mathrm{V}_{\text {INH }}$)	100	Max	pF
	COUT2		35	Max	pF
	COUT1	All digital inputs low ($\mathrm{V}_{\text {INL }}$)	35	Max	pF
	COUT2		100	Max	pF

[^123]
ELECTRICAL CHARACTERISTICS

$\left(\mathrm{V}^{+}=+15 \mathrm{~V}, \mathrm{~V}_{\text {REF }}=+10 \mathrm{~V}, \mathrm{~V}_{\text {OUT1 }}=\mathrm{V}_{\text {OUT2 }}=0\right.$ unless otherwise specified.) (Continued)

Parameter	Test Conditions	$\begin{aligned} & T_{A} \\ + & 25^{\circ} \mathrm{C} \end{aligned}$	$\underset{\operatorname{Min}-\operatorname{Max}}{\mathrm{T}_{\mathbf{A}}}$	Limit	Unit
DIGITAL INPUTS					
Low State Threshold (VINL)				Max	V
High State Threshold (VINH)				Min	V
Input Current (I_{1})	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$ and $\mathrm{V}+$			Max	$\mu \mathrm{A}$
Input Coding	See Tables 1 \& 2	Binary/	set Binary		
Input Capacitance (Note 3)				Max	pF

POWER REQUIREMENTS

$V_{D D}$	Rated Accuracy	$+15 \pm 10 \%$			V
Power Supply Voltage Range		+5 to +16			V
$1+$	Digital Inputs $=\mathrm{V}_{\text {INL }}$ to $\mathrm{V}_{\text {INH }}$	2/2.5		Max	mA
	Digital Inputs $=0 \mathrm{~V}$ or $\mathrm{V}+$	100	150	Max	$\mu \mathrm{A}$

NOTES: 1. Full scale range (FSR) is 10 V for unipolar and $\pm 10 \mathrm{~V}$ for bipolar modes.
Specifications subject to 2. Using internal feedback resistor, R REEDBACK. change without notice.
3. Guaranteed by design; not subject to test.
4. Accuracy not guaranteed unless outputs at ground potential.
5. Full scale $(\mathrm{FS})=-\left(\mathrm{V}_{\text {REF }}\right) \bullet(1023 / 1024)$

DETAILED DESCRIPTION

The Intersil AD7533 is a 10 bit, monolithic, multiplying D/A converter. A highly stable thin film R-2R resistor ladder network and NMOS SPDT switches form the basis of the converter circuit. CMOS level shifters permit low power TTL/CMOS compatible operation. An external voltage or current reference and an operational amplifier are all that is required for most voltage output applications.

A simplified equivalent circuit of the DAC is shown in Figure 3. The NMOS SPDT switches steer the ladder leg currents between IOUT1 and IOUT2 busses which must be held at ground potential. This configuration maintains a constant current in each ladder leg independent of the input code.

[^124]
APPLICATIONS

UNIPOLAR OPERATION (2-QUADRANT MULTIPLICATION)

NOTES: 1. R1 and R2 used only if gain adjustment is required.
2. Schottky diode CR1 (HP5082-2811 or equiv) protects OUT1 terminal against negative transients.

Figure 5: Unipolar Binary Operation (2-Quadrant Multiplication)

Table 1. Unipolar Binary Code

Digital Input MSB LSB	Nominal Analog Output (Vout as shown in Figure 3)		
1111111111	$-\mathrm{V}_{\text {REF }}$	$\left(\frac{1023}{1024}\right)$	
1000000001	$-\mathrm{V}_{\text {REF }}$	$\left(\frac{513}{1024}\right)$	
1000000000	$-V_{\text {REF }}$	$\left(\frac{512}{1024}\right)=$	$\frac{V_{\text {REF }}}{2}$
0111111111	$-V_{\text {REF }}$	$\left(\frac{511}{1024}\right)$	
0000000001	$-V_{\text {REF }}$	$\left(\frac{1}{1024}\right)$	
0000000000	$-\mathrm{V}_{\text {REF }}$	$\left(\frac{0}{1024}\right)=0$	

NOTES: 1. Nominal Full Scale for the circuit of Figure 3 is given by

$$
F S=-V_{\text {REF }}\left(\frac{1023}{1024}\right)
$$

2. Nominal LSB magnitude for the circuit of Figure 3 is given by

$$
\mathrm{LSB}=\mathrm{V}_{\text {REF }}\left(\frac{1}{1024}\right)
$$

BIPOLAR OPERATION (4-QUADRANT MULTIPLICATION)

NOTES: 1. R3/R4 match 0.05% or better.
2. R1 and R2 used only if gain adjustment is required.
3. Schottky diodes CR1 and CR2 (HP5082-2811 or equiv) protect OUT1 and OUT2 terminals against negative transients.

Figure 6: Bipolar Operation (4-Quadrant Multiplication)

Table 2. Bipolar (Offset Binary) Code Table

Digital Input MSB LSB	Nominal Analog Output (VOUT as shown in Figure 4)
1111111111	$-\mathrm{V}_{\text {REF }}\left(\frac{511}{512}\right)$
1000000001	$-\mathrm{V}_{\text {REF }}\left(\frac{1}{512}\right)$
1000000000	0
0111111111	$+V_{\text {REF }}\left(\frac{1}{512}\right)$
0000000001	$+V_{\text {REF }}\left(\frac{511}{512}\right)$
0000000000	$+V_{\text {REF }}\left(\frac{512}{512}\right)$

NOTES: 1. Nominal Full Scale for the circuit of Figure 4 is given by

$$
\mathrm{FSR}=\mathrm{V}_{\text {REF }}\left(\frac{1023}{512}\right)
$$

2. Nominal LSB magnitude for the circuit of Figure 4 is given by

$$
L S B=V_{\text {REF }}\left(\frac{1}{512}\right)
$$

[^125]POWER DAC DESIGN USING AD7533

Figure 7: Basic Power DAC

A typical power DAC designed for 8 bit accuracy and 10 bit resolution is shown in Figure 7. INTERSIL IH8510 power amplifier (1 Amp continuous output with up to $\pm 25 \mathrm{~V}$) is driven by the AD7533.
A summing amplifier between the AD7533 and the IH8510 is used to separate the gain block containing the AD7533 on-chip resistors from the power amplifier gain stage whose gain is set only by the external resistors. This approach minimizes drift since the resistor pairs will track properly. Otherwise the AD7533 can be directly connected to the IH8510, by using a 25 volts reference for the DAC. Notice that the output of the LM101A is fed into an inverting amplifier with a gain of -3 , which can be easily changed to a non-inverting configuration. (For more information write for: INTERSIL Application Bulletin A021-Power D/A Converters Using The IH8510 by Dick Wilenken.)

Figure 9: Programmable Function Generator

Figure 8: 10-Bit and Sign Multiplying DAC

[^126]
GENERAL DESCRIPTION

The Intersil AD7541 is a monolithic, low cost, high performance, 12-bit accurate, multiplying digital-to-analog converter (DAC).

Intersil's wafer level laser-trimmed thin-film resistors on CMOS circuitry provide true 12-bit linearity with TTL/CMOS compatible operation.

Special tabbed-resistor geometries (improving time stability), full input protection from damage due to static discharge by diode clamps to $\mathrm{V}+$ and ground, large lout1 and lout2 bus lines (improving superposition errors) are some of the features offered by Intersil AD7541.

Pin compatible with AD7521, this new DAC provides accurate four quadrant multiplication over the full military temperature range.

FEATURES

- 12 Bit Linearity (0.01%)
- Pretrimmed Gain
- Low Gain and Linearity Tempcos
- Full Temperature Range Operation
- Full Input Static Protection
- DTL/TTL/CMOS Compatible
- +5 to +15 Volts Supply Range
- Low Power Dissipation (20mW)
- Current Settling Time: $1 \mu \mathrm{~s}$ to $\mathbf{0 . 0 1 \%}$ of FSR
- Four Quadrant Multiplication
- 883B Processed Versions Available

ORDERING INFORMATION

Nonlinearity	Part Number/Temperature Range		
	$\begin{aligned} & 0^{\circ} \mathrm{C} \text { to } \\ & +70^{\circ} \mathrm{C} \end{aligned}$	$\begin{gathered} -25^{\circ} \mathrm{C} \text { to } \\ +85^{\circ} \mathrm{C} \end{gathered}$	$\begin{gathered} -55^{\circ} \mathrm{C} \text { to } \\ +125^{\circ} \mathrm{C} \end{gathered}$
$\begin{aligned} & 0.02 \% \\ & \text { (11-bit) } \end{aligned}$	AD7541JN	AD7541AD	AD7541SD
$\begin{aligned} & 0.01 \% \\ & \text { (12-bit) } \end{aligned}$	AD7541KN	AD7541BD	AD7541TD
$\begin{aligned} & \text { 0.01\% } \\ & \text { (12-bit) } \end{aligned}$ Guaranteed Monotonic	AD7541LN	-	-

Figure 1: Functional Diagram (Switches shown for Digital Inputs 'High')

0333-2

Figure 2: Pin Configuration (Outline dwgs DN, PN)

[^127]ABSOLUTE MAXIMUM RATINGS
($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted)

derate above $+75^{\circ} \mathrm{C}$ by $6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$

caution

1. The digital control inputs are zener protected; however, permanent damage may occur on unconnected units under high energy electrostatic fields. Keep unused units in conductive foam at all times.
2. Do not apply voltages higher than V_{DD} or less than $G N D$ potential on any terminal except $\mathrm{V}_{\text {REF }}$ and R_{fb}.

NOTE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS $\quad\left(\mathrm{V}^{+}=+15 \mathrm{~V}, \mathrm{~V}_{\mathrm{REF}}=+10 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right.$ unless otherwise specified)

Parameter			Test Conditions	$\begin{gathered} \text { TA } \\ +25^{\circ} \mathrm{C} \end{gathered}$	TA Min-Max	Limit	Fig.	Unit	
DC ACCURACY (Note 1)									
Resolution				12	12	Min		Bits	
Nonlinearity (Note 2)	S	J	$\left\{\begin{array}{l} -10 \mathrm{~V} \leq \mathrm{V}_{\mathrm{REF}} \leq+10 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{OUT} 1}=\mathrm{V}_{\mathrm{OUT} 2}=0 \mathrm{~V} \end{array}\right.$	± 0.024	± 0.024	Max	3	\% of FSR	
	T	K		± 0.012	± 0.012	Max		\% of FSR	
		L		$\pm 0.012 \mid \pm 0.012$ Guaranteed Monotonic		Max		\% of FSR	
Gain Error (Note 2)			$-10 \mathrm{~V} \leq \mathrm{V}_{\text {REF }} \leq+10 \mathrm{~V}$	± 0.3	± 0.4	Max		\% of FSR	
Output Leakage Current (either output)			$\mathrm{V}_{\text {OUT1 }}=\mathrm{V}_{\text {OUT2 }}=0$	± 50	± 200	Max		nA	
AC ACCURACY (Note 3)									
Power Supply Rejection (Note 2)			$\mathrm{V}+=14.5$ to 15.5 V	± 0.005	± 0.01	Max	4	\% of FSR/\%	
Output Current Settling Time			To 0.01\% of FSR			Max	8	$\mu \mathrm{s}$	
Feedthrough Error			$V_{\mathrm{REF}}=20 \mathrm{~V} p \mathrm{p}, 10 \mathrm{kHz}$. All digital inputs low.			Max	7	mV pp	
REFERENCE INPUT									
Input Resistance			All digital inputs high. lout1 at ground.	5K		Min			
			10K	Typ		Ω			
			20K	Max					
ANALOG OUTPUT									
Voltage Compliance (Note 4)				Both outputs. See maximum ratings.	-100 mV to V^{+}				
Output Capacitance (Note 3)	COUT1 Cout2			All digital inputs high ($\mathrm{V}_{\text {INH }}$)	$\begin{gathered} 200 \\ 60 \\ \hline \end{gathered}$		$\begin{aligned} & \text { Max } \\ & \text { Max } \end{aligned}$	6	$\begin{aligned} & \mathrm{pF} \\ & \mathrm{pF} \end{aligned}$
	Cout1 Cout2		All digital inputs low (VINL)			Max Max	6	$\begin{aligned} & \mathrm{pF} \\ & \mathrm{pF} \end{aligned}$	
Output Noise (both outputs)				Equivalent to $10 \mathrm{~K} \Omega$ Johnson noise		Typ	5		

[^128]ELECTRICAL CHARACTERISTICS
$\left(\mathrm{V}^{+}=+15 \mathrm{~V}, \mathrm{~V}_{\mathrm{REF}}=+10 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right.$ unless otherwise specified)
(Continued)

Parameter	Test Conditions	$\begin{gathered} \text { TA } \\ +25^{\circ} \mathrm{C} \end{gathered}$	$\begin{gathered} \text { TA } \\ \text { Min-Max } \end{gathered}$	Limit	Fig.	Unit
DIGITAL INPUTS						
Low State Threshold ($\mathrm{V}_{\text {INL }}$)		0.8		Max		V
High State Threshold ($\mathrm{V}_{\mathrm{INH}}$)		2.4		Min		V
Input Current	$\mathrm{V}_{\text {IN }}=0$ or $\mathrm{V}+$	± 1		Max		$\mu \mathrm{A}$
Input Coding	See Tables 1 \& 2	Binary/Offset Binary				
Input Capacitance (Note 3)		8		Max		pF
POWER REQUIREMENTS						
Power Supply Voltage Range	Accuracy is not guaranteed over this range	+5 to +16				V
$1+$	All digital inputs high or low	2.0	2.5	Max		mA
Total Power Dissipation (Including the ladder)		20		Typ		mW

NOTES: 1. Full scale range (FSR) is 10 V for unipolar and $\pm 10 \mathrm{~V}$ for bipolar modes.
Specifications subject to 2. Using internal feedback resistor, Rfeedback.
3. Guaranteed by design; not subject to test.
4. Accuracy not guaranteed unless outputs at ground potential.

Figure 3: Nonlinearity Test Circuit

[^129]
DEFINITION OF TERMS

NONLINEARITY: Error contributed by deviation of the DAC transfer function from a best straight line function. Normally expressed as a percentage of full scale range. For a multiplying DAC, this should hold true over the entire VREF range.
RESOLUTION: Value of the LSB. For example, a unipolar converter with n bits has a resolution of $(2-n)\left(V_{\text {REF }}\right)$. A bipolar converter of n bits has a resolution of [2-($n-1)$] [$V_{\text {REF }}$]. Resolution in no way implies linearity.
SETTLING TIME: Time required for the output function of the DAC to settle to within $1 / 2$ LSB for a given digital input stimulus, i.e., 0 to Full Scale.
GAIN: Ratio of the DAC's operational amplifier output voltage to the nominal input voltage value.
FEEDTHROUGH ERROR: Error caused by capacitive coupling from $V_{\text {REF }}$ to output with all switches OFF.
OUTPUT CAPACITANCE: Capacity from lout1 and lout2 terminals to ground.
OUTPUT LEAKAGE CURRENT: Current which appears on louty terminal with all digital inputs LOW or on lout2 terminal when all inputs are HIGH.

DETAILED DESCRIPTION

The Intersil AD7541 is a 12 bit, monolithic, multiplying D/A converter. Highly stable thin film R-2R resistor ladder network and NMOS DPDT switches form the basis of the converter circuit. CMOS level shifters provide low power DTL/TTL/CMOS compatible operation. An external voltage or current reference and an operational amplifier are all that is required for most voltage output applications.

0333-7
Figure 7: Feedthrough Error Test Circuit

0333-6
Figure 6: Output Capacitance Test Circuit

INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.
NOTE: All typical values have been characterized but are not tested.

Figure 10: СMOS Switch

A simplified equivalent circuit of the DAC is shown in Figure 9. The NMOS DPDT switches steer the ladder leg currents between IOUT1 and IOUT2 buses which must be held at ground potential. This configuration maintains a constant current in each ladder leg independent of the input code. Converter errors are further eliminated by using wider metal interconnections between the major bits and the outputs. Use of high threshold switches reduces the offset (leakage) errors to a negligible level.

Each circuit is laser-trimmed, at the wafer level, to better than 12 bits linearity. For the first four bits of the ladder, special trim-tabbed geometries are used to keep the body of the resistors, carrying the majority of the output current, undisturbed. The resultant time stability of the trimmed circuits is comparable to that of untrimmed units.

The level shifter circuits are comprised of three inverters with a positive feedback from the output of the second to the first (Figure 10). This configuration results in DTL/TTL/ CMOS compatible operation over the full military temperature range. With the ladder DPDT switches driven by the level shifter, each switch is binarily weighted for an "ON" resistance proportional to the respective ladder leg current. This assures a constant voltage drop across each switch, creating equipotential terminations for the 2R ladder resistors, resulting in accurate leg currents.

APPLICATIONS

General Recommendations

Static performance of the AD7541 depends on lout1 and lout2 (pin 1 and pin 2) potentials being exactly equal to GND (pin 3).

The output amplifier should be selected to have a low input bias current (typically less than 75 nA), and a low drift (depending on the temperature range). The voltage offset of the amplifier should be nulled (typically less than $\pm 200 \mu \mathrm{~V}$).

The bias current compensation resistor in the amplifier's non-inverting input can cause a variable offset. Non-inverting input should be connected to GND with a low resistance wire.

Ground-loops must be avoided by taking all pins going to GND to a common point, using separate connections.

The V^{+}(pin 18) power supply should have a low noise level and should not have any transients exceeding +17 volts.

Unused digital inputs must be connected to GND or V_{DD} for proper operation.

A high value resistor ($\sim 1 \mathrm{M} \Omega$) can be used to prevent static charge accumulation, when the inputs are open-circuited for any reason.

When gain adjustment is required, low tempco (approximately $50 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$) resistors or trim-pots should be selected.

UNIPOLAR BINARY OPERATION

The circuit configuration for operating the AD7541 in unipolar mode is shown in Figure 11. With positive and negative VREF values the circuit is capable of 2-Quadrant multiplication. The "Digital Input Code/Analog Output Value" table for unipolar mode is given in Table 1. A Schottky diode (HP5082-2811 or equivalent) prevents louT1 from negative excursions which could damage the device. This precaution is only necessary with certain high speed amplifiers.

0333-11
Figure 11: Unipolar Binary Operation (2-Quadrant Multiplication)

Zero Offset Adjustment

1. Connect all digital inputs to GND.
2. Adjust the offset zero adjust trimpot of the output operational amplifier for $\mathrm{OV} \pm 0.5 \mathrm{mV}$ (max) at VOUT.

Gain Adjustment

1. Connect all digital inputs to VDD.
2. Monitor VOUT for a -VREF $\left(1-1 / 2^{12}\right)$ reading.
3. To increase VOUT, connect a series resistor, $(0$ to 500 ohms), in the IOUT1 amplifier feedback loop.
4. To decrease VOUT, connect a series resistor, (0 to 500 ohms), between the reference voltage and the VREF terminal.
Table 1: Code Table - Unipolar Binary Operation

DIGITAL INPUT	ANALOG OUTPUT
111111111111	$-V_{\text {REF }}\left(1-1 / 2^{12}\right)$
100000000001	$-V_{\text {REF }}\left(1 / 2+1 / 2^{12}\right)$
100000000000	$-V_{\text {REF }} / 2$
011111111111	$-V_{\text {REF }}\left(1 / 2-1 / 2^{12}\right)$
000000000001	$-V_{\text {REF }}\left(1 / 2^{12}\right)$
000000000000	0

BIPOLAR (OFFSET BINARY) OPERATION

The circuit configuration for operating the AD7541 in the bipolar mode is given in Figure 12. Using offset binary digital input codes and positive and negative reference voltage values Four-Quadrant multiplication can be realized. The "Digital Input Code/Analog Output Value" table for bipolar mode is given in Table 2.

A "Logic 1" input at any digital input forces the corresponding ladder switch to steer the bit current to IOUT1 bus. A "Logic 0" input forces the bit current to IOUT2 bus. For any code the IOUT1 and IOUT2 bus currents are complements of one another. The current amplifier at IOUT2 changes the polarity of IOUT2 current and the transconductance amplifier at IOUT1 output sums the two currents. This configuration doubles the output range but halves the resolution of the DAC. The difference current resulting at zero offset binary code, (MSB="Logic 1", All other bits = "Logic 0 "), is corrected by using an external resistive divider, from VREF to IOUT2.

Offset Adjustment

1. Adjust $\mathrm{V}_{\mathrm{REF}}$ to approximately +10 V .
2. Set R4 to zero.
3. Connect all digital inputs to "Logic 1".
4. Adjust lout2 amplifier offset zero adjust trimpot for $0 \mathrm{~V} \pm 0.1 \mathrm{mV}$ at lOUT2 amplifier output.
5. Connect a short circuit across R2.
6. Connect all digital inputs to "Logic 0 ".
7. Adjust IOUT2 amplifier offset zero adjust trimpot for OV $\pm 0.1 \mathrm{mV}$ at louT1 amplifier output.
8. Remove short circuit across R2.
9. Connect MSB (Bit 1) to "Logic 1" and all other bits to "Logic 0".
10. Adjust R 4 for $\mathrm{OV} \pm 0.2 \mathrm{mV}$ at $\mathrm{V}_{\text {OUT }}$.

Gain Adjustment

1. Connect all digital inputs to VDD.
2. Monitor VOUT for a $-\operatorname{VREF}\left(1-1 / 2^{11}\right)$ volts reading.
3. To increase VOUT, connect a series resistor, (0 to 500 ohms), in the IOUT1 amplifier feedback loop.
4. To decrease VOUT, connect a series resistor, (0 to 500 ohms), between the reference voltage and the VREF terminal.

Table 2: Code Table Bipolar (Offset Binary) Operation

DIGITAL INPUT	ANALOG OUTPUT
111111111111	$-\mathrm{V}_{\text {REF }}\left(1-1 / 2^{11}\right)$
100000000001	$-\mathrm{V}_{\text {REF }}\left(1 / 2^{11}\right)$
100000000000	0
011111111111	$\mathrm{~V}_{\text {REF }}\left(1 / 2^{11}\right)$
000000000001	V REF $\left(1-1 / 2^{11}\right)$
000000000000	V REF

0333-13
Figure 13: General DAC Circuit with Compensation Capacitor, $\mathbf{C}_{\mathbf{c}}$

DYNAMIC PERFORMANCE

The dynamic performance of the DAC, also depends on the output amplifier selection. For low speed or static applications, AC specifications of the amplifier are not very critical. For high-speed applications slew-rate, settling-time, openloop gain and gain/phase-margin specifications of the amplifier should be selected for the desired performance.

The output impedance of the AD7541 looking into lOUT1 varies between $10 \mathrm{k} \Omega$ ($\mathrm{R}_{\text {Feedback }}$ alone) and $5 \mathrm{~K} \Omega$ ($\mathrm{R}_{\text {Feed- }}$ back) in parallel with the ladder resistance).

Similarly the output capacitance varies between the minimum and the maximum values depending on the input code. These variations necessitate the use of compensation capacitors, when high speed amplifiers are used.
A capacitor in parallel with the feedback resistor (as shown in Figure 13) provides the necessary phase compensation to critically damp the output.
A small capacitor connected to the compensation pin of the amplifier may be required for unstable situations causing oscillations. Careful PC board layout, minimizing parasitic capacitances, is also vital.

[^130]
ICL7121

16-Bit Multiplying

Microprocessor-Compatiblerin man moc

D/A Converter

GENERAL DESCRIPTION

The ICL7121 achieves 0.003% linearity without laser trimming by combining a four quadrant multiplying DAC using thin film resistors with an on-chip PROM-controlled correction circuit. Silicon-gate CMOS circuitry keeps the power dissipation very low.
Microprocessor bus interfacing is eased by standard memory WRite cycle timing and control signal use. The input buffer register is loaded with the 16-bit input and directly controls the output switches. The register is transparent if $\overline{W R}$ and $\overline{C S}$ are held low.
The ICL7121 is designed and programmed for bipolar operation. There is an offset resistor to the output with a reference input which should be connected to $-V_{\text {REF }}$ giving the DAC a true 2's complement input transfer function. Two extra resistors are included on the chip to facilitate the reference inversion, so that only an external op amp is needed.

FEATURES

- 16-Bit Resolution
- Low Integral Linearity Error-0.003\% FSR
- Monotonic to 16 Bits Over Full Military Temperature Range (LM Grade)
- Microprocessor Compatible with Buffered Inputs
- Bipolar Application Requires No External Resistors
- Output Current Settling Time $3 \mu \mathrm{~s}$ Max (1 $\mu \mathrm{s}$ Typ)
- Low Linearity and Gain Temperature Coefficients
- Low Power Dissipation (25 mW)
- Full Four-Quadrant Multiplication
- Low Differential Nonlinearity Error at Bipolar Zero

ORDERING INFORMATION

Part Number	Temperature Range	Package	Monotonicity
ICL7121JCJI	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	28 -Pin CERDIP	14 Bits
ICL7121JMJI	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	28 -Pin CERDIP	
ICL7121KCJI	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	28 -Pin CERDIP	
ICL7121KMJI	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	28 -Pin CERDIP	16 Bits
ICL7121LCJI	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	28 -Pin CERDIP	
ICL7121LMJI	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	28 -Pin CERDIP	

[^131]

0081-2
Figure 2: Pin Configuration (Outline Dwg. JI)

DC ELECTRICAL CHARACTERISTICS $\mathrm{V}^{+}=+5 \mathrm{~V}, \mathrm{~V}_{\text {REF }}=+5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ unless otherwise specified

[^132]DC ELECTRICAL CHARACTERISTICS
$\mathrm{V}^{+}=+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{REF}}=+5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ unless otherwise specified (Continued)

Symbol	Parameter	Test Conditions		Limits			Units
				Min	Typ	Max	
$\mathrm{T}_{\text {C(ILE) }}$	Integral Linearity Error Temperature Coefficient		$\underset{\mathrm{K}, \mathrm{~L}}{\mathrm{~J}}$		$\begin{aligned} & 0.3 \\ & 0.2 \end{aligned}$	$\begin{aligned} & 1.2 \\ & 0.9 \end{aligned}$	ppm/ ${ }^{\circ} \mathrm{C}$
GE	Unadjusted Gain Error	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	$\begin{aligned} & \mathrm{J} \\ & \mathrm{~K} \\ & \mathrm{~L} \\ & \hline \end{aligned}$	-0.012 -0.009 -0.006	$\begin{aligned} & \pm 0.004 \\ & \pm 0.003 \\ & \pm 0.002 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.012 \\ & +0.009 \\ & +0.006 \\ & \hline \end{aligned}$	\%FSR
		Operating Temperature Range	$\begin{aligned} & \mathrm{J} \\ & \mathrm{~K} \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & -0.04 \\ & -0.02 \\ & -0.02 \\ & \hline \end{aligned}$	$\begin{aligned} & \pm 0.02 \\ & \pm 0.01 \\ & \pm 0.01 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.04 \\ & +0.02 \\ & +0.02 \\ & \hline \end{aligned}$	\%FSR
$\mathrm{T}_{\text {C(GE) }}$	Unadjusted Gain Error Temperature Coefficient		$\underset{\mathrm{K}, \mathrm{~L}}{\mathrm{~J}}$		$\begin{aligned} & 1.0 \\ & 0.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 5.2 \\ & 2.0 \\ & \hline \end{aligned}$	ppm $/{ }^{\circ} \mathrm{C}$
$\mathrm{V}_{0 z}$	Unadjusted Output Offset	$\mathrm{D}_{\mathrm{N}}=$ All 0 's (Note 6)			4	± 15	mV
$\Delta V_{0 Z} / \Delta T$	Output Offset Drift	$\mathrm{D}_{\mathrm{N}}=$ All 0's (Note 6)				5	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
PSRR	Power Supply Rejection Ratio	$\mathrm{V}+=5 \mathrm{~V} \pm 10 \%, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$			30	100	ppm/V
		Operating Temperature Range			50	150	
$\mathrm{t}_{\text {s }}$	Output Current Settling Time	(Note 4)			1.8	3	$\mu \mathrm{s}$
$Z_{\text {REF }}$	Reference Input Resistance			3	4.2	6	$k \Omega$
Cout	Output Capacitance	$\begin{aligned} & D_{N}=A l l 0 \text { 's } \\ & D_{N}=A l l 1 \text { 's } \end{aligned}$			$\begin{aligned} & 150 \\ & 300 \\ & \hline \end{aligned}$		pF
$\mathrm{V}_{\text {IL }}$	Low Level Input Voltage	Operating Temperature Range				0.8	V
V_{IH}	High Level Input Voltage	Operating Temperature Range		2.4			V
IIN	Logic Input Current	$\mathrm{OV} \leq \mathrm{V}_{\mathrm{IN}} \leq \mathrm{V}^{+}$		-1.0	0.001	+1.0	$\mu \mathrm{A}$
$\mathrm{C}_{\text {IN }}$	Logic Input Capacitance				15		pF
V+	Supply Voltage Range	Functional Operation (Note 5)		4.5	5.0	5.5	V
1+	Supply Current, excluding Ladder Current	$\mathrm{V}_{\mathrm{IL}}=0.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{IH}}=2.4 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			0.6	1.5	mA
		Operating Temperature Range			1.0	2.5	

NOTES 3: Military temperature range parts are also tested to stated limits at $-55^{\circ} \mathrm{C}$ and $+125^{\circ} \mathrm{C}$.
4: Guaranteed by characterization but not tested on a production basis.
5: Guaranteed by PSRR test.
6: Refer to Figure 4. Measured at output of amplifier A 1 (A1 having zero offset). $\mathrm{V}_{\mathrm{REF}}=+5 \mathrm{~V}$. Adjustable to zero with external potentiometer.
AC ELECTRICAL CHARACTERISTICS $\quad \mathrm{V}^{+}=+5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$; see Timing Diagram, Figure 3 (Note 4)

Symbol	Parameter	Test Conditions	Limits			Units
			Min	Typ	Max	
$\mathrm{t}_{\text {cWs }}$	$\overline{\text { Cuhip Select-WRite Set-Up Time }}$		0			ns
tcwn	$\overline{\text { Cuhip Select-WRite Hold Time }}$		0			
tWR	$\overline{\text { WRite Pulse Width Low }}$		200			
tows	Data- \bar{W} Rite Set-Up Time		200			
town	Data-WRite Hold Time		0			

[^133]NOTE: All typical values have been characterized but are not tested.

Table 1. Pin Assignment and Function Description

Pin	Name	Description
1	D_{0}	Least Significant Bit
2	D_{1}	
3	D_{2}	
4	D_{3}	
5	D_{4}	Input
6	D_{5}	
7	D_{6}	Data
8	D_{7}	
9	D_{8}	Bits
10	D_{9}	
11	D_{10}	$(\mathrm{HIGH}=$ True $)$
12	D_{11}	
13	D_{12}	
14	D_{13}	
15	D_{14}	
16	D_{15}	Most Significant Bit
17	PROG	Used for programming only. Tie to +5 V for normal operation.
18	$V_{\text {REF }}$	$\mathrm{V}_{\text {REF }}$ input to ladder.
19	RINV	Summing node for inverting amplifier.
20	Rofs	Bipolar offset resistor, to V REF .
21	R_{FB}	Feedback resistor for voltage output applications.
22	DGND	Digital GrouND return.
23	AGND_{F}	Analog GrouND Force Line. Used to carry current from internal Analog GrouND connections.
24	AGNDS	Analog GrouND Sense line. Reference point for external circuitry. Pin should carry minima current.
25	Iout	Current output pin.
26	V+	Positive supply voltage.
27	$\overline{\mathrm{CS}}$	$\overline{\mathrm{C}} \mathrm{hip}$ Select. Active low. Enables writing to register.
28	$\overline{\mathrm{WR}}$	WRite input. Active low. Writes into register. Equivalent to $\overline{\mathrm{CS}}$.

DEFINITION OF TERMS

NON-LINEARITY: Error contributed by deviation of the DAC transfer function from a best straight line function. Normally expressed as a percentage of full-scale range. For a multiplying DAC, this should hold true over the entire $V_{\text {REF }}$ range.

RESOLUTION: Value of the LSB. For example, a unipolar converter with n bits has a resolution of $(2-N)\left(V_{R E F}\right)$. A bipolar converter of n bits has a resolution of $\left(2^{-(n-1)}\right)$ ($V_{\text {REF }}$). Resolution in no way implies linearity.

SETTLING TIME: Time required for the output function of the DAC to settle to within $1 / 2$ LSB for a given digital input stimulus, i.e., 0 to full-scale.

GAIN: Ratio of the DAC's operational amplifier output voltage to the nominal input voltage value.

DETAILED DESCRIPTION

The ICL7121 consists of a 16 -bit primary DAC, PROM controlled correction DACs, input buffer registers, and microprocessor interface logic. The 16-bit primary DAC is an R-2R thin film resistor ladder with N -channel MOS SPDT current steering switches. Precise balancing of the switch resistances and all other resistors in the ladder results in excellent temperature stability.

The low linearity error is acheived by programming a floating polysilicon gate PROM array which controls a 12-bit correction DAC (C-DAC). The most significant bits of the primary DAC register address this PROM array. Thus for every combination of the primary DAC's most significant bits a different C-DAC code is selected, allowing correction of superposition errors. These errors are caused by bit interaction on the primary ladder's current bus and by voltage non-linearity in the feedback resistor. Superposition errors cannot be corrected by any method that corrects individual bits only, such as laser trimming.

The onboard PROM also controls the 6-bit gain DAC. The G-DAC reduces gain error to less than 0.006% FSR by diverting to analog ground up to 2% of the current flowing in R_{FB}.

Since the PROM programming occurs in packaged form, it corrects for resistor shifts caused by the thermal stresses of packaging, unlike wafer-level trimming methods. Also, since the thin film resistors do not suffer laser trimming stresses, no degradation of time-stability results.

[^134]NOTE: All typical values have been characterized but are not tested.

APPLICATIONS

Bipolar Operation

The circuit diagram for the normal configuration of the ICL7121 is shown in Figure 4. The 2's complement input and positive and negative reference voltage values allow full four-quadrant multiplication. Amplifier A_{3}, together with the internal resistors $\mathrm{R}_{\text {INV1 }}$ and $\mathrm{R}_{\text {INV2 }}$, forms a simple voltage inverter circuit to generate $-\mathrm{V}_{\text {REF }}$ for the ROFS offset input pin. This will give the nominal "digital input code/analog output value" relationship of Table 2.

Table 2. Code Table-Bipolar Operation

Digital Input	Analog Output
0111111111111111	$-\mathrm{V}_{\text {REF }}\left(1-1 / 2^{15}\right)$
0000000000000001	$-\mathrm{V}_{\text {REF }}\left(1 / 2^{15}\right)$
000000000000000	0
111111111111111	$\mathrm{~V}_{\text {REF }}(1 / 215)$
1000000000000001	$\mathrm{~V}_{\text {REF }}\left(1-1 / 2^{15}\right)$
100000000000000	$\mathrm{~V}_{\text {REF }}$

Amplifier A_{1} is the output amplifier. An additional amplifier A_{2} may be used to force $A^{\prime} \mathrm{AND}_{\mathrm{F}}$ if the ground reference point is established elsewhere than at the DAC, as in Figure 5.

Figure 4: Bipolar Operation, Four-Quadrant

Figure 5: Bipolar Operation with Forced Ground
INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. the warranty shall be exclusive and shall be in lieu of all other warranties, express, implied or statutory, including the implied warranties of MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.
NOTE: All typical values have been characterized but are not tested.

A feedback compensation capacitor, C_{F}, improves the settling time by reducing ringing. This capacitor is normally in the $10 \mathrm{pF}-40 \mathrm{pF}$ range, depending on layout and the output amplifier selected. If C_{F} is too small, ringing or oscillation can occur when using an op amp with a high gainbandwidth. If C_{F} is too large, the response of the output amplifier will be overdamped and will settle slowly.
The input circuits of some high speed op amps will sink large currents to their negative supply during power up and power down. The Schottky diode at lout limits any nega-tive-going transitions to less than -0.4 V , avoiding the SCR latchup which could result if significant current was injected into the parasitic diode between lout and V - of the ICL7121. This diode is not needed when using the ICL7650 ultra low $V_{O S}$ op amp.

Offset Adjustment

1. Connect all data inputs and $\overline{W R}$ and $\overline{C S}$ to DGND.
2. Adjust the offset zero-adjust of the operational amplifier A_{2}, if used, for $< \pm 50 \mu \mathrm{~V}$ at $\mathrm{AGND}_{\mathrm{S}}$.
3. Set data to $0000 \ldots 000$ (all low). Adjust the offset zeroadjust of output operational amplifier A_{1} for $< \pm 50 \mu \mathrm{~V}$ at lout. Vout will be offset from OV by the bipolar zero error.
The bipolar zero error can be as large as 15 mV , but has a typical temperature coefficient of only $3 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$. This error may be trimmed out by adjusting the offset of A_{3}.

Gain Adjustment

In many systems, gain adjustment will not be needed since the gain of the ICL7121 is accurate to within 0.006% FSR. When system gain must be adjusted, the low gain error limits the required adjustment range to only slightly more than the initial accuracy error of the reference. This is desirable since external gain trims degrade the gain temperature coefficient of a monolithic DAC. This degradation of the gain temperature coefficient occurs because, although the internal resistors track each other closely, they have a temperature coefficient of resistance of approximately -250 ppm $/{ }^{\circ} \mathrm{C}$.
To increase VOUT, connect a series resistor of 200Ω or less between the A_{1} output and the $R_{F B}$ terminal (pin 21). To decrease Vout, connect a series resistor of 100Ω or less between the reference voltage and the $\mathrm{V}_{\text {REF }}$ terminal
(pin 18). These resistor values result in a minimum of 1% FSR gain trim and add about $3 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ gain temperature coefficient. If only a small gain trim range is needed, the resistor values should be reduced in order to preserve the excellent $0.5 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ gain temperature coefficient.

Digital Interface

The ICL7121 has a 16-bit latch onboard and can interface directly to a 16 -bit data bus. As shown in Figure 6, external latches or peripheral ICs can be used to interface to an 8-bit data bus. To ensure that the data is written into the onboard latch, the data must be valid 200 ns before the rising edge of WR. If WR and $\overline{C S}$ are both low, the onboard latch is transparent and the input data is directly applied to the internal R-2R ladder switches. While this simplifies interfacing in non-microprocessor systems, having WR low before data is valid may cause additional glitches in some microprocessor systems. To avoid these glitches, data must be valid at the time $\overline{W R}$ goes low.

All digital interfaces can suffer from capacitive coupling between the digital lines and the analog section. There are two general precautions that will reduce this capacitive coupling problem: 1) reduce stray capacitance between digital lines and analog lines; and 2) reduce the number of transitions on the digital inputs. Careful board layout and shielding can minimize the capacitive coupling (see Figure 8). The activity on the digital input lines can be reduced by using external latches or peripheral interface ICs between the microprocessor bus and the ICL7121. This will reduce the number of transitions on the digital data and control lines of the ICL7121, thereby reducing the amount of digital noise coupled into sensitive analog sections.

OPERATIONAL AMPLIFIER SECTION

The input offset voltage, input current, gain, and bandwidth of the op amps used affect the circuit performance. Since the output impedance of IOUT varies with the digital input code, the input current of amplifier A_{1} will cause a code-dependent error at $\mathrm{V}_{\text {OUT }}$, degrading the linearity. The input bias current should be significantly less than 1 LSB current, which is about 10 nA . In a similar manner, any offset voltage in A_{1} will also cause linearity errors. The offset voltage of the output amplifier should be significantly less than 1 LSB $\left(153 \mu \mathrm{~V}\right.$ at $\left.\mathrm{V}_{\text {REF }}=5 \mathrm{~V}\right)$.

0081-6
Figure 6: Interface to 8-Bit Microcprocessor

INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.
NOTE: All typical values have been characterized but are not tested.

The voltage output settling time is highly dependent on the slew rate and gain-bandwidth of A_{1}, so for high speed operation a high speed op amp such as the HA2600 is recommended. For applications where high speed is not required, the ICL7650 or ICL7652 can be used for A_{1}. Since the ICL7650/52 offset voltage is less than $5 \mu \mathrm{~V}$, no offset trimming is needed. To get a full 5 V output swing from these op amps, $\pm 7.5 \mathrm{~V}$ supplies should be used for the ICL7650/ 52.

Amplifier A_{3}, which is used to generate the inverted reference, needs only to have a stable offset and to be able to drive a $3 \mathrm{k} \Omega$ load. Since this is strictly a DC amplifier, the low noise ICL7652 is an ideal choice. Any variation in the offset voltage of A_{3} will result in a drift in the bipolar zero, but will not affect the linearity of the ICL7121.
Amplifier A_{2}, used to generate a high quality ground, also needs a low offset and the ability to sink up to 2 mA .

MULTIPLYING MODE PERFORMANCE

While the ICL7121 can perform full four-quadrant multiplication, full 0.003% linearity is guaranteed only at $V_{\text {REF }}=$ +5 V . This is because the voltage coefficient of resistance of the R-2R ladder and the feedback resistor are significant at the 14- or 16 -bit level. This effect is most significant at higher voltages, and adds errors on the order of 0.01% for a $\pm 10 \mathrm{~V}$ full-scale. While the ICL7121 is tested and specified for $\mathrm{V}_{\text {REF }}=+5 \mathrm{~V}$, the R-2R ladder has the same voltage across it when $\mathrm{V}_{\text {REF }}=-5 \mathrm{~V}$. Therefore, voltage coefficients do not add any error with a -5 V reference voltage.

GROUND LOOPS

Careful consideration must be given to ground loops in any high accuracy system. The current into the analog
ground point inside the chip varies significantly with the input code value, and the inevitable resistances between this point and any external connection point can lead to significant voltage drop errors. For this reason, two separate leads are brought out from this point on the IC: AGND ${ }_{S}$ and $A G N D_{F}$. The varying current should be absorbed through the $A_{G N D}$ pin, and the AGND $_{S}$ pin will then accurately reflect the voltage on the internal current summing point, as shown in Figure 7. Output signals should ideally be referenced to the sense pin AGNDS, as shown in the application circuits.

Figure 7: Eliminating Ground Loops

[^135]NOTE: All typical values have been characterized but are not tested.

GENERAL DESCRIPTION

The ICL7134 combines a four-quadrant multiplying DAC using thin film resistor and CMOS circuitry with an on-chip PROM-controlled correction circuit to achieve true 14-bit linearity without laser trimming.

Microprocessor bus interfacing is eased by standard memory WRite cycle timing and control signal use. Two input buffer registers are separately loaded with the 8 least significant bits (LS register) and the 6 most significant bits (MS register). Their contents are then transferred to the 14bit DAC register, which controls the output switches. The DAC register can also be loaded directly from the data inputs, in which case the registers are transparent.
The ICL7134 is supplied in two versions. The ICL7134U is programmed for unipolar operation while the ICL7134B is programmed for bipolar applications. The VREF input to the most significant bit of the DAC is separated from the reference input to the remainder of the ladder. For unipolar use, the two reference inputs are tied together, while for bipolar operation, the polarity of the MSB reference is reversed, giving the DAC a true 2's complement input transfer function. Two resistors which facilitate the reference inversion are included on the chip, so only an external op-amp is needed. The PROM is coded to correct for errors in these resistors as well as the inversion of the MSB.

FEATURES

- 14-Bit Linearity (0.003\% FSR)
- No Gain Adjustment Necessary
- Microprocessor-Compatible With Double Buffered Inputs
- Bipolar Application Requires No Extra Adjustments or External Resistors
- Low Linearity and Gain Temperature Coefficients
- Low Power Dissipation
- Full Four-Quadrant Multiplication

0341-1
Figure 1: Pin Configuration (Outline dwg JI)

ORDERING INFORMATION

$\begin{gathered} \text { Non-Linearity } \\ \text { at } 25^{\circ} \mathrm{C} \end{gathered}$	Temperature Range		
	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Bipolar Versions			
$\begin{aligned} & \hline 0.01 \% \text { (12-bit) } \\ & 0.006 \% \text { (13-bit) } \\ & 0.003 \% \text { (14-bit) } \end{aligned}$	ICL7134BJCJI ICL7134BKCJI ICL7134BLCJI	ICL7134BJJJI ICL7134BKIJI ICL7134BLIJI	ICL7134BJMJI ICL7134BKMJI ICL7134BLMJI
Unipolar Versions			
$\begin{aligned} & 0.01 \% \text { (12-bit) } \\ & 0.006 \% \text { (13-bit) } \\ & 0.003 \% \text { (14-bit) } \end{aligned}$	ICL7134UJCJI ICL7134UKCJI ICL7134ULCJI	ICL7134UJIJI ICL7134UKIJI ICL7134ULIJI	ICL7134UJMJI ICL7134UKMJI ICL7134ULMJI

PACKAGE: 28-pin CERDIP only

ABSOLUTE MAXIMUM RATINGS (Note 1)
Supply Voltage (V+ to DGND) -0.3 V to 7.5 V
$V_{\text {RFL }}$, V $_{\text {RFM }}, R_{\text {INV, }}$ R FB to DGND $\pm 15 \mathrm{~V}$

Current in AGNDS, AGND \quad........................... 25mA
An, Dn, $\overline{W R}, \overline{C S}$, PROG \ldots.

Operating Temperature Range	
ICL7134XXC	to +70
ICL7134XXI $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
ICL7134XXM	
Storage Temperature Range	
Power Dissipation (Note 2)	
Derate Linearly Above $70^{\circ} \mathrm{C} @ 10 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$	

Note 1: All voltages with respect to DGND.
Note 2: Assumes all leads soldered or welded to printed circuit board.
NOTE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

0341-2
Figure 2: ICL7134 Functional Diagram
ELECTRICAL CHARACTERISTICS $\quad\left(\mathrm{V}^{+}=5 \mathrm{~V}, \mathrm{~V}_{\text {REF }}=10 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right.$ unless otherwise specified.)

Symbol	Parameter		Test Conditions	Limits			Unit	
			Min	Typ	Max			
	Resolution				14			Bits
	Non-Linearity	J	Test Figure 4 (Notes 1 and 2)			0.012	\% FSR	
		K				0.006	\% FSR	
		L				0.003	\% FSR	
	Non-Linearity Temperature Coefficient (Note 3)		Operating Temperature Range		1	2	ppm $/{ }^{\circ} \mathrm{C}$	

INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTIGLE OF THE CONDITION OF SALE. the warranty shall be exclusive and shall be in lieu of all other warranties, express, implied or statutory, including the implied warranties of MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.
NOTE: All typical values have been characterized but are not tested.

ELECTRICAL CHARACTERISTICS $\quad\left(\mathrm{V}^{+}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{REF}}=10 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right.$ unless otherwise specified.) (Continued)

Symbol	Parameter		Test Conditions	Limits			Unit	
			Min	Typ	Max			
	Gain Error	J		Test Figure 4 (Notes 1 and 2)			0.024	\% FSR
		K				0.012	\% FSR	
		L				0.006	\% FSR	
	Gain Error Temperature Coefficient (Note 3)				2	8	ppm $/{ }^{\circ} \mathrm{C}$	
	Monotonicity (Note 3)	J		12			Bits	
		K		13			Bits	
		L		14			Bits	
IOLK	Iout Leakage Current		$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$			10	$n A$	
			Operating Temperature Range		60			
PSRR	Power Supply Rejection		$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \Delta \mathrm{V}+= \pm 10 \%$		10	100	ppm/V	
			Operating Temperature Range			150		
	Output Current Settling Time				1		$\mu \mathrm{s}$	
	Feedthrough Error	ICL7134U	$V_{\text {REF }}= \pm 10 \mathrm{~V}, 2 \mathrm{kHz}$ Sinewave		250		$\mu \vee p-p$	
		ICL7134B			500			
$Z_{\text {REF }}$	Reference Input Resistance		$\mathrm{V}_{\text {RFL }}=\mathrm{V}_{\text {RFM }}$ (Unipolar Mode)	4.0		10	k Ω	
Cout	Output Capacitance		DAC Register = All 0's		160		pF	
			DAC Register = All 1's		235			
	Output Noise		Equivalent Johnson Res.		7		$\mathrm{k} \Omega$	
$\mathrm{V}_{\text {INL }}$	Low State Input		Operating Temperature Range			0.8	V	
$\mathrm{V}_{\text {INH }}$	High State Input		Operating Temperature Range	2.4			V	
lin	Logic Input Current		$0 \leq \mathrm{V}_{\text {IN }} \leq \mathrm{V}^{+}$			1.0	$\mu \mathrm{A}$	
$\mathrm{C}_{\text {lin }}$	Logic Input Capacitance		(Note 3)		15		pF	
V+	Supply Voltage Range (Note 4)		Functional Operation	3.5		6.0	V	
$1+$	Supply Current (Note 5)		(Excluding Ladder) (Note 5)		1.0	2.5	mA	
	Long Term Stability		1000 Hours, $+125^{\circ} \mathrm{C}$ (Note 3)		10		ppm/month	

NOTES: 1. Full-Scale Range (FSR) is 10 V for unipolar mode, $20 \mathrm{~V}(\pm 10 \mathrm{~V})$ for bipolar mode.
2. Using internal feedback and reference inverting resistors.
3. Guaranteed by design, not production tested.
4. Full scale tested to 0.040% FSR.
5. D0-D13 connected to 2.4 V .

AC CHARACTERISTICS $\quad\left({ }^{+}+=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right.$, see Timing Diagram)

Symbol	Parameter	Test Conditions	Min	Typ	Max	Unit
$\mathrm{t}_{\text {AWs }}$	Address-WRite Set-Up Time		100			ns
$t_{\text {AWh }}$	Address-WRite Hold Time	(Note 3)	0			
tows	C̄hip S̄elect-WRite Set-Up Time	(Note 3)	0			
town	C̄hip Select-WRite Hold Time	(Note 3)	0			
twn	WRite Pulse Width Low		200			
tows	Data-WRite Set-Up Time		200			
town	Data-WRite Hold Time	(Note 3)	0			

intersil's sole and exclusive warranty obligation with respect to this product shall be that stated in the warranty article of the condition of sale. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.
NOTE: All typical values have been characterized but are not tested.

Figure 3: Timing Diagram

DEFINITION OF TERMS

NONLINEARITY: Error contributed by deviation of the DAC transfer function from a straight line function between end points. Normally expressed as a percentage of full scale range. For a multiplying DAC, this should hold true over the entire $V_{\text {REF }}$ range.
RESOLUTION: Value of the LSB. For example, a unipolar converter with n bits has a resolution of $(2-n)\left(V_{\text {REF }}\right)$. A bipolar converter of n bits has a resolution of [2-(n-1)] [$V_{\text {REF }}$]. Resolution in no way implies linearity.
SETTLING TIME: Time required for the output function of the DAC to settle to within $1 / 2$ LSB for a given digital input stimulus, i.e., 0 to full-scale.
GAIN: Ratio of the DAC's operational amplifier output voltage to the nominal input voltage value.
FEEDTHROUGH ERROR: Error caused by capacitive coupling from $V_{\text {REF }}$ to output with all switches OFF.

Table 1: Pin Descriptions

[^136]

Figure 4: Non-Linearity Test Circuit

Figure 5: Power Supply Rejection Test Circuit

DETAILED DESCRIPTION

The ICL7134 consists of a 14-bit primary DAC, two PROM controlled correction DACs, input buffer registers, and microprocessor interface logic (Figure 2). The 14-bit primary DAC is an R-2R thin film resistor ladder with N -channel MOS SPDT current steering switches. Precise balancing of the switch resistances, and all other resistances in the ladder, results in excellent temperature stability.
True 14-bit linearity is achieved by programming a floating polysilicon gate PROM array which controls two correction DAC circuits. A 6-bit gain correction DAC, or G-DAC, diverts up to 2% of the feedback resistor's current to Analog GounND and reduces the gain error to less than 1 LSB, or 0.006%. The 5 most significant outputs of the DAC register address a 31-word PROM array that controls a 12-bit linearity correction DAC, or C-DAC. For every combination of the primary DAC's 5 most significant bits, a different C-DAC code is selected. This allows correction of superposition errors, caused by bit interaction on the primary resistor ladder's current output bus and by voltage non-linearity in the feedback resistor. Superposition errors cannot be corrected by any method which corrects individual bits only, such as laser trimming. Since the PROM programming occurs in packaged form, it corrects for resistor shifts caused by the thermal stresses of packaging. These packaging shifts limit the accuracy that can be achieved using wafer level correction methods such as laser trimming, which has also been found to degrade the time stability of thin film resistors at the 14-bit level.

Analog Section

The ICL7134 inherently provides both unipolar and bipolar operation. The bipolar application circuit (Figure 8) requires one additional op-amp but no external resistors. The two on-chip resistors, $\mathrm{R}_{\operatorname{INV} 1}$ and $\mathrm{R}_{\text {INV2, }}$, together with the op-amp, form a voltage inverter which drives the MSB reference terminal, $\mathrm{V}_{\mathrm{RFM}}$, to $-\mathrm{V}_{\text {REF }}$, where $\mathrm{V}_{\text {REF }}$ is the voltage applied at the less significant bits' reference terminal, $\mathrm{V}_{\mathrm{RFL}}$. This reverses the weight of the MSB, and gives the DAC a 2's complement transfer function. The op-amp and reference connection to $\mathrm{V}_{\text {RFM }}$ and $\mathrm{V}_{\text {RFL }}$ can be reversed, without affecting linearity, but a small gain error will be introduced. For unipolar operation the VRFM and V VFL terminals are both tied to $\mathrm{V}_{\text {REF }}$, and the $\mathrm{R}_{\text {INV }}$ pin is left unconnected.

Since the PROM correction codes required are different for bipolar and unipolar operation, the ICL7134 is available in two different versions; the ICL7134U, which is corrected for unipolar operation, and the ICL7134B, which is programmed for bipolar application. The feedback resistance is also different in the two versions, and is switched under PROM control from ' R ' in the unipolar device to ' $2 R$ ' in the bipolar part. These feedback resistors have a dummy (always ON) switch in series to compensate for the effect of the ladder switches. This greatly improves the gain temperature coefficient and the power supply rejection of the device.

Digital Section

Two levels of input buffer registers allow loading of data from an 8 -bit or 16 -bit data bus. The A_{0} and A_{1} pins select one of four operations: 1) load the LS-buffer register with the data at inputs D_{0} to $D_{7} ; 2$) load the MS-buffer register with the data at inputs D_{8} to $D_{13} ; 3$) load the DAC register with the contents of the MS and LS-buffer registers and 4) load the DAC register directly from the data input pins (see Table 2). The $\overline{\mathrm{CS}}$ and $\overline{\mathrm{WR}}$ pins must be low to allow data transfers to occur. When direct loading is selected (CS, WR, A_{0} and A_{1} low) the registers are transparent, and the data input pins control the DAC output directly. The other modes of operation allow double buffered loading of the DAC from an 8 -bit bus.

These input data pins are also used to program the PROM under control of the PROG pin. This is done in manufacturing, and for normal read-only use the PROG pin should be tied to $\mathrm{V}^{+}(+5 \mathrm{~V})$.

Table 2: Data Loading Controls

Control I/P				ICL7134 Operation
$\mathbf{A}_{\mathbf{0}}$	$\mathbf{A}_{\mathbf{1}}$	$\overline{\mathbf{C S}}$	$\overline{\mathrm{WR}}$	
X	X	X	1	No operation, device not selected.
X	X	1	X	
0	0	0	0	Load all registers from data bus.
0	1	0	0	Load LS register from data bus.
1	0	0	0	Load MS register from data bus.
1	1	0	0	Load DAC register from MS and LS register.

Note: Data is latched on LO-HI transition of either $\overline{\mathrm{WR}}$ or $\overline{\mathrm{CS}}$.

[^137]

APPLICATIONS

General Recommendations GROUND LOOPS

Careful consideration must be given to ground loops in any 14-bit accuracy system. The current into the analog ground point inside the chip varies significantly with the input code value, and the inevitable resistances between this point and any external connection point can lead to significant voltage drop errors. For this reason, two separate leads are brought out from this point on the IC, the AGND $_{F}$ and AGND $_{s}$ pins. The varying current should be absorbed through the $A^{\prime} \mathrm{ADD}_{F}$ pin, and the AGND_{S} pin will then accurately re 'ect the voltage on the internal current summing point, a' shown in Figure 9. Thus output signals should be referenced to the sense pin $\mathrm{AGND}_{\mathrm{S}}$, as shown in the various application circuits.

OPERATIONAL AMPLIFIER SELECTION

To maintain static accuracy, the lout potential must be exactly equal to the AGNDs potential. Thus output amplifier selection is critical, in particular low input bias current (less than 2 nA), low offset voltage drift (depending on the temperature range) and low offset voltage (less than $25 \mu \mathrm{~V}$) are advisable if the highest accuracy is needed. Maintaining a low input offset over a OV to 10 V range also requires that the output amplifier has a high open loop gain (Avol $>400 \mathrm{k}$ for effective input offset less than $25 \mu \mathrm{~V}$).
The reference inverting amplifier used in the bipolar mode circuit must also be selected carefully. If 14-bit accuracy is desired without adjustment, low input bias current (less than 1 nA), low offset voltage (less than $50 \mu \mathrm{~V}$), and high gain (greater than 400 k) are recommended. If a fixed reference voltage is used, the gain requirement can be relaxed. For highest accuracy (better than 13 bits), an additional op-amp may be needed to correct for IR drop on the Analog GrouND line (op-amp A_{2} in Figure 11). This op-amp should be selected for low bias current (less than 2 nA) and low offset voltage (less than $50 \mu \mathrm{~V}$).

The op-amp requirements can be readily met by use of an ICL7650 chopper stabilized device. For faster settling time, an HA26XX can be used with an ICL7650 providing automatic offset null (see A053 for details).

The output amplifier's non-inverting input should be tied directly to AGND $_{\mathrm{S}}$. A bias current compensation resistor is of limited use since the output impedance at the summing node depends on the code being converted in an unpredictable way. If gain adjustment is required, low tempco (approximately $50 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$) resistors or trim-pots should be selected.

POWER SUPPLIES

The V^{+}(pin 25) power supply should have a low noise level, and no transients exceeding 7 volts. Note that the absolute maximum digital input voltage allowed is $\mathrm{V}+$, which therefore must be applied before digital inputs are allowed to go high. Unused digital inputs must be connected to GND or V^{+}for proper operation.

Unipolar Binary Operation (ICL7134U)

The circuit configuration for unipolar mode operation (ICL7134U) is shown in Figure 10. With positive and negative $V_{\text {REF }}$ values the circuit is capable of two-quadrant multiplication. The "digital input code/analog output value" table for unipolar mode is given in Table 3. The Schottky diode (HP5082-2811 or equivalent) protects lout from negative excursions which could damage the device, and is only necessary with certain high speed amplifiers. For applications where the output reference ground point is established somewhere other than at the DAC, the circuit of Figure 11 can be used. Here, op-amp A_{2}. removes the slight error due to IR voltage drop between the internal Analog GrouND node and the external ground connection. For 13-bit or lower accuracy, omit A_{2} and connect $A^{2} N_{F}$ and $A G N D_{S}$ directly to ground through as low a resistance as possible.

[^138]

0341-10
Figure 10: Unipolar Binary, Two-Quadrant Multiplying Circuit

0341-11
Figure 11: Unipolar Binary Operation with Forced Ground

Table 3: Code Table - Unipolar Binary Operation

Digital Input	Analog Output
11111111111111	$-V_{R E F}\left(1-1 / 2^{14}\right)$
10000000000001	$-V_{R E F}\left(1 / 2+1 / 2^{14}\right)$
10000000000000	$-V_{R E F} / 2$
01111111111111	$-V_{R E F}\left(1 / 2-1 / 2^{14}\right)$
00000000000001	$-V_{R E F}\left(1 / 2^{14}\right)$
00000000000000	0

ZERO OFFSET ADJUSTMENT

1. Connect all data inputs and $\overline{W R}, \overline{C S}, A_{0}$ and A_{1} to DGND.
2. Adjust offset zero-adjust trim-pot of the operational amplifier A_{2}, if used, for a maximum of $0 \mathrm{~V} \pm 50 \mu \mathrm{~V}$ at AGNDs.
3. Adjust the offset zero-adjust trim-pot of the output op-amp, A_{1}, for a maximum of $0 \mathrm{~V} \pm 50 \mu \mathrm{~V}$ at $\mathrm{V}_{\text {OUT }}$.

GAIN ADJUSTMENT (OPTIONAL)

1. Connect all data inputs to V^{+}, connect $\overline{W R}, \overline{C S}, A_{0}$ and A_{1} to DGND.
2. Monitor $\mathrm{V}_{\text {OUT }}$ for $a-\mathrm{V}_{\text {REF }}\left(1-1 / 2^{14}\right)$ reading.
3. To decrease VOUT, connect a series resistor of 100Ω or less between the reference voltage and the $\mathrm{V}_{\text {RFM }}$ and $\mathrm{V}_{\text {RFL }}$ terminals (pins 20 and 18).
4. To increase $V_{\text {OUT }}$, connect a series resistor of 100Ω or less between A_{1} output and the $R_{\text {FB }}$ terminal (pin 21).

Bipolar (2's Complement) Operation (ICL7134B)

The circuit configuration for bipolar mode operation (ICL7134B) is shown in Figure 12. Using 2's complement digital input codes and positive and negative reference voltage values, four-quadrant multiplication is obtained. The "digital input code/analog output value" table for bipolar mode is given in Table 4. Amplifier A_{3}, together with internal resistors $\mathrm{R}_{\mathrm{INV} 1}$ and $\mathrm{R}_{\mathrm{INV} 2}$, forms a simple voltage inverter circuit. The MSB ladder leg sees a reference input of approximately $-V_{\text {REF }}$, so the MSB's weight is reversed from the polarity of the other bits. In addition, the ICL7134B's feedback resistance is switched to 2R under PROM control, so that the bipolar output range is $+\mathrm{V}_{\text {REF }}$ to $-\mathrm{V}_{\mathrm{REF}}$ $\left(1-1 / 2^{13}\right)$. Again, the grounding arrangement of Figure 11 can be used, if necessary.

Table 4: Code Table - Bipolar (2's Complement) Operation

Digital Input	Analog Output
01111111111111	$-V_{R E F}\left(1-1 / 2^{13}\right)$
00000000000001	$-V_{R E F}\left(1 / 2^{13}\right)$
00000000000000	0
11111111111111	$V_{R E F}\left(1 / 2^{13}\right)$
10000000000001	$V_{R E F}\left(1-1 / 2^{13}\right)$
10000000000000	$V_{R E F}$

0341-12
Figure 12: Bipolar (2's Complement), Four-Quadrant Multiplying Circuit

OFFSET ADJUSTMENT

1. Connect all data inputs and $\overline{W R}, \overline{C S}, A_{0}$ and A_{1} to DGND.
2. Adjust the offset zero-adjust trim-pot of the operational amplifier A_{2}, if used, for a maximum of $O V$ $\pm 50 \mu \mathrm{~V}$ at AGNDs.
3. Set data to $00000 \ldots .00$. Adjust the offset zeroadjust trim-pot of the output op-amp A_{1}, for a maximum of $0 \mathrm{~V} \pm 50 \mu \mathrm{~V}$ at $\mathrm{V}_{\text {OUT }}$.
4. Connect D_{13} (MSB) data input to $\mathrm{V}+$.
5. Adjust the offset zero-adjust trim-pot of op-amp A_{3} for a maximum of $O \mathrm{~V} \pm 50 \mu \mathrm{~V}$ at the RINV terminal (pin 19).
GAIN ADJUSTMENT (OPTIONAL)
6. Connect $\overline{W R}, \overline{C S}, A_{0}$ and A_{1} to $D G N D$.
7. Connect $D_{0}, D_{1} \ldots D_{12}$ to V^{+}, D_{13} (MSB) to DGND.
8. Monitor $V_{\text {OUT }}$ for $a-V_{\text {REF }}\left(1-1 / 2^{13}\right)$ reading.
9. To increase $V_{\text {OUT }}$, connect a series resistor of 200Ω or less between the A_{1} output and the $R_{F B}$ terminal (pin 21).
10. To decrease $\mathrm{V}_{\text {OUT }}$, connect a series resistor of 100Ω or less between the reference voltage and the $\mathrm{V}_{\mathrm{RFL}}$ terminal (pin 18).

Processor Interfacing

The ease of interfacing to a processor can be seen from Figure 13, which shows the ICL7134 connected to an 8035 or any other processor such as an 8049. The data bus feeds into both register inputs; three port lines, in combination with the $\overline{W R}$ line, control the byte-wide loading into these registers and then the DAC register. A complete DAC set-up requires 4 write instructions to the port, to set up the address and $\overline{\mathrm{CS}}$ lines, and 3 external data transfers, one a dummy for the final transfer to the DAC register.

[^139]

0341-13
Figure 13: ICL7134 Interface to 8048 System

Figure 15: $\mathbf{8 0 8 5}$ System Interface

A similar arrangement can be used with an 8080A, 8228, and 8224 chip set. Figure 14 shows the circuit, which can be arranged as a memory-mapped interface (using MEMW) or as an I/O-mapped interface (using I/O WRITE). See A020 and R005 for discussions of the relative merits of memory-mapped versus I/O-mapped interfacing, as well as some other ideas on interfacing with 8080 processors. The 8085 processor has a very similar interface, except that the control lines available are slightly different, as shown in Fig-

0341-16
Figure 16: R650X and MC680X Families' Interface to ICL7134
ure 15. The decoding of the $10 / \mathrm{M}$ line, which controls mem-ory-mapped or I/O-mapped operation, is arbitrary, and can be omitted if not necessary. Neither the MC680X nor R650X processor families offer specific I/O operations. Figure 16 shows a suitable interface to either of these systems, using a direct connection. Several other decoding options can be used, depending on the other control signals generated in the system. Note that the R650X family does not require VMA to be decoded with the address lines.

0341-17
Figure 17: Avoiding Digital Feedthrough in an 8048 to ICL7134 Interface

0341-18
Figure 18: ICL7134 to 8048/80/85 Interface with Low Feedthrough

Digital Feedthrough

All of the direct interfaces shown above can suffer from a capacitive coupling problem. The 14 data pins, and 4 control pins, all tied to active lines on a microprocessor bus, and in close proximity to the sensitive DAC circuitry, can couple pseudo-random spikes into the analog output. Careful board layout and shielding can minimize the problems (see PC layout), and clearly wire-wrap type sockets should never be used. Nevertheless, the inherent capacitance of the package alone can lead to unacceptable digital feedthrough in many cases. The only solution is to keep the digital input lines as inactive as possible. One easy way to do this is to use the peripheral interface circuitry available with all the systems previously discussed. These generally allow only 8 bits to be updated at any one time, but a little ingenuity will avoid difficulties with DAC steps that would result from partial updates. The problem can be solved for the 8048 family by tying the 14 port lines to the data input lines, with CS, A_{0} and A_{1} held low, and using only the WR line to enter the data into the DAC (as shown in Figure 17). $\overline{W R}$ is well separated from the analog lines on the ICL7134, and is usually not a very active line in 8048 systems. Additional "protection" can be achieved by gating the processor $\overline{W R}$ line with another port line. The heavy use of port lines can be alleviated by use of the IM82C43 port expander. The same type of technique can be employed in the 8080/85 systems by using an 8255 PIA (peripheral Interface adapter) (Figure 18) and in the MC680X and R650X systems by using an MC6820 (R6520) PIA.

Successive Approximation A/D Converters

Figure 19 shows an ICL7134B-based circuit for a bipolar input high speed A/D converter, using two AM25L03s to form a 14 -bit successive approximation register. The comparator is a two-stage circuit with an HA2605 front-end amplifier, used to reduce settling time problems at the summing node (see A020). Careful offset-nulling of this amplifier is needed, and if wide temperature range operation is desired, an auto-null circuit using an ICL7650 is probably ad-
visable (see A053). The clock, using two Schmitt trigger TTL gates, runs at a slower rate for the first 8 bits, where set-tling-time is most critical, than for the last 6 bits. The shortcycle line is shown tied to the 15th bit; if fewer bits are required, it can be moved up accordingly. The circuit will free-run if the HOLD/RUN input is held low, but will stop after completing a conversion if the pin is high at that time. A low-going pulse will restart it. The STATUS output indicates when the device is operating, and the falling edge indicates the availability of new data. A unipolar version may be constructed by tying the MSB $\left(\mathrm{D}_{13}\right)$ on an ICL7134U to pin 14 on the first AM25L03, deleting the reference inversion amplifier A_{4}, and tying $V_{\text {RFM }}$ to $V_{\text {RFL }}$.

PC BOARD LAYOUT

Great care should be taken in the board layout to minimize ground loop and similar "hidden resistor" problems, as well as to minimize digital signal feedthrough. A suitable layout for the immediate vicinity of the ICL7134 is shown in Figure 20, and may be used as a guide.

APPLICATION NOTES

Some applications bulletins that may be found useful are listed here:
A016 "Selecting A/D Converters," by Dave Fullagar.
A017 "The Integrating A/D Converter," by Lee Evans.
A018 "Do's and Dont's of Applying A/D Converters," by Peter Bradshaw and Skip Osgood.
A020 "A Cookbook Approach to High Speed Data Acquisition and Microprocessor Interfacing," by Ed Sliger.
A021 "Power A/D Converters Using the ICH8510," by Dick Wilenken.
A030 "The ICL7104 - A Binary Output A/D Converter for Microprocessors," by Peter Bradshaw.
R005 "Interfacing Data Converters \& Microprocessors," by Peter Bradshaw et al, Electronics, Dec. 9, 1976.
Most of these are available in the Intersil Data Acquisition Handbook, together with other material.

0341-19
Figure 19: Successive Approximation A/D Converter

0341-20
(a) Printed Circuit Side of Card (Single Sided Board)

0341-21
(b) Top Side with Component Placement

Figure 20: Printed Circuit Board Layout (Bipolar Circuit, see Figure 12)

GENERAL DESCRIPTION

The IM2110 is designed specifically for color graphics, and integrates a 256×12 color lookup taple, three 4 -bit DACs, and a microprocessor interface.

The color lookup table is stored in a RAM and may be written asynchronously by an 8 - or 16-bit microprocessor. Three overlay registers are provided for overlaying cursors, grids, text, etc. The chip is capable of simultaneously displaying 256 out of 4096 colors at a 25 MHz rate, for a 640 x 480 non interlaced display.

The IM2110 generates RS-343-A compatible red, green and blue analog signals, and is capable of driving doublyterminated 75Ω coaxial cables directly.

FEATURES

- Interfaces Easily to 8- and 16-Bit Microprocessors
- Interfaces to 640×480 Non Interlaced Color Displays at 25 MHz
- 256×12 Color Palette
- 3 Overlay Registers
- Triple 4-Bit D/A Converters
- On-Chip Temperature-Compensated Reference
- DAC Inputs for Blank, Vsync, Hsync, Bright
- 40-Pin DIP/44 Pin PLCC
- PGA Compatible

ORDERING INFORMATION

Part Number	Temperature	Package
IM2110CPL	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	40 -Pin Plastic
IM2110CP44	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	44 -Pin PLCC

ABSOLUTE MAXIMUM RATINGS
Supply Voltages . 6.0 V
V_{IH} (Input Logic "1" Voltage) 2.0 V to $\mathrm{V}_{\mathrm{DD}}+0.5 \mathrm{~V}$
V_{IL} (Input Logic " 0 " Voltage) -0.5 V to 0.8 V
Power Dissipation (Plastic Package) 600 mW
Operating Temperature . $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec.) $300^{\circ} \mathrm{C}$
NOTE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

OPERATING CONDITIONS

Symbol	Parameter	Min	Typ	Max	Units
$\mathrm{V}_{\mathrm{DD}}, \mathrm{V}_{\mathrm{AA}}$	Positive Supply Voltage	4.5		5.5	V
$\mathrm{~T}_{\mathrm{A}}$	Ambient Temperature	0		+70	${ }^{\circ} \mathrm{C}$
	Resistive Load on DAC Outputs		37.5		Ω
	Capacitive Load on DAC Outputs		50		pF
RSET	Full Scale Adjust Resistor		1050		Ω

ELECTRICAL CHARACTERISTICS

DC CHARACTERISTICS

Symbol	Parameter	Min	Typ	Max	Units
l_{cc}	Average Power Supply Current			150	mA
	DAC Resolution			4	Bits
	DAC Accuracy Integral Linearity Differential Linearity Monotonicity Zero Offset Gain Error (Adjustable to Zero) Differential Accuracy (between Different Outputs on Same Device)	$\begin{aligned} & -1 / 2 \\ & -1 / 4 \\ & -1 / 8 \\ & -1 / 2 \\ & -1 \\ & \hline \end{aligned}$	Guaranteed	$\begin{aligned} & +1 / 2 \\ & +1 / 4 \\ & +1 / 8 \\ & +1 / 2 \\ & +1 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { LSB } \\ & \text { LSB } \end{aligned}$
V_{0}	DAC Output Characteristics Full Scale Output Current (Green) Full Scale Output Current (Red, Blue) Maximum Output Voltage		$\begin{gathered} 26.7 \\ 19.05 \\ 2.0 \\ \hline \end{gathered}$		$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \\ & \mathrm{~V} \end{aligned}$
IREF	REFERENCE Reference Current (at IREF Pin) Reference Voltage (at IREF Pin) Voltage Temperature Coefficient Power Supply Rejection $\left(V_{A A}=V_{D D}=5 \mathrm{~V} \pm 5 \%\right)$	1.0	$\begin{aligned} & 200 \\ & 1.0 \end{aligned}$	$\begin{gathered} -1.2 \\ 1.4 \end{gathered}$	mA V ppm $/{ }^{\circ} \mathrm{C}$ \%VREF

INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.
NOTE: All typical values have been characterized but are not tested.

AC Test Conditions
Input Pulse Levels . 0.4 V to 2.4 V
Input Rise \& Fall Times .5 ns maximum
Input Timing Reference Level .1 .5 V
AC CHARACTERISTICS $V_{D D}=5 \mathrm{~V} \pm 10 \%, T_{A}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

Symbol	Parameter	Min	Typ	Max	Units
$\mathrm{t}_{\mathrm{CHCH}}$	Clock Period	38			ns
$\mathrm{t}_{\mathrm{CLCH}}$	Clock Width Low	10			ns
$\mathrm{t}_{\mathrm{CHCL}}$	Clock Width High	10			ns
	Clock Rise \& Fall Times			5	ns
$t_{A C}$	Pixel Address (or OVERLAY, BLANK, SYNC, BRIGHT) Set-Up Time	10			ns
$t_{\text {ca }}$	Pixel Address (or OVERLAY, BLANK, SYNC, BRIGHT) Hold Time	10			ns
$t_{\text {CDA }}$	Clock to DAC Output (Note 1)			33	ns
	DAC Full Scale Settling Time (Note 2)		15		ns
	DAC 10-90\% Rise Time (Note 3)		8		ns
	DAC Output Glitch Energy		50		pVs
$t_{L L}$	ALE Width	35			ns
$t_{\text {AL }}$	Address (and $\overline{\mathrm{CS}}$) to Latch Set-Up Time	15			ns
t LA	Address (and $\overline{\mathrm{CS}}$) Hold Time after Latch	15			ns
tLW	Latch to WRITE	-10			ns
twW	WRITE Pulse Width	80			ns
$t_{\text {AW }}$	Data to WRITE Set-Up Time	90			ns
twa	Data Hold Time after WRITE	0			ns
$t_{\text {WL }}$	WRITE to next ALE	20			ns
tLE	ALE to ENABLE	25			ns
$t_{\text {EW }}, t_{\text {EE }}$	WRITE Duration	80			ns
$t_{\text {AR }}$	Address Float to READ	10			ns
$t_{\text {RR }}$	READ Pulse Width	130			ns
t_{RL}	READ to next ALE	30			ns
$\mathrm{t}_{\text {RD }}$	Valid Data from READ			100	ns
t_{RF}	Data Valid after READ			30	ns

NOTE 1: To 0.2 V on Red and Blue outputs, to 0.45 V on Green output.
2: To within $1 / 2$ LSB of final value.
3: Capacitive load on DAC output of 10 pF maximum.

PIN DESCRIPTION

Pin Name	Pin Number	Description
AD0-AD12	$1-12$	Microprocessor Address/Data. The 8 bits of RAM address and the 2 bits of overlay address are latched into the IM2110 when ALE is High. The 8-bit or 12-bit data is then written into the RAM and the overlay registers or read from them, depending on the state of $\overline{W R}$ and $\overline{\text { RDD. }}$
P0-P7	$32-39$	Pixel address. The address on these pins is latched on the first rising edge of the clock and decoded to select one of 256 colors stored in the color lookup table.

[^140]IM2110
PIN DESCRIPTION
(Continued)

INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. the warranty shall be exclusive and shall be in lieu of all other warranties, express, implied or statutory, including the implied warranties of MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.
NOTE: All typical values have been characterized but are not tested.

FUNCTIONAL DESCRIPTION Microprocessor Interface

As illustrated in the functional diagram, the IM2110 has a 256×12 RAM and three 12-bit overlay registers. The MPU bus interface allows the writing of data into the RAM and the overlay registers, and operates asynchronously with the video data.

The device can be addressed either through the 12-bit microprocessor interface for writing data, or through the 8bit video interface for transferring data to the video outputs. The microprocessor port is selected when Chip Select is active, and the video port is selected otherwise.

An 8 -bit status register must be written to first, after power is applied to the part, in order to set an " 8 -bit" or a " 12 bit" mode. Depending on the value stored at bit D0 in this register, data to the RAM and the overlay registers will be written 8 or 12 bits at a time. See Table for address mapping.

The lowest four data bits (D0-D3) contain the Red intensity information, the next four bits (D4-D7) contain the Blue intensity information, and the highest four bits (D8-D11) contain the Green intensity information.

When writing to the IM2110, the state of $\overline{C S}$ and the address are latched on the falling edge of ALE. Data is then transferred when WR is low.
An intel microprocessor may be used as described above. A Motorola microprocessor may be used by taking into account the following pin correspondence (see timing diagrams, Figure 3 and Figure 4):

Intel	Motorola
ALE	AS
$\overline{\mathrm{RD}}$	E or DS
$\overline{\mathrm{WR}}$	$\mathrm{R} / \overline{\mathrm{W}}$

While the microprocessor port is selected, all the DAC outputs are set to the reference 'Black' level, unless the 'BLANK', 'VSYNC' or 'HSYNC' signals are applied.
The content of the RAM (but not of the overlay registers) can be read back onto the AD bus, 12 bits at a time. This feature is used primarily for testing the part. The timing diagram and the specifications for this Read function are supplied for information purposes only. Note that in this mode the video clock must be operating at a frequency at least double that of ALE. (See Figure 5.)

Figure 3: Microprocessor Write Timing (Intel)

0082-4
Figure 4: Microprocessor Write Timing (Motorola)

[^141]FUNCTIONAL DESCRIPTION (Continued)

Figure 5: Microprocessor Read (Timing Test)

ADDRESS MAP

Table 1

$\begin{gathered} \text { Address } \\ \left(\mathrm{AD}_{0}-A D_{9}\right) \end{gathered}$	12-Bit Mode		8-Bit Mode	
	Location	Data	Location	Data
000h	ram 0	D0-D11	ram 0	D0-D7
001h	ram 1	D0-D11	ram 1	D0-D7
002h	ram 2	D0-D11	ram 2	D0-D7
003h	ram 3	D0-D11	ram 3	D0-D7
-	-	\bullet	\bullet	-
\bullet	-	\bullet	\bullet	-
OFEh	ram 254	D0-D11	ram 254	D0-D7
OFFh	ram 255	D0-D11	ram 255	D0-D7
100h	ram 0	D0-D11	ram 0	D8-D11
101h	ram 1	D0-D11	ram 1	D8-D11
-	\bullet	-	-	-
-	-	-	-	-
1FEh	ram 254	D0-D11	ram 254	D8-D11
1FFh	ram 255	D0-D11	ram 255	D8-D11
201h	ovly 1	D0-D11	ovly 1	D0-D7
202h	ovly 2	D0-D11	ovly 2	D0-D7
203h	ovly 3	D0-D11	ovly 3	D0-D7
301h	ovly 1	D0-D11	ovly 1	D8-D11
302h	ovly 2	D0-D11	ovly 2	D8-D11
303h	ovly 3	D0-D11	ovly 3	D8-D11
3FFh	status register	D0-D7	status register	D0-D7
other locations	unused		unused	

Status register: $\mathrm{DO}=1: 12$ bit mode. $\mathrm{DO}=0: 8$ bit mode. All other bits unused. When an address is loaded, the levels on $A D_{10}-A D_{11}$ are indifferent. In the 8 -bit mode, the data for $D_{0}-D_{7}$ must be present on $A D_{0}-A D_{7}$, and the data for $D_{8}-D_{11}$ on $A D_{0}-A D_{3}$. The levels on the other $A D$ pins are indifferent.

[^142]
FUNCTIONAL DESCRIPTION (Continued)

Color Lookup Table

As illustrated in Figure 6, 8 bits of lookup table address and 2 bits of overlay address are latched into the address registers on the rising edge of the clock. On the following rising edge, the 12 bits of color information are latched into the DAC registers, decoded, and used to turn on or off the DAC current sources. If OV0 or OV1 is High, the information in the overlay registers overrides the pixel data on P0-P7. The overlay registers allow the use of additional bit planes in the frame buffers and may be controlled by external character, cursor or grid logic.

Bright, Blank, Sync

These inputs are also sampled on the rising edge of the clock, and internally pipelined to maintain synchronization with the data (see Table 3).

When BRIGHT is active, the intensity of the color addressed in the RAM or the overlay registers is increased by a value of 10% of the Reference White level.

Figure 6: Video Input/Output Timing

Table 2

	Green		Red; Blue	
	$(\mathbf{m V})$	$(\mathbf{m A})$	$(\mathbf{m V})$	(mA)
Peak White	1071	28.56	785	20.93
Reference White	1000	26.67	714	19.04
Reference Black	357	9.52	71	1.89
Blanking	286	7.62	0	0
Synch	0	0	0	0

[^143]Table 3. Voltage and Current Output with Standard Setup
(adjusted for Green Reference White level $=1000 \mathrm{mV}, 37.5 \Omega$ load on outputs)

BRIGHT	BLANK	HSYNC	VSYNC	OVo	0V1	P0-P7	Data	Level
0	0	0	0	0	0	addr	255	peak white ref white \bullet ref black
1	0	0	0	0	0	addr	255	
						\bullet	-	
						\bullet	\bullet	
1	0	0	0	0	0	addr	0	
1	0	0	0	1	0	x	(ovly1)	
1	0	0	0	0	1	X	(ovly2)	
1	0	0	0	1	1	X	(ovly3)	
X	1	0	0	X	x	x	x	blank
X	X	1	1	X	X	X	X	blank
X	X	0	1	X	X	X	X	sync
X	X	1	0	X	X	X	X	sync

Voltage Reference

The internal band gap reference provides a temperature compensated voltage bias to all three DAC's. Full scale output current is set by using the reference and an external resistor. The reference voltage at l REF divided by the resistance from l lef to GND is equal to a nominal one LSB of DAC current. An RSET resistor consisting of a 500Ω fixed resistor in series with a $1 \mathrm{k} \Omega$ variable resistor should be used to adjust the full scale output voltage for a doubly-terminated 75Ω system. This adjustment eliminates any gain error and its range is wide enough to guarantee 1 V peak-topeak Green output (Sync tip to Reference White level). Selection of R ${ }_{\text {SET }}$ for RS343A output is made by using the equation:
$R_{\text {SET }}=\frac{\text { Vref } \times R \text { (load) }}{42.86 \mathrm{mV}}$
(42.86 mV $=1 \mathrm{LSB}$)

With a nominal 1.2 V reference voltage, $\mathrm{R}_{\text {SET }}$ will be 1050Ω for a 37.5Ω (doubly terminated) system and 2100Ω for a 75Ω system. Matching the temperature coefficients of R $_{\text {SET }}$ and the load resistors will provide a system with an output voltage temperature coefficient of typically $200 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$.

The internal voltage generated for current source bias is present at the BIAS pin. $0.1 \mu \mathrm{~F}$ and $0.01 \mu \mathrm{~F}$ capacitors are connected in parallel from BIAS to VAA.

D/A CONVERTERS

Each DAC consists of 15 equal-weight current sources providing the gray scale output. This configuration guarantees monotonicity, reduces glitch energy, and ensures high integral and differential linearity. In addition, SETUP and BRIGHT current sources are included for RS343A output and cursor display options. The Green DAC has an additional SYNC current source, for RS343A compatibility.

The 12 bits of color information, in combination with the SYNC, BLANK or BRIGHT selected at the time of address input, are used to form the composite output current. This current, through output loads from 37.5Ω to 75Ω, provides the $1 \mathrm{Vp}-\mathrm{p}$ RS343A output voltage.

An on-chip temperature-compensated reference and external resistor set the full scale output current of all three DAC's. A current of one LSB (1.143 mA for 37.5Ω output load) is sourced from IREF. Varying RSET adjusts the full scale output and LSB weight.

Reference Adjustment Procedure

A Reference White must be present at the DAC outputs. The Ret resistor at I REF can then be adjusted to precisely set this output voltage. The following procedure may be used:

1) Write all 1 's to Overlay register 1 . The video clock need not be active.
2) Transfer the data into the DAC registers by moving the video clock from Low to High at least twice, while maintaining the following levels on the video input pins:

PO-P7	X
OVO	1
OV1	0
BRIGHT	1
BLANK	0
VSYNC	0
HSYNC	0

3) Measure the voltage at the Green output, and adjust the resistor value at IREF until that voltage is 1.000 V .

PC BOARD LAYOUT CONSIDERATIONS

Figure 8: IM2110 Typical Power Supply and Output Connections

R1: 500Ω metal film resistor
R2: $1 \mathbf{k} \Omega$ cermet potentiometer
$\mathrm{C} 1, \mathrm{C} 2, \mathrm{C} 3: 0.1 \mu \mathrm{~F}$ and $0.01 \mu \mathrm{~F}$ monolithic ceramic capacitors in parallel
R3, R4, R5: 75Ω 1\% metal film resistor

Section 5 - Power Supply Supervisory

ICL7660 5-1
ICL7660S 5-10
ICL7662. 5-20
ICL7663. 5-28
ICL7663S 5-37
ICL7665. 5-44
ICL7665S 5-53
ICL7667 5-63
ICL7673 5-71
ICL7675 5-79
ICL7676 5-79
ICL7677 5-89
ICL7680 5-101
ICL8211 5-103
ICL8212 5-103

GENERAL DESCRIPTION

The Intersil ICL7660 is a monolithic CMOS power supply circuit which offers unique performance advantages over previously available devices. The ICL7660 performs supply voltage conversion from positive to negative for an input range of +1.5 V to +10.0 V , resulting in complementary output voltages of -1.5 V to -10.0 V . Only 2 non-critical external capacitors are needed for the charge pump and charge reservoir functions. The ICL7660 can also be connected to function as a voltage doubler and will generate output voltages up to +18.6 V with a +10 V input. Note that an additional diode is required for $\mathrm{V}_{\text {SUPPLY }}>6.5 \mathrm{~V}$.

Contained on chip are a series DC power supply regulator, RC oscillator, voltage level translator, and four output power MOS switches. A unique logic element senses the most negative voltage in the device and ensures that the output N -channel switch source-substrate junctions are not forward biased. This assures latchup free operation.

The oscillator, when unloaded, oscillates at a nominal frequency of 10 kHz for an input supply voltage of 5.0 volts. This frequency can be lowered by the addition of an external capacitor to the "OSC" terminal, or the oscillator may be overdriven by an external clock.

The "LV" terminal may be tied to GROUND to bypass the internal series regulator and improve low voltage (LV) operation. At medium to high voltages (+3.5 to +10.0 volts), the LV pin is left floating to prevent device latchup.

An enhanced direct replacement for this part called ICL7660S will become available shortly and will be more appropriate for new designs.

FEATURES

- Simple Conversion of $+\mathbf{5 V}$ Logic Supply to $\pm \mathbf{5 V}$ Supplies
- Simple Voltage Multiplication (VOUT $=(-) \mathbf{n} \mathbf{V I N}_{\text {IN }}$)
- 99.9\% Typical Open Circuit Voltage Conversion Efficiency
- 98\% Typical Power Efficiency
- Wide Operating Voltage Range 1.5 V to $\mathbf{1 0 . 0 V}$
- Easy to Use - Requires Only 2 External Non-Critical Passive Components

APPLICATIONS

- On Board Negative Supply for Dynamic RAMs
- Localized μ-Processor (8080 Type) Negative Supplies
- Inexpensive Negative Supplies
- Data Acquisition Systems

ORDERING INFORMATION

Part Number	Temp. Range	Package
ICL7660CTV	0° to $+70^{\circ} \mathrm{C}$	TO-99
ICL7660CBA	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	8 PIN SOIC
ICL7660CPA	0° to $+70^{\circ} \mathrm{C}$	8 PIN MINI DIP
ICL7660MTV*	-55° to $+125^{\circ} \mathrm{C}$	TO-99

*Add $/ 883 \mathrm{~B}$ to part number if 883 B processing is required.

Figure 1: Pin Configurations

[^144]
ABSOLUTE MAXIMUM RATINGS

Supply Voltage \qquad
LV and OSC Input Voltage
(Note 1) $\ldots \ldots . . .$. $\left(\mathrm{V}^{+}-5.5 \mathrm{~V}\right)$ to $\left(\mathrm{V}^{+}+0.3 \mathrm{~V}\right)$ for $\mathrm{V}^{+}>5.5 \mathrm{~V}$
Current into LV (Note 1) 20 20 A for $\mathrm{V}+>3.5 \mathrm{~V}$
Output Short Duration (VSUPPLY $\leq 5.5 \mathrm{~V}$) Continuous
Power Dissipation (Note 2)
ICL7660CTV
ICL7660CPA . 50.300 mW . 50.
500 mW
CL660MTV

Operating Temperature Range	
ICL7660M	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
ICL7660C $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	
Lead Temperature	
(Soldering, 10sec)	$300^{\circ} \mathrm{C}$

Operating Temperature Range
CL7660M $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature
(Soldering, 10sec)
$300^{\circ} \mathrm{C}$

NOTE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

OPERATING CHARACTERISTICS

$V^{+}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{C}_{\mathrm{OSC}}=0$, Test Circuit Figure 3 (unless otherwise specified)

Symbol	Parameter	Test Conditions	Limits			Units
			Min	Typ	Max	
I^{+}	Supply Current	$\mathrm{R}_{\mathrm{L}}=\infty$		170	500	$\mu \mathrm{A}$
$\mathrm{V}_{\mathrm{H} 1}^{+}$	Supply Voltage Range - Hi (DX out of circuit) (Note 3)	$0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$, LV Open	3.0		6.5	V
		$-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 125^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$, LV Open	3.0		5.0	V
$\mathrm{V}_{\text {L1 }}^{+}$	Supply Voltage Range - Lo (D_{\times}out of circuit)	$\mathrm{MIN} \leq \mathrm{T}_{A} \leq M A X, R_{L}=10 \mathrm{k} \Omega$, LV to GROUND	1.5		3.5	V
$\mathrm{V}_{\mathrm{H} 2}^{+}$	Supply Voltage Range - Hi (D_{X} in circuit)	$\mathrm{MIN} \leq \mathrm{T}_{\mathrm{A}} \leq \mathrm{MAX}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$, LV Open	3.0		10.0	V
$\mathrm{V}_{\text {L2 }}^{+}$	Supply Voltage Range - Lo (D_{X} in circuit)	$\mathrm{MIN} \leq \mathrm{T}_{A} \leq M A X, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$, LV to GROUND	1.5		3.5	V

OPERATING CHARACTERISTICS
$V^{+}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{C}_{\mathrm{OSC}}=0$, Test Circuit Figure 3 (unless otherwise specified) (Continued)

Symbol	Parameter	Test Conditions	Limits			Units
			Min	Typ	Max	
Rout	Output Source Resistance	$\mathrm{l}_{\mathrm{OUT}}=20 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		55	100	Ω
		lout $=20 \mathrm{~mA}, 0^{\circ} \mathrm{C} \leq T_{A} \leq+70^{\circ} \mathrm{C}$			120	Ω
		$\mathrm{l}_{\text {OUT }}=20 \mathrm{~mA},-55^{\circ} \mathrm{C} \leq \mathrm{T}_{A} \leq+125^{\circ} \mathrm{C}$ (Note 3)			150	Ω
		$\begin{aligned} & V^{+}=2 \mathrm{~V}, \text { lout }=3 \mathrm{~mA}, \mathrm{LV} \text { to GROUND } \\ & 0^{\circ} \mathrm{C} \leq T_{A} \leq+70^{\circ} \mathrm{C} \\ & \hline \end{aligned}$			300	Ω
		$\begin{aligned} & V^{+}=2 V, \text { louT }=3 \mathrm{~mA}, \text { LV to GROUND, } \\ & -55^{\circ} \mathrm{C} \leq T_{A} \leq+125^{\circ} \mathrm{C}, \mathrm{D}_{\mathrm{X}} \text { in circuit (Note 3) } \end{aligned}$			400	Ω
fosc	Oscillator Frequency			10		kHz
$\mathrm{P}_{\text {Ef }}$	Power Efficiency	$\mathrm{R}_{\mathrm{L}}=5 \mathrm{k} \Omega$	95	98		\%
Vout Ef	Voltage Conversion Efficiency	$\mathrm{R}_{\mathrm{L}}=\infty$	97	99.9		\%
$\mathrm{Z}_{\text {OSC }}$	Oscillator Impedance	$\mathrm{V}+=2$ Volts		1.0		$\mathrm{M} \Omega$
		$\mathrm{V}=5$ Volts		100		$\mathrm{k} \Omega$

Notes: 1. Connecting any input terminal to voltages greater than $V+$ or less than GROUND may cause destructive latchup. It is recommended that no inputs from sources operating from external supplies be applied prior to "power up" of the ICL7660.
2. Derate linearly above $50^{\circ} \mathrm{C}$ by $5.5 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.
3. ICL.7660M only.

TYPICAL PERFORMANCE CHARACTERISTICS (Circuit of Figure 3)

TYPICAL PERFORMANCE CHARACTERISTICS (Circuit of Figure 3) (Continued)

POWER CONVERSION EFFICIENCY
AS A FUNCTION OF OSC.
FREQUENCY

0319-11
OUTPUT VOLTAGE AS A FUNCTION OF OUTPUT CURRENT

0319-14

FREQUENCY OF OSCILLATION AS A FUNCTION OF EXTERNAL

0319-12
SUPPLY CURRENT \& POWER
CONVERSION EFFICIENCY AS A FUNCTION OF LOAD CURRENT

0319-15

UNLOADED OSCILLATOR FREQUENCY
AS A FUNCTION OF TEMPERATURE

0319-13
OUTPUT VOLTAGE AS A FUNCTION OF OUTPUT CURRENT

0319-16

SUPPLY CURRENT \& POWER CONVERSION EFFICIENCY AS A FUNCTION OF LOAD CURRENT

NOTE 4. These curves include in the supply current that current fed directly into the load R_{L} from V^{+}(see Figure 3). Thus, approximately half the supply current goes directly to the positive side of the load, and the other half, through the ICL7660, to the negative side of the load. Ideally, $\mathrm{V}_{\mathrm{OUT}} \cong 2 \mathrm{~V}_{I N}$, $I_{S} \cong 2 I_{L}$, so $V_{I N} \bullet I_{S} \cong V_{O U T} \bullet I_{L}$.

0319-17

[^145]

0319-18
NOTES: 1. For large values of $C_{\text {OSC }}(>1000 p F)$ the values of C_{1} and C_{2} should be increased to $100 \mu \mathrm{~F}$.
2. D_{X} is required for supply voltages greater than 6.5 V @ $-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}$; refer to performance curves for additional information.
Figure 3: ICL7660 Test Circuit

DETAILED DESCRIPTION

The ICL7660 contains all the necessary circuitry to complete a negative voltage converter, with the exception of 2 external capacitors which may be inexpensive $10 \mu \mathrm{~F}$ polarized electrolytic types. The mode of operation of the device may be best understood by considering Figure 4, which shows an idealized negative voltage converter. Capacitor C_{1} is charged to a voltage, $\mathrm{V}+$, for the half cycle when switches S_{1} and S_{3} are closed. (Note: Switches S_{2} and S_{4} are open during this half cycle.) During the second half cycle of operation, switches S_{2} and S_{4} are closed, with S_{1} and S_{3} open, thereby shifting capacitor C_{1} negatively by V^{+} volts. Charge is then transferred from C_{1} to C_{2} such that the voltage on C_{2} is exactly V^{+}, assuming ideal switches and no load on C_{2}. The ICL7660 approaches this ideal situation more closely than existing non-mechanical circuits.

In the ICL7660, the 4 switches of Figure 4 are MOS power switches; S_{1} is a P-channel device and $S_{2}, S_{3} \& S_{4}$ are N -channel devices. The main difficulty with this approach is that in integrating the switches, the substrates of $S_{3} \& S_{4}$ must always remain reverse biased with respect to their sources, but not so much as to degrade their "ON" resistances. In addition, at circuit startup, and under output short circuit conditions ($\mathrm{V}_{\text {OUT }}=\mathrm{V}^{+}$), the output voltage must be sensed and the substrate bias adjusted accordingly. Failure to accomplish this would result in high power losses and probable device latchup.
This problem is eliminated in the ICL7660 by a logic network which senses the output voltage (VOUT) together with the level translators, and switches the substrates of $S_{3} \& S_{4}$ to the correct level to maintain necessary reverse bias.

The voltage regulator portion of the ICL7660 is an integral part of the anti-latchup circuitry, however its inherent voltage drop can degrade operation at low voltages. Therefore, to improve low voltage operation the "LV" pin should be connected to GROUND, disabling the regulator. For supply voltages greater than 3.5 volts the LV terminal must be left open to insure latchup proof operation, and prevent device damage.

Figure 4: Idealized Negative Voltage Converter

THEORETICAL POWER EFFICIENCY CONSIDERATIONS

In theory a voltage converter can approach 100\% efficiency if certain conditions are met:

A The drive circuitry consumes minimal power.
B The output switches have extremely low ON resistance and virtually no offset.
C The impedances of the pump and reservoir capacitors are negligible at the pump frequency.
The ICL7660 approaches these conditions for negative voltage conversion if large values of C_{1} and C_{2} are used. ENERGY IS LOST ONLY IN THE TRANSFER OF Charge between capacitors if a change in VOLTAGE OCCURS. The energy lost is defined by:

$$
E=1 / 2 C_{1}\left(V_{1}{ }^{2}-V_{2} 2\right)
$$

where V_{1} and V_{2} are the voltages on C_{1} during the pump and transfer cycles. If the impedances of C_{1} and C_{2} are relatively high at the pump frequency (refer to Figure 4) compared to the value of R_{L}, there will be a substantial difference in the voltages V_{1} and V_{2}. Therefore it is not only desirable to make C_{2} as large as possible to eliminate output voltage ripple, but also to employ a correspondingly large value for C_{1} in order to achieve maximum efficiency of operation.

DO'S AND DON'TS

1. Do not exceed maximum supply voltages.
2. Do not connect LV terminal to GROUND for supply voltages greater than 3.5 volts.
3. Do not short circuit the output to $\mathrm{V}+$ supply for supply voltages above 5.5 volts for extended periods, however, transient conditions including startup are okay.
4. When using polarized capacitors, the + terminal of C_{1} must be connected to pin 2 of the ICL7660 and the + terminal of C_{2} must be connected to GROUND.
5. Add diode D_{X} as shown in Figure 3 for high-voltage, elevated temperature applications.
6. Add capacitor ($\sim 0.1 \mu \mathrm{~F}$, disc) from pin 8 to ground to limit rate of rise of input voltage to approximately $2 \mathrm{~V} / \mu \mathrm{s}$.

Figure 6: Paralleling Devices

0319-22
Figure 7: Cascading Devices for Increased Output Voltage

CONSIDERATIONS FOR HIGH VOLTAGE \& ELEVATED TEMPERATURE

The ICL7660 will operate efficiently over its specified temperature range with only 2 external passive components (storage \& pump capacitors), provided the operating supply voltage does not exceed 6.5 volts at $+70^{\circ} \mathrm{C}$ and 5.0 volts at $+125^{\circ} \mathrm{C}$. Exceeding these maximums at the temperatures indicated may result in destructive latchup of the ICL7660. (Ref: Graph "Operating Voltage Vs. Temperature")

Operation at supply voltages of up to 10.0 volts over the full temperature range without danger of latchup can be achieved by adding a general purpose diode in series with the ICL7660 output, as shown by " D_{x} " in the circuit diagrams. The effect of this diode on overall circuit performance is the reduction of output voltage by one diode drop (approximately 0.6 volts)

TYPICAL APPLICATIONS

Simple Negative Voltage Converter

The majority of applications will undoubtedly utilize the ICL7660 for generation of negative supply voltages. Figure 5 shows typical connections to provide a negative supply where a positive supply of +1.5 V to +10.0 volts is available. Keep in mind that pin 6 (LV) is tied to the supply negative (GND) for supply voltages below 3.5 volts, and that diode Dx_{X} must be included for proper operation at higher voltages and/or elevated temperatures.

The output characteristics of the circuit in Figure 5 are those of a nearly ideal voltage source in series with 55 ohms. Thus for a load current of -10 mA and a supply voltage of +5 volts, the output voltage will be -4.3 volts. The dynamic output impedance due to the capacitor impedances is approximately $1 / \omega C$, where:

$$
\begin{gathered}
C=C_{1}=C_{2} \\
\text { which gives } \frac{1}{\omega \mathrm{C}}=\frac{1}{2 \pi f_{\mathrm{PUMP}} \times 10^{-5}} \cong 3 \mathrm{ohms}
\end{gathered}
$$

for $\mathrm{C}=10 \mu \mathrm{~F}$ and $\mathrm{f}_{\text {PUMP }}=5 \mathrm{kHz}$ ($1 / 2$ of oscillator frequency)

Paralleling Devices

Any number of ICL7660 voltage converters may be paralleled to reduce output resistance. The reservoir capacitor, C_{2}, serves all devices while each device requires its own pump capacitor, C_{1}. The resultant output resistance would be approximately:

$$
R_{\text {OUT }}=\frac{R_{\text {OUT }} \text { (of ICL7660) }}{n \text { (number of devices) }}
$$

Cascading Devices

The ICL7660 may be cascaded as shown to produce larger negative multiplication of the initial supply voltage. However, due to the finite efficiency of each device, the practical limit is 10 devices for light loads. The output voltage is defined by:

$$
V_{\text {OUT }}=-n\left(V_{\text {IN }}\right),
$$

where n is an integer representing the number of devices cascaded. The resulting output resistance would be approximately the weighted sum of the individual ICL7660 ROUT values.

Changing the ICL7660 Oscillator Frequency

It may be desirable in some applications, due to noise or other considerations, to increase the oscillator frequency. This is achieved by overdriving the oscillator from an external clock, as shown in Figure 8. In order to prevent possible device latchup, a $100 \mathrm{k} \Omega$ resistor must be used in series with the clock output. In a situation where the designer has generated the external clock frequency using TTL logic, the addition of a $10 \mathrm{k} \Omega$ pullup resistor to $\mathrm{V}+$ supply is required. Note that the pump frequency with external clocking, as with internal clocking, will be $1 / 2$ of the clock frequency. Output transitions occur on the positive-going edge of the clock.

It is also possible to increase the conversion efficiency of the ICL7660 at low load levels by lowering the oscillator frequency. This reduces the switching losses, and is shown in Figure 9. However, lowering the oscillator frequency will cause an undesirable increase in the impedance of the pump $\left(\mathrm{C}_{1}\right)$ and reservoir $\left(\mathrm{C}_{2}\right)$ capacitors; this is overcome by increasing the values of C_{1} and C_{2} by the same factor that the frequency has been reduced. For example, the addition of a 100 pF capacitor between pin 7 (Osc) and $\mathrm{V}+$ will lower the oscillator frequency to 1 kHz from its nominal frequency of 10 kHz (a multiple of 10), and thereby necessitate a corresponding increase in the value of C_{1} and C_{2} (from $10 \mu \mathrm{~F}$ to $100 \mu \mathrm{~F}$).

0319-24
Figure 9: Lowering Oscillator Frequency

[^146]

Figure 10: Positive Voltage Doubler

Positive Voltage Doubling

The ICL7660 may be employed to achieve positive voltage doubling using the circuit shown in Figure 10. In this application, the pump inverter switches of the ICL7660 are used to charge C_{1} to a voltage level of $\mathrm{V}^{+}-\mathrm{V}_{\mathrm{F}}$ (where V^{+} is the supply voltage and V_{F} is the forward voltage drop of diode D_{1}). On the transfer cycle, the voltage on C_{1} plus the supply voltage $\left(\mathrm{V}^{+}\right)$is applied through diode D_{2} to capacitor C_{2}. The voltage thus created on C_{2} becomes $\left(2 V^{+}\right)-\left(2 V_{F}\right)$ or twice the supply voltage minus the combined forward voltage drops of diodes D_{1} and D_{2}.

The source impedance of the output (VOUT) will depend on the output current, but for $\mathrm{V}+=5$ volts and an output current of 10 mA it will be approximately 60 ohms.

Combined Negative Voltage Conversion and Positive Supply Doubling

Figure 11 combines the functions shown in Figures 5 and 10 to provide negative voltage conversion and positive voltage doubling simultaneously. This approach would be, for example, suitable for generating +9 volts and -5 volts from an existing +5 volt supply. In this instance capacitors C_{1} and C_{3} perform the pump and reservoir functions respectively for the generation of the negative voltage, while capacitors C_{2} and C_{4} are pump and reservoir respectively for the doubled positive voltage. There is a penalty in this configuration which combines both functions, however, in that the source impedances of the generated supplies will be somewhat higher due to the finite impedance of the common charge pump driver at pin 2 of the device.

[^147]
Regulated Negative Voltage Supply

In some cases, the output impedance of the ICL7660 can be a problem, particularly if the load current varies substantially. The circuit of Figure 13 can be used to overcome this by controlling the input voltage, via an ICL7611 low-power CMOS op amp, in such a way as to maintain a nearly constant output voltage. Direct feedback is inadvisable, since the ICL7660's output does not respond instantaneously to change in input, but only after the switching delay. The circuit shown supplies enough delay to accommodate the 7660, while maintaining adequate feedback. An increase in pump and storage capacitors is desirable, and the values shown provides an output impedance of less than 5Ω to a load of 10 mA .

0319-28
Figure 13: Regulating the Output Voltage

OTHER APPLICATIONS

Further information on the operation and use of the ICL7660 may be found in A051 "Principals and Applications of the ICL7660 CMOS Voltage Converter'".

[^148]
GENERAL DESCRIPTION

The ICL7660S Super Voltage Converter is a monolithic CMOS voltage conversion IC that guarantees significant performance advantages over other similar devices. It is a direct replacement for the industry-standard ICL7660 offering an extended operating supply voltage range up to 12 V , lower supply current, and ESD protection exceeding 2000 volts. No external diode is needed for the ICL7660S. In addition, a Frequency Boost pin has been incorporated to enable the user to achieve lower output impedance despite using smaller capacitors. All improvements are highlighted in bold italics in the Electrical Characteristics section. Critical parameters are guaranteed over the entire commercial, industrial and military temperature ranges.
The ICL7660S performs supply voltage conversion from positive to negative for an input range of 1.5 V to 12 V , resulting in complementary output voltages of -1.5 V to -12 V . Only 2 non-critical external capacitors are needed for the charge pump and charge reservoir functions. The ICL7660S can be connected to function as a voltage doubler and will generate up to 22.8 V with a 12 V input. It can also be used as a voltage multiplier or voltage divider.
The chip contains a series DC power supply regulator, RC oscillator, voltage level translator, and four output power MOS switches. The oscillator, when unloaded, oscillates at a nominal frequency of 10 kHz for an input supply voltage of 5.0 volts. This frequency can be lowered by the addition of an external capacitor to the "OSC" terminal, or the oscillator may be over-driven by an external clock.
The "LV" terminal may be tied to GROUND to bypass the internal series regulator and improve low voltage (LV) operation. At medium to high voltages (3.5 V to 12 V), the LV pin is left floating to prevent device latchup.

FEATURES

- Guaranteed Lower Max Supply Current for All Temperature Ranges
- Guaranteed Wider Operating Voltage Range -1.5 V to 12 V
- No External Diode Over Full Temperature and Voltage Range
- Boost Pin (Pin 1) for Higher Switching Frequency
- Guaranteed Minimum Power Efficiency of 96\%
- Improved Minimum Open Circuit Voltage Conversion Efficiency of 99\%
- Enhanced ESD Protection > 2000V
- Improved SCR Latchup Protection
- Simple Conversion of +5 V Logic Supply to $\pm 5 \mathrm{~V}$ Supplies
- Simple Voltage Multiplication $\mathrm{V}_{\text {OUT }}=(-) \mathrm{n}_{\mathrm{IN}}$
- Easy to Use-Requires Only 2 External Non-Critical Passive Components
- Improved Direct Replacement for Industry-Standard ICL7660 and Other Second-Source Devices

APPLICATIONS

- Simple Conversion of +5 V to $\pm 5 \mathrm{~V}$ Supplies
- Voltage Multiplication $\mathrm{V}_{\text {OUT }}= \pm \mathrm{nV}_{\mathbf{I N}}$
- Negative Supplies for Data Acquisition Systems \& Instrumentation
- RS232 Power Supplies
- Supply Splitter, $\mathbf{V}_{\text {OUT }}= \pm \mathbf{V}_{\mathbf{S}} / \mathbf{2}$

ORDERING INFORMATION

Part Number	Temp. Range	Package
ICL7660SCBA	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	8-Pin SOIC
ICL7660SCPA	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	8-Pin Minidip
ICL7660SIBA	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	8-Pin SOIC
ICL7660SCTV	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	TO-99
ICL7660SIPA	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8-Pin Minidip
ICL7660SITV	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	TO-99
ICL7660SMTV*	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	TO-99

*Add $/ 883 \mathrm{~B}$ to part number if 883 B processing is required.

(BA)

0088-2
(TV)

0088-3

Figure 1: Pin Configurations
ABSOLUTE MAXIMUM RATINGS
Supply Voltage .. 13.0 V
LV and OSC Input Voltage
$\quad($ Note 1$) \ldots \ldots \ldots . .0 .3 \mathrm{~V}$ to $(\mathrm{V}++0.3 \mathrm{~V})$ for $\mathrm{V}+<5.5 \mathrm{~V}$
$\quad \ldots \ldots \ldots \ldots\left(\mathrm{~V}^{+}-5.5 \mathrm{~V}\right)$ to $\left(\mathrm{V}^{+}+0.3 \mathrm{~V}\right)$ for $\mathrm{V}^{+}>5.5 \mathrm{~V}$
Current into LV (Note 1) $20 \mu \mathrm{~A}$ for $\mathrm{V}^{+}>3.5 \mathrm{~V}$
Output Short Duration (VSUPPLY $\leq 5.5 \mathrm{~V}$) Continuous
Power Dissipation (Note 2)
ICL7660SCTV. 500 mW
ICL7660SCPA 300 mW
ICL7660SCBA 300 mW
ICL7660SITV 500 mW
ICL7660SIPA 300 mW
ICL7660SIBA 300 mW
ICL7660SMTV 500 mW
Operating Temperature Range

Storage Temperature Range $\ldots \ldots \ldots . .-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature
(Soldering, 10 sec) . $300^{\circ} \mathrm{C}$

NOTE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

0088-4
Figure 2: Functional Diagram

ELECTRICAL CHARACTERISTICS
$\mathrm{V}^{+}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{OSC}=$ Free running, Test Circuit Figure 3 (unless otherwise specified)

Symbol	Parameter	Test Conditions	Limits			Units
			Min	Typ	Max	
$1+$	Supply Current (Note 3)	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=\infty, 25^{\circ} \mathrm{C} \\ & 0^{\circ} \mathrm{C}<T_{A}<+70^{\circ} \mathrm{C} \\ &-25^{\circ} \mathrm{C}<T_{A}<+85^{\circ} \mathrm{C} \\ &-55^{\circ} \mathrm{C}<T_{A}<+125^{\circ} \mathrm{C} \end{aligned}$		80	$\begin{aligned} & 160 \\ & 180 \\ & 180 \\ & 200 \\ & \hline \end{aligned}$	$\mu \mathrm{A}$
V_{H}^{+}	Supply Voltage Range-Hi (Note 4)	$\begin{aligned} & R_{\mathrm{L}}=10 \mathrm{~K}, \mathrm{LV} \text { Open } \\ & T_{\min }<T_{A}<T_{\max } \end{aligned}$	3.0		12	V
$\mathrm{V}_{\mathrm{L}}^{+}$	Supply Voltage Range-Lo	$\begin{aligned} & R_{L}=10 \mathrm{~K}, \mathrm{LV} \text { to GROUND } \\ & \mathrm{T}_{\min }<\mathrm{T}_{\mathrm{A}}<\mathrm{T}_{\text {max }} \end{aligned}$	1.5		3.5	V
$R_{\text {OUT }}$	Output Source Resistance	lout $=20 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		60	100	Ω
		I ${ }_{\text {OUT }}=20 \mathrm{~mA}, 0^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<+70^{\circ} \mathrm{C}$			120	
		IOUT $=20 \mathrm{~mA},-25^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<+85^{\circ} \mathrm{C}$			120	
		IOUT $=20 \mathrm{~mA},-55^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<+125^{\circ} \mathrm{C}$			150	
		$\begin{aligned} & \mathrm{l} \text { OUT }=3 \mathrm{~mA}, \mathrm{~V}+=2 \mathrm{~V}, \mathrm{LV}=\mathrm{GND}, \\ & 0^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<+70^{\circ} \mathrm{C} \end{aligned}$			250	
		$\begin{aligned} & \text { lout }=3 \mathrm{~mA}, \mathrm{~V}+=2 \mathrm{~V}, \mathrm{LV}=\mathrm{GND}, \\ & -25^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<+85^{\circ} \mathrm{C} \end{aligned}$			300	
		$\begin{aligned} & \text { lout }=3 \mathrm{~mA}, \mathrm{~V}+=2 \mathrm{~V}, \mathrm{LV}=\mathrm{GND}, \\ & -55^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<+125^{\circ} \mathrm{C} \end{aligned}$			400	
fosc	Oscillator Frequency	$\begin{gathered} \text { COsC }=0, \text { Pin } 1 \text { Open or GND } \\ \text { Pin } 1=V^{+} \end{gathered}$	5	$\begin{aligned} & 10 \\ & 35 \\ & \hline \end{aligned}$		kHz
PEff	Power Efficiency	$\begin{aligned} & R_{L}=5 \mathrm{k} \Omega \\ & T_{\min }<T_{A}<T_{\max } \end{aligned}$	$\begin{aligned} & 96 \\ & 95 \end{aligned}$	$\begin{aligned} & 98 \\ & 97 \end{aligned}$		\%
Vout Eff	Voltage Conversion Efficiency	$\mathrm{R}_{\mathrm{L}}=\infty$	99	99.9		\%
ZOSC	Oscillator Impedance	$\mathrm{V}+=2 \mathrm{~V}$		1		$\mathrm{M} \Omega$
		$\mathrm{V}+=5 \mathrm{~V}$		100		k Ω

NOTE 1: Connecting any terminal to voltages greater than V^{+}or less than GROUND may cause destructive latchup. It is recommended that no inputs from sources operating from external supplies be applied prior to "power up" of ICL7660s.

2: Derate linearly above $50^{\circ} \mathrm{C}$ by $5.5 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.
3: In the test circuit, there is no external capacitor applied to pin 7 . However, when the device is plugged into a test socket, there is usually a very small but finite stray capacitance present, of the order of 5 pF .
4: The Intersil ICL7660S can operate without an external diode over the full temperature and voltage range. This device will function in existing designs which incorporate an external diode with no degradation in overall circuit performance.

5: All significant improvements over the industry-standard ICL7660 are highlighted in bold itallcs.

TYPICAL PERFORMAN OPERATINGVLLTAGE AAA FUNCTINOFTEMPERATUR

POWER CONVERSION EFFICIENCY AS A FUNCTION OF OSC. FREQUENCY

OUTPUT SOURCE RESISTANCE AS A FUNCTION OF SUPPLY VOLTAGE

0088-6

FREQUENCY OF OSCILLATION AS A FUNCTION OF EXTERNAL OSC. CAPACITANCE

OUTPUT SOURCE RESISTANCE AS A FUNCTION OF TEMPERATURE

0088-7

TYPICAL PERFORMANCE CHARACTERISTICS (Circuit of Figure 3) (Continued)

OUTPUT VOLTAGE AS A
FUNCTION OF OUTPUT CURRENT

SUPPLY CURRENT \& POWER CONVERSION EFFICIENCY AS A FUNCTION OF LOAD CURRENT

OUTPUT VOLTAGE AS A FUNCTION OF OUTPUT CURRENT

SUPPLY CURRENT \& POWER CONVERSION EFFICIENCY AS A FUNCTION OF LOAD CURRENT

 AS A FUNCTION OF OSCILLATOR FREQUENCY

NOTE 4: These curves include in the supply current that current fed directly into the load R_{L} from V^{+}(see Figure 3). Thus, approximately half the supply current goes directly to the positive side of the load, and the other half, through the ICL7660S, to the negative side of the load. Ideally, $\mathrm{V}_{\mathrm{OUT}} \cong 2 \mathrm{~V}_{\mathrm{IN}}, I_{S} \cong 2 I_{\mathrm{L}}$, so $V_{\text {IN }} \bullet I_{S} \cong V_{\text {OUT }} \bullet I_{\text {L }}$.

NOTE 1: For large values of $C_{\text {OsC }}(>1000 \mathrm{pF})$ the values of C_{1} and C_{2} should be increased to $100 \mu \mathrm{~F}$.

Figure 3: ICL7660S Test Circuit

DETAILED DESCRIPTION

The ICL7660S contains all the necessary circuitry to complete a negative voltage converter, with the exception of 2 external capacitors which may be inexpensive $10 \mu \mathrm{~F}$ polarized electrolytic types. The mode of operation of the device may be best understood by considering Figure 4, which shows an idealized negative voltage converter. Capacitor C_{1} is charged to a voltage, $\mathrm{V}+$, for the half cycle when switches S_{1} and S_{3} are closed. (Note: Switches S_{2} and S_{4} are open during this half cycle.) During the second half cycle of operation, switches S_{2} and S_{4} are closed, with S_{1} and S_{3} open, thereby shifting capacitor C_{1} negatively by V^{+} volts. Charge is then transferred from C_{1} to C_{2} such that the voltage on C_{2} is exactly V^{+}, assuming ideal switches and no load on C_{2}. The ICL7660S approaches this ideal situation more closely than existing non-mechanical circuits.

In the ICL7660S, the 4 switches of Figure 4 are MOS power switches; S_{1} is a P-channel device and $S_{2}, S_{3} \& S_{4}$ are N -channel devices. The main difficulty with this approach is that in integrating the switches, the substrates of $S_{3} \& S_{4}$ must always remain reverse biased with respect to their sources, but not so much as to degrade their "ON" resistances. In addition, at circuit startup, and under output short circuit conditions ($\mathrm{V}_{\text {OUT }}=\mathrm{V}^{+}$), the output voltage must be sensed and the substrate bias adjusted accordingly. Failure to accomplish this would result in high power losses and probable device latchup.

This problem is eliminated in the ICL7660S by a logic network which senses the output voltage ($\mathrm{V}_{\text {OUT }}$) together with the level translators, and switches the substrates of $S_{3} \& S_{4}$ to the correct level to maintain necessary reverse bias.

The voltage regulator portion of the ICL7660S is an integral part of the anti-latchup circuitry, however its inherent voltage drop can degrade operation at low voltages. Therefore, to improve low voltage operation the "LV" pin should be connected to GROUND, disabling the regulator. For supply voltages greater than 3.5 volts the LV terminal must be left open to insure latchup proof operation, and prevent device damage.

0088-17
Figure 4: Idealized Negative Voltage Converter

THEORETICAL POWER EFFICIENCY CONSIDERATIONS

In theory a voltage converter can approach 100\% efficiency if certain conditions are met:
A The drive circuitry consumes minimal power.
B The output switches have extremely low ON resistance and virtually no offset.
C The impedances of the pump and reservoir capacitors are negligible at the pump frequency.
The ICL7660S approaches these conditions for negative voltage conversion if large values of C_{1} and C_{2} are used. ENERGY IS LOST ONLY IN THE TRANSFER OF CHARGE BETWEEN CAPACITORS IF A CHANGE IN VOLTAGE OCCURS. The energy lost is defined by:

$$
E=1 / 2 C_{1}\left(V_{1} 2-V_{2} 2\right)
$$

where V_{1} and V_{2} are the voltages on C_{1} during the pump and transfer cycles. If the impedances of C_{1} and C_{2} are relatively high at the pump frequency (refer to Figure 4) compared to the value of R_{L}, there will be a substantial difference in the voltages V_{1} and V_{2}. Therefore it is not only desirable to make C_{2} as large as possible to eliminate output voltage ripple, but also to employ a correspondingly large value for C_{1} in order to achieve maximum efficiency of operation.

DO'S AND DON'TS

1. Do not exceed maximum supply voltages.
2. Do not connect LV terminal to GROUND for supply voltages greater than 3.5 volts.
3. Do not short circuit the output to V^{+}supply for supply voltages above 5.5 volts for extended periods, however, transient conditions including startup are okay.
4. When using polarized capacitors, the + terminal of C_{1} must be connected to pin 2 of the ICL7660S and the + terminal of C_{2} must be connected to GROUND.

[^149]

0088-18
*NOTE 1: $\mathrm{V}_{\text {OUT }}=-\mathrm{V}+$ for $1.5 \mathrm{~V} \leq \mathrm{V}^{+} \leq 12 \mathrm{~V}$.
Figure 5: Simple Negative Converter

0088-19
Figure 6: Paralleling Devices

0088-20
*NOTE 1: $\mathrm{V}_{\text {OUT }}=-\mathrm{nV}+$ for $1.5 \mathrm{~V} \leq \mathrm{V}^{+} \leq 12 \mathrm{~V}$.
Figure 7: Cascading Devices for Increased Output Voltage

TYPICAL APPLICATIONS

Simple Negative Voltage Converter

The majority of applications will undoubtedly utilize the ICL7660S for generation of negative supply voltages. Figure 5 shows typical connections to provide a negative supply where a positive supply of +1.5 V to +12 V is available. Keep in mind that pin $6(\mathrm{LV})$ is tied to the supply negative (GND) for supply voltages below 3.5 volts.

The output characteristics of the circuit in Figure 5 are those of a nearly ideal voltage source in series with 55 ohms. Thus for a load current of -10 mA and a supply voltage of +5 volts, the output voltage will be -4.3 volts. The dynamic output impedance due to the capacitor impedances is approximately $1 / \omega \mathrm{C}$, where:

$$
\begin{gathered}
C=C_{1}=C_{2} \\
\text { which gives } \frac{1}{\omega \mathrm{C}}=\frac{1}{2 \pi f_{P U M P} \times 10^{-5}} \cong 3 \text { ohms }
\end{gathered}
$$

for $\mathrm{C}=10 \mu \mathrm{~F}$ and $\mathrm{f}_{\text {PUMP }}=5 \mathrm{kHz}$ ($1 / 2$ of oscillator frequency)

Paralleling Devices

Any number of ICL7660S voltage converters may be paralleled to reduce output resistance. The reservoir capacitor, C_{2}, serves all devices while each device requires its own pump capacitor, C_{1}. The resultant output resistance would be approximately:

$$
R_{\text {OUT }}=\frac{R_{\text {OUT }}(\text { of ICL7660S) }}{n \text { (number of devices) }}
$$

Cascading Devices

The ICL7660S may be cascaded as shown to produce larger negative multiplication of the initial supply voltage. However, due to the finite efficiency of each device, the practical limit is 10 devices for light loads. The output voltage is defined by:

$$
\mathrm{V}_{\text {OUT }}=-n\left(V_{\text {IN }}\right)
$$

where n is an integer representing the number of devices cascaded. The resulting output resistance would be approximately the weighted sum of the individual ICL7660S ROUT values.

Changing the ICL7660S Oscillator Frequency

It may be desirable in some applications, due to noise or other considerations, to alter the oscillator frequency. This can be achieved simply by one of several methods described below.

By connecting the Boost Pin (Pin 1) to V^{+}, the oscillator charge and discharge current is increased and, hence, the oscillator frequency is increased by approximately $31 / 2$ times. The result is a decrease in the output impedance and ripple. This is of major importance for surface-mount applications where capacitor size and cost are critical. Smaller capacitors, e.g. 0.1 $\mu \mathrm{F}$, can be used in conjunction with the Boost Pin in order to achieve similar output currents compared to the device free running with $\mathrm{C}_{1}=\mathrm{C}_{2}=10 \mu \mathrm{~F}$ or $100 \mu \mathrm{~F}$. (Refer to graph of Output Source Resistance as a Function of Oscillator Frequency).

Increasing the oscillator frequency can also be achieved by overdriving the oscillator from an external clock, as shown in Figure 8. In order to prevent device latchup, a $100 \mathrm{k} \Omega$ resistor must be used in series with the clock output. In a situation where the designer has generated the external clock frequency using TTL logic, the addition of a $10 \mathrm{k} \Omega$ pullup resistor to $\mathrm{V}+$ supply is required. Note that the pump frequency with external clocking, as with internal clocking, will be $1 / 2$ of the clock frequency. Output transitions occur on the positive-going edge of the clock.

It is also possible to increase the conversion efficiency of the ICL7660S at low load levels by lowering the oscillator frequency. This reduces the switching losses, and is shown in Figure 9. However, lowering the oscillator frequency will cause an undesirable increase in the impedance of the pump $\left(\mathrm{C}_{1}\right)$ and reservoir $\left(\mathrm{C}_{2}\right)$ capacitors; this is overcome by increasing the values of C_{1} and C_{2} by the same factor that the frequency has been reduced. For example, the addition of a 100 pF capacitor between pin 7 (Osc) and V^{+}will lower the oscillator frequency to 1 kHz from its nominal frequency of 10 kHz (a multiple of 10), and thereby necessitate a corresponding increase in the value of C_{1} and C_{2} (from $10 \mu \mathrm{~F}$ to $100 \mu \mathrm{~F}$).

Figure 9: Lowering Oscillator Frequency

NOTE: D_{1} \& D_{2} can be any suitable diode.
Figure 10: Positive Voltage Doubler

Positive Voltage Doubling

The ICL7660S may be employed to achieve positive voltage doubling using the circuit shown in Figure 10. In this application, the pump inverter switches of the ICL7660S are used to charge C_{1} to a voltage level of $\mathrm{V}^{+}-\mathrm{V}_{\mathrm{F}}$ (where V^{+} is the supply voltage and V_{F} is the forward voltage drop of diode D_{1}). On the transfer cycle, the voltage on C_{1} plus the supply voltage $\left(\mathrm{V}^{+}\right)$is applied through diode D_{2} to capacitor C_{2}. The voltage thus created on C_{2} becomes $\left(2 V^{+}\right)-\left(2 V_{F}\right)$ or twice the supply voltage minus the combined forward voltage drops of diodes D_{1} and D_{2}.

The source impedance of the output (VOUT) will depend on the output current, but for $\mathrm{V}+=5$ volts and an output current of 10 mA it will be approximately 60 ohms.

Combined Negative Voltage Conversion and Positive Supply Doubling

Figure 11 combines the functions shown in Figures 5 and 10 to provide negative voltage conversion and positive voltage doubling simultaneously. This approach would be, for example, suitable for generating +9 volts and -5 volts from an existing +5 volt supply. In this instance capacitors C_{1} and C_{3} perform the pump and reservoir functions respectively for the generation of the negative voltage, while capacitors C_{2} and C_{4} are pump and reservoir respectively for the doubled positive voltage. There is a penalty in this configuration which combines both functions, however, in that the source impedances of the generated supplies will be somewhat higher due to the finite impedance of the common charge pump driver at pin 2 of the device.

Figure 11: Combined Negative Voltage Converter and Positive Doubler

Voltage Splitting

The bidirectional characteristics can also be used to split a higher supply in half, as shown in Figure 12. The combined load will be evenly shared between the two sides, and a high value resistor to the LV pin ensures start-up. Because the switches share the load in parallel, the output impedance is much lower than in the standard circuits, and higher currents can be drawn from the device. By using this circuit, and then the circuit of Figure $7,+15 \mathrm{~V}$ can be converted (via +7.5 , and -7.5) to a nominal -15 V , although with rather high series output resistance $(\sim 250 \Omega)$.

[^150]
Regulated Negative Voltage Supply

In some cases, the output impedance of the ICL7660S can be a problem, particularly if the load current varies substantially. The circuit of Figure 13 can be used to overcome this by controlling the input voltage, via an ICL7611 lowpower CMOS op amp, in such a way as to maintain a nearly constant output voltage. Direct feedback is inadvisable, since the ICL7660S's output does not respond instantaneously to change in input, but only after the switching delay. The circuit shown supplies enough delay to accommo-
date the 7660S, while maintaining adequate feedback. An increase in pump and storage capacitors is desirable, and the values shown provides an output impedance of less than 5Ω to a load of 10 mA .

OTHER APPLICATIONS

Further information on the operation and use of the ICL7660S may be found in A051 "Principals and Applications of the ICL7660 CMOS Voltage Converter".

0088-26
Figure 13: Regulating the Output Voltage

[^151]
ICL7662
 CMOS Voltage Converter
 GENERAL DESCRIPTION

The Intersil ICL7662 is a monolithic high-voltage CMOS power supply circuit which offers unique performance advantages over previously available devices. The ICL7662 performs supply voltage conversion from positive to negative for an input range of +4.5 V to +20.0 V , resulting in complementary output voltages of -4.5 V to -20 V . Only 2 non-critical external capacitors are needed for the charge pump and charge reservoir functions. The ICL7662 can also function as a voltage doubler, and will generate output voltages up to +38.6 V with a +20 V input.
Contained on chip are a series DC power supply regulator, RC oscillator, voltage level translator, four output power MOS switches. A unique logic element senses the most negative voltage in the device and ensures that the output N -channel switch source-substrate junctions are not forward biased. This assures latchup free operation.
The oscillator, when unloaded, oscillates at a nominal frequency of 10 kHz for an input supply voltage of 15.0 volts. This frequency can be lowered by the addition of an external capacitor to the "OSC" terminal, or the oscillator may be overdriven by an external clock.
The "LV" terminal may be tied to GROUND to bypass the internal series regulator and improve low voltage (LV) operation. At medium to high voltages (+10 to +20 V), the LV pin is left floating to prevent device latchup.

ORDERING INFORMATION

Part Number	Temperature Range	Package
ICL7662CTV	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	TO-99
ICL7662CPA	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	8 PIN MINI DIP
ICL7662MTV*	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	TO-99

*Add /883B to Part Number for 883B Processing.

FEATURES

- No External Diode Needed Over Entire Temperature Range
- Pin Compatible With ICL7660
- Simple Conversion of +15 V Supply to -15 V Supply
- Simple Voltage Multiplication (VOUT $=(-) \mathbf{n} \mathbf{V}_{\text {IN }}$)
- 99.9\% Typical Open Circuit Voltage Conversion Efficiency
- 96\% Typical Power Efficiency
- Wide Operating Voltage Range 4.5V to 20.0V
- Easy to Use - Requires Only 2 External Non-Critical Passive Components

APPLICATIONS

- On Board Negative Supply for Dynamic RAMs
- Localized μ-Processor (8080 Type) Negative Supplies
- Inexpensive Negative Supplies
- Data Acquisition Systems
- Up to -20V for Op Amps

Figure 1: Pin Configurations

0320-3
Figure 2: Functional Diagram

[^152]
ABSOLUTE MAXIMUM RATINGS

Supply Voltage . 22 V
Oscillator Input Voltage (Note 1) \qquad
-0.3 V to $\left(\mathrm{V}^{+}+0.3 \mathrm{~V}\right)$ for $\mathrm{V}+<10 \mathrm{~V}$ $\left(\mathrm{V}^{+}-10 \mathrm{~V}\right)$ to $\left(\mathrm{V}^{+}+0.3 \mathrm{~V}\right)$ for $\mathrm{V}^{+}>10 \mathrm{~V}$
Current into LV (Note 1) 20 $\mu \mathrm{A}$ for $\mathrm{V}+>10 \mathrm{~V}$ Output Short Duration \qquad . Continuous operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS $V^{+}=15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{C}_{\mathrm{OSC}}=0$, unless otherwise stated. Test Circuit Figure 3.

Symbol	Parameter	Test Conditions		Limits			Units
				Min	Typ	Max	
$\begin{aligned} & \mathrm{V}+\mathrm{L} \\ & \mathrm{~V}+\mathrm{H} \end{aligned}$	Supply Voltage Range-Lo Supply Voltage Range-Hi	$\begin{aligned} & R_{L}=10 \mathrm{k} \Omega, L V=G N D \\ & R_{L}=10 \mathrm{k} \Omega, L V=\text { Open } \end{aligned}$	$\begin{aligned} & \operatorname{Min}<T_{A}<\operatorname{Max} \\ & \operatorname{Min}<T_{A}<\operatorname{Max} \end{aligned}$	$\begin{gathered} 4.5 \\ 9 \end{gathered}$		$\begin{array}{r} 11 \\ 20 \\ \hline \end{array}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
1+	Supply Current	$\mathrm{R}_{\mathrm{L}}=\infty, \mathrm{LV}=\text { Open }$	$\begin{aligned} & T_{A}=25^{\circ} \mathrm{C} \\ & 0^{\circ} \mathrm{C}<T_{A}<+70^{\circ} \mathrm{C} \\ & -55^{\circ} \mathrm{C}<T_{A}<+125^{\circ} \mathrm{C} \\ & \hline \end{aligned}$		$\begin{aligned} & .25 \\ & .30 \\ & .40 \end{aligned}$	$\begin{aligned} & .60 \\ & .85 \\ & 1.0 \\ & \hline \end{aligned}$	mA
R_{0}	Output Source Resistance	$I_{0}=20 \mathrm{~mA}, L V=\text { Open }$	$\begin{aligned} & T_{A}=25^{\circ} \mathrm{C} \\ & 0^{\circ} \mathrm{C}<T_{A}<+70^{\circ} \mathrm{C} \\ & -55^{\circ} \mathrm{C}<T_{A}<+125^{\circ} \mathrm{C} \\ & \hline \end{aligned}$		$\begin{aligned} & 60 \\ & 70 \\ & 90 \\ & \hline \end{aligned}$	$\begin{aligned} & 100 \\ & 120 \\ & 150 \end{aligned}$	Ω
$1+$	Supply Current	$\begin{aligned} & \mathrm{V}+=5 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=\infty, \mathrm{LV}=\mathrm{GND} \end{aligned}$	$\begin{aligned} & T_{A}=25^{\circ} \mathrm{C} \\ & 0^{\circ} \mathrm{C}<T_{A}<+70^{\circ} \mathrm{C} \\ & -55^{\circ} \mathrm{C}<T_{A}<+125^{\circ} \mathrm{C} \\ & \hline \end{aligned}$		$\begin{aligned} & 20 \\ & 25 \\ & 30 \\ & \hline \end{aligned}$	$\begin{aligned} & 150 \\ & 200 \\ & 250 \\ & \hline \end{aligned}$	$\mu \mathrm{A}$
R_{0}	Output Source Resistance	$\begin{aligned} & \mathrm{V}+=5 \mathrm{~V} \\ & \mathrm{I}_{0}=3 \mathrm{~mA}, \mathrm{LV}=\mathrm{GND} \end{aligned}$	$\begin{aligned} & T_{A}=25^{\circ} \mathrm{C} \\ & 0^{\circ} \mathrm{C}<\mathrm{T}_{A}<+70^{\circ} \mathrm{C} \\ & -55^{\circ} \mathrm{C}<T_{A}<+125^{\circ} \mathrm{C} \end{aligned}$		$\begin{aligned} & 125 \\ & 150 \\ & 200 \\ & \hline \end{aligned}$	$\begin{aligned} & 200 \\ & 250 \\ & 350 \\ & \hline \end{aligned}$	Ω
$F_{\text {osc }}$	Oscillator Frequency				10		kHz
$P_{\text {eff }}$	Power Efficiency	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{~K} \Omega$	$\begin{aligned} & T_{A}=25^{\circ} \mathrm{C} \\ & \operatorname{Min}<T_{A}<\operatorname{Max} \\ & \hline \end{aligned}$	$\begin{aligned} & 93 \\ & 90 \\ & \hline \end{aligned}$	$\begin{aligned} & 96 \\ & 95 \\ & \hline \end{aligned}$		\%
$V_{\text {OEf }}$	Voltage Conversion Effic.	$\mathrm{R}_{\mathrm{L}}=\infty$	$\operatorname{Min}<T_{A}<\operatorname{Max}$	97	99.9		\%
Iosc	Oscillator Sink or Source Current	$\begin{aligned} & \mathrm{V}+=5 \mathrm{~V}\left(\mathrm{~V}_{\mathrm{osC}}=0 \mathrm{~V} \text { to }+5 \mathrm{~V}\right) \\ & \mathrm{V}+=15 \mathrm{~V}\left(\mathrm{~V}_{\mathrm{osC}}=+5 \mathrm{~V} \text { to }+15 \mathrm{~V}\right) \end{aligned}$			$\begin{aligned} & 0.5 \\ & 4.0 \\ & \hline \end{aligned}$		$\mu \mathrm{A}$

NOTES: 1. Connecting any terminal to voltages greater than V^{+}or less than ground may cause destructive latchup. It is recommended that no inputs from sources operating from external supplies be applied prior to "power up" of the ICL7662.
2. Derate linearly above $50^{\circ} \mathrm{C}$ by $5.5 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.
3. Pin 1 is a Test pin and is not connected in normal use.

[^153]
TYPICAL PERFORMANCE CHARACTERISTICS

(See Test Circuit of Figure 3)

0320-7

OSCILLATOR FREQUENCY
vs. SUPPLY VOLTAGE

0320-8

[^154]
TYPICAL PERFORMANCE CHARACTERISTICS

(See Test Circuit of Figure 3) (Continued)

0320-10

OUTPUT VOLTAGE AS A FUNCTION OF LOAD CURRENT

0320-11

0320-13

0320-12

0320-14

SUPPLY CURRENT \& POWER CONVERSION EFFICIENCY AS A FUNCTION OF LOAD CURRENT

[^155]
TYPICAL PERFORMANCE CHARACTERISTICS

(See Test Circuit of Figure 3) (Continued)

NOTE 4.
Note that these curves include in the supply current that current fed directly into the load R_{L} from V^{+}(see Figure 3). Thus, approximately half the supply current goes directly to the positive side of the load, and the other half, through the ICL7662, to the negative side of the load. Ideally, $\mathrm{V}_{\text {LOAD }} \cong$ $2 V_{I N}, I_{S} \cong 2 I_{L}$, so $V_{I N} \bullet I_{S} \cong V_{L O A D} \bullet I_{L}$

CIRCUIT DESCRIPTION

The ICL7662 contains all the necessary circuitry to complete a negative voltage converter, with the exception of 2 external capacitors which may be inexpensive $10 \mu \mathrm{~F}$ polarized electrolytic capacitors. The mode of operation of the device may be best understood by considering Figure 4, which shows an idealized negative voltage converter. Capacitor C_{1} is charged to a voltage, $\mathrm{V}+$, for the half cycle when switches S_{1} and S_{3} are closed. (Note: Switches S_{2} and S_{4} are open during this half cycle.) During the second half cycle of operation, switches S_{2} and S_{4} are closed, with S_{1} and S_{3} open, thereby shifting capacitor C_{1} negatively by V^{+}volts. Charge is then transferred from C_{1} to C_{2} such that the voltage on C_{2} is exactly V^{+}, assuming ideal switches and no load on C_{2}. The ICL7662 approaches this ideal situation more closely than existing non-mechanical circuits.

In the ICL7662, the 4 switches of Figure 4 are MOS power switches; S_{1} is a P-channel device and $S_{2}, S_{3} \& S_{4}$ are N -channel devices. The main difficulty with this approach is that in integrating the switches, the substrates of $S_{3} \& S_{4}$ must always remain reverse biased with respect to their sources, but not so much as to degrade their "ON" resistances. In addition, at circuit startup, and under output short circuit conditions ($\mathrm{V}_{\text {OUT }}=\mathrm{V}^{+}$), the output voltage must be sensed and the substrate bias adjusted accordingly. Failure to accomplish this would result in high power losses and probable device latchup.

This problem is eliminated in the ICL7662 by a logic network which senses the output voltage (VOUT) together with the level translators, and switches the substrates of $S_{3} \& S_{4}$ to the correct level to maintain necessary reverse bias.

The voltage regulator portion of the ICL7662 is an integral part of the anti-latchup circuitry, however its inherent voltage drop can degrade operation at low voltages. Therefore, to improve low voltage operation the "LV" pin should be connected to GROUND, disabling the regulator. For supply voltages greater than 11 volts the LV terminal must be left open to insure latchup proof operation, and prevent device damage.

NOTE: For large value of $C_{\text {OSC }}$ ($>1000 \mathrm{pf}$) the values of C_{1} and C_{2} should be increased to $100 \mu \mathrm{~F}$.

Figure 3: ICL7662 Test Circuit

0320-18
Figure 4: Idealized Negative Converter

[^156]
THEORETICAL POWER EFFICIENCY CONSIDERATIONS

In theory a voltage multiplier can approach 100\% efficiency if certain conditions are met:

A The drive circuitry consumes minimal power
B The output switches have extremely low ON resistance and virtually no offset.
C The impedances of the pump and reservoir capacitors are negligible at the pump frequency.
The ICL7662 approaches these conditions for negative voltage multiplication if large values of C_{1} and C_{2} are used. ENERGY IS LOST ONLY IN THE TRANSFER OF CHARGE BETWEEN CAPACITORS IF A CHANGE IN VOLTAGE OCCURS. The energy lost is defined by:

$$
E=1 / 2 C_{1}\left(V_{1}{ }^{2}-V_{2}{ }^{2}\right)
$$

where V_{1} and V_{2} are the voltages on C_{1} during the pump and transfer cycles. If the impedances of C_{1} and C_{2} are relatively high at the pump frequency (refer to Figure 4) compared to the value of R_{L}, there will be a substantial difference in the voltages V_{1} and V_{2}. Therefore it is not only desirable to make C_{2} as large as possible to eliminate output voltage ripple, but also to employ a correspondingly large value for C_{1} in order to achieve maximum efficiency of operation.

DO'S AND DON'TS

1. Do not exceed maximum supply voltages.
2. Do not connect LV terminal to GROUND for supply voltages greater than 11 volts.
3. When using polarized capacitors, the + terminal of C_{1} must be connected to pin 2 of the ICL7662 and the + terminal of C_{2} must be connected to GROUND.

TYPICAL APPLICATIONS

Simple Negative Voltage Converter

The majority of applications will undoubtedly utilize the ICL7662 for generation of negative supply voltages. Figure 5 shows typical connections to provide a negative supply where a positive supply of +4.5 V to 20.0 V is available. Keep in mind that pin 6 (LV) is tied to the supply negative (GND) for supply voltages below 11 volts.
The output characteristics of the circuit in Figure 5 are those of a nearly ideal voltage source in series with 65 ohms. Thus for a load current of -10 mA and a supply voltage of +15 volts, the output voltage will be 14.35 volts. The dynamic output impedance due to the capacitor impedances is approximately $1 / \omega \mathrm{C}$, where:

$$
\begin{gathered}
C=C_{1}=C_{2} \\
\text { which gives } \frac{1}{\omega \mathrm{C}}=\frac{1}{2 \pi \text { fpump } \times 10^{-5}}=3 \text { ohms }
\end{gathered}
$$

for $\mathrm{C}=10 \mu \mathrm{~F}$ and fpump $=5 \mathrm{kHz}$ ($1 / 2$ of oscillator frequency)

Paralleling Devices

Any number of ICL7662 voltage converters may be paralleled to reduce output resistance. The reservoir capacitor, C_{2}, serves all devices while each device requires its own pump capacitor, C_{1}. The resultant output resistance would be approximately

$$
\text { ROUT }=\frac{R_{\text {OUT }} \text { (of ICL7662) }}{n \text { (number of devices) }}
$$

Cascading Devices

The ICL7662 may be cascaded as shown to produce larger negative multiplication of the initial supply voltage. However, due to the finite efficiency of each device, the practical limit is 10 devices for light loads. The output voltage is defined by:

$$
V_{\text {OUT }}=-n\left(V_{\mathbb{I}}\right),
$$

where n is an integer representing the number of devices cascaded. The resulting output resistance would be approximately the weighted sum of the individual ICL7662 ROUT values.

0320-21
Figure 7: Cascading Devices for Increased Output Voltage

Changing the ICL7662 Oscillator Frequency

It may be desirable in some applications, due to noise or other considerations, to increase the oscillator frequency. This is achieved by overdriving the oscillator from an external clock, as shown in Figure 8. In order to prevent possible device latchup, a $100 \mathrm{k} \Omega$ resistor must be used in series with the clock output. In the situation where the designer has generated the external clock frequency using TTL logic, the addition of a $10 \mathrm{k} \Omega$ pullup resistor to V^{+}supply is required. Note that the pump frequency with external clocking, as with internal clocking, will be $1 / 2$ of the clock frequency. Output transitions occur on the positive-going edge of the clock.

It is also possible to increase the conversion efficiency of the ICL7662 at low load levels by lowering the oscillator frequency. This reduces the switching losses, and is achieved by connecting an additional capacitor, COSC, as shown in Figure 9. However, lowering the oscillator frequency will cause an undesirable increase in the impedance of the pump $\left(C_{1}\right)$ and reservoir $\left(C_{2}\right)$ capacitors; this is overcome by increasing the values of C_{1} and C_{2} by the same factor that the frequency has been reduced. For example, the addition of a 100 pF capacitor between pin 7 (Osc) and $\mathrm{V}+$ will lower the oscillator frequency to 1 kHz from its nominal frequency of 10 kHz (a multiple of 10), and thereby necessitate a corresponding increase in the value of C_{1} and C_{2} (from $10 \mu \mathrm{~F}$ to $100 \mu \mathrm{~F}$).

Figure 9: Lowering Oscillator Frequency

Positive Voltage Doubling

The ICL7662 may be employed to achieve positive voltage doubling using the circuit shown in Figure 10. In this application, the pump inverter switches of the ICL7662 are used to charge C_{1} to a voltage level of $\mathrm{V}^{+}-\mathrm{V}_{\mathrm{F}}$ (where V^{+} is the supply voltage and V_{F} is the forward voltage drop of diode D_{1}). On the transfer cycle, the voltage on C_{1} plus the supply voltage $\left(\mathrm{V}^{+}\right)$is applied through diode D_{2} to capacitor C_{2}. The voltage thus created on C_{2} becomes $\left(2 \mathrm{~V}^{+}\right)-\left(2 \mathrm{~V}_{\mathrm{F}}\right)$ or twice the supply voltage minus the combined forward voltage drops of diodes D_{1} and D_{2}.
The source impedance of the output (VOUT) will depend on the output current, but for $\mathrm{V}+=15$ volts and an output current of 10 mA it will be approximately 70 ohms.

0320-24
Figure 10: Positive Voltage Doubler

Combined Negative Voltage Conversion and Positive Supply Doubling

Figure 11 combines the functions shown in Figures 5 and 10 to provide negative voltage conversion and positive voltage doubling simultaneously. This approach would be, for example, suitable for generating +9 volts and -5 volts from an existing +5 volt supply. In this instance capacitors C_{1} and C_{3} perform the pump and reservoir functions respectively for the generation of the negative voltage, while capacitors C_{2} and C_{4} are pump and reservoir respectively for the doubled positive voltage. There is a penalty in this configuration which combines both functions, however, in that the source impedances of the generated supplies will be somewhat higher due to the finite impedance of the common charge pump driver at pin 2 of the device.

0320-25
Figure 11: Combined Negative Converter and Positive Doubler

Voltage Splitting

The bidirectional characteristics can also be used to split a higher supply in half, as shown in Figure 12. The combined load will be evenly shared between the two sides and, a high value resistor to the LV pin ensures start-up. Because the switches share the load in parallel, the output impedance is much lower than in the standard circuits, and higher currents can be drawn from the device. By using this circuit, and then the circuit of Figure 7, +30 V can be converted (via +15 V , and -15 V) to a nominal -30 V , although with rather high series output resistance ($\sim 250 \Omega$).

Figure 12: Splitting A Supply in Half

Regulated Negative Voltage Supply

In some cases, the output impedance of the ICL7662 can be a problem, particularly if the load current varies substantially. The circuit of Figure 13 can be used to overcome this by controlling the input voltage, via an ICL7611 low-power CMOS op amp, in such a way as to maintain a nearly constant output voltage. Direct feedback is inadvisable, since the ICL7662's output does not respond instantaneously to a change in input, but only after the switching delay. The circuit shown supplies enough delay to accommodate the 7662, while maintaining adequate feedback. An increase in pump and storage capacitors is desirable, and the values shown provides an output impedance of less than 5Ω to a load of 10 mA .

Figure 13: Regulating the Output Voltage

OTHER APPLICATIONS

Further information on the operation and use of the ICL7662 may be found in A051 "Principals and Applications of the ICL7660 CMOS Voltage Converter". Micropower Voltage Regulators

GENERAL DESCRIPTION

The ICL7663 positive voltage regulator is a low-power, high-efficiency device which accepts inputs from 1.6 V to 16 V and provides adjustable outputs over the same range at currents up to 40 mA . Operating current is typically less than $4 \mu \mathrm{~A}$, regardless of load.

Output current sensing and remote shutdown are available, providing protection for the regulator and the circuits it powers. A unique feature is a negative temperature coefficient output. This can be used, for example, to efficiently tailor the voltage applied to a multiplexed LCD through the driver e.g., ICM7231/2/3 so as to extend the display operating temperature range many times.

An enhanced direct replacement for this part called ICL7663S is now available and is more appropriate for new designs.

The ICL7663 is available in 8-pin plastic, TO-99 can, CERDIP, and SOIC packages.

FEATURES

- Ideal for Battery-Operated Systems: Less Than $4 \mu \mathrm{~A}$ Typical Current Drain
- Will Handle Input Voltages From 1.6V to 16 V
- Very Low Input-Output Differential Voltage
- 1.3V Bandgap Voltage Reference
- Up to 40 mA Output Current
- Output Shutdown Via Current-Limit Sensing or External Logic Signal
- Output Voltages Programmable From 1.3V to 16V
- Output Voltages With Programmable Negative Temperature Coefficients

ORDERING INFORMATION

Positive Regulator		
Part Number	Temperature Range	Package
ICL7663CBA	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	8-Lead SOIC
ICL7663CPA	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	8 -Lead MiniDIP
ICL7663CJA	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	8-Lead CERDIP
ICL7663CTV	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	8-Lead TO-99

[^157]| ABSOLUTE MAXIMUM RATINGS, ICL7663 POSITIVE REGULATOR | |
| :---: | :---: |
| Input Supply Voltage . +18 V | Output Sinking Current (Terminal 7) - 10mA |
| Any Input or Output Voltage (Note 1) (Terminals 1, 2, 3, | Power Dissipation (Note 2) |
| $5,6,7) \ldots \ldots \ldots(G N D-0.3 V)$ to $\left(\mathrm{V}^{+}{ }_{\text {IN }}+0.3 \mathrm{~V}\right)$ | MiniDIP . 200 mW |
| Output Source Current | TO-99 Can . 300mW |
| (Terminal 2) . 50mA | Operating Temperature Range $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ |
| (Terminal 3) . 25mA | Storage Temperature $\ldots{ }^{-6} 5^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ |
| | Lead Temperature (Soldering, 10sec) 300³ |

NOTE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ICL7663 ELECTRICAL CHARACTERISTICS

$\mathrm{V}_{\text {IN }}{ }^{+}=9 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise specified. See Test Circuit Figure 3.

Symbol	Parameter	Test Conditions	Limits			Units
			Min	Typ	Max	
V_{IN}	Input Voltage	$\begin{aligned} & T_{A}=+25^{\circ} \mathrm{C} \\ & 0^{\circ} \mathrm{C} \leq T_{A} \leq+70^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.6 \end{aligned}$		$\begin{aligned} & 16.0 \\ & 16.0 \end{aligned}$	V
I_{Q}	Quiescent Current	$\left\{\begin{array}{c}\mathrm{R}_{\mathrm{L}}=\infty \\ 1.4 \mathrm{~V} \leq \mathrm{V}_{\text {OUT }} \leq 8.5 \mathrm{~V}\end{array}\right\} \quad \begin{aligned} & \mathrm{V}_{\mathrm{IN}}=16 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IN}}=9 \mathrm{~V}\end{aligned}$		$\begin{aligned} & 4.0 \\ & 3.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 12 \\ & 10 \\ & \hline \end{aligned}$	$\mu \mathrm{A}$
$V_{\text {SET }}$	Reference Voltage		1.2	1.3	1.4	V
$\frac{\Delta V_{\text {SET }}}{\Delta T}$	Temperature Coefficient	$8.5 \mathrm{~V}<\mathrm{V}_{\text {IN }}<9 \mathrm{~V}$		± 200		ppm
$\frac{\Delta V_{\mathrm{SET}}}{\mathrm{~V}_{\mathrm{SET}} \Delta \mathrm{~V}_{\mathrm{IN}}}$	Line Regulation	$2 \mathrm{~V}<\mathrm{V}_{\text {IN }}<9 \mathrm{~V}$		0.03		\%/V
ISET	$\mathrm{V}_{\text {SET }}$ Input Current			± 0.01	10	nA
ISHDN	Shutdown Input Current			± 0.01	10	nA
$V_{\text {SHDN }}$	Shutdown Input Voltage	$\mathrm{V}_{\text {SHDN }}$ HI: Both VOUT Disabled $\mathrm{V}_{\text {SHDN }}$ LO: Both $\mathrm{V}_{\text {OUT }}$ Enabled	1.4		0.3	V
ISENSE	Sense Pin Input Current			0.01	10	nA
$V_{C L}$	Sense Pin Input Threshold Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CL}}=\mathrm{V}_{\text {OUT2 }}-\mathrm{V}_{\text {SENSE }} \\ & \text { (Current-Limit Threshold) } \end{aligned}$		0.7		V
$\mathrm{R}_{\text {SAT }}$	Input-Output On-Resistance (Note 3)	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=2 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IN}}=9 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IN}}=15 \mathrm{~V} \\ & \hline \end{aligned}$		$\begin{array}{r} 200 \\ 70 \\ 50 \\ \hline \end{array}$		Ω
$\frac{\Delta V_{\text {OUT }}}{\Delta \mathrm{l}_{\mathrm{OUT}}}$	Load Regulation	$\begin{aligned} & \Delta l_{\mathrm{OUT} 1}=100 \mu \mathrm{~A} @ \mathrm{~V}_{\text {OUT1 }}=5 \mathrm{~V} \\ & \Delta \mathrm{l}_{\mathrm{OUT} 2}=10 \mathrm{~mA} @ \mathrm{~V}_{\text {OUT2 }}=5 \mathrm{~V} \end{aligned}$		$\begin{aligned} & 2.0 \\ & 1.0 \\ & \hline \end{aligned}$		Ω
lout2	Available Output Current (VOUT2)	$\begin{aligned} & V_{I N}=3 V V_{\text {OUT }}=V_{\text {SET }} \\ & V_{I N}=9 \mathrm{~V} V_{\text {OUT }}=5 \mathrm{~V} \\ & V_{I N}=15 \mathrm{~V} V_{\text {OUT }}=5 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 10 \\ & 25 \\ & 40 \\ & \hline \end{aligned}$			mA
$V_{\text {TC }}$	Negative-Tempco Output (Note 4)	Open-Circuit Voltage		0.9		V
$I_{\text {TC }}$		Maximum Sink Current	0	8	2.0	mA
$\frac{\Delta \mathrm{V}_{\mathrm{TC}}}{\Delta \mathrm{~T}}$	Temperature Coefficient of $\mathrm{V}_{\text {TC }}$ Output	Open Circuit		+2.5		$\mathrm{mV} /{ }^{\circ} \mathrm{C}$
L (min)	Minimum Load Current	(Includes $\mathrm{V}_{\text {SET }}$ Divider)	1.0			$\mu \mathrm{A}$

NOTES: 1. Connecting any terminal to voltages greater then ($\mathrm{V}_{\mathbb{N}}{ }^{+}+0.3 \mathrm{~V}$) or less than ($\mathrm{GND}-0.3 \mathrm{~V}$) may cause destructive device latchup. It is recommended that no inputs from sources operating on external power supplies be applied prior to ICL7663 power-up.
2. Derate linearly above $50^{\circ} \mathrm{C}$ at $5 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ for minidip and $7.5 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ for TO-99 can.
3. This parameter refers to the on-resistance of the MOS pass transistor. The minimum input-output voltage differential at low current (under 5 mA), can be determined by multiplying the load current (including set resistor current, but not quiescent current) by this resistance.
4. This output has a positive temperature coefficient. Using it in combination with the inverting input of the regulator at $\mathrm{V}_{\mathrm{SET}}$, a negative coefficient results in the output voltage. See Figure 4 for details. Pin will not source current.

[^158]
TYPICAL PERFORMANCE CHARACTERISTICS

DETAILED DESCRIPTION

The ICL7663 is a CMOS integrated circuit which contains all the functions of a voltage regulator plus protection circuitry on a single monolithic chip. Referring to the functional diagram (Figure 1), it can be seen that it contains a band-gap-type voltage reference of 1.3 Volts. This voltage, therefore, is the lowest output voltage the regulator can control. Error amplifier A drives a P-channel pass transistor which is sufficient for low (under about 5 mA) currents. The high current output is passed by an NPN bipolar transistor connected as a follower. This configuration gives more gain and lower output impedance.

Logic-controlled shutdown is implemented via an MOS transistor of the appropriate polarity. Current-sensing is achieved with comparator C, which functions with the VOUT2 line. Finally, the positive regulator has an output $\left(V_{T C}\right)$ from a buffer amplifier (B), which can be used to generate programmable-temperature-coefficient output voltages.

The amplifiers, reference and comparator circuitry all operate at bias levels well below $1 \mu \mathrm{~A}$ to achieve the extremely
low quiescent current. This does limit the dynamic response of the circuit, however, and transients are best dealt with outside the regulator loop.

BASIC OPERATION

The ICL7663 is designed to regulate battery voltages in the 5 V to 15 V region at maximum load currents of about 5 mA to 30 mA . Although intended as a low power device, power dissipation limits must be observed. For example, the power dissipation in the case of a 10 V supply regulated down to 2 V with a load current of 30 mA clearly exceeds the power dissipation rating of the minidip: $(10-2)(30)$ $\left(10^{-3}\right)=240 \mathrm{~mW}$. The test circuit illustrates proper use of the device.
CMOS devices generally require two precautions: every input pin must go somewhere, and maximum values of applied voltages and current limits must be rigorously observed. Neglecting these precautions may lead to, at the least, incorrect or non-operation, and at worst, destructive device failure. To avoid the problem of latchup, do not apply inputs to any pins before supply voltage is applied.

[^159]Input Voltages - The regulator accepts working inputs of 1.4 V to 18 V . When power is applied, the rate-of-rise of the input may be hundreds of volts per microsecond. This is potentially harmful to the regulator, where internal operating currents are in the nanoampere range. The $0.047 \mu \mathrm{~F}$ capacitor on the device side of the switch will limit inputs to a safe level around $2 \mathrm{~V} / \mu \mathrm{s}$. Use of this capacitor is suggested in all applications. In severe rate-of-rise cases, it may be advisable to use an RC network on the SHutDowN pin to delay output turn-on. Battery charging surges, transients, and assorted noise signals should be kept from the regulator by RC filtering, zener protection, or even fusing.
Output Voltages - The resistor divider R_{2} / R_{1} is used to scale the reference voltage, $\mathrm{V}_{\mathrm{SET}}$, to the desired output using the formula $\mathrm{V}_{\text {OUT }}=\left(1+\mathrm{R}_{2} / \mathrm{R}_{1}\right) \mathrm{V}_{\text {SET }}$. Suitable arrangements of these resistors, using a potentiometer, enables exact values for $\mathrm{V}_{\text {OUT }}$ to be obtained. Because of the low leakage current of the $V_{\text {SET }}$ terminal, these resistors can be tens of megohms for minimum additional quiescent drain current. However, some load current is required for proper operation, so for extremely low-drain applications it is necessary to draw at least 1μ A. This can include the current for R_{2} and R_{1}.

Output voltages up to nearly the V_{IN} supply may be obtained at low load currents, while the low limit is the reference voltage. The minimum input-output differential in each regulator is obtained using the $\mathrm{V}_{\text {OUT1 }}$ terminal.
Output Currents - For the ICL7663, low output currents of less than 5 mA are obtained with the least input-output differential from the $\mathrm{V}_{\text {OUT1 }}$ terminal (connect $\mathrm{V}_{\text {OUT2 }}$ to $V_{\text {OUT1 }}$). Where higher currents are needed, use VOUT2 (Vout1 should be left open in this case).
High output currents can be obtained only as far as package dissipation allows. It is strongly recommended that output current-limit sensing be used in such cases.
Current-Limit Sensing - The on-chip comparator (C in the block diagrams) permits shutdown of the regulator output in the event of excessive current drain. As the test circuit shows, a current-limiting resistor, $R_{C L}$, is placed in series with Vout2, and the SENSE terminal is connected to the load side of $R_{C L}$. When the current through $R_{C L}$ is high enough to produce a voltage drop equal to $\mathrm{V}_{\mathrm{CL}}(0.7 \mathrm{~V})$ the voltage feedback is bypassed and the regulator output will be limited to this current. Therefore, when the maximum load current (lload) is determined, simply divide V_{CL} by load to obtain the value for RCL.
Logic-Controllable Shutdown - When equipment is not needed continuously (e.g., in remote data-acquisition systems), it is desirable to eliminate its drain on the system until it is required. This usually means switches, with their unreliable contacts. Instead, the ICL7663 can be shut down by a logic signal, leaving only I_{Q} (under $4 \mu \mathrm{~A}$) as a drain on the power source. Since this pin must not be left open, it should be tied to ground if not needed. A voltage of less
than 0.3 V will keep the regulator ON , and a voltage level of more than 1.4 V but less than $\mathrm{V}_{\text {IN }}^{+}$will turn the outputs OFF. If there is a possibility that the control signal could exceed the regulator input $\left(\mathrm{V}_{\mathrm{IN}}^{+}\right)$, the current from this signal should be limited to $100 \mu \mathrm{~A}$ maximum by a high-value ($1 \mathrm{M} \Omega$) series resistor. This situation may occur when the logic signal originates from a system powered separately from that of the regulator.
Additional Circuit Precautions - The regulator has poor rejection of voltage fluctuations from AC sources above 10 Hz or so. To prevent the output from responding (where this might be a problem), a reservoir capacitor across the load is advised. The value of this capacitor is chosen so that the regulated output voltage reaches 90% of its final value in 20 ms . From

$$
\mathrm{I}=\mathrm{C} \frac{\Delta \mathrm{~V}}{\Delta \mathrm{t}}, \mathrm{C}=\text { IOUT } \frac{\left(20 \times 10^{-3}\right)}{0.9 \mathrm{~V}_{\text {OUT }}}=0.022 \frac{\mathrm{IOUT}}{\mathrm{~V}_{\text {OUT }}} .
$$

In addition, where such a capacitor is used, a current-limiting resistor is also suggested (see "Current-Limit Sensing").
Producing Output Voltages With Negative Temperature Coefficients - The ICL7663 has an additional output which is 0.9 V relative to GND and has a tempco of $+2.5 \mathrm{mV} /{ }^{\circ} \mathrm{C}$. By applying this voltage to the inverting input of amplifier A (i.e., the $\mathrm{V}_{\text {SET }}$ pin), output voltages having negative TC may be produced. The TC of the output voltage is controlled by the $\mathrm{R}_{2} / \mathrm{R}_{3}$ ratio (see Figure 4 and its design equations).

Figure 4: Generating Negative Temperature Coefficients

[^160]NOTE: All typical values have been characterized but are not tested.

APPLICATIONS

0321-21
Figure 5: Basic Application of ICL7663 as Positive Regulator with Current Limit

ICL7663B ADDENDUM TO THE ICL7663 DATASHEET

This Addendum to the standard ICL7663 datasheet describes changes and/or modifications to the DC Operating characteristics applicable to the ICL7663B devices. The following table indicates those limits to which the ICL7663B is tested and/or guaranteed operational.

ICL7663B POSITIVE REGULATOR ORDERING INFORMATION

Positive Regulator		
ICL7663BCBA	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	8-pin S.O.I.C.
ICL7663BCJA	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	8-pin CERDIP
ICL7663BCPA	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	8-pin MiniDIP
ICL7663BCTV	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	TO-99

ABSOLUTE MAXIMUM RATINGS ICL7663B

Input Supply Voltage	V
Any Input or Output V	(Note 1) Terminals 1, 2, 3, 4, 5,
6,7)	(GND -0.3V) to ($\left.\mathrm{V}^{+}{ }_{\mathrm{IN}}+0.3 \mathrm{~V}\right)$
Output Source Current	
(Terminal 2)	50mA
(Terminal 3)	25 mA

Output Sinking Current (Terminal 7)-10mA	
Power Dissipation (Note 2)	
MiniDIP	200 mW
TO-99 Can	300 mW

NOTE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
ICL7663B OPERATING CHARACTERISTICS $\quad \mathrm{V}^{+}{ }_{1 N}=9 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise specified.

Symbol	Parameter	Test Conditions	Limits			Units
			Min	Typ	Max	
V^{+}IN	Input Voltage	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ & 20^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.6 \end{aligned}$		$\begin{aligned} & 10 \\ & 10 \end{aligned}$	V
$1 Q$	Quiescent Current	$\left\{\begin{array}{l}\mathrm{R}_{\mathrm{L}}=\infty \\ 1.4 \mathrm{~V} \leq \mathrm{V}_{\text {OUT }} \leq 8.5 \mathrm{~V}\end{array}\right\}$		3.5	10	$\mu \mathrm{A}$
$\mathrm{V}_{\text {SET }}$	Reference Voltage		1.2	1.3	1.4	V
$\frac{\Delta V_{\text {SET }}}{\Delta T}$	Temperature Coefficient	$8.5 \mathrm{~V}<\mathrm{V}^{+}{ }_{1 \mathrm{~N}}<9 \mathrm{~V}$		± 200		ppm
$\frac{\Delta V_{\text {SET }}}{V_{\text {SET }} \Delta V_{I N}}$	Line Regulation	$2 \mathrm{~V}<\mathrm{V}+{ }_{\text {IN }}<9 \mathrm{~V}$		0.03		\%/V
ISET	$\mathrm{V}_{\text {SET }}$ Input Current			± 0.01	10	nA
ISHDN	Shutdown Input Current			± 0.01	10	nA
$\mathrm{V}_{\text {SHDN }}$	Shutdown Input Voltage	$\mathrm{V}_{\text {SHDN }} \mathrm{HI}$: Both V $V_{\text {SHDNL }}$ LO: Both VOUT Enabled	1.4		0.3	V
ISENSE	Sense Pin Input Current			0.01	10	nA
V_{CL}	Sense Pin Input Threshold Voltage	$V_{C L}=V_{\text {OUT2 }}-V_{\text {SENSE }}$ (Current-Limit Threshold)		0.7		V
$R_{\text {SAT }}$	Input-Output Saturation Resistance (Note 3)	$\begin{aligned} & V+{ }_{I N}=2 V \\ & V+{ }_{I N}=9 V \end{aligned}$		$\begin{aligned} & 200 \\ & 70 \\ & \hline \end{aligned}$		Ω
$\frac{\Delta V_{\text {OUT }}}{\Delta l_{\mathrm{OUT}}}$	Load Regulation	$\begin{aligned} & \Delta l_{\text {OUT } 1}=100 \mu \mathrm{~A} @ \mathrm{~V}_{\text {OUT } 1}=5 \mathrm{~V} \\ & \Delta \mathrm{l}_{\mathrm{OUT} 2}=10 \mathrm{~mA} @ \mathrm{~V}_{\text {OUT } 2}=5 \mathrm{~V} \end{aligned}$		$\begin{aligned} & 2 \\ & 1 \end{aligned}$		Ω
lout2	Available Output Current (VOUT2)	$\begin{array}{ll} V+{ }_{i N}=3 V & V_{\text {OUT }}=V_{\text {SET }} \\ V{ }_{i N}=9 V & V_{\text {OUT }}=5 V \end{array}$	$\begin{aligned} & 10 \\ & 25 \end{aligned}$			mA

[^161]ICL7663B OPERATING CHARACTERISTICS $\quad{ }^{+}{ }^{+}{ }_{N}=9 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise
specified. (Continued)

Symbol	Parameter	Test Conditions	Limits			Units
			Min	Typ	Max	
$V_{\text {TC }}$	Negative-Tempco Output (Note 4)	Open-Circuit Voltage		0.9		V
$I_{\text {TC }}$		Maximum Sink Current	0	8	2	mA
$\frac{\Delta V_{T C}}{\Delta T}$	Temperature Coefficient	Open Circuit		+2.5		$\mathrm{mV} /{ }^{\circ} \mathrm{C}$
$\mathrm{I}_{\mathrm{L}(\text { min })}$	Minimum Load Current	(Includes $\mathrm{V}_{\text {SET }}$ Divider)			1	$\mu \mathrm{A}$

NOTES: 1. Connecting any terminal to voltages greater than ($\mathrm{V}^{+} \mathbb{I N}+0.3 \mathrm{~V}$) or less than ($G N D-0.3 \mathrm{~V}$) may cause destructive device latchup. It is recommended that no inputs from sources operating on external power supplies be applied prior to ICL7663B power-up.
2. Derate linearly above $50^{\circ} \mathrm{C}$ at $5 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ for minidip and $7.5 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ for $\mathrm{TO}-99$ can.
3. This parameter refers to the saturation resistance of the MOS pass transistor. The minimum input-output voltage differential at low current (under 5 mA), can be determined by multiplying the load current (including set resistor current, but not quiescent current) by this resistance.
4. This output has a positive temperature coefficient. Using it in combination with the inverting input of the regulator at $\mathrm{V}_{\mathrm{SET}}$, a negative coefficient results in the output voltage. See Figure 3 for details. Pin will not source current.

[^162]
ICL7663S
 CMOS Programmable Micropower Positive Voltage Regulator

GENERAL DESCRIPTION

The Intersil ICL7663S Super Programmable Micropower Voltage Regulator is a low power, high efficiency positive voltage regulator which accepts 1.6 V to 16 V inputs and provides adjustable outputs from 1.3 V to 16 V at currents up to 40 mA .
It is a direct replacement for the industry standard ICL7663B offering wider operating voltage and temperature ranges, Improved output accuracy (ICL7663SA), better temperature coefficient, guarantood maximum supply current, guarantood line and load regulation, and ESD protectlon in excess of 2000 V on all pins. All improvements are highlighted in bold italics in the electrical characteristics section. Critical parameters are guaranteod over the entire commercial and industrial temperature ranges. The ICL7663S/SA programmable output voltage is set by two external resistors. The 1\% reference accuracy of the ICL7663SA eliminates the need for trimming the output voltage in most applications.
The ICL7663S is well suited for battery powered supplies, featuring $4 \mu \mathrm{~A}$ quiescent current, low $\mathrm{V}_{\mathbb{I}}$ to $\mathrm{V}_{\text {Out }}$ differential, output current sensing and logic input level shutdown control. In addition, the ICL7663S has a negative temperature coefficient output suitable for generating a temperature compensated display drive voltage for LCD displays.
The ICL7663S is available in either an 8 -pin plastic, TO-99 can, CERDIP, or SOIC package.

Figure 1: Pin Configurations

FEATURES

- Guaranteed $10 \mu \mathrm{~A}$ maximum quiescent current over all temperature ranges
- Wider operating voltage range - $\mathbf{1 . 6 V}$ to 16 V
- Guaranteed line and load regulation over entire operating temperature range. Optional
- 1\% output voltage accuracy (ICL7663SA)
- Output voltage programmable from 1.3 V to 16 V
- Improved temperature coefficient of output voltage
- 40 mA minimum output current with current limiting
- Output voltages with programmable negative
temperature coefficients.
- Output shutdown via current-limit sensing or external logic level
- Low Input-to-output voltage differential
- Improved direct replacement for industry standard ICL7663B and other second-source products
- Enhanced ESD protection $\mathbf{> 2 0 0 0 V}$

APPLICATIONS

- Low-Power Portable Instrumentation
- Pagers
- Handheld Instruments
- LCD Dlspiay Modules
- Remote Data Loggers
- Battery-Powered Systems

ORDERING INFORMATION

PART NUMBER	TEMPERATURE RANGE	PACKAGE
ICL7663SCBA ICL7863SCPA ICL7683SCJA ICL7863SCTV ICL7663SACPA ICL7863SACJA ICL7663SACTV	${ }^{\circ 0} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	8 Lead SOIC 8 Lead Minidip 8 Lead CERDIP T0-99 8 Lead Minidip 8 Lead CERDIP TO-99
ICL7663SIBA ICL7663SIPA ICL7863SIJA ICL7663SITV ICL7863SAIPA ICL7663SAIJA ICL7863SAITV	$-25^{\circ} \mathrm{C}$ to $+85^{\circ}$	8 Lead SOIC 8 Lead Minidip 8 Lead CERDIP 70.99 8 Lead Minidip 8 Lead CERDIP T0-99

Figure 2: ICL7663S Functional Diagram

ABSOLUTE MAXIMUM RATINGS

Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may effect device reliability.

ELECTRICAL CHARACTERISTICS Specifications below applicable to both ICL7663S and ICL7663SA unless otherwise stated. $V_{\mathbb{N}}^{+}=9 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise stated. See Test Circuit, Figure 3.

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS			UNITS
			MIN	TYP	Max	
$\mathbf{V}_{\mathbf{w}}^{+}$	Input Voltage	$\begin{aligned} & \text { ICL7663S } \\ & T A=25^{\circ} \mathrm{C} \\ & 0^{\circ} \mathrm{C}<T A<\quad 70^{\circ} \mathrm{C} \\ & -25^{\circ} \mathrm{C}<T A<+85^{\circ} \mathrm{C} \\ & \text { ICL7663SA } \\ & 0^{\circ} \mathrm{C}<T A<+70^{\circ} \mathrm{C} \\ & -25^{\circ} \mathrm{C}<T A<+85^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.6 \\ & 1.6 \\ & 1.6 \\ & 1.6 \end{aligned}$		$\begin{aligned} & 16 \\ & 16 \\ & 16 \end{aligned}$ 16 16	$\begin{aligned} & v \\ & v \end{aligned}$ v
10	Qulescent Current	$\begin{aligned} & 1.4 \mathrm{~V} \leqslant V_{\text {OUT }}<8.5 \mathrm{~V}, \text { No Load } \\ & V^{+}{ }_{\text {IN }}= 9 \mathrm{~V} 0^{\circ} \mathrm{C}<\mathrm{TA}<70^{\circ} \mathrm{C} \\ &-25^{\circ} \mathrm{C}<\mathrm{TA}<+85^{\circ} \mathrm{C} \\ & V^{+}{ }_{\text {IN }}= 16 \mathrm{~V} 0^{\circ} \mathrm{C}<\mathrm{TA}<70^{\circ} \mathrm{C} \\ &-25^{\circ} \mathrm{C}<T A<+85^{\circ} \mathrm{C} \end{aligned}$			$\begin{aligned} & 10 \\ & 10 \\ & 12 \\ & 12 \end{aligned}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$
$V_{\text {ser }}$	Reference Voltage	$\begin{array}{ll} I_{\text {OUT } 1}=100 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{OUT}}=\mathrm{V}_{\mathrm{SET}} \\ \text { ICL7663S } & \mathrm{TA}=25^{\circ} \mathrm{C} \\ \text { ICL7663SA } & \mathrm{TA}=25^{\circ} \mathrm{C} \end{array}$	$\begin{gathered} 1.2 \\ 1.275 \end{gathered}$	$\begin{gathered} 1.3 \\ 1.29 \end{gathered}$	$\begin{gathered} 1.4 \\ 1.305 \end{gathered}$	$\begin{aligned} & v \\ & v \end{aligned}$
$\frac{\Delta V_{\text {sET }}}{\Delta T}$	Temperature Coefficlent	$\begin{array}{rr} 0^{\circ} \mathrm{C} & <\mathrm{TA}<70^{\circ} \mathrm{C} \\ -25^{\circ} \mathrm{C} & <\mathrm{TA}<+85^{\circ} \mathrm{C} \end{array}$		$\begin{aligned} & 100 \\ & 100 \\ & \hline \end{aligned}$		$\begin{aligned} & \text { ppm } \\ & \text { ppm } \end{aligned}$
$\frac{\Delta V_{\text {sET }}}{V_{\text {sET }} \Delta V_{w}}$	Line Regulation	$\begin{array}{rr} 2 \mathrm{~V}<V_{I N}<15 \mathrm{~V} & \\ 0^{\circ} \mathrm{C}<T A< & 70^{\circ} \mathrm{C} \\ -25^{\circ} \mathrm{C}<T A< & 85^{\circ} \mathrm{C} \\ \hline \end{array}$		$\begin{aligned} & 0.03 \\ & 0.03 \end{aligned}$	$\begin{aligned} & 0.3 \\ & 0.3 \\ & \hline \end{aligned}$	$\begin{aligned} & \% N \\ & \% N \end{aligned}$
$I_{\text {ser }}$	$V_{\text {ser }}$ Input Current	$\begin{array}{rr} 0^{\circ} \mathrm{C}<T A< & 70^{\circ} \mathrm{C} \\ -25^{\circ} \mathrm{C}<T A< & 85^{\circ} \mathrm{C} \end{array}$		$\begin{aligned} & 0.01 \\ & 0.01 \end{aligned}$	$\begin{aligned} & 10 \\ & 10 \end{aligned}$	nA nA

Notes:

1. Connecting any terminal to voltages greater than $\left(V^{+}{ }_{\mathbb{N}}+0.3 \mathrm{~V}\right)$ or less than ($\mathrm{GND}-0.3 \mathrm{~V}$) may cause destructive device latch-up. It is recommended that no inputs from sources operating on external power supplies be applied prior to ICL7663S power-up.
2. Derate linearly above $50^{\circ} \mathrm{C}$ at $5 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ for Plastic Minidip, $7.5 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ for TO-99 can, and $10 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ for CERDIP.
[^163]ELECTRICAL CHARACTERISTICS (continuod)

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS			UNITS
			MIN	TVP	MAX	
ISHDN	Shutdown Input Current			± 0.01	10	nA
$\mathrm{V}_{\text {SHDN }}$	Shutdown Input Voltage	$\mathrm{V}_{\text {SHDN }}$ HI: Both $\mathrm{V}_{\text {OUT }}$ Disabled $\mathrm{V}_{\text {SHDN }}$ LO: Both $\mathrm{V}_{\text {OUT }}$ Enabled	1.4		0.3	$\begin{aligned} & \mathbf{v} \\ & v \end{aligned}$
Isense	Sense Pin Input Current			0.01	10	$n A$
$V_{C L}$	Sense Pin Input Threshold			0.5		V
$\boldsymbol{R}_{\text {SAT }}$	Input-Output Saturation Resistance Note 3	$\begin{aligned} & V^{+} \mathbb{I N}=2 V, I_{\text {OUT } 1}=1 \mathrm{~mA} \\ & V^{+}{ }_{\mathbb{N}}=9 \mathrm{~V}, \mathrm{I}_{\text {OUT } 1}=2 \mathrm{~mA} \\ & V^{+}{ }_{\mathbb{N}}=15 \mathrm{~V}, \mathrm{I}_{\text {OUT } 1}=5 \mathrm{~mA} \end{aligned}$		$\begin{array}{r} 170 \\ 50 \\ 35 \\ \hline \end{array}$	$\begin{gathered} 350 \\ 100 \\ 70 \end{gathered}$	$\begin{aligned} & \Omega \\ & \Omega \\ & \mathbf{\Omega} \end{aligned}$
$\frac{\Delta V_{\text {OUT }}}{\Delta I_{\text {OUT }}}$	Load Regulation	$\begin{aligned} & 1 \mathrm{~mA}<I_{\text {OUT } 2}<20 \mathrm{~mA} \\ & 50 \mu A<I_{\text {OUT } 1}<5 \mathrm{~mA} \end{aligned}$		$\begin{aligned} & 1 \\ & 2 \end{aligned}$	$\begin{gathered} 3 \\ 10 \end{gathered}$	$\begin{aligned} & \mathbf{\Omega} \\ & \mathbf{\Omega} \end{aligned}$
Ioutz	Avallable Output Current (Vourr)	$3 \mathrm{~V} \leqslant \mathrm{~V}_{\mathbb{I}} \leqslant 16 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}^{-}} \mathrm{V}_{\text {OUT2 }}=1.5 \mathrm{~V}$	40			mA
$V_{\text {TC }}$	Negative Tempco	Open - Circuit Voltage		0.9		V
$I_{\text {TC }}$	Output (Note 4)	Maximum Sink Current	0	8	2.0	mA
$\frac{\Delta V_{T C}}{\Delta T}$	Temperature Coefficient	Open Circuit		+2.5		$\mathrm{mV} /{ }^{\circ} \mathrm{C}$
L L(MIN)	Minimum Load Current	(includes $\mathrm{V}_{\text {SET }}$ Divider) $\begin{gathered} \mathrm{TA}=25^{\circ} \mathrm{C} \\ 0^{\circ} \mathrm{C}<\mathrm{TA}<+70^{\circ} \mathrm{C} \\ -25^{\circ} \mathrm{C}<\mathrm{TA}<+85^{\circ} \mathrm{C} \end{gathered}$		$\begin{aligned} & 0.2 \\ & 0.2 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 5.0 \\ & 5.0 \end{aligned}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$ $\mu \mathrm{A}$

Notes:

3. This parameter refers to the saturation resistance of the MOS pass transistor. The minimum input-output voltage differential at low current (under 5 mA), can be determined by multiplying the load current (including set resistor current, but not quiescent current) by this resistance.
4. This output has a positive temperature coefficient. Using it in combination with the inverting input of the regulator at $\mathrm{V}_{\text {SET }}$, a negative coefficient results in the output voltage. See Figure 4 for details. Pin will not source current.
5. All pins are designed to withstand electrostatic discharge (ESD) levels in excess of 2000 V .
6. All significant improvements over the industry standard ICL7663 are highlighted in bold italics.
[^164]NOTE: All typical values have been characterized but are not tested.

TYPICAL PERFORMANCE CHARACTERISTICS

DETAILED DESCRIPTION

The ICL7663S is a CMOS integrated circuit incorporating all the functions of a voltage regulator plus protection circuitry on a single monolithic chip. Referring to the functional diagram (Figure 2), the main blocks are a bandgap-type voltage reference, an error amplifier, and an output driver with both PMOS and NPN pass transistors.

The bandgap output voltage, trimmed to $1.29 \mathrm{~V} \pm 15 \mathrm{mV}$ for the ICL7663SA, and the input voltage at the $V_{\text {SET }}$ terminal are compared in amplifier A. Error amplifier A drives a P-channel pass transistor which is sufficient for low (under about 5 mA) currents. The high current output is passed by an NPN bipolar transistor connected as a follower. This configuration gives more gain and lower output impedance.

Logic-controlled shutdown is implemented via a N -channel MOS transistor. Current-sensing is achieved with comparator C , which functions with the $\mathrm{V}_{\text {OUT2 }}$ terminal. The ICL7663S has an output ($V_{T C}$) from a buffer amplifier (B), which can be used in combination with amplifier \mathbf{A} to generate programmable-temperature-coefficient output voltages.

The amplifiers, reference and comparator circuitry all operate
at bias levels well below $1 \mu \mathrm{~A}$ to achieve extremely low quiescent current. This does limit the dynamic response of the circuits, however, and transients are best dealt with outside the regulator loop.

BASIC OPERATION

The ICL7663S is designed to regulate battery voltages in the 5 V to 15 V region at maximum load currents of about 5 mA to 30 mA . Although intended as low power devices, power dissipation limits must be observed. For example, the power dissipation in the case of a 10 V supply regulated down to 2 V with a load current of 30 mA clearly exceeds the power dissipation rating of the minidip:
$(10-2)(30)\left(10^{-3}\right)=240 \mathrm{~mW}$
The circuit of Figure 4 illustrates proper use of the device.
CMOS devices generally require two precautions: every input pin must go somewhere, and maximum values of applied voltages and current limits must be rigorously observed. Neglecting these precautions may lead to, at the least, incorrect or nonoperation, and at worst, destructive device failure. To avoid the problem of latchup, do not apply inputs to any pins before supply voltage is applied.

Note 1: S , when closed disables output current limiting
Note 2: Close S_{2} for $\mathrm{V}_{\text {OUT1 }}$, open S_{2} for $\mathrm{V}_{\text {OUT2 }}$
Note 3: $\quad V_{\text {OUT }}=\frac{R_{2}+R_{1}}{R_{1}} V_{\text {SET }}$
Note 4: I_{Q} quiescent clurrent is measured at GND pin by meter M
Note 5: S_{3} when ON, permits normal operation, when OFF, shuts down both $V_{\text {OUT1 }}$ and $V_{\text {OUT2 }}$

Figure 3: ICL7663S Test Circuit

Input Voltages-The ICL7663S accepts working inputs of 1.5 V to 16 V . When power is applied, the rate-of-rise of the input may be hundreds of volts per microsecond. This is potentially harmful to the regulators, where internal operating currents are in the nanoampere range. The $0.047 \mu \mathrm{~F}$ capacitor on the device side of the switch will limit inputs to a safe level around $2 \mathrm{~V} / \mu \mathrm{s}$. Use of this capacitor is suggested in all applications. In severe rate-of-rise cases, it may be advisable to use an RC network on the SHutDowN pin to delay output turn-on. Battery charging surges, transients, and assorted noise signals should be kept from the regulators by RC filtering, zener protection, or even fusing.

Output Voltages-The resistor divider R_{2} / R_{1} is used to scale the reference voltage, $V_{\text {SET }}$, to the desired output using the formula $V_{\text {OUT }}=\left(1+R_{2} / R_{1}\right) V_{\text {SET }}$. Suitable arrangements of these resistors, using a potentiometer, enables exact values for $\mathrm{V}_{\text {OUT }}$ to be obtained. In most applications the potentiometer may be eliminated by using the ICL7663SA. The ICL7663SA has $V_{\text {SET }}$ voltage guaranteed to be $1.29 \mathrm{~V}^{2} 15 \mathrm{mV}$ and when used with $\pm 1 \%$ tolerance resistors for \mathbf{R}_{1} and $\mathbf{R}_{\mathbf{2}}$ the initial output voltage will be within $\pm 2.7 \%$ of ideal.
The low leakage current of the $\mathrm{V}_{\text {SET }}$ terminal allows R_{1} and $\mathrm{R}_{\mathbf{2}}$ to be tens of megohms for minimum additional quiescent drain current. However, some load current is required for proper operation, so for extremely low-drain applications it is necessary to draw at least $1 \mu \mathrm{~A}$. This can include the current for \mathbf{R}_{2} and \mathbf{R}_{1}.

Output voltages up to nearly the $\mathrm{V}_{\text {IN }}$ supply may be obtained at low load currents, while the low limit is the reference voltage. The minimum input-output differential in each regulator is obtained using the $V_{\text {OUT1 }}$ terminal. The input-output differential increases to 1.5 V when using $V_{\text {OUt2. }}$

Figure 4: Positive Regulator with Current Limit

Output Currents-Low output currents of less than 5 mA are obtained with the least input-output differential from the $V_{\text {OUT1 }}$ terminal (connect $\mathrm{V}_{\text {OUT2 }}$ to $\mathrm{V}_{\text {OUT1 }}$). Where higher currents are needed, use $\mathrm{V}_{\text {OUT2 }}$ (VOUT1 should be left open in this case)
High output currents can be obtained only as far as package dissipation allows. It is strongly recommended that output current-limit sensing be used in such cases.
Current-Limit Sensing-The on-chip comparator (C in Figure 2) permits shutdown of the regulator output in the event of excessive current drain. As Figure 4 shows, a current-limiting resistor, R_{CL}, is placed in series with $\mathrm{V}_{\text {OUT2 }}$ and the SENSE terminal is connected to the load side of R_{CL}. When the current through $R_{C L}$ is high enough to produce a voltage drop equal to $\mathrm{V}_{\mathrm{CL}}(0.5 \mathrm{~V})$ the voltage feedback is bypassed and the regulator output will be limited to this current. Therefore, when the maximum load current (lLOAD) is determined, simply divide V_{CL} by $\mathrm{l}_{\text {LOAD }}$ to obtain the value for R_{CL}.
Logic-Controllable Shutdown-When equipment is not needed continuously (e.g., in remote data-acquisition systems), it is desirable to eliminate its drain on the system until it is required. This usually means switches, with their unreliable contacts. Instead, the ICL7663S can be shut down by a logic signal, leaving only l_{Q} (under $4 \mu \mathrm{~A}$) as a drain on the power source. Since this pin must not be left open, it should be tied to ground if not needed. A voltage of less than 0.3 V for the ICL7663S will keep the regulator ON, and a voltage level of more than 1.4 V but less than $\mathrm{V}^{+}{ }_{\text {IN }}$ will turn the outputs OFF. If there is a possibility that the control signal could exceed the regulator input ($\mathrm{V}^{+}{ }_{\text {IN }}$) the current from this signal should be limited to $100 \mu \mathrm{~A}$ maximum by a high-value (1M2) series resistor. This situation may occur when the logic signal originates from a system powered separately from that of the regulator.

Additional Circuit Precautions-This regulator has poor rejection of voltage fluctuations from AC sources above 10 Hz or so. To prevent the output from responding (where this might be a problem), a reservoir capacitor across the load is advised. The value of this capacitor is chosen so that the regulated output voltage reaches 90% of its final value in 20 ms . From

$$
\mathrm{I}=\mathrm{C} \frac{\Delta \mathrm{~V}}{\Delta \mathrm{t}}, \mathrm{C}=\mathrm{I}_{\text {OUT }} \frac{\left(20 \times 10^{-3}\right)}{0.9 \mathrm{~V}_{\text {OUT }}}=0.022 \frac{\mathrm{I}_{\mathrm{OUT}}}{\mathrm{~V}_{\text {OUT }}} .
$$

In addition, where such a capacitor is used, a current-limiting resistor is also suggested (see "Current-Limit Sensing").

Producing Output Voltages With Negative Temperature Coefficients-The ICL7663S has an additional output which is 0.9 V relative to GND and has a tempco of $+2.5 \mathrm{mV} /{ }^{\circ} \mathrm{C}$. By applying this voltage to the inverting input of amplifier A (i.e., the $\mathrm{V}_{\text {SET }}$ pin), output voltages having negative TC may be produced. The TC of the output voltage is controlled by the R_{2} / R_{3} ratio (see Figure 5 and its design equations).

APPLICATIONS

Boosting Output Current with External Transistor

The maximum available output current from the ICL7663S is 40 mA . To obtain output currents greater than 40 mA , an external NPN transistor is used connected as shown in Figure 6.

Generating a Temperature Compensated Display Drive Voltage

Temperature has an important effect in the variation of threshold voltage in multiplexed LCD displays. As temperature rises, the threshold voltage goes down. For applications where the display temperature varies widely, a temperature compensated display voltage, $V_{\text {DISP }}$, can be generated using the ICL7663S. This is shown in Figure 7 for the ICM7233 triplexed LCD display driver.

Generating Regulated Split Supplies from a Single Supply

To generate regulated +5 V and -5 V supplies from a single supply, the ICL7660S and ICL7664 are used with the ICL7663S, as shown in Figure 8. The ICL7660S inverts the +9 V input voltage to -9 V . Then, the ICL.7664S negative voltage regulator uses the -9 V to generate a regulated -5 V output, while the ICL7663S positive voltage regulator regulates the +9 V input to a constant +5 V output.

EQ. 1: $\quad V_{\text {OUT }}=V_{S E T}\left(1+\frac{R_{2}}{R_{1}}\right)+\frac{R_{2}}{R_{3}}\left(V_{S E T}-V_{T C}\right)$
EQ. 2: \quad TC VOUT $=-\frac{R_{2}}{R_{3}}\left(T C V_{T C}\right)$ in mVic

WHERE: VSET = 1.3 V
$V_{T C}=0.9 \mathrm{~V}$
$T C V T C=+2.5 \mathrm{mV} /{ }^{\circ} \mathrm{C}$

Figure 5: Generating Negative Temperature Coefficients

Figure 6: Boosting Output Current with External Transistor

[^165]
APPLICATIONS

Figure 7: Generating a Multiplexed LCD Display Drive Voltage

Figure 8: Generating Regulated Split Supplies From a Single Supply
The oscillation frequency of the ICL7660S is reduced by the external oscillator capacitor, so that it inverts the battery voltage more efficiently.

Micropower Under/Over Voltage Detector

GENERAL DESCRIPTION

The ICL7665 contains two individually programmable voltage detectors on a single chip. Requiring only $3 \mu \mathrm{~A}$ typical for operation, the device is intended for battery-operated systems and instruments which require high or low voltage warnings, settable trip points, or fault monitoring and correction. Typical applications are battery-backup computer memories, battery-operated medical devices, radiation dosimeters, pocket pagers, portable calibrators, test instruments, and charging systems.
An enhanced direct replacement for this part called ICL7665s will become available shortly and will be more appropriate for new designs.

FEATURES

- Exceptionally Low Supply Current ($<3 \mu \mathrm{~A}$ Typ)
- Individually Programmable Upper and Lower Trip Voltages and Hysteresis Levels
- Accurate On-Chip Bandgap Reference
- Up to 20mA Output Current Sinking Ability
- Wide Supply Voltage Range

ORDERING INFORMATION

Part Number	Temperature Range	Package
ICL7665CPA	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	8 Lead MiniDIP
ICL7665CTV	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	8 Lead TO-99
ICL7665CBA	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	8 Lead SOIC
ICL7665CJA	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	8 Lead CERDIP

Conditions*

$\mathrm{V}_{\text {SET } 1}>1.3 \mathrm{~V}$, OUT1 switch ON HYST1 switch ON
$\mathrm{V}_{\text {SET } 1}<1.3 \mathrm{~V}$, OUT1 switch OFF HYST1 switch OFF
$V_{\text {SET2 }}>1.3 \mathrm{~V}$, OUT2 switch OFF HYST2 switch ON
$\mathrm{V}_{\mathrm{SET} 2}<1.3 \mathrm{~V}$, OUT2 switch ON HYST2 switch OFF
*See Operating Characteristics for exact thresholds.

ABSOLUTE MAXIMUM RATINGS

Supply Voltage -0.3 V to +18 V
Output Voltages OUT1 and OUT2 (with respect to GND) (Note 2) \qquad Output Voltages HYST1 and HYST2 (with respect to $\mathrm{V}+$) (Note 2) $\ldots .$. Input Voltages SET1 and SET2 (Note 2) \qquad (GND-0.3V) to $\left(\mathrm{V}^{+}+0.3 \mathrm{~V}\right)$

Maximum Sink Output Current OUT1 and OUT2 25mA Maximum Source Output Current HYST1 and HYST2 \qquad $-25 m A$
Power Dissipation (Note 1) 200 mW
Operating Temperature Range $\ldots0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature Range $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10sec)
$.300^{\circ} \mathrm{C}$

NOTE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

DC OPERATING CHARACTERISTICS $\quad\left(\mathrm{V}+=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$, unless otherwise specified. See Test Circuit
Fig. 4)

Symbol	Parameter	Test Conditions	Limits			Units
			Min	Typ	Max	
V ${ }^{+}$	Operating Supply Voltage	$\begin{aligned} & \mathrm{T}_{A}=+25^{\circ} \mathrm{C} \\ & 0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C} \\ & \hline \end{aligned}$	$\begin{aligned} & 1.6 \\ & 1.8 \end{aligned}$		$\begin{aligned} & \hline 16 \\ & 16 \end{aligned}$	V
$1+$	Supply Current	GND $\leq \mathrm{V}_{\text {SET } 1}, \mathrm{~V}_{\text {SET } 2} \leq \mathrm{V}^{+}$ All Outputs Open Circuit $\begin{aligned} & V+=2 V \\ & V+=9 V \\ & V^{+}=15 \mathrm{~V} \end{aligned}$		$\begin{aligned} & 2.5 \\ & 2.6 \\ & 2.9 \\ & \hline \end{aligned}$	$\begin{aligned} & 10 \\ & 10 \\ & 15 \end{aligned}$	$\mu \mathrm{A}$
$V_{\text {SET1 }}$ $V_{\text {SET2 }}$	Input Trip Voltage		$\begin{gathered} 1.15 \\ 1.2 \\ \hline \end{gathered}$	$\begin{aligned} & 1.3 \\ & 1.3 \\ & \hline \end{aligned}$	$\begin{gathered} 1.45 \\ 1.4 \\ \hline \end{gathered}$	V
$\frac{\Delta V_{\mathrm{SET}}}{\Delta T}$	Temperature Coefficient of $\mathrm{V}_{\text {SET }}$			± 200		ppm $/{ }^{\circ} \mathrm{C}$
$\frac{\Delta \mathrm{V}_{\mathrm{SET}}}{\Delta \mathrm{~V}_{\mathrm{S}}}$	Supply Voltage Sensitivity of $\mathrm{V}_{\mathrm{SET}}, \mathrm{V}_{\mathrm{SET}}$			0.004		\%/V
$\begin{aligned} & \text { loLK } \\ & \text { IHLK } \\ & \hline \end{aligned}$	Output Leakage Currents on OUT and HYST	$\mathrm{V}_{\text {SET }}=0 \mathrm{~V}$ or $\mathrm{V}_{\text {SET }} \geq 2 \mathrm{~V}$		$\begin{array}{r} 10 \\ -10 \\ \hline \end{array}$	$\begin{array}{r} 200 \\ -100 \\ \hline \end{array}$	nA
$\begin{aligned} & \text { IOLK } \\ & \text { IHLK } \\ & \hline \end{aligned}$		$\begin{aligned} & \hline \mathrm{V}+=9 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=70^{\circ} \mathrm{C} \\ & \mathrm{~V}+=9 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=70^{\circ} \mathrm{C} \\ & \hline \end{aligned}$			$\begin{array}{r} 2000 \\ -500 \\ \hline \end{array}$	
Vout1 VOUT1 Vout1	Output Saturation Voltages	$\begin{aligned} & \mathrm{V}+=2 \mathrm{~V}, \mathrm{~V}_{\text {SET } 1}=2 \mathrm{~V}, \text { IOUT1 } \\ & \mathrm{V}+=5 \mathrm{~mA} \\ & \mathrm{~V}+=9 \mathrm{~V}, \mathrm{~V}_{\text {SET } 1}=2 \mathrm{~V}, \text { IOUT1 } \end{aligned}=2 \mathrm{~mA}$		$\begin{gathered} 0.2 \\ 0.1 \\ 0.06 \end{gathered}$	$\begin{aligned} & 0.5 \\ & 0.3 \\ & 0.2 \end{aligned}$	V
$\mathrm{V}_{\text {HYST1 }}$ $\mathrm{V}_{\text {HYST1 }}$ $V_{\text {HYST1 }}$		$\begin{aligned} & \mathrm{V}+=2 \mathrm{~V}, \mathrm{~V}_{\mathrm{SET} 1}=2 \mathrm{~V}, \mathrm{I}_{\mathrm{HYST}}=-0.5 \mathrm{~mA} \\ & \mathrm{~V}+=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SET} 1}=2 \mathrm{~V}, \mathrm{I}_{\mathrm{HYST} 1}=-0.5 \mathrm{~mA} \\ & \mathrm{~V}+=9 \mathrm{~V}, \mathrm{~V}_{\mathrm{SET} 1}=2 \mathrm{~V}, \mathrm{I}_{\mathrm{HYST} 1}=-0.5 \mathrm{~mA} \end{aligned}$		$\begin{aligned} & -0.15 \\ & -0.05 \\ & -0.02 \\ & \hline \end{aligned}$	$\begin{array}{r} -0.3 \\ -0.15 \\ -0.10 \end{array}$	
VOUT2 VOUT2 VOUT2		$\begin{aligned} & \mathrm{V}^{+}=2 \mathrm{~V}, \mathrm{~V}_{\text {SET } 2}=0 \mathrm{~V}, \text { IOUT2 } \\ & \mathrm{V}+=5 \mathrm{~mA} \\ & \mathrm{~V}=5 \mathrm{~V}, \mathrm{~V}_{\text {SET2 }}=0 \mathrm{~V}, \text { IOUT2 } \end{aligned}=2 \mathrm{~mA}$		$\begin{gathered} 0.2 \\ 0.15 \\ 0.11 \\ \hline \end{gathered}$	$\begin{gathered} 0.5 \\ 0.3 \\ 0.25 \end{gathered}$	
$\begin{aligned} & \mathrm{V}_{\text {HYST2 }} \\ & \mathrm{V}_{\text {HYST2 }} \\ & \mathrm{V}_{\mathrm{HYST}} \\ & \hline \end{aligned}$		$\begin{aligned} & \mathrm{V}+=2 \mathrm{~V}, \mathrm{~V}_{\text {SET2 }}=2 \mathrm{~V}, \text { IHYST2 }=-0.2 \mathrm{~mA} \\ & \mathrm{~V}+=5 \mathrm{~V}, \mathrm{~V}_{\text {SET2 }}=2 \mathrm{~V}, \text { IHYST2 }=-0.5 \mathrm{~mA} \\ & \mathrm{~V}+=9 \mathrm{~V}, \mathrm{~V}_{\text {SET2 }}=2 \mathrm{~V}, \text { IHYST2 }=-0.5 \mathrm{~mA} \end{aligned}$		$\begin{array}{r} -0.25 \\ -0.43 \\ 0.35 \end{array}$	$\begin{array}{r} -0.8 \\ -1.0 \\ -1.0 \\ \hline \end{array}$	
ISET	$\mathrm{V}_{\text {SET }}$ Input Leakage Current	GND $\leq \mathrm{V}_{\text {SET }} \leq \mathrm{V}^{+}$		0.01	10	nA
$\Delta V_{\text {SET }}$	$\Delta V_{\text {SET }}$ Input for Complete Output Change	$\begin{aligned} & \text { ROUT }=4.7 \mathrm{k} \Omega, \mathrm{R}_{\text {HYST }}=20 \mathrm{k} \Omega \\ & \mathrm{~V}_{\text {OUT }} \mathrm{LO}=1 \% \mathrm{~V}^{+}, \mathrm{V}_{\text {OUT }} \mathrm{HI}=99 \% \mathrm{~V}+ \\ & \hline \end{aligned}$		1		mV
$\mathrm{V}_{\text {SET } 1}-\mathrm{V}_{\text {SET2 }}$	Difference in Trip Voltages	$\mathrm{R}_{\text {OUT }}, \mathrm{R}_{\text {HYST }}=1 \mathrm{M} \Omega$		± 5	± 50	
	Output/Hysteresis Difference	$\mathrm{R}_{\text {OUT }}, \mathrm{R}_{\text {HYST }}=1 \mathrm{M} \Omega$		± 1		

NOTES: 1. Derate above $\pm 25^{\circ} \mathrm{C}$ ambient temperature at $4 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.
2. Due to the SCR structure inherent in the CMOS process used to fabricate these devices, connecting any terminal to voltages greater than ($\mathrm{V}++0.3 \mathrm{~V}$) or less than (GND-0.3V) may cause destructive device latchup. For these reason, it is recommended that no inputs from external sources not operating from the same power supply be applied to the device before its supply is established, and that in multiple supply systems, the supply to the ICL7665 be turned on first. If this is not possible, currents into inputs and/or outputs must be limited to $\pm 0.5 \mathrm{~mA}$ and voltages must not exceed those defined above.
INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. the warranty shall be exclusive and shall be in lieu of all other warranties, express, implied or statutory, including the implied warranties of MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.
NOTE: All typical values have been characterized but are not tested.

AC ELECTRICAL CHARACTERISTICS

Symbol	Parameter	Test Conditions	Limits			Units
			Min	Typ	Max	
tsO1d tsH1d tso2d $t_{\text {SH2d }}$	Output Delay Time Input Going HI	$\mathrm{V}_{\text {SET }}$ Switched from 1.0V to 1.6 V $\mathrm{R}_{\text {OUT }}=4.7 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=12 \mathrm{pF}$ $R_{H Y S T}=20 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=12 \mathrm{pF}$		$\begin{array}{r} 70 \\ 80 \\ 120 \\ 230 \end{array}$		$\mu \mathrm{S}$
${ }^{\text {tsondd }}$ tsincd tso2d tsin2d	Output Delay Time Input Going LO	$\mathrm{V}_{\text {SET }}$ Switched from 1.6V to 1.0 V $R_{\text {OUT }}=4.7 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=12 \mathrm{pF}$ $R_{H Y S T}=20 k \Omega, C_{L}=12 p F$		$\begin{array}{r} 1040 \\ 610 \\ 70 \\ 30 \\ \hline \end{array}$		$\mu \mathrm{s}$
${ }^{\mathrm{t}} \mathrm{O} 1 \mathrm{r}$ to2r $\mathrm{t}_{\mathrm{H} 1 \mathrm{r}}$ $\mathrm{t}_{\mathrm{H} 2 \mathrm{r}}$	Output Rise Times	$\mathrm{V}_{\text {SET }}$ Switched between 1.0 V and 1.6 V $R_{\text {OUT }}=4.7 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=12 \mathrm{pF}$ $\mathrm{R}_{\mathrm{HYST}}=20 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=12 \mathrm{pF}$		$\begin{array}{r} 120 \\ 80 \\ 330 \\ 25 \end{array}$		$\mu \mathrm{S}$
$t_{01 f}$ to2f $\mathrm{t}_{\mathrm{H} 1 \mathrm{f}}$ $t_{\mathrm{H} 2 f}$	Output Fall Times	$\mathrm{V}_{\text {SET }}$ Switched between 1.0 V and 1.6 V $R_{\text {OUT }}=4.7 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=12 \mathrm{pF}$ $R_{H Y S T}=20 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=12 \mathrm{pF}$		$\begin{array}{r} 30 \\ 60 \\ 180 \\ 30 \end{array}$		$\mu \mathrm{s}$

[^166]

0322-6
Figure 4: Test Circuits
TYPICAL PERFORMANCE CHARACTERISTICS

0322-7

0322-10

SUPPLY CURRENT AS A FUNCTION OF SUPPLY VOLTAGE

0322-8
SUPPLY CURRENT AS A FUNCTION

0322-11

HYST1 OUTPUT SATURATION VOLTAGE VS HYST1 OUTPUT CURRENT

HYST1 OUTPUT CURRENT (mA)
0322-9
HYST2 OUTPUT SATURATION VOLTAGE VS HYST2 OUTPUT CURRENT

HYST2 OUTPUT CURRENT (mA)

[^167]
DETAILED DESCRIPTION

As shown in the Functional Diagram, the ICL7665 consists of two comparators which compare input voltages on the SET1 and SET2 terminals to an internal 1.3V band-gap reference. The outputs from the two comparators drive open-drain N-channel transistors for OUT1 and OUT2, and open-drain P-channel transistors for HYST1 and HYST2 outputs. Each section, the Under-Voltage Detector and the Over-Voltage Detector, is independent of the other, although both use the internal 1.3 V reference. The offset voltages of the two comparators will normally be unequal, so $\mathrm{V}_{\mathrm{SET} 1}$ will generally not quite equal $\mathrm{V}_{\mathrm{SET} 2}$.

The input impedances of the SET1 and SET2 pins are extremely high, and for most practical applications can be ignored. The four outputs are open-drain MOS transistors, and when ON behave as low resistance switches to their respective supply rails. This minimizes errors in setting-up the hysteresis, and maximizes the output flexibility. The operating currents of the bandgap reference and the comparators are around 100 nA each.

PRECAUTIONS

Junction-isolated CMOS devices like the ICL7665 have an inherent SCR or 4-layer PNPN structure distributed
throughout the die. Under certain circumstances, this can be triggered into a potentially destructive high-current mode. This latchup can be triggered by forward-biasing an input or output with respect to the power supply, or by applying excessive supply voltages. In very-low current analog circuits, such as the ICL7665, this SCR can also be triggered by applying the input power supply extremely rapidly ("instantaneously"), e.g. through a low impedance battery and an ON/OFF switch with short lead lengths. The rate-ofrise of the supply voltage can exceed $100 \mathrm{~V} / \mu \mathrm{s}$ in such a circuit. A low-impedance capacitor (e.g. $0.05 \mu \mathrm{~F}$ disc ceramic) between the V^{+}and GrouND pins of the ICL7665 can be used to reduce the rate-of-rise of the supply voltage in battery applications. In line-operated systems, the rate-ofrise of the supply is limited by other considerations, and is normally not a problem.
If the SET voltages must be applied before the supply voltage V^{+}, the input current should be limited to less than 0.5 mA by appropriate external resistors, usually required for voltage setting anyway. A similar precaution should be taken with the outputs if it is likely that they will be driven by other circuits to levels outside the supplies at any time. See M011 for some other protection ideas.

APPLICATIONS

Figure 5: Simple Threshold Detector

[^168]Figure 5 shows the simplest connection of the ICL7665 for threshold detection. From the graph (b), it can be seen that at low input voltages OUT1 is OFF, or high, while OUT2 is ON, or low. As the input rises (e.g. at power-on) toward $\mathrm{V}_{\text {NOM }}$ (usually the eventual operating voltage), OUT2 goes high on reaching $\mathrm{V}_{\text {TR2 }}$. If the voltage rises above $\mathrm{V}_{\text {NOM }}$ as much as $\mathrm{V}_{\text {TR1 }}$, OUT1 goes low. The equations giving $\mathrm{V}_{\text {SET1 }}$ and $\mathrm{V}_{\text {SET2 }}$ are, from Figure $1(\mathrm{a})$:
$V_{S E T 1}=V_{I N} \frac{R_{11}}{\left(R_{11}+R_{21}\right)} ; V_{S E T 2}=V_{I N} \frac{R_{12}}{\left(R_{12}+R_{22}\right)}$
Since the voltage to trip each comparator is nominally 1.3 V , the value of $\mathrm{V}_{\text {IN }}$ for each trip point can be found from
$V_{T R 1}=V_{\text {SET } 1} \frac{\left(R_{11}+R_{21}\right)}{R_{11}}=1.3 \frac{\left(R_{11}+R_{21}\right)}{R_{11}}$ for detector 1
and
$V_{\text {TR2 }}=V_{\text {SET2 }} \frac{\left(R_{12}+R_{22}\right)}{R_{12}}=1.3 \frac{\left(R_{12}+R_{22}\right)}{R_{12}}$ for detector 2.
Either detector may be used alone, as well as both together, in any of the circuits shown here.
When V_{IN} is very close to one of the trip voltages, normal variations and noise may cause it to wander back and forth across this level, leading to erratic output ON and OFF con-
ditions. The addition of hysteresis, making the trip points slightly different for rising and falling inputs, will avoid this condition.

Figure 6(a) shows how to set up such hysteresis, while Figure 6(b) shows how the hysteresis around each trip point produces switching action at different points depending on whether V_{IN} is rising or falling (the arrows indicate direction of change). The HYST outputs are basically switches which short out R_{31} or R_{32} when $V_{I N}$ is above the respective trip point. Thus if the input voltage rises from a low value, the trip point will be controlled by $\mathrm{R}_{1 n}, \mathrm{R}_{2 n}$ and $\mathrm{R}_{3 n}$, until the trip point is reached. As this value is passed, the detector changes state, $\mathrm{R}_{3 n}$ is shorted out, and the trip point becomes controlled by only $\mathrm{R}_{1 n}$ and $\mathrm{R}_{2 n}$, a lower value. The input will then have to fall to this new point to restore the initial comparator state, but as soon as this occurs, the trip point will be raised again.
An alternative circuit for obtaining hysteresis is shown in Figure 7. In this configuration, the HYST pins put the extra resistor in parallel with the upper setting resistor. The values of the resistors differ, but the action is essentially the same. The governing equations are given in Table 1. These ignore the effects of the resistance of the HYST outputs, but these can normally be neglected if the resistor values are above about $100 \mathrm{k} \Omega$

Figure 6: Threshold Detector with Hysteresis

[^169]

0322-17
Figure 7: An Alternative Hysteresis Circuit
Table 1. Set-Point Equations

a) NO HYSTERESIS

Over-Voltage $V_{\text {TRIP }}=\frac{R_{11}+R_{21}}{R_{11}} \times V_{\text {SET1 }}$
Under-Voltage $V_{\text {TRIP }}=\frac{R_{12}+R_{22}}{R_{12}} \times V_{\text {SET2 }}$
b) HYSTERESIS PER FIGURE 6A

Over-Voltage $\mathrm{V}_{\text {TRIP }}$

$$
V_{U 1}=\frac{R_{11}+R_{21}+R_{31}}{R_{11}} \times V_{\text {SET } 1}
$$

$V_{L 1}=\frac{R_{11}+R_{21}}{R_{11}} \times V_{\text {SET1 }}$
$V_{U 2}=\frac{R_{12}+R_{22}+R_{32}}{R_{12}} \times V_{\text {SET2 }}$

$$
V_{\mathrm{L} 2}=\frac{R_{12}+R_{22}}{R_{12}} \times V_{\mathrm{SET} 2}
$$

c) HYSTERESIS PER FIGURE 7

Over-Voltage $V_{\text {TRIP }} \quad V_{U 1}=\frac{R_{11}+R_{21}}{R_{11}} \times V_{\text {SET1 }}$
$V_{L 1}=\frac{R_{11}+\frac{R_{21} R_{31}}{R_{21}+R_{31}}}{R_{11}} \times V_{S E T 1}$
$V_{U 2}=\frac{R_{12}+R_{22}}{R_{12}} \times V_{\text {SET2 }}$
Under-Voltage $V_{\text {TRIP }}$

$$
V_{L 2}=\frac{R_{12}+\frac{R_{22} R_{32}}{R_{22}+R_{32}}}{R_{12}} \times V_{S E T 2}
$$

ICL7665B ADDENDUM TO THE ICL7665 DATASHEET

ORDERING INFORMATION

Part Number	Temperature Range	Package
ICL7665BCPA	0 to $+70^{\circ} \mathrm{C}$	8 Lead MiniDIP
ICL7665BCTV	0 to $+70^{\circ} \mathrm{C}$	8 Lead TO-99
ICL7665BCJA	0 to $+70^{\circ} \mathrm{C}$	8 -Lead CERDIP
ICL7665BCBA	0 to $+70^{\circ} \mathrm{C}$	8-Lead S.O.I.C.

ABSOLUTE MAXIMUM RATINGS, ICL7665B

Output Voltages OUT1 and OUT2 (with respect to GND)
(Note 2) \qquad -0.3 V to +12 V
Output Voltages HYST1 and HYST2 (with respect to V^{+})

Input Voltages SET1 and SET2
(Note 2)
...
. (GND -0.3V) to ($\mathrm{V}^{+}+0.3 \mathrm{~V}$)

Maximum Sink Output Current OUT1 and OUT2 25mA
Maximum Source Output Current HYST1 and HYST2
Power Dissipation (Note 1) $-25 m A$
................... . 200mW
Operating Temperature Range 0 to $+70^{\circ} \mathrm{C}$
Storage Temperature Range $\ldots-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

NOTE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
DC OPERATING CHARACTERISTICS $\mathrm{V}+=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise specified.

Symbol	Parameter	Test Conditions	Limits			Units
			Min	Typ	Max	
V ${ }^{+}$	Operating Supply Voltage	$\begin{aligned} & T_{A}=+25^{\circ} \mathrm{C} \\ & 0 \leq T_{A} \leq+70^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & 1.6 \\ & 1.8 \\ & \hline \end{aligned}$		$\begin{aligned} & 10 \\ & 10 \\ & \hline \end{aligned}$	V
$1+$	Supply Current	GND $\leq \mathrm{V}_{\text {SET1 }}, \mathrm{V}_{\text {SET2 }} \leq \mathrm{V}^{+}$ All Outputs Open Circuit $\begin{aligned} & \mathrm{V}^{+}=2 \mathrm{~V} \\ & \mathrm{~V}^{+}=9 \mathrm{~V} \end{aligned}$		$\begin{aligned} & 2.5 \\ & 2.6 \end{aligned}$	$\begin{aligned} & 10 \\ & 10 \end{aligned}$	$\mu \mathrm{A}$
$\begin{aligned} & V_{\text {SET1 }} \\ & \mathrm{V}_{\text {SET2 }} \end{aligned}$	Input Trip Voltage		$\begin{gathered} 1.15 \\ 1.2 \end{gathered}$	$\begin{aligned} & 1.3 \\ & 1.3 \end{aligned}$	$\begin{gathered} 1.45 \\ 1.4 \end{gathered}$	V
$\frac{\Delta V_{\mathrm{SET}}}{\Delta \mathrm{~T}}$	Temperature Coefficient of $\mathrm{V}_{\text {SET }}$			± 200		ppm $/{ }^{\circ} \mathrm{C}$
$\frac{\Delta V_{\mathrm{SET}}}{\Delta \mathrm{~V}_{\mathrm{S}}}$	Supply Voltage Sensitivity of $\mathrm{V}_{\text {SET1 }}, \mathrm{V}_{\text {SET2 }}$	$R_{\text {OUT } 1}$, Rout $^{\text {, }}$ R HYST1, $\mathrm{R}_{\text {HYST } 2}=1 \mathrm{M} \Omega$		0.004		\%/V
lolk IHLK	Output Leakage Currents on OUT and HYST	$\mathrm{V}_{\mathrm{SET}}=0 \mathrm{~V}$ or $\mathrm{V}_{\mathrm{SET}} \geq 2 \mathrm{~V}$		$\begin{gathered} 10 \\ -10 \\ \hline \end{gathered}$	$\begin{gathered} 200 \\ -100 \\ \hline \end{gathered}$	$n A$
lolk IHLK		$\begin{aligned} & \mathrm{V}+=9 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=70^{\circ} \mathrm{C} \\ & \mathrm{~V}+=9 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=70^{\circ} \mathrm{C} \end{aligned}$			$\begin{aligned} & 2000 \\ & -500 \end{aligned}$	

DC OPERATING CHARACTERISTICS
$\mathrm{V}+=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise specified. (Continued)

Symbol	Parameter	Test Conditions	Limits			Units
			Min	Typ	Max	
VOUT1 Vout1 VouT1	Output Saturation Voltages	$\begin{aligned} & \mathrm{V}^{+}=2 \mathrm{~V}, \mathrm{~V}_{\mathrm{SET} 1}=2 \mathrm{~V}, \mathrm{IOUT}=2 \mathrm{~mA} \\ & \mathrm{~V}^{+}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SET} 1}=2 \mathrm{~V}, \mathrm{IOUT}=2 \mathrm{~mA} \\ & \mathrm{~V}^{+}=9 \mathrm{~V}, \mathrm{~V}_{\text {SET } 1}=2 \mathrm{~V}, \mathrm{I}_{\mathrm{OUT} 1}=2 \mathrm{~mA} \end{aligned}$		$\begin{gathered} 0.2 \\ 0.1 \\ 0.06 \\ \hline \end{gathered}$	$\begin{gathered} 0.5 \\ 0.3 \\ 0.25 \\ \hline \end{gathered}$	V
VHYST1 VHYST1 VHYST1		$\begin{aligned} & \mathrm{V}+=2 \mathrm{~V}, \mathrm{~V}_{\mathrm{SET} 1}=2 \mathrm{~V}, \mathrm{I}_{\mathrm{HYST} 1}=-0.5 \mathrm{~mA} \\ & \mathrm{~V}+=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SET} 1}=2 \mathrm{~V}, \mathrm{I}_{\mathrm{HYST} 1}=-0.5 \mathrm{~mA} \\ & \mathrm{~V}^{+}=9 \mathrm{~V}, \mathrm{~V}_{\mathrm{SET} 1}=2 \mathrm{~V}, \mathrm{I}_{\mathrm{HYST} 1}=-0.5 \mathrm{~mA} \end{aligned}$		$\begin{aligned} & -0.15 \\ & -0.05 \\ & -0.02 \end{aligned}$	$\begin{gathered} -0.3 \\ -0.15 \\ 0.15 \end{gathered}$	
VOUT2 Vout2 Vout2		$\begin{aligned} & \mathrm{V}+=2 \mathrm{~V}, \mathrm{~V}_{\text {SET2 }}=0 \mathrm{~V}, \text { IOUT2 }=2 \mathrm{~mA} \\ & \mathrm{~V}+=5 \mathrm{~V}, \mathrm{~V}_{\text {SET2 }}=0 \mathrm{~V}, \text { IOUT2 }=2 \mathrm{~mA} \\ & \mathrm{~V}^{+}=9 \mathrm{~V}, \mathrm{~V}_{\text {SET2 }}=0 \mathrm{~V}, \text { IOUT2 }=2 \mathrm{~mA} \end{aligned}$		$\begin{gathered} 0.2 \\ 0.15 \\ 0.11 \end{gathered}$	$\begin{aligned} & 0.5 \\ & 0.3 \\ & 0.3 \\ & \hline \end{aligned}$	
VHYST2 VHYST2 VHYST2		$\begin{aligned} & \mathrm{V}+=2 \mathrm{~V}, \mathrm{~V}_{\mathrm{SET} 2}=2 \mathrm{~V}, \mathrm{I}_{\mathrm{HYST}}=-0.2 \mathrm{~mA} \\ & \mathrm{~V}+=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SET} 2}=2 \mathrm{~V}, \mathrm{I}_{\mathrm{HYST}}=-0.5 \mathrm{~mA} \\ & \mathrm{~V}^{+}=9 \mathrm{~V}, \mathrm{~V}_{\text {SET2 }}=2 \mathrm{~V}, \mathrm{I}_{\mathrm{HYST}}=-0.5 \mathrm{~mA} \end{aligned}$		$\begin{gathered} -0.25 \\ -0.43 \\ 0.35 \\ \hline \end{gathered}$	$\begin{gathered} -0.8 \\ -1 \\ -1 \end{gathered}$	
ISET	$\mathrm{V}_{\text {SET }}$ Input Leakage Current	$\mathrm{GND} \leq \mathrm{V}_{\text {SET }} \leq \mathrm{V}^{+}$		0.01	10	nA
$\Delta \mathrm{V}_{\text {SET }}$	$\Delta V_{\text {SET }}$ Input for Complete Output Change	$R_{\text {OUT }}=4.7 \mathrm{k} \Omega, R_{H Y S T}=20 \mathrm{k} \Omega$ $\mathrm{V}_{\text {OUTLO }}=1 \% \mathrm{~V}+$, $\mathrm{V}_{\text {OUT }}$ HI $=99 \% \mathrm{~V}^{+}$		1		mV
$\mathrm{V}_{\text {SET1 }}-\mathrm{V}_{\text {SET2 }}$	Difference in Trip Voltages	$\mathrm{R}_{\text {OUT }}, \mathrm{R}_{\text {HYST }}=1 \mathrm{M} \Omega$		± 5	± 50	
	Output/Hysteresis Difference	R OUT, $\mathrm{R}_{\mathrm{HYST}}=1 \mathrm{M} \Omega$		± 1		

NOTES: 1. Derate above $\pm 25^{\circ} \mathrm{C}$ ambient temperature at $4 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.
2. Due to the SCR structure inherent in the CMOS process used to fabricate these devices, connecting any terminal to voltages greater than ($\mathrm{V}++0.3 \mathrm{~V}$) or less than (GND-0.3V) may cause destructive device latchup. For this reason, it is recommended that no inputs from external sources not operating from the same power supply be applied to the device before its supply is established, and that in multiple supply systems, the supply to the ICL7665B be turned on first. If this is not possible, currents into inputs and/or outputs must be limited to $\pm 0.5 \mathrm{~mA}$ and voltages must not exceed those defined above.

[^170]
ICL7665S
 CMOS Micropower Over/Under Voltage Detector

GENERAL DESCRIPTION

The ICL7665S Super CMOS Micropower Over/Under Voltage Detector contains two low power, individually programmable voltage detectors on a single CMOS chip. Requiring typically $3 \mu \mathrm{~A}$ for operation, the device is intended for battery-operated systems and instruments which require high or low voltage warnings, settable trip points, or fault monitoring and correction. The trip points and hysteresis of the two voltage detectors are individually programmed via external resistors. An internal bandgap-type reference provides an accurate threshold voltage while operating from any supply in the 1.6 V to 16 V range.

The Intersil ICL7665S, Super Programmable Over/Under Voltage Detector is a direct replacement for the industry standard ICL7665B offering wider operating voltage and temperature ranges, improved threshold accuracy (ICL7665SA), and temperature coefficient, guaranteed maximum supply current, and ESD protection in excess of 2000 V on all pins. All improvements are highlighted in bold italics in the electrical characteristics section. All critical parameters are guaranteed over the entire commerclal and industrial temperature ranges.

FEATURES

- Guaranteed $10 \mu \mathrm{~A}$ Maximum Quiescent Current over Temperature
- Guaranteed Wider Operating Voltage Range over Entire

Operating Temperature Range

- 2\% Threshold Accuracy (ICL7665SA)
- Dual Comparator with Precision Internal Reference
- $100 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ Temperature Coefficient of Threshoid Voltage
- Improved Direct Replacement for Industry-Standard ICL7665B and Other Second-Source Devices
- Up to 20 mA Output Current Sinking Ablity
- Individually Programmable Upper and Lower Trip Voltages and Hysteresis Lovels
- Enhanced ESD Protection, >2000V

APPLICATIONS

- Pocket Pagers
- Portable Instrumentation
- Charging Systems
- Memory Power Back-Up
- Battery-Operated Systems
- Portable Computers
- Level Detectors

ORDERING INFORMATION

PART NUMBER	TEMPERATURE RANGE	PACKAGE
ICL7665SCBA ICL7665SCPA ICL7665SCJA ICL7665SCTV ICL7665SACPA ICL7665SACJA ICL7665SACTV	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	8 Lead SOIC 8 Lead Minidip 8 Lead CERDIP TO-99 8 Lead Minidip 8 Lead CERDIP TO-99
ICL7665SIBA ICL7665SIPA ICL7665SIJA ICL7665SITV ICL7665SAIPA ICL7665SAJA ICL7665SAITV	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8 Lead SOIC 8 Lead Minidip 8 Lead CERDIP T0-99 8 Lead Minidip 8 Lead CERDIP TO-99

ABSOLUTE MAXIMUM RATINGS

Supply Voltage (Note 2) -0.3 V to +18 V
Output Voltages OUT1 and OUT2 (with respect to GND)
(Note 2) . - 0.3 V to +18 V
Output Voltages HYST1 and HYST2 (with respect to V^{+})
(Note 2)
Input Voltages SET1 and SET2
(Note 2) . (GND $-0.3 \mathrm{~V})$ to ($\left.\mathrm{V}^{+}+0.3 \mathrm{~V}\right)$
Maximum Sink Output OUT1 and OUT2 25mA
Maximum Source Output Current HYST1 and HYST2 . -25mA

Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS: The specifications below are applicable to both the ICL7665S and ICL7665SA unless otherwise stated
$\mathrm{V}^{+}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, Test circuit Figure 3 unless otherwise stated.

Symbol	Parameter	Test Conditions	Limits			Units
			Min	Typ	Max	
${ }^{+}$	Operating Supply Voltage	ICL7665S				
		$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	1.6		16	V
		$0^{\circ} \mathrm{C} \leqslant \mathrm{T}_{A} \leqslant+70^{\circ} \mathrm{C}$	1.8		16	v
		$-25^{\circ} \mathrm{C} \leqslant \mathrm{T}_{\mathrm{A}} \leqslant+85^{\circ} \mathrm{C}$	1.8		16	V
		ICL7665SA				
		$0^{\circ} \mathrm{C} \leqslant \mathrm{T}_{A} \leqslant+70^{\circ} \mathrm{C}$	1.8		16	v
		$-25^{\circ} \mathrm{C} \leqslant \mathrm{T}_{A} \leqslant+85^{\circ} \mathrm{C}$	1.8		16	\checkmark
$1+$	Supply Current	$\text { GND } \leqslant v_{\text {SET } 1}, V_{S E T 2} \leqslant V^{+}$				
		All Outputs Open Circuit $0^{\circ} \mathrm{C} \leqslant \mathrm{~T}_{A} \leqslant+70^{\circ} \mathrm{C}$				
		$\mathrm{V}^{+}=2 \mathrm{~V}$		2.5	10	$\mu \mathrm{A}$
		$\mathrm{V}^{+}=9 \mathrm{~V}$		2.6	10	$\mu \mathrm{A}$
		$V^{+}=15 \mathrm{~V}$		2.9	10	$\mu \mathrm{A}$
		$-25^{\circ} \mathrm{C} \leqslant \mathrm{T}_{A} \leqslant+85^{\circ} \mathrm{C}$				
		$V^{+}=2 V$		2.5	10	$\mu \mathrm{A}$
		$V^{+}=9 V$		2.6	10	$\mu \mathrm{A}$
		$V^{+}=15 \mathrm{~V}$		2.9	10	$\mu \mathrm{A}$
$V_{\text {SET } 1}$ $V_{\text {SET } 2}$	Input Trip Voltage	ICL7665S	$\begin{aligned} & 1.15 \\ & 1.2 \end{aligned}$	$\begin{aligned} & 1.3 \\ & 1.3 \end{aligned}$	$\begin{aligned} & 1.45 \\ & 1.4 \end{aligned}$	v
		ICL7665SA				
$V_{\text {SET } 1}$ $V_{\text {SET2 }}$						
			1.275	1.30	1.325	V
			1.225	1.30	1.375	\checkmark
$\Delta V_{\text {SET }}$	Temperature Coefficient of $V_{\text {SET }}$	ICL7665S		200		ppm
- ${ }^{\text {a }}$		ICL7665SA		100		ppm
$\Delta V_{\text {SET }}$	Supply Voltage Sensitivity of $\mathrm{V}_{\text {SET }}, \mathrm{V}_{\text {SET2 }}$	$\mathrm{R}_{\text {OUT1 }}, \mathrm{R}_{\text {OUT2 }}, \mathrm{R}_{\text {HYST1 }}, R_{2 \mathrm{HYST} 2}=1 \mathrm{MQ}$ $2 \mathrm{~V} \leqslant \mathrm{~V}+\leqslant 10 \mathrm{~V}$				\%/V
$\overline{\Delta V_{S}}$				0.03		
IOLK $I_{\text {HLK }}$	Output Leakage Currents of OUT and HYST	$\begin{aligned} & V_{S E T}=0 V \text { or } V_{S E T} \geqslant 2 \mathrm{~V} \\ & V^{+}=15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=70^{\circ} \mathrm{C} \end{aligned}$		10 -10	200 -100	$n \mathrm{nA}$
lolk					2000	nA
$\mathrm{I}_{\text {HLK }}$					-500	
$V_{\text {OUT1 }}$ $V_{\text {OUT1 }}$ $V_{\text {OUT1 }}$	Output Saturation Voltages					
		$V^{+}=2 \mathrm{~V}$		0.2	0.5	V
		$\mathrm{V}^{+}=5 \mathrm{~V}$		0.1	0.3	v
		$V^{+}=15 \mathrm{~V}$		0.06	0.2	V

[^171]ELECTRICAL CHARACTERISTICS (cont.): The specifications below are applicable to both the ICL7665S and ICL7665SA unless otherwise stated.
$V+=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, Test circuit Figure 3 unless otherwise stated.

Symbol	Parameter	Test Conditions	Limits			Units
			Min	Typ	Max	
$V_{\text {HYSTI }}$ $V_{\text {HYSTI }}$ $V_{\text {HYSTI }}$	Output Saturation Voltages	$\begin{aligned} & V_{S E T 1}=2 V, I_{H Y S T 1}=-0.5 \mathrm{~mA} \\ & V^{+}=2 \mathrm{~V} \\ & V^{+}=5 \mathrm{~V} \\ & V^{+}=15 \mathrm{~V} \end{aligned}$		$\begin{aligned} & -0.15 \\ & -0.05 \\ & -0.02 \end{aligned}$	$\begin{aligned} & -0.13 \\ & -0.15 \\ & -0.10 \end{aligned}$	$\begin{aligned} & v \\ & v \\ & v \end{aligned}$
$V_{\text {OUT2 }}$ $V_{\text {OUT2 }}$ VouT2	Output Saturation Voltages	$\begin{aligned} & V_{\text {SET2 }}=O V, I_{\text {OUT2 }}=2 \mathrm{~mA} \\ & V^{+}=2 \mathrm{~V} \\ & V^{+}=5 \mathrm{~V} \\ & V^{+}=15 \mathrm{~V} \end{aligned}$		0.2 0.15 0.11	0.5 0.3 0.25	$\begin{aligned} & v \\ & v \\ & v \end{aligned}$
$V_{\text {HYST2 }}$ $V_{\text {HYST2 }}$	Output Saturation Voltages	$\begin{aligned} & V_{\mathrm{SET2} 2}=2 \mathrm{~V} \\ & \mathrm{~V}^{+}=2 \mathrm{~V}, \mathrm{I}_{\mathrm{HYST2}}=-0.2 \mathrm{~mA} \\ & \mathrm{~V}^{+}=5 \mathrm{~V}, 1_{\text {HYST2 }}=-0.5 \mathrm{~mA} \\ & \mathrm{~V}^{+}=15 \mathrm{~V}, I_{\mathrm{HYST2}}=-0.5 \mathrm{~mA} \end{aligned}$		$\begin{aligned} & -0.25 \\ & -0.43 \\ & -0.35 \end{aligned}$	$\begin{aligned} & -0.8 \\ & -1.0 \\ & -0.8 \end{aligned}$	V
${ }^{\text {SET }}$	$V_{\text {SET }}$ Input Leakage Current	GND $\leqslant \mathrm{V}_{\text {SET }} \leqslant \mathrm{V}^{+}$		± 0.01	± 10	nA
$\Delta V_{\text {SET }}$	Δ Input for Complote Output Change	$\begin{aligned} & R_{\text {OUT }}=4.7 \mathrm{k} \Omega, R_{\text {HYST }}=20 \mathrm{k} \Omega \\ & V_{\text {OUTLO }}=1 \% \mathrm{~V}^{+}, V_{\text {OUT }} \mathrm{HI}=99 \% \mathrm{~V}^{+} \\ & \text {ICL7665S } \\ & \text { ICL7665SA } \end{aligned}$		$\begin{aligned} & 1.0 \\ & 0.1 \end{aligned}$		$\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \end{aligned}$
$\mathrm{V}_{\text {SET1 }}-\mathrm{V}_{\text {SET2 }}$	Difference in Trip Voltages	$R_{\text {OUT }}, R_{\text {HYST }}=1 \mathrm{M} \Omega$		± 5	± 50	mV
	Output/Hysteresis Difference	$\begin{aligned} & \mathrm{R}_{\mathrm{OUT}}, \mathrm{R}_{\mathrm{HYST}}=1 \mathrm{M} \Omega \\ & \text { ICL7665S } \\ & \text { ICL7665SA } \end{aligned}$		$\begin{aligned} & \pm 1 \\ & \pm 0.1 \end{aligned}$		$\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \end{aligned}$

NOTE 1: Derate above $\pm 25^{\circ} \mathrm{C}$ ambient temperature at $4 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.
2: Due to the SCR structure inherent in the CMOS process used to fabricate these devices, connecting any terminal to voltages greater than ($\mathrm{V}^{+}+0.3 \mathrm{~V}$) or less than (GND-0.3V) may cause destructive device latchup. For these reasons, it is recommended that no inputs from external sources not operating from the same power supply be applied to the device before its supply is established, and that in multiple supply systems, the supply to the ICL7665S be turned on first. If this is not possible, currents into inputs and/or outputs must be limited to $\pm 0.5 \mathrm{~mA}$ and voltages must not exceed those defined above. 3: All significant improvements over the industry-standard ICL7665 are highlighted in bold italics.

Figure 3: Test Circuits

Figure 4: Switching Waveforms

A.C. ELECTRICAL CHARACTERISTICS

Symbol	Parameter	Teat Conditions		Limits		Units
			Min	Typ	Max	
${ }^{1}$ sold ${ }^{\text {thid }}$ ${ }^{\text {tsO2d }}$ ${ }^{\text {thH2d }}$	Output Delay Times Input Going HI	$\mathrm{V}_{\text {SET }}$ Switched between 1.0V to 1.6V $R_{\text {OUT }}=4.7 \mathrm{kR}, C_{\mathrm{L}}=12 \mathrm{pF}$ $R_{\text {HYST }}=20 \mathrm{kR}, \mathrm{C}_{\mathrm{L}}=12 \mathrm{pF}$		$\begin{aligned} & 85 \\ & 90 \\ & 55 \\ & 55 \end{aligned}$		$\mu \mathrm{s}$
${ }^{\text {tsOld }}$ ${ }^{\text {tsHId }}$ ${ }^{\text {tso2d }}$ ${ }^{\text {thH2d }}$	Input Going LO	$\mathrm{V}_{\text {SET }}$ Switched between 1.6 V to 1.0 V $\mathrm{R}_{\text {OUT }}=4.7 \mathrm{kR}, \mathrm{C}_{\mathrm{L}}=12 \mathrm{pF}$ $R_{\text {HYST }}=20 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=12 \mathrm{pF}$		$\begin{aligned} & 75 \\ & 80 \\ & 60 \\ & 60 \end{aligned}$		μs
tor bor $\mathrm{t}_{\mathrm{HIr}}$ $\mathrm{t}_{\mathrm{H} 2 \mathrm{r}}$	Output Rise Times	$\mathrm{v}_{\text {SET }}$ Switched between 1.0 V to 1.6 V $R_{\text {OUT }}=4.7 \mathrm{kR}, C_{L}=12 \mathrm{pF}$ $R_{\text {HYST }}=20 \mathrm{kD}, \mathrm{C}_{\mathrm{L}}=\mathbf{1 2 \mathrm { pF }}$		$\begin{aligned} & 0.6 \\ & 0.8 \\ & 7.5 \\ & 0.7 \end{aligned}$		μs
${ }^{6} 11$ bot ${ }^{4} \mathrm{HII}$ $t^{\text {H2t }}$	Output Fall Times	$\mathrm{v}_{\text {SET }}$ Switched between 1.0V to 1.6 V $R_{\text {OUT }}=4.7 \mathrm{kR}, C_{L}=12 \mathrm{pF}$ $R_{\text {HYST }}=20 \mathrm{kD}, \mathrm{C}_{\mathrm{L}}=12 \mathrm{PF}$		0.6 0.7 4 1.8		$1{ }^{6}$

TYPICAL PERFORMANCE CHARACTERISTICS

outz saturation voltage as a FUNCTION OF OUTPUT CURAENT

hYST2 OUTPUT SATURATION VOLTAGE

HYST2 OUTPUT CURRENT (mA)

SUPPLY CURRENT AS A FUNCTION OF AMBENT TEMPERATURE

AMBIENT TEMPERATURE $\left({ }^{\circ} \mathrm{C}\right.$

HYSTI OUTPUT EATURATION VOLTAGE vE HYSTI OUTPUT CUARENT

HYSTI OUTPUT CURRENT (mA)

SUPPLY CURRENT AS A FUNCTION OF SUPPLY VOLTAGE

DETAILED DESCRIPTION

As shown in the Functional Diagram, Figure 2, the ICL7665S consists of two comparators which compare input voltages on the SET1 and SET2 terminals to an internal 1.3V band-gap reference. The outputs from the two comparators drive open-drain N -channel transistors for OUT1 and OUT2, and open-drain P-channel transistors for HYST1 and HYST2 outputs. Each section, the Under-Voltage Detector and the Over-Voltage Detector, is independent of the other, although both use the internal 1.3 V reference. The offset voltages of the two comparators will normally be unequal so $\mathrm{V}_{\text {SET1 }}$ will generally not quite equal $\mathrm{V}_{\text {SET2 }}$.

The input impedances of the SET1 and SET2 pins are extremely high, and for most practical applications can be ignored. The four outputs are open-drain MOS transistors, and when ON behave as low resistance switches to their respective supply rails. This minimizes errors in setting-up the hysteresis, and maximizes the output flexibility. The operating currents of the bandgap reference and the comparators are around 100 nA each.

PRECAUTIONS

Junction-isolated CMOS devices like the ICL7665S have an inherent SCR or 4-layer PNPN structure distributed throughout the die. Under certain circumstances, this can be triggered into a potentially destructive high-current mode. This latchup can be triggered by forward-biasing an input or output with respect to the power supply, or by applying excessive supply voltages. In verylow current analog circuits, such as the ICL7665S, this SCR can also be triggered by applying the input power supply extremely rapidly ('instantaneously'), e.g. through a low impedance battery and an ON/OFF switch with short lead lengths. The rate-ofrise of the supply voltage can exceed $100 \mathrm{~V} / \mathrm{s}$ s in such a circuit. A low-impedance capacitor (e.g. $0.05 \mu \mathrm{~F}$ disc ceramic) between the V^{+}and GrouND pins of the ICL7665S can be used to reduce the rate-of-rise of the supply voltage in battery applications. In lineoperated systems, the rate-of-rise of the supply is limited by other considerations, and is normally not a problem.
If the SET voltages must be applied before the supply voltage V^{*}, the input current should be limited to less than 0.5 mA by appropriate external resistors, usually required for voltage setting anyway. A similar precaution should be taken with the outputs if it is likely that they will be driven by other circuits to levels outside the supplies at any time. See M011 for some other protection ideas.

SIMPLE THRESHOLD DETECTOR

Figure 5 shows the simplest connection of the ICL7665S for threshold detection. From the graph (b), it can be seen that at low input voltages OUT1 is OFF, or high, while OUT2 is ON, or low. As the input rises (e.g. at power-on) toward $\mathrm{V}_{\text {NOM }}$ (usually the eventual operating voltage), OUT2 goes high on reaching $\mathrm{V}_{\text {TR2 }}$. If the voltage rises above $\mathrm{V}_{\text {NOM }}$ as much as $\mathrm{V}_{\text {TR1 }}$, OUT1 goes low. The equations giving $\mathrm{V}_{\text {SET1 }}$ and $\mathrm{V}_{\text {SET2 }}$ are from Figure 5 (a):
$V_{S E T 1}=V_{I N} \frac{R_{11}}{\left(R_{11}+R_{21}\right)} ; V_{S E T 2}=V_{I N} \frac{R_{12}}{\left(R_{12}+R_{22}\right)}$
Since the voltage to trip each comparator is nominally $1,3 \mathrm{~V}$, the value $V_{I N}$ for each trip point can be found from

$$
V_{T R 1}=V_{S E T 1} \frac{\left(R_{11}+R_{21}\right)}{R_{11}}=1.3 \frac{\left(R_{11}+R_{21}\right)}{R_{11}} \text { for detector } 1
$$

and
$V_{T R 2}=V_{S E T 2} \frac{\left(R_{12}+R_{22}\right)}{R_{12}}=1.3 \frac{\left(R_{12}+R_{22}\right)}{R_{12}}$ for detector 2
Either detector may be used alone, as well as both together, in any of the circuits shown here.

When $\mathrm{V}_{\text {IN }}$ is very close to one of the trip voltages, normal variations and noise may cause it to wander back and forth across this level, leading to erratic output ON and OFF conditions. The addition of hysteresis, making the trip points slightly different for rising and falling inputs, will avoid this condition.

THRESHOLD DETECTOR WITH HYSTERESIS

Figure 6(a) shows how to set up such hysteresis, while Figure 6(b) shows how the hysteresis around each trip point produces switching action at different points depending on whether $\mathrm{V}_{\text {IN }}$ is rising or falling (the arrows indicate direction of change). The HYST outputs are basically switches which short out R_{31} or R_{32} when V_{IN} is above the respective trip point. Thus if the input voltage rises from a low value, the trip point will be controlled by $R_{1 n}, R_{2 n}$, and $R_{3 n}$, until the trip point is reached. As this value is

(a) Circuit Configuration

(b) Transfer Characteristics

Figure 5: Simple Threshold Detector

APPLICATIONS

(a) Circuit Configuration

(b) Transfer Characteristics

Figure 6: Threshold Detector with Hysteresis

Figure 7: An Alternative Hysteresis Circuit

Table 1: Set-Point Equations
a) NO HYSTERESIS

Over-Voltage $V_{\text {TRIP }}=\frac{R_{11}+R_{21}}{R_{11}} \times V_{\text {SET1 }}$
Over-Voltage $V_{\text {TRIP }}=\frac{R_{12}+R_{22}}{R_{12}} \times V_{\text {SET2 }}$
b) HYSTERESIS PER FIGURE 6A

$$
v_{U 1}=\frac{R_{11}+R_{21}+R_{31}}{R_{11}} \times V_{S E T 1}
$$

Over-Voltage $V_{\text {TRIP }}$

$$
\begin{aligned}
& v_{L 1}=\frac{R_{11}+R_{21}}{R_{11}} \times v_{\mathrm{SET} 1} \\
& v_{\mathrm{U} 2}=\frac{R_{12}+R_{22}+R_{32}}{R_{12}} \times v_{\mathrm{SET} 2}
\end{aligned}
$$

Under-Voltage $V_{\text {TRIP }}$

$$
V_{\mathrm{L} 2}=\frac{R_{12}+R_{22}}{R_{12}} \times v_{\mathrm{SET2}}
$$

c) HYSTERESIS PER FIGURE 7

$$
V_{\mathbf{U 1}}=\frac{R_{11}+R_{21}}{R_{11}} \times V_{\mathbf{S E T} 1}
$$

Over-Voltage $\mathbf{V}_{\text {TRIP }}$

$$
V_{L 1}=\frac{R_{11}+\frac{R_{21} R_{31}}{R_{21}+R_{31}}}{R_{11}} \times V_{S E T 1}
$$

$$
\text { Under-Voltage } \mathrm{V}_{\text {TRIP }} \quad \mathrm{V}_{\mathrm{U} 2}=\frac{R_{12}+R_{22}}{R_{12}} \times V_{\mathrm{SET} 2}
$$

[^172]
THRESHOLD DETECTOR WITH HYSTERESIS (cont.)

passed, the detector changes state, $\mathrm{R}_{3 n}$ is shorted out, and the trip point becomes controlled by only $\mathrm{R}_{1 n}$ and $\mathrm{R}_{2 n}$, a lower value. The input will then have to fall to this new point to restore the initial comparator state, but as soon as this occurs, the trip point will be raised again.

An alternative circuit for obtaining hysteresis is shown in Figure 7. In this configuration, the HYST pins put the extra resistor in parallel with the upper setting resistor. The values of the resistors differ, but the action is essentially the same. The governing equations are given in Table 1. These ignore the effects of the resistance of the HYST outputs, but these can normally be neglected if the resistor values are above about 100 k .

APPLICATIONS

Single Supply Fault Monitor

Figure 8 shows an over/under-voltage fault monitor for a single supply. The over-voltage trip point is centered around 5.5 V and the under-voltage trip point is centered around 4.5 V . Both have
some hysteresis to prevent erratic output ON and OFF conditions. The two outputs are connected in a wired OR configuration with a pullup resistor to generate a power OK signal.

Multiple Supply Fault Monitor

The ICL7665S can simultaneously monitor several supplies when connected as shown in Figure 9. The resistors are chosen such that the sum of the currents through $R_{21 A}, R_{21 B}$, and R_{31} is equal to the current through R_{11} when the two input voltages are at the desired low voltage detection point. The current through R_{11} at this point is equal to $1,3 V / R_{11}$. The voltage at the $\mathrm{V}_{\text {SET }}$ input depends on the voltage of both supplies being monitored. The trip voltage of one supply while the other supply is at the nominal voltage will be different than the trip voltage when both supplies are below their nominal voltages.
The other side of the ICL7665S can be used to detect the absence of negative supplies. The trip points for OUT1 depend on both the negative supply voltages and the actual voltage of the +5 V supply.

Figure 8: Fault Monitor for a Single Supply

Figure 9: Multiple Supply Fault Monitor

Figure 10: Low Battery Warning and Low Battery Disconnect

[^173]
Combination Low Battery Warning and

 Low Battery DisconnectWhen using rechargeable batteries in a system, it is important to keep the batteries from being overdischarged. The circuit shown in Figure 10 provides a low battery warning and also disconnects the low battery from the rest of the system to prevent damage to the battery. OUT1 is used to shutdown the ICL7663S when the battery voltage drops to the value where the load should be disconnected. As long as $\mathrm{V}_{\mathrm{SET}}$ is greater than 1.3 V , OUT1 is low, but when $V_{\text {SET1 }}$ drops below 1.3 V , OUT1 goes high, shutting off the ICL7663S. OUT2 is used for low battery warning. When $V_{\text {SET2 }}$ is greater than 1.3 V , OUT2 is high and the low battery warning is on. When $V_{\text {SET2 }}$ drops below 1.3 V, OUT2 is low and the low battery warning goes off. The trip voltage for low battery warning can be set higher than the trip voltage for shutdown to give advance low battery warning before the battery is disconnected.

Power Fail Warning and Powerup/Powerdown Reset

Figure 11 shows a power fail warning circuit with powerup/ powerdown reset. When the unregulated $D C$ input is above the trip point, OUT1 is low. When the DC input drops below the trip point, OUT1 shuts OFF and the power fail warning goes high. The voltage on the input of the 7805 decays at a rate of lout/C. Since the 7805 will continue to provide 5 V out at 1 A until $\mathrm{V}_{\text {IN }}$ is less than 7.3 V , this circuit will provide a certain amount of warning before the 5 V output begins to drop.

The ICL7665S OUT2 is used to prevent a microprocessor from writing spurious data to a CMOS battery backup memory by causing OUT2 to go low when the 7805 5V output drops below the ICL7665S trip point.

Simple High/Low Temperature Alarm

Figure 12 illustrates a simple high/low temperature alarm which uses the ICL7665S with an NPN transistor. The voltage at the top of R_{1} is determined by the $V_{B E}$ of the transistor and the position of R_{1} 's wiper arm. This voltage has a negative temperature coefficient. R_{1} is adjusted so that $\mathrm{V}_{\text {SET2 }}$ equals 1.3 V when the NPN transistor's temperature reaches the temperature selected for the high temperature alarm. When this occurs, OUT2

goes low. R_{2} is adjusted so that $V_{\text {SET }}$ equals 1.3 V when the NPN transistor's temperature reaches the temperature selected for the low temperature alarm. When the temperature drops below this limit, OUT1 goes low.

AC Power Fail and Brownout Detector

Figure 13 shows a circuit that detects AC undervoltage by monitoring the secondary side of the transformer. The capacitor, C_{1}, is charged through R_{1} when OUT1 is OFF. With a normal 110 VAC input to the transformer, OUT1 will discharge C_{1} once every cycle, approximately every 16.7 ms . When the AC input voltage is reduced, OUT1 will stay OFF, so that C_{1} does not discharge. When the voltage on C_{1} reaches 1.3 V , OUT2 turns OFF and the power fail warning goes high. The time constant, $\mathrm{R}_{1} \mathrm{C}_{1}$, is chosen such that it takes longer than 16.7 ms to charge $\mathrm{C}_{1} 1.3 \mathrm{~V}$.

For a more comprehensive $A C$ power fail circuit, refer to Intersil's new ICL7677 monolithic power fail detector.

Figure 13: AC Power Fail and Brownout Detector

ICL7667
 Dual Power
 MOSFET Driver

GENERAL DESCRIPTION

The ICL7667 is a dual monolithic high-speed driver designed to convert TTL level signals into high current outputs at voltages up to 15 V . Its high speed and current output enable it to drive large capacitive loads with high slew rates and low propagation delays. With an output voltage swing only millivolts less than the supply voltage and a maximum supply voltage of 15 V , the ICL7667 is well suited for driving power MOSFETs in high frequency switched-mode power converters. The ICL7667's high current outputs minimize power losses in the power MOSFETs by rapidly charging and discharging the gate capacitance. The ICL7667's inputs are TTL compatible and can be directly driven by common pulse-width modulation control IC's.

ORDERING INFORMATION

Part Number	Temperature Range	Package
ICL7667CBA		8 -Pin SOIC ICL7667CPA
ICL7667CJA Plastic		
ICL7667CTV	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	8-Pin Cerdip TO-99 Can
ICL7667MTV*	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	TO-99 Can 8-Pin Cerdip

*Add /883B to Part Number for 883B processing.

FEATURES

- Fast Rise and Fall Times - 30ns With 1000pF Load
- Wide Supply Voltage Range
$-V_{C C}=4.5$ to 15V
- Low Power Consumption
- 4mW With Inputs Low
- 120mW With Inputs High
- TTL/CMOS Input Compatible Power Driver - ROUT $=7 \Omega$ typ
- Direct Interface With Common PWM Control IC's
- Pin Equivalent to DS0026/DS0056; TSC426

TYPICAL APPLICATIONS

- Switching Power Supplies
- DC/DC Converters
- Motor Controllers

ABSOLUTE MAXIMUM RATINGS

Supply Voltage V^{+}to V^{-}................................ . 15 V
Input Voltage $\ldots \ldots \ldots \ldots . . .\left(\mathrm{V}^{-}-0.3 \mathrm{~V}\right)$ to $\left(\mathrm{V}^{+}+0.3 \mathrm{~V}\right)$
Package Dissipation, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \ldots \ldots500 \mathrm{~mW}$ Linear Derating Factors

TO-99
$6.7 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
above $50^{\circ} \mathrm{C}$

Plastic $5.6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $36^{\circ} \mathrm{C}$

Cerdip
$6.7 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $50^{\circ} \mathrm{C}$

Storage Temperature
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Operating Temperature Range
ICL7667C $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
ICL7667M $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10sec) 300${ }^{\circ} \mathrm{C}$

NOTE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
ELECTRICAL CHARACTERISTICS (STATIC)

Symbol	Parameter	Test Conditions	$\begin{gathered} \text { ICL7667C,M } \\ \hline T_{A}=25^{\circ} \mathrm{C} \\ \hline \end{gathered}$			ICL7667M			Units
						$-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$			
			Min	Typ	Max	Min	Typ	Max	
V_{IH}	Logic 1 Input Voltage	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	2.0			2.0			V
V_{IH}	Logic 1 Input Voltage	$V_{C C}=15 \mathrm{~V}$	2.0			2.0			V
$\mathrm{V}_{\text {IL }}$	Logic 0 Input Voltage	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$			0.8			0.5	V
$\mathrm{V}_{\text {IL }}$	Logic 0 Input Voltage	$V_{C C}=15 \mathrm{~V}$			0.8			0.8	V
ILL	Input Current	$\mathrm{V}_{\mathrm{CC}}=15 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=0 \mathrm{~V}$ and 15 V	-0.1		0.1	-0.1		0.1	$\mu \mathrm{A}$
VOH	Output Voltage High	$\mathrm{V}_{C C}=4.5 \mathrm{~V}$ and 15 V	$\mathrm{V}_{\mathrm{CC}}-0.05$	V_{CC}		$\mathrm{V}_{C C}-0.1$			V
$\mathrm{VOL}_{\mathrm{O}}$	Output Voltage Low	$\mathrm{V}_{C C}=4.5 \mathrm{~V}$ and 15 V		0	0.05			0.1	V
Rout	Output Resistance	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}}, \mathrm{l}_{\mathrm{OUT}}=-10 \mathrm{~mA}, \\ & \mathrm{~V}_{\mathrm{CC}}=15 \mathrm{~V} \end{aligned}$		7	10			12	Ω
Rout	Output Resistance	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}}, \mathrm{I}_{\mathrm{OUT}}=10 \mathrm{~mA}, \\ & \mathrm{~V}_{\mathrm{CC}}=15 \mathrm{~V} \end{aligned}$		8	12			13	Ω
I_{CC}	Power Supply Current	$\mathrm{V}_{C C}=15 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=3 \mathrm{~V}$ both inputs		5	7			8	mA
Icc	Power Supply Current	$V_{C C}=15 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=0 \mathrm{~V}$ both inputs		150	400			400	$\mu \mathrm{A}$

ELECTRICAL CHARACTERISTICS (DYNAMIC)

Symbol	Parameter	Test Conditions	ICL7667C,M			ICL7667M			Units
			$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			$-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$			
			Min	Typ	Max	Min	Typ	Max	
$\mathrm{T}_{\mathrm{D} 2}$	Delay Time	Figure 3		35	50			60	ns
T_{R}	Rise Time	Figure 3		20	30			40	ns
T_{F}	Fall Time	Figure 3		20	30			40	ns
$\mathrm{T}_{\mathrm{D} 1}$	Delay Time	Figure 3		20	30			40	ns

[^174]

0323-4
Figure 3: Test Circuit

Typical Performance Characteristics

0323-6

[^175]
Typical Performance Characteristics (Continued) Delay and Fall Times vs Vcc

0323-12

DETAILED DESCRIPTION

The ICL7667 is a dual high-power CMOS inverter whose inputs respond to TTL levels while the outputs can swing as high as 15 V . Its high output current enables it to rapidly charge and discharge the gate capacitance of power MOSFETs, minimizing the switching losses in switchmode power supplies. Since the output stage is CMOS, the output will swing to within millivolts of both ground and $V_{C C}$ without any external parts or extra power supplies as required by the DS0026/56 family. Although most specifications are at $V_{C C}=15 \mathrm{~V}$, the propagation delays and specifications are almost independent of V_{CC}.
In addition to power MOS drivers, the ICL7667 is well suited for other applications such as bus, control signal, and clock drivers on large memory of microprocessor boards, where the load capacitance is large and low propagation delays are required. Other potential applications include peripheral power drivers and charge-pump voltage inverters.

INPUT STAGE

The input stage is a large N-channel FET with a P-channel constant-current source. This circuit has a threshold of about 1.5 V , relatively independent of the V_{CC} voltage. This means that the inputs will be directly compatible with TTL over the entire 4.5-15V V CC range. Being CMOS, the inputs draw less than $1 \mu \mathrm{~A}$ of current over the entire input voltage range of ground to V_{cc}. The quiescent current or no load supply current of the ICL7667 is affected by the input voltage, going to nearly zero when the inputs are at the 0 logic level and rising to 7 mA maximum when both inputs are at the 1 logic level. A small amount of hysteresis, about $50-$ 100 mV at the input, is generated by positive feedback around the second stage.

OUTPUT STAGE

The ICL7667 output is a high-power CMOS inverter, swinging between ground and $V_{C C}$. At $V_{C C}=15 \mathrm{~V}$, the output impedance of the inverter is typically 7Ω. The high peak current capability of the ICL7667 enables it to drive a 1000 pF load with a rise time of only 40 ns . Because the output stage impedance is very low, up to 300 mA will flow through the series N - and P -channel output devices (from $V_{C C}$ to ground) during output transitions. This crossover current is responsible for a significant portion of the internal

0323-13
power dissipation of the ICL7667 at high frequencies. It can be minimized by keeping the rise and fall times of the input to the ICL7667 below $1 \mu \mathrm{~s}$.

APPLICATION NOTES

Although the ICL7667 is simply a dual level-shifting inverter, there are several areas to which careful attention must be paid.

GROUNDING

Since the input and the high current output current paths both include the ground pin, it is very important to minimize any common impedance in the ground return. Since the ICL7667 is an inverter, any common impedance will generate negative feedback, and will degrade the delay, rise and fall times. Use a ground plane if possible, or use separate ground returns for the input and output circuits. To minimize any common inductance in the ground return, separate the input and output circuit ground returns as close to the ICL7667 as is possible.

BYPASSING

The rapid charging and discharging of the load capacitance requires very high current spikes from the power supplies. A parallel combination of capacitors that has a low impedance over a wide frequency range should be used. A $4.7 \mu \mathrm{~F}$ tantalum capacitor in parallel with a low inductance $0.1 \mu \mathrm{~F}$ capacitor is usually sufficient bypassing.

OUTPUT DAMPING

Ringing is a common problem in any circuit with very fast rise or fall times. Such ringing will be aggravated by long inductive lines with capacitive loads. Techniques to reduce ringing include:

1) Reduce inductance by making printed circuit board fraces as short as possible.
2) Reduce inductance by using a ground plane or by closely coupling the output lines to their return paths.
3) Use a 10 to 30Ω resistor in series with the output of the ICL7667. Although this reduces ringing, it will also slightly increase the rise and fall times.
4) Use good bypassing techniques to prevent supply voltage ringing.

POWER DISSIPATION

The power dissipation of the ICL7667 has three main components:

1) Input inverter current loss
2) Output stage crossover current loss
3) Output stage $I^{2} R$ power loss

The sum of the above must stay within the specified limits for reliable operation.

As noted above, the input inverter current is input voltage dependent, with an ICC of 0.2 mA maximum with a logic 0 input and 6 mA maximum with a logic 1 input.
The output stage crowbar current is the current that flows through the series N - and P-channel devices that form the output. This current, about 300 mA , occurs only during output transitions. Caution: The inputs should never be allowed to remain between V_{IL} and V_{IH} since this could leave the output stage in a high current mode, rapidly leading to destruction of the device. If only one of the drivers is being used, be sure to tie the unused input to a ground. NEVER leave an input floating. The average supply current drawn by the output stage is frequency dependent, as can be seen in ICC vs. Frequency graph in the Typical Characteristics Graphs.
The output stage I2R power dissipation is nothing more than the product of the output current times the voltage drop across the output device. In addition to the current drawn by any resistive load, there will be an output current due to the charging and discharging of the load capacitance. In most high frequency circuits the current used to charge and discharge capacitance dominates, and the power dissipation is approximately

$$
P_{A C}=C V_{C C}{ }^{2 f}
$$

Where $\mathrm{C}=$ Load Capacitance

$$
f=\text { Frequency }
$$

In cases where the load is a power MOSFET and the gate drive requirements are described in terms of gate charge, the ICL7667 power dissipation will be

$$
P_{A C}=Q_{G} V_{C C} f
$$

Where $Q_{G}=$ Charge required to switch the gate, in Coulombs.
$\mathrm{f}=$ Frequency

POWER MOS DRIVER CIRCUITS POWER MOS DRIVER REQUIREMENTS

Because it has a very high peak current output, the ICL7667 excels at driving the gate of power MOS devices. The high current output is important since it minimizes the time the power MOS device is in the linear region. Figure 4 is a typical curve of charge vs. gate voltage for a power MOSFET. The flat region is caused by the Miller capacitance, where the drain-to-gate capacitance is multiplied by the voltage gain of the FET. This increase in capacitance occurs while the power MOSFET is in the linear region and
is dissipating significant amounts of power. The very high current output of the ICL7667 is able to rapidly overcome this high capacitance and quickly turns the MOSFET fully on or off.

0323-14
Figure 4: MOSFET Gate Dynamic Characteristics

DIRECT DRIVE OF MOSFETS
Figure 6 shows interfaces between the ICL7667 and typical switching regulator ICs. Note that unlike the DS0026, the ICL7667 does not need a dropping resistor and speedup capacitor between it and the regulator IC. The ICL7667, with its high slew rate and high voltage drive can directly drive the gate of the MOSFET. The 1527 IC is the same as the 1525 IC, except that the outputs are inverted. This inversion is needed since ICL7667 is an inverting buffer.

TRANSFORMER COUPLED DRIVE OF
 MOSFETs

Transformers are often used for isolation between the logic and control section and the power section of a switching regulator. The high output drive capability of the ICL7667 enables it to directly drive such transformers. Figure 6 shows a typical transformer coupled drive circuit. PWM ICs with either active high or active low outputs can be used in this circuit, since any inversion required can be obtained by reversing the windings on the secondaries.

BUFFERED DRIVERS FOR MULTIPLE MOSFETs

In very high power applications which use a group of MOSFETs in parallel, the input capacitance may be very large and it can be difficult to charge and discharge quickly. Figure 8 shows a circuit which works very well with very large capacitance loads. When the input of the driver is zero, Q1 is held in conduction by the lower half of the ICL7667 and Q2 is clamped off by Q1. When the input goes positive, Q1 is turned off and a current pulse is applied to the gate of Q2 by the upper half of the ICL7667 through the transformer, T1. After about 20ns, T1 saturates and Q2 is held on by its own C_{gs} and the bootstrap circuit of $\mathrm{C} 1, \mathrm{D} 1$ and R1. This bootstrap circuit may not be needed at frequencies greater than 10 kHz since the input capacitance of Q2 discharges slowly.

Figure 5: Direct Drive of MOSFET Gates

Figure 6: Transformer Coupled Drive Circuit

[^176]

0323-18
Figure 7: Very High-Speed Driver

OTHER APPLICATIONS
 RELAY AND LAMP DRIVERS

The ICL7667 is suitable for converting low power TTL or CMOS signals into high current, high voltage outputs for relays, lamps and other loads. Unlike many other level translator/driver ICs, the ICL7667 will both source and sink current. The continuous output current is limited to 200 mA by the ${ }^{2} \mathrm{R}$ power dissipation in the output FETs.

CHARGE PUMP OR VOLTAGE INVERTERS AND DOUBLERS

The low output impedance and wide V_{CC} range of the ICL7667 make it well suited for charge pump circuits. Figure

8 shows a typical charge pump voltage inverter circuit and a typical performance curve. A common use of this circuit is to provide a low current negative supply for analog circuitry or RS232 drivers. With an input voltage of +15 V , this circuit will deliver 20 mA at -12.6 V . By increasing the size of the capacitors, the current capability can be increased and the voltage loss decreased. The practical range of the input frequency is 500 Hz to 250 kHz . As the frequency goes up, the charge pump capacitors can be made smaller, but the internal losses in the ICL7667 will rise, reducing the circuit efficiency.

Figure 9, a voltage doubler, is very similar in both circuitry and performance. A potential use of Figure 8 would be to supply the higher voltage needed for EEPROM or EPROM programming.

CLOCK DRIVER

Some microprocessors (such as the 68XX and 65XX families) use a clock signal to control the various LSI peripherals of the family. The ICL7667's combination of low propagation delay, high current drive capability and wide voltage swing make it attractive for this application. Although the ICL7667 is primarily intended for driving power MOSFET gates at 15V, the ICL7667 also works well as a 5 V highspeed buffer. Unlike standard 4000 series CMOS, the ICL7667 uses short channel length FETs and the ICL7667 is only slightly slower at 5 V than at 15 V .

ICL7673
 Automatic Battery Back-up Switch

GENERAL DESCRIPTION

The Intersil ICL7673 is a monolithic CMOS battery backup circuit that offers unique performance advantages over conventional means of switching to a backup supply. The ICL7673 is intended as a low-cost solution for the switching of systems between two power supplies; main and battery backup. The main application is keep-alive-battery power switching for use in volatile CMOS RAM memory systems and real time clocks. In many applications this circuit will represent a low insertion voltage loss between the supplies and load. This circuit features low current consumption, wide operating voltage range, and exceptionally low leakage between inputs. Logic outputs are provided that can be used to indicate which supply is connected and can also be used to increase the power switching capability of the circuit by driving external PNP transistors.
The ICL7673 is available in either an 8-pin plastic minidip package or a TO-99 metal can.

FEATURES

- Automatically Connects Output to The Greater Of Either Input Supply Voltage
- If Main Power to External Equipment Is Lost, Circuit Will Automatically Connect Battery Backup
- Reconnects Main Power When Restored
- Logic Indicator Signaling Status Of Main Power
- Low Impedance Connection Switches
- Low Internal Power Consumption
- Wide Supply Range: 2.5 to $\mathbf{1 5}$ Volts
- Low Leakage Between Inputs
- External Transistors May Be Added If Very Large Currents Need to Be Switched

APPLICATIONS

- On Board Battery Backup for Real-Time Clocks, Timers, or Volatile RAMs
- Over/Under Voltage Detector
- Peak Voltage Detector
- Other Uses:
-Portable Instruments, Portable Telephones, Line Operated Equipment

ORDERING INFORMATION

Part Number	Temperature Range	Package
ICL7673CPA	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	8-pin minidip
ICL7673CBA	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	8-pin SOIC
ICL7673ITV	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8-pin TO-99

[^177]| ABSOLUTE MAXIMUM RATINGS | |
| :---: | :---: |
| Input Supply (V_{p} or V_{S}) Voltage | -0.3 to +18 V |
| Output Voltages $\mathrm{P}_{\text {bar }}$ and $\mathrm{S}_{\text {bar }}$ | -0.3 to +18 V |
| Peak Current | |
| Input $\mathrm{V}_{\mathrm{P}}\left(@ \mathrm{~V}_{\mathrm{P}}=5 \mathrm{~V}\right)$ (note 1) | 38mA |
| Input $\mathrm{V}_{\text {S }}$ (@ $\mathrm{V}_{\text {S }}=3 \mathrm{~V}$) | 30 mA |
| $\mathrm{P}_{\text {bar }}$ or $\mathrm{S}_{\text {bar }}$ | 150 mA |
| Continuous Current | |
| Input $\mathrm{V}_{P}\left(@ \mathrm{~V}_{P}=5 \mathrm{~V}\right)$ (note 1) | 38mA |
| Input $\mathrm{V}_{\text {S }}$ (@ $\mathrm{V}_{\mathrm{S}}=3 \mathrm{~V}$) | 30mA |
| $\mathrm{P}_{\text {bar }}$ or $\mathrm{S}_{\text {bar }}$ | 50mA |

Package Dissipation . 300mW

Linear Derating Factors	
TO-99	PLASTIC
$5.7 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$	$6.1 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
above $50^{\circ} \mathrm{C}$	above $36^{\circ} \mathrm{C}$
Operating Temperature Range:	
ICL7673C	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
ICL7673I	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	
Lead Temperature (Soldering, 10sec)	$300^{\circ} \mathrm{C}$
Note 1. Derate above $25^{\circ} \mathrm{C}$ by $0.38 \mathrm{~mA} /{ }^{\circ} \mathrm{C}$.	

NOTE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Figure 2: Pin Configurations

ELECTRICAL CHARACTERISTICS $\quad\left(T_{A}=25^{\circ} \mathrm{C}\right.$ unless otherwise specified)

Symbol	Parameter	Test Conditions	Min	Typ	Max	Units
V_{P}	INPUT VOLTAGE	$\begin{aligned} & \mathrm{V}_{\mathrm{S}}=0 \text { volts } \\ & \text { l load }=0 \mathrm{~mA} \end{aligned}$	2.5	-	15	V
V_{S}		$\begin{aligned} & V_{P}=0 \text { volts } \\ & 1 \text { load }=0 \mathrm{~mA} \end{aligned}$	2.5	-	15	
$1+$	QUIESCENT SUPPLY CURRENT	$\begin{aligned} & V_{P}=0 \text { volts } \\ & V_{S}=3 \text { volts } \\ & 1 \text { load }=0 \mathrm{~mA} \end{aligned}$	-	1.5	5	$\mu \mathrm{A}$
$\mathrm{R}_{\mathrm{ds}(\mathrm{on}) \mathrm{P} 1}$	SWITCH RESISTANCE P1 (NOTE 2)	$\begin{aligned} & V_{P}=5 \text { volts } \\ & V_{S}=3 \text { volts } \\ & \text { I load }=15 \mathrm{~mA} \end{aligned}$	-	8	15	Ω
		@ $T_{A}=85^{\circ} \mathrm{C}$	-	16	-	
		$\begin{aligned} & V_{P}=9 \text { volts } \\ & V_{S}=3 \text { volts } \\ & \text { I load }=15 \mathrm{~mA} \end{aligned}$	-	6	-	Ω
		$\begin{aligned} & V_{P}=12 \text { volts } \\ & V_{S}=3 \text { volts } \\ & 1 \text { load }=15 \mathrm{~mA} \end{aligned}$	-	5	-	Ω

ELECTRICAL CHARACTERISTICS
($T_{A}=25^{\circ} \mathrm{C}$ unless otherwise specified) (Continued)

Symbol	Parameter	Test Conditions	Min	Typ	Max	Units
$\mathrm{T}_{\mathrm{C}}(\mathrm{P} 1)$	TEMPERATURE COEFFICIENT OF SWITCH RESISTANCE P1	$\mathrm{V}_{\mathrm{P}}=5$ volts $V_{S}=3$ volts \| load=15mA	-	0.5	-	\%/ ${ }^{\circ} \mathrm{C}$
$\mathrm{R}_{\mathrm{ds}(\mathrm{on}) \mathrm{P} 2}$	SWITCH RESISTANCE P2 (NOTE 2)	$\begin{aligned} & V_{P}=0 \text { volts } \\ & V_{S}=3 \text { volts } \\ & \text { I load }=1 \mathrm{~mA} \end{aligned}$	-	40	100	Ω
		@ $T_{A}=85^{\circ} \mathrm{C}$	-	60	-	
		$\begin{aligned} & V_{P}=0 \text { volts } \\ & V_{S}=5 \text { volts } \\ & 1 \text { load }=1 \mathrm{~mA} \\ & \hline \end{aligned}$	-	26	-	Ω
		$\begin{aligned} & V_{P}=0 \text { volts } \\ & V_{S}=9 \text { volts } \\ & \text { I load }=1 \mathrm{~mA} \end{aligned}$	-	16	-	Ω
$\mathrm{T}_{\mathrm{C}(\mathrm{P} 2)}$	TEMPERATURE COEFFICIENT OF SWITCH RESISTANCE P2	$\begin{aligned} & V_{P}=0 \text { volts } \\ & V_{S}=3 \text { volts } \\ & \text { I load }=1 \mathrm{~mA} \end{aligned}$	-	0.7	-	\%/ ${ }^{\circ} \mathrm{C}$
L(PS)	LEAKAGE CURRENT (V_{P} to V_{S})	$\begin{aligned} & V_{P}=5 \text { volts } \\ & V_{S}=3 \text { volts } \\ & \text { I load }=10 \mathrm{~mA} \end{aligned}$	-	0.01	20	nA
		@ $\mathrm{T}_{\mathrm{A}}=85^{\circ} \mathrm{C}$	-	35	-	
LL(SP)	LEAKAGE CURRENT (V_{S} to V_{P})	$\begin{aligned} & V_{P}=0 \text { volts } \\ & V_{S}=3 \text { volts } \\ & \text { I load }=1 \mathrm{~mA} \\ & \hline \end{aligned}$	-	0.01	50	nA
		@ $T_{A}=85^{\circ} \mathrm{C}$	-	120	-	
$\mathrm{V}_{\text {O Pbar }}$	OPEN DRAIN OUTPUT SATURATION VOLTAGES	$\begin{aligned} & V_{P}=5 \text { volts } \\ & V_{S}=3 \text { volts } \\ & \text { I sink }=3.2 \mathrm{~mA} \\ & \text { I load }=0 \mathrm{~mA} \end{aligned}$	-	85	400	mV
		@ $\mathrm{T}_{\mathrm{A}}=85^{\circ} \mathrm{C}$	-	120	-	
		$\begin{aligned} & V_{P}=9 \text { volts } \\ & V_{S}=3 \text { volts } \\ & \text { I sink }=3.2 \mathrm{~mA} \\ & \text { I load }=0 \mathrm{~mA} \end{aligned}$	-	50	-	mV
		$\begin{aligned} & V_{P}=12 \text { volts } \\ & V_{S}=3 \text { volts } \\ & I \text { sink }=3.2 \mathrm{~mA} \\ & \text { I load }=0 \mathrm{~mA} \end{aligned}$	-	40	-	mV
$\mathrm{V}_{\text {O Sbar }}$		$\begin{aligned} & V_{P}=0 \text { volts } \\ & V_{S}=3 \text { volts } \\ & I \text { sink }=3.2 \mathrm{~mA} \\ & \text { I load }=0 \mathrm{~mA} \end{aligned}$	-	150	400	mV
		@ $\mathrm{T}_{A}=85^{\circ} \mathrm{C}$	-	210	-	
		$\begin{aligned} & V_{P}=0 \text { volts } \\ & V_{S}=5 \text { volts } \\ & \mid \text { sink }=3.2 \mathrm{~mA} \\ & \text { I load }=0 \mathrm{~mA} \end{aligned}$	-	85	-	mV
		$\begin{aligned} & V_{P}=0 \text { volts } \\ & V_{S}=9 \text { volts } \\ & \text { I sink }=3.2 \mathrm{~mA} \\ & \text { I load }=0 \mathrm{~mA} \end{aligned}$	-	50	-	mV

ELECTRICAL CHARACTERISTICS $\quad\left(T_{A}=25^{\circ} \mathrm{C}\right.$ unless otherwise specified) (Continued)

Symbol	Parameter	Test Conditions	Min	Typ	Max	Units
IL Pbar	OUTPUT LEAKAGE CURRENTS OF Pbar AND Sbar	$V_{P}=0$ volts $\mathrm{V}_{\mathrm{S}}=15$ volts \| load $=0 \mathrm{~mA}$	-	50	500	nA
		@ $\mathrm{T}_{\mathrm{A}}=85^{\circ} \mathrm{C}$	-	900	-	
ILSbar		$V_{P}=15$ volts $\mathrm{V}_{\mathrm{S}}=0$ volts l load=0mA	-	50	500	nA
		@ $\mathrm{T}_{\mathrm{A}}=85^{\circ} \mathrm{C}$	-	900	-	
$V_{P}-V_{S}$	SWITCHOVER UNCERTAINTY FOR COMPLETE SWITCHING OF INPUTS AND OPEN DRAIN OUTPUTS.	$\mathrm{V}_{\mathrm{S}}=3$ volts 1 sink $=3.2 \mathrm{~mA}$ l load=0mA	9d		0	V

NOTE 2. The minimum input to output voltage can be determined by multiplying the load current by the switch resistance.

TYPICAL PERFORMANCE CHARACTERISTICS

ON-RESISTANCE SWITCH PI AS A FUNCTION OF INPUT VOLTAGE V_{P}

0324-5

ON-RESISTANCE SWITCH P2 AS A FUNCTION OF INPUT VOLTAGE VS

0324-6

[^178]NOTE: All typical values have been characterized but are not tested.

TYPICAL PERFORMANCE CHARACTERISTICS
(Continued)
Pbar OR Sbar SATURATION VOLTAGE
SUPPLY CURRENT AS A FUNCTION OF SUPPLY VOLTAGE

0324-7
I_{S} LEAKAGE CURRENT V_{p} to V_{S} AS A FUNCTION OF INPUT VOLTAGE

0324-9 AS A FUNCTION OF OUTPUT CURRENT

0324-8

DETAILED DESCRIPTION

As shown in the functional diagram (Figure 1), the ICL7673 includes a comparator which senses the input voltages V_{P} and V_{S}. The output of the comparator drives the first inverter and the open-drain N-channel transistor $\mathrm{P}_{\mathrm{bar}}$. The first inverter drives a large P-channel switch, P1, a second inverter, and another open-drain N -channel transistor, $\mathrm{S}_{\text {bar }}$. The second inverter drives another large P-channel switch P2. The ICL7673, connected to a main and a backup power supply, will connect the supply of greater potential to its output. The circuit provides break-before-make switch action as it switches from main to backup power in the event of a main power supply failure. For proper operation, inputs V_{P} and V_{S} must not be allowed to float, and, the difference in the two supplies must be greater than 50 millivolts. The leakage current through the reverse biased parasitic diode of switch P 2 is very low.

OUTPUT VOLTAGE

The output operating voltage range is 2.5 to 15 volts. The insertion loss between either input and the output is a function of load current, input voltage, and temperature. This is due to the P-channels being operated in their triode region, and, the ON-resistance of the switches is a function of output voltage V_{0}. The ON-resistance of the P-channels have positive temperature coefficients, and therefore as temperature increases the insertion loss also increases. At low load currents the output voltage is nearly equal to the greater of the two inputs. The maximum voltage drop across switch P1 or P2 is 0.5 volts, since above this voltage the body-drain parasitic diode will become forward biased. Complete switching of the inputs and open-drain outputs typically occurs in 50 microseconds.

INPUT VOLTAGE

The input operating voltage range for V_{p} or V_{S} is 2.5 to 15 volts. The input supply voltage (V_{P} or V_{S}) slew rate should be limited to 2 volts per microsecond to avoid potential harm to the circuit. In line-operated systems, the rate-of-rise (or fall) of the supply is a function of power supply design. For battery applications it may be necessary to use a capacitor between the input and ground pins to limit the rate-ofrise of the supply voltage. A low-impedance capacitor such as a $0.047 \mu \mathrm{~F}$ disc ceramic can be used to reduce the rate-of-rise.

STATUS INDICATOR OUTPUTS

The N-channel open drain output transistors can be used to indicate which supply is connected, or can be used to drive external PNP transistors to increase the power switching capability of the circuit. When using external PNP power transistors, the output current is limited by the beta and thermal characteristics of the power transistors. The application section details the use of external PNP transistors.

APPLICATIONS

A typical discrete battery backup circuit is illustrated in Figure 3. This approach requires several components, substantial printed circuit board space, and high labor cost. It also consumes a fairly high quiescent current. The ICL7673 battery backup circuit, illustrated in Figure 4, will often replace such discrete designs and offer much better performance, higher reliability, and lower system manufacturing cost. A trickle charge system could be implemented with an additional resistor and diode as shown in Figure 5. A complete low power AC to regulated DC system can be implemented using the ICL7673 and ICL7663S micropower voltage regulator as shown in Figure 6.

Figure 3: Discrete Battery Backup Circuit

0324-11
Figure 4: ICL7673 Battery Backup Circuit

0324-12
Figure 5: Application Requiring Rechargeable Battery Backup

Applications for the ICL7673 include volatile semiconductor memory storage systems, real-time clocks, timers, alarm systems, and over/under voltage detectors. Other systems requiring $D C$ power when the master $A C$ line supply fails can also use the ICL7673.
A typical application, as illustrated in Figure 7, would be a microprocessor system requiring a 5 volt supply. In the event of primary supply failure, the system is powered down, and a 3 volt battery is employed to maintain clock or volatile memory data. The main and backup supplies are connected to V_{P} and V_{S}, with the circuit output V_{O} supplying power to the clock or volatile memory. The ICL7673 will sense the main supply, when energized, to be of greater potential than V_{S} and connect, via its internal MOS switches, V_{P} to output V_{0}. The backup input, V_{S} will be disconnected internally. In the event of main supply failure, the circuit will sense that the backup supply is now the greater potential, disconnect V_{P} from V_{0}, and connect V_{S}.
Figure 8 illustrates the use of external PNP power transistors to increase the power switching capability of the circuit. In this application the output current is limited by the beta and thermal characteristics of the power transistors.

If hysteresis is desired for a particular low power application, positive feedback can be applied between the input V_{P} and open drain output $S_{b a r}$ through a resistor as illustrated in Figure 9. For high power applications hysteresis can be applied as shown in Figure 10.

The ICL7673 can also be used as a clipping circuit as illustrated in Figure 11. With high impedance loads the circuit output will be nearly equal to the greater of the two input signals.

[^179]

0324-13
Figure 6: Power Supply for Low Power Portable AC to DC Systems

[^180]

Figure 10: High Current Backup System With Hysteresis

Figure 11: Clipping Circuits

[^181]
ICL7675/ICL7676 Switched-Mode Power Supply Controller Set

GENERAL DESCRIPTION

The ICL7675/7676 two-chip set provides the necessary control circuitry for regulation of a single-ended, transformer coupled, flyback type switching power supply. Specifically designed to operate in this type of configuration, the Intersil controller chip set is trimmed to provide a regulated 5 V output.

The two chips comprise a primary side controller and a secondary side controller. Referring to Figure 3, the output of the primary side controller drives the power MOSFET switch in the primary leg of the transformer. The switch is always turned off at a time corresponding to the falling edge of the internal system clock at a frequency of 50 kHz . Following an initial soft-start cycle, the switch is turned on at a time corresponding to a pulse received from the secondary side controller via a pulse transformer. The secondary side controller detects the power switch turn-off at the secondary of the transformer and initiates a time-out sequence with a duration directly proportional to the output voltage being sensed. A pulse generated at the end of the time-out period is fed back through the pulse transformer to the primary side controller, thereby completing the control loop.

Power for the primary side controller may be taken from the high voltage DC input to the power transformer via a resistor which feeds current to the on-chip zener diode. This eliminates the need for a separate power supply for the controller. Excessive current in the power MOSFET switch is detected at one end of a resistor in series with the source of the MOSFET, forcing the primary side controller into the soft-start mode.

FEATURES

- Output Voltage of $5 \mathrm{~V} \pm 5 \%$ Under All Conditions
- Simple Low Current Pulse Transformer Feedback
- Power Switch Over-Current Protection
- Soft-Start
- No Off-Chip Trimming Required
- Minimum External Components
- Low Supply Current
- Output Duty Cycle-5\% to 75\%

ORDERING INFORMATION

Part Number	Temperature Range	Package
ICL7675CPA	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	8 Lead MINIDIP
ICL7675CJA	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	8 Lead CERDIP
ICL7675IPA	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8 Lead MINIDIP
ICL7675IJA	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8 Lead CERDIP
ICL7675MJA	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	8 Lead CERDIP
ICL7676CPA	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	8 Lead MINIDIP
ICL7676CJA	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	8 Lead CERDIP
ICL7676IPA	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8 Lead MINIDIP
ICL7676IJA	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8 Lead CERDIP
ICL7676MJA	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	8 Lead CERDIP

Figure 1: Pin Configurations

ABSOLUTE MAXIMUM RATINGS

ICL7675

Supply Voltage (V+ to GND) . 16 V
Voltage on any pin(V+ +0.3) to (GND -0.3$) \mathrm{V}$
ICL7676
Supply Voltage ($\mathrm{V}_{\text {sense }}$ to GND) . 16 V
Voltage on any pin (V) sense +0.3) to (GND -0.3) V

CL7675 \& ICL7676

Lead Temperature (Soldering, 10 sec) $300^{\circ} \mathrm{C}$
Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Operating Temperature Range	
ICL767XC	$.0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
ICL767XI	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
ICL767XM	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Continuous Total Power Dissipation ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$)	
CERDIP Package	500 mW
Plastic Package	375 mW

NOTE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

0095-3
ICL7675

Figure 2: Functional Dlagrams

[^182]ICL7675
ELECTRICAL CHARACTERISTICS
Unless otherwise stated: Pins 1, 2, 3, and 4 are connected to GND;
Pin 7 is connected to V^{+}; all other pins are open; $\mathrm{V}^{+}=13.5 \mathrm{~V}$

Parameter	Test Conditions	Limits												Units
		$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$			$0^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<+70^{\circ} \mathrm{C}$			$-25^{\circ} \mathrm{C}<\mathrm{T}_{A}<+85^{\circ} \mathrm{C}$			$-55^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<+125^{\circ} \mathrm{C}$			
		Min	Typ	Max										
Oscillator: Frequency		42		58	41		59	40		60	38		62	kHz
Temp. Stability						0.1			0.1			0.1		\%/ ${ }^{\circ} \mathrm{C}$
Output: Fall Time (Note 1)	$\begin{aligned} & \mathrm{R}_{\mathrm{O}}=10 \mathrm{M}, \\ & \mathrm{C}_{\mathrm{O}}=500 \mathrm{pF} \end{aligned}$		100	150			170			180			200	ns
Rise Time (Note 1)	$\begin{aligned} & R_{O}=10 \mathrm{M} \\ & C_{O}=500 \mathrm{pF} \\ & \hline \end{aligned}$		100	150			170			180			200	ns
Voltage	Output Low, $\mathrm{l}_{\mathrm{O}}=-5 \mathrm{~mA}$		0.2	0.3			0.33			0.35			0.40	V
	Output High, $10=+5 \mathrm{~mA}$	12.8			12.8			12.7			12.6			V
Control Input: Leakage Current			0.01	10			50			50			100	nA
Threshold		9.5		11.0	9.0		11.0	8.5		11.5	8.5		12.0	V
Shut-Down: Leakage Current			0.01	10			50			50			100	nA
Threshold		9.5		11.5	9.4		11.8	9.3		12.0	9.2		12.5	V
Soft-Start: Time-out	Open Pin		8											ms
Current Limiting: Sense Voltage		420		600	390		630	370		640	300		700	mV
Sense Voltage Temperature Coefficient						0.6			0.6			0.6		$\mathrm{mV} /{ }^{\circ} \mathrm{C}$
$V_{\text {zener: }}$ Forward Voltage (Pin 8)		13.5	13.8	14.3										V
Forward Voltage Temperature Coefficient						7			7			7		$\mathrm{mV} /{ }^{\circ} \mathrm{C}$
V+ Supply Voltage (Pin 7)			13.2											V
Supply Current	No Output Load			1.2			1.3			1.4			1.5	mA

NOTE 1: This parameter is guaranteed by design and is not tested in production.

[^183]ICL7676
ELECTRICAL CHARACTERISTICS Unless otherwise stated: Pins 2 and 4 are connected to GND;
Pins 1 and 8 are connected to $V_{\text {sense; }}$ all other pins are open; $\mathrm{V}^{+}=5 \mathrm{~V}$

Parameter	Test Conditions	Limits												Units
		$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$			$0^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<+70^{\circ} \mathrm{C}$			$-25^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<+85^{\circ} \mathrm{C}$			$-55^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<+125^{\circ} \mathrm{C}$			
		Min	Typ	Max										
Power Supply: Output Voltage	$15 \mu \mathrm{~s}$ Pulse Delay (Note 2)	4.9		5.1										V
Temp. Stability						100			100			100		mV
Sync Input: Threshold		1.2		2.4	1.2		2.4	1.2		2.4	1.2		2.4	V
Leakage			0.01	10			50			50			100	nA
Output: Voltage	Output High	4.35			4.3			4.2			4.1			V
Pulse Current		15			14			12			10			mA
Pulse Width		0.55		1.0	0.5		1.0	0.4		1.0	0.25		1.0	$\mu \mathrm{s}$
Min. Pulse Delay	50 kHz Clock at Input			9			9			10			12	$\mu \mathrm{s}$
Max. Puise Delay	50 kHz Clock at Input	20			20			20			20			$\mu \mathrm{s}$
Gain	Time-Out/V ${ }_{\text {sense }}$	90	140		70			60			50			$\mu \mathrm{s} / \mathrm{V}$
$V_{\text {sense }}$ Input Current (Note 3)	$\begin{aligned} & V_{\text {sense }}=5.0 \mathrm{~V}, \\ & \text { No Load } \end{aligned}$			1.0			1.1			1.2			1.5	mA

NOTE 2: This corresponds to a 25% duty cycle at the output of the ICL7675.
3: This parameter is equivalent to device supply current.

TYPICAL PERFORMANCE CHARACTERISTICS

\square

[^184]

C 1	$0.022 \mu \mathrm{~F} / 400 \mathrm{~V}$	R 1	Thermistor	$\mathrm{D} 1-4$	1 N 4004
C 2	$330 \mu \mathrm{~F} / 200 \mathrm{~V}$	R 2	$.47 \Omega / 2 \mathrm{~W}$	D 5	1N4937
C 3	$470 \mu \mathrm{~F} / 16 \mathrm{~V}$	R 3	$10 \Omega / .125 \mathrm{~W}$	D 6	MBR1035
C 4	$180 \mathrm{pF} / 500 \mathrm{~V}$	R 4	$1.5 \mathrm{k} \Omega / 2 \mathrm{~W}$		
C 5	$0.022 \mu \mathrm{~F} / 400 \mathrm{~V}$	R 5	$10 \mathrm{k} \Omega / .25 \mathrm{~W}$	L 1	$\mathrm{Lp}=2.6 \mathrm{mH}$
C 6	$39 \mathrm{pF} / 500 \mathrm{~V}$	R 6	$10 \Omega / .5 \mathrm{~W}$		$\mathrm{n}=1 / 14$
C 7	$11,000 \mu \mathrm{~F} / 6.3 \mathrm{~V}$	R 7	$3.9 \Omega / .5 \mathrm{~W}$	L 2	$20 \mu \mathrm{H}$
C 8	$4.7 \mu \mathrm{~F} / 16 \mathrm{~V}$	R 8	$10 \Omega / 5 \mathrm{~W}$	L 3	$47 \mu \mathrm{H}$
C 9	$.047 \mu \mathrm{~F} / 10 \mathrm{~V}$	R 9	$68 \mathrm{k} \Omega / .25 \mathrm{~W}$		$\mathrm{n}=1 / 3$
C 10	$2200 \mathrm{pF} / 500 \mathrm{~V}$	R 10	$75 \mathrm{k} \Omega / .5 \mathrm{~W}$	Q 1	GE IRF821
C 11	$270 \mathrm{pF} / 500 \mathrm{~V}$				

Table 1: Example Component Values for SMPS System

[^185]
DETAILED DESCRIPTION

Refer to the system schematic (Figure 3), timing diagram (Figure 4) and the individual controller functional diagrams (Figure 2) for the following discussion.

Secondary Side Controller

The secondary side controller, ICL7676, is required to provide an output pulse that will cause the primary side controller, ICL7675, to turn the MOSFET power switch on in the primary leg of the power supply transformer. This pulse must occur at a time such that the resultant switch duty cycle causes the output of the power supply to be regulated at precisely 5 V . The circuit accomplishes this by amplifying the difference between a fraction of the output voltage and an internally generated reference voltage and using that output to control a ramp generator. When the output of the ramp generator reaches the reference voltage level, a comparator triggers a monostable giving a fixed width pulse at the output of the controller. A positive transition at the power supply transformer secondary, corresponding to power switch turn-off, triggers a one-shot with a bounce lock-out feature that prevents any false triggering due to excessive ringing at this node. The output of this one-shot resets the ramp generator by turning on a MOS transistor across the ramp capacitor. Also, if the ramp voltage has not reached the comparator threshold, the one-shot triggers the output monostable. This ensures that a pulse is sent to the primary side controller every cycle. Variations in the output voltage are detected and cause an increase or decrease in the current supplied to the ramp capacitor. This causes a change in the capacitor ramp rate at point G in Figure 2 and a consequent change in the time when the comparator threshold crossover occurs, generating an output pulse from the ICL7676. The output pulse's position is thereby modulated relative to the input trigger in direct proportion to the power supply voltage. The direction of change is such that when the resultant duty cycle at the output of the ICL7675 corrects the power supply voltage, a negative feedback control loop is formed that maintains the desired output voltage.

Primary Side Controller

The primary side controller, ICL7675, must process the incoming pulse from the secondary side controller, ICL7676, and combine this with the internally generated oscillator waveform to produce a driving signal for the MOSFET switch. Initially, however, a soft-start circuit determines the driving signal waveform. Therefore, there must also be a circuit which directs the orderly transition from soft-start to
normal operation. When the power supply is first turned on, a power-up-reset circuit initializes the soft-start clock and sets switch S1 on and switch S2 off, as shown in Figure 2. The soft-start's slowly increasing duty cycle waveform is fed through an AND gate and through switch S1 to the output buffer. Meanwhile, the transition circuit continuously monitors the relative position in time between the incoming pulse from the secondary side controller and the leading edge from the clock waveform. When the duty cycle of the softstart clock has increased to the point where its positive edge occurs earlier than the input pulse, then the transition circuit gives control of the output switch drive to the feedback loop by turning off S1 and turning on S2. Now the negative edge of the clock resets the flip-flop, turning off the power switch, and the input pulse sets the flip-flop, turning on the power switch. The negative edge of the soft-start clock is synchronized to the negative edge of the oscillator and occurs at a fixed frequency of 50 kHz . The soft-start clock's output duty cycle gradually increases from zero to 100%, but when ANDed with the 75% duty cycle waveform of the oscillator, the maximum duty cycle of the resultant waveform is limited to 75% as well.

Soft-Start Cycle

The soft-start cycle time is fixed at about 15 ms . It can be increased somewhat by adding capacitance to pin 5 . If no pulse is received from the secondary side controller, the primary side controller will reset, initiating the soft-start sequence. It will continue to recycle through the soft-start sequence until a pulse is received. As long as a pulse is received within one eighth cycle after the falling edge of the system clock, an approximately 0.5μ s pulse will appear at the output to drive the power switch. This allows for delays in the feedback loop which might cause the controlling pulse to arrive late.

Other Features

The external resistor R2, connected between the $I_{\text {sense }}$ pin and ground and placed in series with the power MOSFET switch, senses an over-current fault condition, tripping a comparator which shuts down the output. After the fault condition has been removed, the power supply will pass through the soft-start cycle before returning to normal operation. There is also a shut-down pin that when forced high will shut down the output. An on-chip zener diode and rectifying diode combination, connected through a dropping resistor to the high DC input voltage of the power supply, provides power to the circuit.

[^186]
ICL7675/ICL7676

APPLICATIONS

Refer to the system schematic (Figure 3) for the following discussion of a flyback converter.
The input bridge rectifier and filter circuit converts the 115 V AC line to 163 V DC. The unregulated high voltage DC is applied across a GE IRF 821 Power FET (Q1) and the primary of transformer L1. The Power FET acts as a switch, opening and closing in response to the gate drive signal from the output of the ICL7675 controller. When Q1 opens, the energy stored in L1 is transferred to the secondary and through diode D6 into C7. This is characteristic of the flyback converter. The ICL7676 monitors the voltage across C7 and sends a variable time delay pulse through pulse transformer L3 to the ICL7675 with a delay proportional to the voltage sensed. The ICL7675 translates the pulse into a variable duty-cycle 50 kHz output signal which drives the gate of the Power FET Q1 "ON" and "OFF" thereby closing the negative feedback loop.
The flyback converter topology is best suited for power levels below 150W due to the high ripple current produced across capacitor C7. This topology is favored because of its simplicity. Output voltage control is achieved by varying the ratio of ON to OFF time for Q1, and can be expressed as follows:

$$
V_{0}=V_{C 1} N \frac{t_{\text {on }}}{t_{\text {off }}}-V_{D 6}-1_{0} R_{S}
$$

where:

$$
\begin{aligned}
V_{C 1} & =\text { Voltage across } C 1 \\
V_{D 6} & =\text { Forward drop across } D 6 \\
I_{0} & =\text { Output current } \\
R_{S} & =\text { Output series resistance } \\
\mathrm{N} & =\text { Turns ratio of } \mathrm{L} 1 \text { (secondary/primary) }
\end{aligned}
$$

This applies for continuous mode operation where the current in L1 never falls to zero during a clock cycle. For light loads, discontinuous conduction may occur. The primary inductance of L1 required to assure continuous mode operation at a light load $\mathrm{I}_{0(\min)}$ is:

$$
L_{p}=\frac{t_{o n(\min)}^{2} \times V_{C 1(\text { max })}^{2} \times f}{2\left(V_{0}+V_{D 6}+I_{0} R_{S}\right) I_{0(\min)}}
$$

For $I_{0(\min)}=10 \%$ of full load at high line:

$$
L_{p}=\frac{\left(6 \times 10^{-6}\right)^{2} \times(185)^{2} \times\left(50 \times 10^{3}\right)}{(2)(6)(1)}=5.1 \mathrm{mH}
$$

This inductance can be obtained on a gapped ferrite ' E ' core which offers an excellent (performance)/(cost) ratio. The air gap is required to prevent saturation at low line and maximum current.
Neglecting voltage spikes due to leakage inductance, drain to source voltage stress for Q1 is:

$$
V_{d s}=\frac{V_{0}+V_{D 6}+I_{0} R_{S}}{N}+V_{C 1}
$$

A turns ratio $N=1 / 14$ limits $V_{d s}$ to a safe value at high line. A catch winding clamps voltage spikes across the Power FET at turn off. The winding should be bifilar wound with the primary to minimize leakage inductance. An electrostatic shield will improve isolation between primary and secondary.

The network composed of L2 and C8 at the output provides additional filtering by attenuating high frequency spikes and ripple. The corner frequency for the LC filter is approximately 20 kHz which effectively attenuates 50 kHz and higher order harmonics. Inductor L2 is shunted by 3.9Ω R7 to reduce the output " Q " and minimize output ringing. For critical damping: $R=\sqrt{L / C}$. Diode $D 6$ is a fast recovery Schottky doide. It has a low V_{d} and is snubbed by resistor R6 and capacitor C6 to limit the dV/dt and overshoot. The diode D5 is also a fast recovery diode which is connected to the catch winding of transformer L1. This protects the power FET Q1 from potentially damaging voltage spikes.

Switching Losses

Power FETs behave like ideal switches and are very well suited for high frequency switching power supply applications. The fast turn-on and turn-off of the power MOSFET results in very low switching losses. In this application the turn-off losses are essentially zero, due in part to the presence of snubber network C4 and R4. And the worst case turn-on losses are less than two watts.

Energy:

$$
\begin{aligned}
W & =\int_{0}^{t} V_{d s}(t) I_{d}(t) d t \\
V_{d s}(t) & =10^{9} t \\
I_{d}(t) & =12.5 \times 10^{6} t \\
W & =12.5 \times 10^{15} \int_{0}^{200 \mathrm{~ns}} t^{2} \mathrm{dt}
\end{aligned}
$$

where:

Integrating:

$$
W=12.5 \times 10^{15} \frac{t^{3}}{3} \quad \text { where: } t=200 \times 10^{-9}
$$

and Power:

$$
\begin{aligned}
\mathrm{P} & =\mathrm{W} \times \mathrm{F} \\
\text { Power } & =12.5 \times 10^{15}\left[\frac{\left(2 \times 10^{-7}\right)^{3}}{3}\right] 5 \times 10^{4} \\
& =1.67 \text { Watts }
\end{aligned}
$$

Because the power MOSFET has very high current gain it can be driven directly from the ICL7675. This is highly advantageous because it simplifies the circuitry and reduces overall system manufacturing costs.

[^187]
Control Loop Design

The control loop for a transformer coupled flyback converter is similar to the boost converter from which it is derived. The presence of an LC resonant filter with its steep 180 degree phase rolloff and a right-half plane zero in the loop transfer function makes frequency compensation a non-trivial exercise. However, the design of the control loop can be made easier if not simpler with the proper tools. The mathematical equation representing the power mesh equivalent transfer function may be reduced to a model which can be entered into SPICE, a widely used circuit simulation program, or any other simulation software being used. The equation for the modulator-power mesh portion of the control loop may be expressed as:

$$
\frac{V_{0}}{D(1-D)}\left[1-\frac{s n^{2} D L_{p}}{(1-D)^{2} R_{0}}\right] \frac{T(1-D)^{2}}{C_{r} V_{\text {ref }}}
$$

where:

$$
\begin{aligned}
D & =\text { Duty cycle } \\
n & =\text { Transformer turns ratio } \\
L_{p} & =\text { Primary inductance } \\
R_{0} & =\text { Load resistance } \\
T & =\text { Clock period } \\
C_{r} & =\text { Internal ramp capacitance }=40 \mathrm{pF} \\
V_{\text {ref }} & =\text { Internal reference voltage }=2.5 \mathrm{~V}
\end{aligned}
$$

A model representing this equation is shown in Figure 5A. Combined with the output filter shown in Figure 5B, and the error amp shown in Figure 5C, a computer simulation can be used to determine the optimum combination of components for a stable design that still provides adequate response to external disturbances. Note that in the output filter, the effective primary inductance and inductor series resistance are multiplied by $\mathrm{n}^{2} /(1-\mathrm{D})^{2}$. In the example here, a combination of lead compensation provided by C11 and lag compensation provided by R10 and C10 gave the desired response.

Figure 5A: Control Loop Model

0095-10
Figure 5B: Output Filter Model

Figure 5C: Error Amp Model

GENERAL DESCRIPTION

The ICL7677 is a power fail detector, an important enhancement in a power supply circuit. It is designed to give the fastest possible power fail indication. The part can be used on the primary side of the power supply with opto-isolators transmitting the fault indication to the equipment in the secondary side. Alternatively, this part can be used on the secondary side of the power supply to monitor power supply conditions, with the ability to drive TTL/CMOS logic at the fault indicating outputs.
The ICL7677 as a primary side power fail detector can simultaneously monitor the a.c. line voltage, the reservoir capacitor voltage, the primary side current and ambient temperature. The part as a secondary side power fail detector can simultaneously monitor up to two DC voltages, one load current and ambient temperature. Only a few external passive components are required.
The circuit has an on-chip bandgap voltage reference to conveniently program the detection thresholds. However, an external voltage reference can be used if preferred.
There are four fault indicating outputs. These are "no fault", "under-voltage", "over-voltage", and "over-temperature or over-current". Thus, these outputs allow straight forward diagnosis of power failure. Moreover, the "no fault" indicator alone is sufficient for low cost systems to indicate failure using only one opto-isolator.
The part allows the user to program time delays for various faults, preventing false indications due to spikes or noise. It also displays a unique output state while the supply is turning ON, until the applied voltage reaches its nominal voltage range.

The ICL7677 can be powered by a 5 V voltage source, or current fed via a resistor, as it has its own voltage regulator.

FEATURES

- Simultaneous Monitoring of the AC Line, Reservoir Capacitor Voltage, Ambient Temperature and Primary Side Current When Used on Primary Side.
- Simultaneous Monitoring of Two DC Voltages, Temperature, and One Load Current When Used on the Secondary Side
- Programmable Thresholds for Over-Voltage, UnderVoltage, and Over-Temperature Detection
- Programmable Delay Time for All Faults to Avoid False Indication Due to Noise or Line Spikes
- On Chip Voltage Reference and Voltage Regulator; An External Voltage Reference Can be Used If Desired
- Unique Output State for the Start-Up phase
- Outputs are Logically Combined to Optimize Power Fail Indication and Indicate Source of Power Fallure
- Outputs Can Drive Low-Current Opto-Isolators and TTL/MOS Logic Directly

APPLICATIONS

- Switching Power Supplies, Both Primary Side and Secondary Side Power Fail Detector
- Linear Power Supplies, DC to DC Converters

ORDERING INFORMATION

Part Number	Operating Temperature	Package
ICL7677CPN	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	18 Lead Plastic
ICL7677CJN	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	18 Lead CERDIP
ICL7677IPN	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	18 Lead Plastic
ICL7677IJN	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	18 Lead CERDIP
ICL7677MJN	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	18 Lead CERDIP

Pin	Symbol	Function
1	C2	Delay capacitor for AC under voltage fault.
2	C1	Delay capacitor for immediate power loss fault.
3	$\mathrm{V}_{\text {AC2 }}$	One input of AC/DC monitor.
4	$\mathrm{V}_{\text {AC1 }}$	Other input of AC/DC monitor.
5	VUV	Low threshold level.
6	$V_{D C}$	Input of DC monitor.
7	Vov	High threshold level.
8	$V_{\text {OC }}$	Input to sense over current.
9	GND	Chip supply ground or $\mathrm{V}_{\text {SS }}$.
10	TR	Thermistor.
11	R9	Bias resistor.
12	$V_{\text {REF }}$	Reference voltage.
13	C4	Delay capacitor to prevent false alarms due to noise.
14	NF	No fault output.
15	UV	Under voltage output.
16	OV	Over voltage output.
17	OT-OC	Over temperature or over current output.
18	$V_{D D}$	Positive chip supply or $\mathrm{V}+$.

[^188]ABSOLUTE MAXIMUM RATINGS

Supply Voltage	9V
Supply Current ($\mathrm{V}_{\text {SUPPLY }}=9 \mathrm{~V}$) .	20 mA
Input Voltage at Any Pin	0.3 V to $\mathrm{V}++0.3 \mathrm{~V}$
Power Dissipation	
CERDIP Package	500 mW
Plastic Package	.375 mW
Storage Temperature	$65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Operating Temperature Range	
ICL7677C	$.0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
ICL76771	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
ICL7677M	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
ead Temperature (Sold	$.300^{\circ} \mathrm{C}$

NOTE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

Test Circuit in Figure 3, S1 S3 S4 open, S2 S5 closed, unless otherwise specified.

			$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			$\begin{aligned} & T_{A}=0^{\circ} \mathrm{C} \\ & \text { to }+70^{\circ} \mathrm{C} \end{aligned}$			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=-25^{\circ} \mathrm{C} \\ \text { to }+85^{\circ} \mathrm{C} \end{gathered}$			$\begin{array}{c\|} \mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C} \\ \text { to }+125^{\circ} \mathrm{C} \\ \hline \end{array}$			
		Test Conditions	ICL7677			ICL7677C			ICL76771			ICL7677M			Units
			Min	Typ	Max										
$1+$	Supply Current	$\mathrm{V}_{\mathrm{DD}}=4 \mathrm{~V}$			0.75			0.75			0.8			1.0	mA
		$\mathrm{V}_{\mathrm{DD}}=6 \mathrm{~V}$			8.5			8.5			9.0			10.0	
$V_{D D}$	Internally Regulated Supply Voltage	$1+=4 \mathrm{~mA}$	5.5		6.1	5.5		6.1	5.5		6.1	5.3		6.3	V
1 N	Input Current $\mathrm{V}_{\mathrm{AC} 1}, \mathrm{~V}_{\mathrm{AC} 2}$	$\mathrm{V}_{\mathrm{DD}}=4 \mathrm{~V}$ and 6 V		20	80		20	80		20	100		20	100	$\mu \mathrm{A}$
	Input Leakage $V_{D C}$	$V_{D D}=4 \mathrm{~V}$ and 6 V			50			50			50			100	nA
	$V_{U V}, V_{\text {OV }}, V_{\text {OC }}$				50			50			50			100	
VREF	Reference Voltage	$V_{D D}=4 V$ and $6 V$ No Load, S1 Open 100μ A Load, S1 Closed	$\left\lvert\, \begin{aligned} & 1.23 \\ & 1.23 \end{aligned}\right.$	$\begin{aligned} & 1.254 \\ & 1.254 \end{aligned}$	$\begin{aligned} & 1.278 \\ & 1.278 \end{aligned}$	$\begin{aligned} & 1.23 \\ & 1.23 \\ & \hline \end{aligned}$		$\left\lvert\, \begin{aligned} & 1.28 \\ & 1.28 \end{aligned}\right.$	$\begin{array}{\|l\|} 1.23 \\ 1.23 \\ \hline \end{array}$		$\begin{aligned} & 1.284 \\ & 1.284 \end{aligned}$	$\begin{aligned} & 1.2 \\ & 1.2 \\ & \hline \end{aligned}$		$\begin{aligned} & 1.31 \\ & 1.31 \end{aligned}$	V
	Reference Tempco						100			100			100		ppm $/{ }^{\circ} \mathrm{C}$
Vout	ON Output Voltage All Four Drivers	$\begin{aligned} & V_{D D}=4 \mathrm{~V}, \\ & \mathrm{lOUT}=40 \mu \mathrm{~A} \end{aligned}$	2.4			2.4			2.4			2.4			V
"ON"		$\begin{aligned} & V_{D D}=6 \mathrm{~V}, \\ & \mathrm{lOUT}=40 \mu \mathrm{~A} \end{aligned}$	2.4			2.4			2.4			2.4			
	ON Output Current All Four Drivers	$\begin{aligned} & V_{D D}=4 \mathrm{~V}, \\ & V_{\text {OUT }}=0.7 \mathrm{~V} \end{aligned}$	0.8		1.3	0.8		1.3	0.8		1.3	0.7		1.4	mA
"ON"		$\begin{aligned} & V_{D D}=6 \mathrm{~V}, \\ & V_{O U T}=0.7 \mathrm{~V} \end{aligned}$	1.4		2.2	1.4		2.2	1.4		2.2	1.3		2.3	
	OFF Output Current All Four Drivers	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=4 \mathrm{~V}, \\ & \mathrm{lOUT}=-1.6 \mathrm{~mA} \\ & \hline \end{aligned}$	0		0.4	0		0.4	0		0.4	0		0.4	V
"OFF"		$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=6 \mathrm{~V}, \\ & \mathrm{lOUT}=-1.6 \mathrm{~mA} \end{aligned}$	0		0.4	0		0.4	0		0.4	0		0.4	

ELECTRICAL CHARACTERISTICS
(Continued)
Test Circuit in Figure 3, S1 S3 S4 open, S2 S5 closed, unless otherwise specified.

Symbol	Parameter	Test Conditions	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			$\begin{aligned} & T_{A}=0^{\circ} \mathrm{C} \\ & \text { to }+70^{\circ} \mathrm{C} \end{aligned}$			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=-25^{\circ} \mathrm{C} \\ \text { to }+85^{\circ} \mathrm{C} \end{gathered}$			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C} \\ \text { to }+125^{\circ} \mathrm{C} \\ \hline \end{gathered}$			
			ICL7677			ICL7677C			ICL76771			ICL7677M			Units
			Min	Typ	Max										
Ibias	Bias Current	$V_{D D}=4 V$ S2 Closed, S1 Open $V_{D D}=6 V$	3.6		6.0	3.6		6.0	3.3		6.5	3.0		7.0	$\mu \mathrm{A}$
			8.0		12.4	8.0		12.4	7.7		12.8	7.4		13.4	
Itemp	Thermistor ShortCircuit Current	S2, S5 Open S3, S4 Closed $V_{D D}=4 \mathrm{~V}$ and 6 V	9.5		10.5	9.2		11.0	9.0		12.0	9.0		13.0	$\mu \mathrm{A}$
Itemp	Thermistor Current	S2, S5 Open S3 Closed $V_{D D}=4 \mathrm{~V}$ and 6 V	9.5		10.5	9.2		10.5	9.0		10.5	8.0		11.0	$\mu \mathrm{A}$
$\mathrm{V}_{\text {TH }}$	Threshold Voltage at Over-Current Sensing	$V_{D D}=4 \mathrm{~V}$ and 6 V	205		245	203		247	199		251	195		255	mV
T1	Immediate Loss of Power Delay	(Fig. 4) $V_{D D}=5 \mathrm{~V}$ C1, C2, C4 Connected C1, C2, C4 Not Connected	330	410	$\begin{gathered} 490 \\ 40 \\ \hline \end{gathered}$	330		$\begin{gathered} 490 \\ 40 \\ \hline \end{gathered}$	330		$\begin{gathered} 520 \\ 40 \\ \hline \end{gathered}$	330		$\begin{gathered} 550 \\ 50 \\ \hline \end{gathered}$	$\mu \mathrm{S}$
T3	AC Under-Voltage Delay	(Fig. 5) $V_{D D}=5 \mathrm{~V}$ C1, C2, C4 Connected C1, C2, C4 Not Connected	6.61	8.26	$\begin{gathered} 9.91 \\ 50 \\ \hline \end{gathered}$	6.61		$\begin{array}{\|c\|} \hline 9.91 \\ 60 \\ \hline \end{array}$	6.61		$\begin{array}{\|c\|} \hline 10.0 \\ 60 \\ \hline \end{array}$	6.61		$\begin{array}{\|c} 11.0 \\ 70 \\ \hline \end{array}$	$\begin{aligned} & \mathrm{ms} \\ & \mu \mathrm{~s} \end{aligned}$
T5	AC Over-Voltage Delay	(Fig. 6) $V_{D D}=5 \mathrm{~V}$ C1, C2, C4 Connected C1, C2, C4 Not Connected	174	215	$\begin{array}{\|c} 256 \\ 40 \\ \hline \end{array}$	174		$\begin{gathered} 256 \\ 40 \\ \hline \end{gathered}$	174		$\begin{array}{\|c} 300 \\ 40 \\ \hline \end{array}$	174		$\begin{gathered} 300 \\ 50 \\ \hline \end{gathered}$	$\mu \mathrm{s}$
T7	DC Under-Voltage Delay	(Fig. 7) $V_{D D}=5 V$ C1, C2, C4 Connected C1, C2, C4 Not Connected	174	215	$\begin{gathered} 256 \\ 30 \\ \hline \end{gathered}$	174		$\begin{array}{\|c\|} \hline 256 \\ 30 \\ \hline \end{array}$	174		$\begin{array}{\|c\|} \hline 300 \\ 30 \\ \hline \end{array}$	174		$\begin{gathered} 300 \\ 40 \end{gathered}$	$\mu \mathrm{S}$
T9	DC Over-Voltage Delay	(Fig. 8) $V_{D D}=5 \mathrm{~V}$ C1, C2, C4 Connected C1, C2, C4 Not Connected	174	215	$\begin{array}{\|c} 256 \\ 30 \\ \hline \end{array}$	174		$\begin{array}{\|c\|} \hline 256 \\ 30 \\ \hline \end{array}$	174		$\begin{array}{\|c\|} \hline 300 \\ 30 \\ \hline \end{array}$	174		$\begin{gathered} 300 \\ 40 \\ \hline \end{gathered}$	$\mu \mathrm{s}$
T11	Over-Temperature Delay	Fig. 9, $\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$			50			60			60			70	$\mu \mathrm{S}$
T13	Over-Current Delay	Fig. $10, \mathrm{~V}_{\mathrm{DD}}=5 \mathrm{~V}$			40			40			40			60	$\mu \mathrm{s}$
T2	Recovery Times From Correction of Faults	Fig. $4-10, V_{D D}=5 \mathrm{~V}$			40			40			40			50	$\mu \mathrm{s}$
T4					40			40			40			50	$\mu \mathrm{s}$
T6					40			40			40			50	$\mu \mathrm{s}$
T8					40			40			40			50	$\mu \mathrm{s}$
T10					40			40			40			50	$\mu \mathrm{s}$
T12					40			40			40			50	$\mu \mathrm{s}$
T14					40			40			40			60	$\mu \mathrm{s}$

[^189]

Figure 3: Test Set-Up for Fault Response Measurements

0084-5
$V_{A C 2}=0, V_{D C}=1 V, V_{O C}=0, I_{B I A S}=10 \pm 0.1 \mu \mathrm{~A}$
Repeated for $V_{A C 2}$ with $V_{A C 1}=0$
Figure 5: Test for Under-Voltage AC Fault

0084-6
$V_{A C 2}=0, V_{D C}=1 \mathrm{~V}, V_{O C}=0, I_{\mathrm{BIAS}}=10 \pm 0.1 \mu \mathrm{~A}$
Repeated for $V_{A C 2}$ with $V_{A C 1}=0$
Figure 6: Test for Over-Voltage AC Fault

INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.
NOTE: All typical values have been characterized but are not tested.

$V_{A C 2}=0, V_{A C 1}=1 V, V_{T R}=0$,
$V_{D C}=1 V, I_{B I A S}=10 \pm 0.1 \mu \mathrm{~A}$
Figure 10: Test for Over-Current Fault

DETAILED DESCRIPTION

Functional Diagram

The functional diagram of the ICL7677 is shown in Figure 1. The circuit contains an AC/DC monitor, DC monitor, current monitor, temperature monitor, logic and output drivers, regulator, start up circuit, and voltage reference circuit.

AC/DC Monitor

The AC/DC monitor is primarily designed to monitor the line, but can also monitor DC signals if the chip is used on the regulated side of the supply. As an AC monitor, it detects the following fault conditions;

1. Complete and immediate loss of power.
2. Reduction in voltage.
3. Excessive voltage.

The detection of complete loss of power is explained by considering Figure 11. The AC line voltage is divided by external resistors connected to pins $3 \& 4$ and converted to a full wave rectified form on chip. The figure shows that the amplitude of the signal is close to zero for a very brief period during each cycle. This period of time, t, is governed by the amplitude and frequency of the signal, and the threshold voltage, $\mathrm{V}_{\text {zero }}$, which is approximately 22% of the internal reference voltage, $\mathrm{V}_{\text {ref. }}$. If the signal remains below $\mathrm{V}_{\text {zero }}$ for a duration much longer than t, this is interpreted as a loss of AC power. The user can program the allowed time duration by simply changing the external capacitor at pin 2 to suit the particular AC frequency employed. The absolute differential signal threshold between V_{AC} (pin 4) and V_{AC} (pin 3) is $276 \mathrm{mV} \pm 20 \mathrm{mV}$.
The detection of reduction in AC voltage can be checked only on the peak values. Two threshold values are defined using external resistors together with either the on-chip voltage reference at pin 12 or an external reference. Low threshold (V_{UV}) and high threshold (V_{OV}) are developed at pins 5 \& 7 respectively. It is obvious from Figure 11 that the signal crosses the low threshold value every half cycle. Thus, the absence of the signal crossing the low threshold
indicates a reduction in AC voltage. The fault detection is based on the fact that the maximum time duration when the signal is below the low threshold value is half the time period. Thus, detection of the signal below the threshold for a period longer than this indicates that there is a reduction in voltage. Again, the allowed time duration is user programmable to work with different line frequencies. This time duration is varied by the external capacitor C2.
Finally, excessive voltage is detected when the AC voltage crosses the upper threshold value as shown in Figure 11. The threshold must be exceeded for longer than a user defined delay to be interpreted as a fault condition. This feature reduces the probability of false alarm due to short harmless voltage spikes. The length of the delay is controlled by the external capacitor, C4, on pin 13.
As an auxiliary DC monitor, used on the secondary side of the supply, pin 3 is grounded and pin 4 is connected to the resistively divided DC voltage as shown in Figure 15. In this case, the time constant that was previously related to the line frequency, set by the capacitor on pin 1, is now used for spike suppression. Pin 2 should be tied to $V_{D D}$ to disable the loss of AC detector. There is no circuit change for overvoltage detection.

DC Monitor

The DC monitor detects the under- and over-voltage on the monitored node by dividing down the DC voltage using two resistors and applying it to pin 6. The divided DC voltage is compared with $V_{U V}$ and $V_{O V}$ which are at pins 5 \& 7 respectively. When the supply voltage drops below the lower threshold value for a time duration more than the user programmed delay, an under-voltage condition is present. Similarly, when the supply voltage goes above the upper threshold value for a similar time duration, then an over-voltage condition is indicated. The purpose of the programmed time delay is to reduce false alarms due to noise, and is the same value that was chosen for AC over-voltage, set by the capacitor, C4, on pin 13.

INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

NOTE: All typical values have been characterized but are not tested.

Current Monitor

The user may detect excessive current through the primary transformer winding in Figure 12 by placing a sensing resistor in the source or emitter of the switching transistor. The chip threshold at pin 8 is $225 \mathrm{mV} \pm 20 \mathrm{mV}$. Similarly, it can be used on the secondary side as shown in Figure 15 in the application section.

Temperature Monitor

Temperature monitoring requires an external thermistor at pin 10 and a low tempco resistor at pin 11. This resistor is used to set the bias current, which is recommended to be between $5 \mu \mathrm{~A}$ and $20 \mu \mathrm{~A}$. The chip supplies two equal currents and compares the voltages across the thermistor and the resistor. The user can now program a trip temperature where the thermistor resistance is going to equal or be slightly less than the resistor. At this temperature an internal comparator will switch. This feature allows the user to shut the system off if the temperature rises above the allowed range due to an overload or an absence of air flow. There is a hysteresis of $30 \mathrm{mV} \pm 10 \mathrm{mV}$ in the comparator to prevent oscillation.

Chip Power Supply Section and Voltage Reference

The system can work either as a current or voltage driven circuit ("current fed mode" and "voltage fed mode"). There is a shunt voltage regulator which uses a bandgap reference to set up a $5.8 \mathrm{~V} \pm 0.2 \mathrm{~V}$ internal chip supply. The chip is powered from a high voltage in the current fed mode through a resistor at pin 18. The system can alternatively be powered by a 4 V to 5.5 V DC power source connected directly to pin 18. The same bandgap reference can be used to define the thresholds for the fault monitor circuit.

Chip Initialization

When the power supply is first turned on, all outputs will be low; but this situation will readily be identified as a start up mode, since in normal use, one of the LED's will always be on. The NF output will turn ON when the monitored DC voltage reaches the nominal range. This prevents false fault indication during power up mode.

Logic and Fault Outputs

The circuit outputs are designed for driving opto-isolators, and are particular logic combinations of the outputs of the different monitors. When the chip is used on the primary side of the power supply, the outputs are as follows;

Output	Pin \#	Function
Under-Voltage	15	UV = Loss of AC or Low AC or Low DC
Over-Voltage	16	OV = AC Over-Voltage or DC Over-Voltage
Over-Temperature	17	OT-OC = Over-Temperature or Over-Current
No Fault	14	NF = None of the Above Faults

As described, the same chip can be employed on the secondary side of the power supply system and monitor up to two DC voltages, as illustrated in Figure 15. The DC1 is connected to AC monitor and DC2 is connected to DC monitor. The temperature sensor may be retained. In this case the outputs are as follows;

Output	Pin \#	Function
Under-Voltage	15	UV = Low DC1 or Low DC2
Over-Voltage	16	OV = Over-Voltage of DC1 or DC2
Over-Temperature	17	OT-OC = Over-Temperature or Over-Current
No Fault	14	NF = None of the Above Faults

System Performance

The key aspect of the system performance is the accuracy of the threshold levels. The system performance is presented with the following assumptions.

1. Resistors and capacitors are 1% accurate;
2. $V_{\text {REF }}$ accuracy is $\pm 2 \%$;
3. System is connected as shown in Figure 12.

Error in AC UV \& OV Detection	Error
Resistor divider error from inputs,	
R1, R2, R3, R4	$1 \%+1 \%$
$V_{\text {REF }}$ error	2\%
Resistor divider error (Vuv or Vov), R7, R8	1\% + 1\%
Internal comparator offset at inputs: 7.5 mV	0.75\%
Internal resistor mismatch	1\% + 1\%
Total worst case error	8.75\%
The RMS error of threshold voltage	3.25\%
Error in DC UV \& OV Detection	Error
Resistor divider error from inputs, R5, R6	1\% + 1\%
$V_{\text {REF }}$ error	2\%
Resistor divider error (VUV or $\mathrm{V}_{\text {OV }}$), R7, R8	1\% + 1\%
Internal comparator offset at inputs: 2.5 mV	0.25\%
Total worst case error	6.25\%
The RMS error of threshold voltage	2.84\%
Over-Current Detection Error	Error
Resistor error, R11	1\%
Internal comparator offset: 7.5 mV	3\%
Fixed internal level error	5\%
Total worst case error	9\%
The RMS error of threshold current	6\%
Over-Temperature Detection Error	Error
Resistor R9 error	1\%
Thermistor RT error	5\%
Overdrive at pin 10 referred to pin 11:40 mV	2\%
Total worst case error	8\%
The RMS error	5.5\%
For $85^{\circ} \mathrm{C}$ trip temperature, degrees of error	$4.7{ }^{\circ} \mathrm{C}-6.8^{\circ} \mathrm{C}$

TYPICAL APPLICATIONS

Primary Side Power Fail Detector
Figure 12 shows a primary side power fail detector implementation.
The following is an example of the component calculations for the system.
Assume:
A. Nominal AC voltage is 120 V rms or 170 V peak and the frequency is 60 Hz .
B. Indications of over- and under-voltage occur with $\pm 25 \%$ variations.
C. Over-temperature is indicated when the temperature is above $85^{\circ} \mathrm{C}$.
D. Over-current is indicated when the current in the transformer primary winding exceeds 2 A .

Calculations for resistor values:

Set $\mathrm{V}_{\mathrm{OV}}=\mathrm{V}_{\text {REF }}=1.254 \mathrm{~V}$, then

$$
V_{U V}=(75 \% / 125 \%) \times V_{R E F}=0.752 V
$$

Choose $V_{\text {REF }}$ current to be $10 \mu \mathrm{~A}$, well within the spec. of $100 \mu \mathrm{~A}$, then

$$
\begin{aligned}
& R 7=V_{U V} / 10 \mu A=75 K \\
& R 8=\left(V_{\text {REF }}-V_{U V}\right) / 10 \mu A=50 K
\end{aligned}
$$

The scaled $A C$ and DC peak values are nominally $1 V$. The resistors are chosen with a power dissipation of $1 / 4$ watt.
The current through R1 and R2 should be less than

$$
\begin{gathered}
0.25 \text { watts } / 170 \mathrm{~V}=1.47 \mathrm{~mA} \text {, and } \\
\mathrm{R} 2 /(\mathrm{R} 1+\mathrm{R} 2)=1 \mathrm{~V} / 170 \mathrm{~V} \text {, therefore, }
\end{gathered}
$$

R1 $=169 \mathrm{~K}$ and $\mathrm{R} 2=1 \mathrm{~K}$ will satisfy these conditions.
Calculating R3, R4, R5, and R6 in a similar manner gives $R 3=169 \mathrm{~K}, \mathrm{R} 4=1 \mathrm{~K}, \mathrm{R} 5=169 \mathrm{~K}, \mathrm{R} 6=1 \mathrm{~K}$.
E. Opto-isolator needs at least 0.8 mA for its operation.

Figure 12: ICL7677 Power Fail Detector Applied on the Primary Side of Power Supply

[^190]The resistors can then be corrected to preferred values.
For the current fed mode,

$$
\begin{aligned}
& R 10=\left(V_{R}-V_{D D} / I_{s}\right. \\
\text { where } V_{R} & =\text { minimum expected reservoir voltage } \\
V_{D D} & =\text { supply voltage } \\
I_{S} & =\text { minimum supply current for the system. } .
\end{aligned}
$$

The peak reservoir voltage is 170 V , therefore the minimum expected reservoir voltage is $0.75 \times 170 \mathrm{~V}$. In the current fed mode, $\mathrm{V}_{\mathrm{DD}}=5.8 \mathrm{~V}$. Because the chip requires less than 1.5 mA and the output current for the opto-isolators is $0.8 \mathrm{~mA}, 3 \mathrm{~mA}$ should be sufficient for the system.
Therefore,

$$
R 10=(0.75 \times 170 \mathrm{~V}-5.8 \mathrm{~V}) / 3 \mathrm{~mA}=40 \mathrm{~K}
$$

Figure 13 shows the typical curve for bias current versus R9. Choosing R9 $=300 \mathrm{k} \Omega$ results in a bias current of approximately $10 \mu \mathrm{~A}$. For temperature monitoring, a thermistor is then selected which is equal to or less than $300 \mathrm{k} \Omega$ at $85^{\circ} \mathrm{C}$.
The limit for over-current in the primary circuit is 2 A . Therefore,

$$
R 11=245 \mathrm{mV} / 2 \mathrm{~A}=0.12 \Omega
$$

0084-15
Figure 13: Bias Current vs. Bias Resistor

Calculations for capacitor values:

Assume the following time delays for fault indications:
(a) Loss of power:

The maximum time the signal will be below $\mathrm{V}_{\text {zero }}$ is

$$
t=2 \arcsin (V / A) / 2 \pi f
$$

where $A=$ lowest nominal peak value $=0.8 \mathrm{~V}$

$$
\begin{aligned}
& V=V_{\text {zero }}=0.3 \mathrm{~V} \\
& \mathrm{f}=\text { frequency }=60 \mathrm{~Hz} .
\end{aligned}
$$

Therefore, $t=2[\arcsin (0.3 / 0.8)] / 120(3.14)$

$$
=2.04 \mathrm{~ms}
$$

The time delay for loss of power is therefore chosen to be 2.5 ms .
(b) Low AC: 12 ms , based on 8.33 ms half cycle time.
(c) High DC, high AC and low DC: 1.0 ms

Glitches less than 1 ms on the AC and DC supplies will then be ignored.
The time delay for fault detection is calculated as shown below and in Figure 14.

$$
\text { where } \begin{aligned}
& \mathrm{T}=\left(\mathrm{C} \times \mathrm{V}_{\mathrm{DD}} / 2 \div \mathrm{l}_{\text {bias }}\right)+10 \mu \mathrm{~s} . \\
& \mathrm{T} \\
& \mathrm{C} \\
& =\text { time delay } \\
& \\
& \text { l delay capacitance } \\
& \mathrm{V}_{\mathrm{DD}} / 2
\end{aligned}
$$

Now, $C=T \times I_{\text {bias }} /\left(V_{D D} / 2\right)$
where $I_{\text {bias }}=10 \mu \mathrm{~A}$

$$
\mathrm{V}_{\mathrm{DD}} / 2=2.9 \mathrm{~V}
$$

Therefore, $\mathrm{C}_{1}=2.5 \mathrm{~ms} \times 10 \mu \mathrm{~A} / 2.9 \mathrm{~V}=8.6 \mathrm{nF}$

$$
\begin{aligned}
& \mathrm{C}_{2}=12 \mathrm{~ms} \times 10 \mu \mathrm{~A} / 2.9 \mathrm{~V}=41.4 \mathrm{nF} \\
& \mathrm{C}_{4}=1.0 \mathrm{~ms} \times 10 \mu \mathrm{~A} / 2.9 \mathrm{~V}=3.45 \mathrm{nF}
\end{aligned}
$$

A $20 \mu \mathrm{~F}$ capacitor is recommended for the decoupling capacitor, C3. If the reservoir voltage goes to zero abruptly, the load current of the part will be about 2 mA so it can sustain power to the part for approximately 15 ms .

0084-13
Figure 14: Capacitance vs. Time Delay

[^191]
Secondary Side Power Fail Detector

The ICL7677 power fail detector can be applied on the secondary side as shown in Figure 15. Calculations for the external components follow the same procedure used in the primary side application.

NOTE: R10 is used only when $\mathrm{V}_{\mathrm{DC} 1}>5.5 \mathrm{~V}$

Figure 15: ICL7677 Power Fail Detector Applied on the Secondary Side of Power Supply

[^192]
ICL7680
 +5 V to $\pm 15 \mathrm{~V}$ Voltage Converter/Regulator

GENERAL DESCRIPTION

The Intersil ICL7680 voltage converter provides, tive necessary control circuitry for independent regulation of both a single-ended, boost type and boost-buck (inverting) type switched-mode power supply. Specifically designed to operate in these two configurations, the ICL7680 is trimmed to provide both a +15 V and -15 V output with a +5 V input voltage.
The internal circuitry is divided into two similar sections sharing a common voltage reference and oscillator: one for the boost stage and another for the inverting stage. Each section contains an error amplifier, comparator, and output logic which provide a standard pulse-width modulated output drive to an external transistor switch. The boost section senses the positive power supply output voltage via an internal thin film resistor divider which is trimmed for +15 V . This voltage is user adjustable by adding an external resistor. Similarly, the inverting section senses the negative power supply output voltage at the input of an inverting amplifier that is trimmed for -15 V .

The output logic provides the proper phase to drive an N -channel MOSFET on the boost side and a P-channel MOSFET on the inverting side. Although bipolar devices could be used, the chip is optimized for MOSFET drive and these devices will give higher efficiency.
For overcurrent protection, an internal comparator senses the voltage across an external resistor between the chip input supply pin and the current sense pin, shutting the circuit down for a voltage exceeding the limit.

Oscillator frequencies of $25 \mathrm{kHz}, 50 \mathrm{kHz}$, or 100 kHz can be set with the three-state frequency select pin connected to GND left open, or connected to $\mathrm{V}_{\text {in }}$ respectively. The sync pin can be overdriven, allowing the circuit to be run from an external system clock.

FEATURES

- Dual Output Voltages of $\pm 15 \mathrm{~V} \pm 5 \%$ Under All Conditions
- Output Voltage Externally Adjustable
- Input Current Sensing
- Three Frequency Oscillator, Selectable with a Single Pin
- Sync Pin Available
- No Off-Chip Trimming Required
- Minimum External Components
- Low Supply Current
- Built-In Latchup Protection

ORDERING INFORMATION

Part Number	Temperature Range	Package
ICL7680CPE	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	16 Pin Plastic
		16 Pin CERDIP
ICL7680CJE		16 Pin CERDIP
ICL7680IJE	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 Pin CERDIP
ICL7680MJE	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16

0097-2
Figure 2: Functional Diagram

INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. the warranty shall be exclusive and shall be in lieu of all other warranties, express, implied or statutory, including the implied warranties of MERCHANTABILLTY AND FITNESS FOR A PARTICULAR USE.
NOTE: All typical values have been characterized but are not tested.

ICL8211／ICL8212
 Programmable Voltage Detector

GENERAL DESCRIPTION

The Intersil ICL8211／8212 are micropower bipolar mono－ lithic integrated circuits intended primarily for precise volt－ age detection and generation．These circuits consist of an accurate voltage reference，a comparator and a pair of out－ put buffer／drivers．
Specifically，the ICL8211 provides a 7 mA current limited output sink when the voltage applied to the＇THRESHOLD＇ terminal is less than 1.15 volts（the internal reference）．The ICL8212 requires a voltage in excess of 1.15 volts to switch its output on（no current limit）．Both devices have a low current output（HYSTERESIS）which is switched on for in－ put voltages in excess of 1.15 V ．The HYSTERESIS output may be used to provide positive and noise free output switching using a simple feedback network．

ORDERING INFORMATION

Part Number	Temperature Range	Package
ICL8211CPA	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	8 lead Mini DIP
ICL8211CBA	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	8 lead SOIC
ICL8211CTY	$0^{\circ} \mathrm{C}$ t $+70^{\circ} \mathrm{C}$	TO－99 Can
ICL8211MTY＊	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	TO－99 Can
ICL8212CPA	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	8 lead Mini DIP
ICL8212CBA	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	8 lead SOIC
ICL8212CTY	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	TO－99 Can
ICL8212MTY＊	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	TO－99 Can

FEATURES

－High Accuracy Voltage Sensing and Generation： Internal Reference 1．15 Volts Typical
－Low Sensitivity to Supply Voltage and Temperature Variations
－Wide Supply Voltage Range：Typ． 1.8 to 30 Volts
－Essentially Constant Supply Current Over Full Supply Voltage Range
－Easy to Set Hysteresis Voltage Range
－Defined Output Current Limit — ICL8211 High Output Current Capability－ICL8212

APPLICATIONS

－Low Voltage Sensor／Indicator
－High Voltage Sensor／Indicator
－Non Volatile Out－of－Voltage Range Sensor／Indicator
－Programmable Voltage Reference or Zener Diode
－Series or Shunt Power Supply Regulator
－Fixed Value Constant Current Source
＊Add／883B to part number if 883B processing is required．

[^193]
ABSOLUTE MAXIMUM RATINGS (Note 1)
 Supply Voltage . -0.5 to +30 volts
 Output Voltage -0.5 to +30 volts
 Hysteresis Voltage +0.5 to -10 volts
 Threshold Input Voltage
 +30 to -5 volts with respect to GROUND and +0 to -30 volts with respect to $\mathrm{V}+$

Power Dissipation (Note $1 \& 2$)
Operating Temperature Range:
ICL8211C/8212C . $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10sec) 300…
Current into Any Terminal
$\pm 30 \mathrm{~mA}$
NOTE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
NOTE 1: Rating applies for case temperatures to $125^{\circ} \mathrm{C}$ to ICL8211MTY/8212MTY products. Derate linearly at $-10 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ for ambient temperatures above $100^{\circ} \mathrm{C}$.
NOTE 2: Derate linearly above $50^{\circ} \mathrm{C}$ by $-10 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ for ICL8211C/8212C products. The threshold input voltage may exceed +7 volts for short periods of time. However for continuous operation this voltage must be maintained at a value less than 7 volts.
ELECTRICAL CHARACTERISTICS $\quad\left({ }^{+}+=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right.$ unless otherwise specified)

Symbol	Parameter	Test Conditions	ICL8211			ICL8212			Units
			Min	Typ	Max	Min	Typ	Max	
$1+$	Supply Current	$\begin{aligned} & 2.0<V^{+}<30 \\ & V_{T}=1.3 V \\ & V_{T}=0.9 \mathrm{~V} \\ & \hline \end{aligned}$	$\begin{aligned} & 10 \\ & 50 \\ & \hline \end{aligned}$	$\begin{gathered} 22 \\ 140 \end{gathered}$	$\begin{aligned} & 40 \\ & 250 \end{aligned}$	$\begin{aligned} & 50 \\ & 10 \end{aligned}$	$\begin{gathered} 110 \\ 10 \end{gathered}$	$\begin{gathered} 250 \\ 20 \end{gathered}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \end{aligned}$
$\mathrm{V}_{\text {TH }}$	Threshold Trip Voltage	$\mathrm{V}_{\text {OUT }}=4 \mathrm{~mA}$ $\mathrm{~V}^{+}=5 \mathrm{~V}$ $\mathrm{~V}_{\text {OUT }}=2 \mathrm{~V}$ $\mathrm{~V}^{+}=2 \mathrm{~V}$ $\mathrm{~V}^{+}=30 \mathrm{~V}$	$\begin{aligned} & 0.98 \\ & 0.98 \\ & 1.00 \end{aligned}$	$\begin{aligned} & 1.15 \\ & 1.145 \\ & 1.165 \end{aligned}$	$\begin{aligned} & 1.19 \\ & 1.19 \\ & 1.20 \end{aligned}$	$\begin{aligned} & 1.00 \\ & 1.00 \\ & 1.05 \end{aligned}$	$\begin{aligned} & 1.15 \\ & 1.145 \\ & 1.165 \end{aligned}$	$\begin{aligned} & 1.19 \\ & 1.19 \\ & 1.20 \end{aligned}$	\bar{v}
$\mathrm{V}_{\text {THP }}$	Threshold Voltage Disparity Between Output \& Hysteresis Output	loUT $=4 \mathrm{~mA}$ $\mathrm{~V}_{\text {OUT }}=2 \mathrm{~V}$ $\mathrm{l}_{\text {HYST }}=7 \mu \mathrm{~A}$ $\mathrm{~V}_{\text {HYST }}=3 \mathrm{~V}$		-8.0			-0.5		mV
VSUPPLY	Guaranteed Operating Supply Voltage Range (Note 5)	$\begin{aligned} & +25^{\circ} \mathrm{C} \\ & 0 \text { to }+70^{\circ} \mathrm{C} \\ & -55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.2 \\ & 2.8 \end{aligned}$		$\begin{aligned} & 30 \\ & 30 \\ & 30 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.2 \\ & 2.8 \end{aligned}$		$\begin{aligned} & 30 \\ & 30 \\ & 30 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{v} \end{aligned}$
VSUPPLY	Typical Operating Supply Voltage Range	$\begin{aligned} & +25^{\circ} \mathrm{C} \\ & +125^{\circ} \mathrm{C} \\ & -55^{\circ} \mathrm{C} \\ & \hline \end{aligned}$	$\begin{aligned} & 1.8 \\ & 1.4 \\ & 2.5 \end{aligned}$		$\begin{aligned} & 30 \\ & 30 \\ & 30 \end{aligned}$	$\begin{aligned} & 1.8 \\ & 1.4 \\ & 2.5 \end{aligned}$		$\begin{aligned} & 30 \\ & 30 \\ & 30 \end{aligned}$	$\begin{aligned} & \mathrm{v} \\ & \mathrm{v} \end{aligned}$
$\Delta \mathrm{V}_{\mathrm{TH}} / \Delta \mathrm{T}$	Threshold Voltage Temperature Coefficient	$\begin{aligned} & \begin{array}{l} \text { louT } \end{array}=4 \mathrm{~mA} \\ & \mathrm{~V}_{\text {OUT }}=2 \mathrm{~V} \end{aligned}$		+200			+200		ppm $/{ }^{\circ} \mathrm{C}$
$\Delta \mathrm{V}_{\mathrm{TH}} / \Delta \mathrm{V}^{+}$	Variation of Threshold Voltage with Supply Voltage	$\Delta \mathrm{V}^{+}=10 \%$ at $\mathrm{V}^{+}=5 \mathrm{~V}$		1.0			1.0		mV
$1{ }_{\text {TH }}$	Threshold Input Current	$\begin{aligned} & \mathrm{V}_{T H}=1.15 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{TH}}=1.00 \mathrm{~V} \end{aligned}$		$\begin{gathered} 100 \\ 5 \\ \hline \end{gathered}$	250		$\begin{gathered} 100 \\ 5 \\ \hline \end{gathered}$	250	$\begin{aligned} & \mathrm{nA} \\ & \mathrm{nA} \\ & \hline \end{aligned}$
IoLk	Output Leakage Current				$\begin{aligned} & 10 \\ & 1 \\ & \hline \end{aligned}$			$\begin{gathered} 10 \\ 1 \end{gathered}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$ $\mu \mathrm{A}$ $\mu \mathrm{A}$
$\mathrm{V}_{\text {SAT }}$	Output Saturation Voltage	lout $=4 \mathrm{~mA}$ $\mathrm{V}_{\text {TH }}=1.0 \mathrm{~V}$ $\mathrm{~V}_{\mathrm{TH}}=1.3 \mathrm{~V}$ $\mathrm{~V}_{\mathrm{TH}}=1.0 \mathrm{~V}$		0.17	0.4		0.17	0.4	$\begin{aligned} & \mathrm{v} \\ & \mathrm{v} \end{aligned}$
$\mathrm{IOH}^{\text {l }}$	Max Available Output Current	(Note 3 \& 4) $V_{T H}=1.0 \mathrm{~V}$ $V_{\text {OUT }}=5 \mathrm{~V}$ $V_{T H}=1.3 \mathrm{~V}$ $-55^{\circ} \mathrm{C} \leq T_{\mathrm{A}} \leq 125^{\circ} \mathrm{C} \mathrm{V}_{\text {TH }}=1.0 \mathrm{~V}$	4	7.0	$\begin{aligned} & 12 \\ & 15 \end{aligned}$	$\begin{aligned} & 15 \\ & 12 \end{aligned}$	35		$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \\ & \mathrm{~mA} \end{aligned}$
LLHYS	Hysteresis Leakage Current	$\mathrm{V}^{+}=10 \mathrm{~V}$ $\mathrm{~V}_{\mathrm{TH}}=1.0 \mathrm{~V}$ $\mathrm{~V}_{\mathrm{HYST}}=\mathrm{V}^{-}$			0.1			0.1	$\mu \mathrm{A}$
$\mathrm{V}_{\text {HYS (max) }}$	Hysteresis Sat Voltage	$\begin{aligned} & I_{\text {HYST }}=-7 \mu \mathrm{~A} \\ & \text { measured with respect to } \mathrm{V}^{+} \end{aligned}$		-0.1	-0.2		-0.1	-0.2	V
$\mathrm{IHYS}_{\text {(max) }}$	Max Available Hysteresis Curren	$\mathrm{V}_{T H}=1.3 \mathrm{~V}$	-15	-21		-15	-21		$\mu \mathrm{A}$

NOTES: 3. The maximum output current of the ICL8211 is limited by design to 15 mA under any operating conditions. The output voltage may be sustained at any voltage up to +30 V as long as the maximum power dissipation of the device is not exceeded.
4. The maximum output current of the ICL8212 is not defined, and systems using the ICL8212 must therefore ensure that the output current does not exceed 30 mA and that the maximum power dissipation of the device is not exceeded.
5. Threshold Trip Voltage is $0.80 \mathrm{~V}(\mathrm{~min})$ to 1.30 V (max).

TYPICAL PERFORMANCE CHARACTERISTICS COMMON TO ICL8211 AND ICL8212

HYSTERESIS OUTPUT SATURATION CURRENT AS A FUNCTION OF TEMPERATURE

0328-5

0328-4
TYPICAL PERFORMANCE CHARACTERISTICS ICL8211 ONLY

SUPPLY CURRENT AS A
FUNCTION OF SUPPLY VOLTAGE

0328-6
OUTPUT SATURATION CURRENTS AS A FUNCTION OF THRESHOLD VOLTAGE

0328-9

SUPPLY CURRENT AS A
FUNCTION OF THRESHOLD VOLTAGE

0328-7
THRESHOLD VOLTAGE TO TURN OUTPUTS "JUST ON" AS A FUNCTION OF TEMPERATURE

SUPPLY CURRENT AS A FUNCTION OF TEMPERATURE

0328-8
THRESHOLD VOLTAGE TO TURN OUTPUTS "JUST ON" AS A FUNCTION OF SUPPLY VOLTAGE

[^194]
TYPICAL PERFORMANCE CHARACTERISTICS ICL8211 ONLY (Continued)
 OUTPUT SATURATION CURRENT
 AS A FUNCTION OF
 TEMPERATURE

 0328-12
 OUTPUT CURRENT AS A FUNCTION OF OUTPUT VOLTAGE

 HYSTERESIS OUTPUT CURRENT AS A FUNCTION OF HYSTERESIS OUTPUT VOLTAGE

 0328-13

TYPICAL PERFORMANCE CHARACTERISTICS ICL8212 ONLY

SUPPLY CURRENT AS A
FUNCTION OF SUPPLY VOLTAGE

0328-15
OUTPUT SATURATION CURRENTS AS A FUNCTION OF THRESHOLD VOLTAGE

SUPPLY CURRENT AS A
FUNCTION OF THRESHOLD VOLTAGE

0328-16
THRESHOLD VOLTAGE TO TURN OUTPUTS "JUST ON" AS A FUNCTION OF TEMPERATURE

SUPPLY CURRENT AS A
FUNCTION OF TEMPERATURE

0328-17
THRESHOLD VOLTAGE TO TURN OUTPUTS "JUST ON" AS A FUNCTION OF SUPPLY VOLTAGE

0328-19
0328-20

[^195]
TYPICAL PERFORMANCE CHARACTERISTICS ICL8212 ONLY (Continued)

0328-21

OUTPUT CURRENT AS A FUNCTION OF OUTPUT VOLTAGE

HYSTERESIS OUTPUT CURRENT AS A FUNCTION OF HYSTERESIS OUTPUT VOLTAGE

0328-23
0328-22

DETAILED DESCRIPTION

The ICL8211 and ICL8212 use standard linear bipolar integrated circuit technology with high value thin film resistors which define extremely low value currents.

Components Q_{1} thru Q_{10} and R_{1}, R_{2} and R_{3} set up an accurate voltage reference of 1.15 volts. This reference voltage is close to the value of the bandgap voltage for silicon and is highly stable with respect to both temperature and supply voltage. The deviation from the bandgap voltage is necessary due to the negative temperature coefficient of the thin film resistors (-5000 ppm per ${ }^{\circ} \mathrm{C}$).

Components Q_{2} thru Q_{9} and R_{2} make up a constant current source; Q_{2} and Q_{3} are identical and form a current mirror. Q_{8} has 7 times the emitter area of Q_{9}, and due to the current mirror, the collector currents of Q_{8} and Q_{9} are forced to be equal and it can be shown that the collector current in Q_{8} and Q_{9} is

$$
I_{C}\left(Q_{8} \text { or } Q_{9}\right)=\frac{1}{R_{2}} \times \frac{k T}{q} \ln 7
$$

or approximately $1 \mu \mathrm{~A}$ at $25^{\circ} \mathrm{C}$
Where $\mathrm{k}=$ Boltzman's constant
$q=$ charge on an electron
and $\mathrm{T}=$ absolute temperature in ${ }^{\circ} \mathrm{K}$
Transistors Q_{5}, Q_{6}, and Q_{7} assure that the $V_{C E}$ of Q_{3}, Q_{4}, and Q_{9} remain constant with supply voltage variations. This ensures a constant current supply free from variations.
The base current of Q_{1} provides sufficient start up current for the constant source; there being two stable states for this type of circuit - either ON as defined above, or OFF if no start up current is provided. Leakage current in the transistors is not sufficient in itself to guarantee reliable startup.
Q_{4} is matched to Q_{3} and $Q_{2} ; Q_{10}$ is matched to Q_{9}. Thus the I_{C} and $V_{B E}$ of Q_{10} are identical to that of Q_{9} or Q_{8}. To generate the bandgap voltage, it is necessary to sum a voltage equal to the base emitter voltage of Q_{9} to a voltage proportional to the difference of the base emitter voltages of two transistors Q_{8} and Q_{9} operating at two current densities.

Thus $1.15=V_{B E}\left(Q_{9}\right.$ or $\left.Q_{10}\right)+\frac{R_{3}}{R_{2}} \times \frac{k T}{q} \ln 7$ which provides $\frac{R_{3}}{R_{2}}=12$ (approx.)

The total supply current consumed by the voltage reference section is approximately $6 \mu \mathrm{~A}$ at room temperature. A voltage at the THRESHOLD input is compared to the reference 1.15 volts by the comparator consisting of transistors Q_{11} thru Q_{17}. The outputs from the comparator are limited to two diode drops less than $\mathrm{V}+$ or approximately 1.1 volts. Thus the base current into the hysteresis output transistor is limited to about 500nA and the collector current of Q_{19} to $100 \mu \mathrm{~A}$.
In the case of the ICL8211, Q_{21} is proportioned to have 70 times the emitter area of Q_{20} thereby limiting the output current to approximately 7 mA , whereas for the ICL8212 almost all the collector current of Q_{19} is available for base drive to Q_{21}, resulting in a maximum available collector current of the order of 30 mA . It is advisable to externally limit this current to 25 mA or less.

APPLICATIONS

The ICL8211 and ICL8212 are similar in many respects, especially with regard to the setup of the input trip conditions and hysteresis circuitry. The following discussion describes both devices, and where differences occur they are clearly noted.

General Information THRESHOLD INPUT CONSIDERATIONS

Although any voltage between -5 V and V^{+}may be applied to the THRESHOLD terminal, it is recommended that the THRESHOLD voltage does not exceed about +6 volts since above that voltage the threshold input current increases sharply. Also, prolonged operation above this voltage will lead to degradation of device characteristics.

[^196]NOTE: All typical values have been characterized but are not tested.

The outputs change states with an input THRESHOLD voltage of approximately 1.15 volts. Input and output waveforms are shown in Figure 3 for a simple 1.15 volt level detector.

The HYSTERESIS output is a low current output and is intended primarily for input threshold voltage hysteresis applications. If this output is used for other applications it is suggested that output currents be limited to $10 \mu \mathrm{~A}$ or less.
The regular OUTPUT's from either the ICL8211 or ICL8212 may be used to drive most of the common logic families such as TTL or C-MOS using a single pullup resistor. There is a guaranteed TTL fanout of 2 for the ICL8211 and 4 for the ICL8212.

Figure 4: Output Logic Interface

A principal application of the ICL8211 is voltage level detection, and for that reason the OUTPUT current has been limited to typically 7 mA to permit direct drive of an LED connected to the positive supply without a series current limiting resistor.

On the other hand the ICL8212 is intended for applications such as programmable zener references, and voltage regulators where output currents well in excess of 7 mA are desirable. Therefore, the output of the ICL8212 is not current limited, and if the output is used to drive an LED, a series current limiting resistor must be used.

In most applications an input resistor divider network may be used to generate the 1.15 V required for V_{TH}. For high accuracy, currents as large as $50 \mu \mathrm{~A}$ may be used, however for those applications where current limiting may be desirable, (such as when operating from a battery) currents as low as $6 \mu \mathrm{~A}$ may be considered without a great loss of accuracy. $6 \mu \mathrm{~A}$ represents a practical minimum, since it is about this level where the device's own input current becomes a significant percentage of that flowing in the divider network.

Case 1. High accuracy required, current in resistor network unimportant Set $\mathrm{I}=50 \mu \mathrm{~A}$ for $\mathrm{V}_{T H}=1.15$ volts $\therefore \mathrm{R}_{1} \rightarrow 20 \mathrm{k} \Omega$.
Case 2. Good accuracy required, current in resistor network important Set $I=7.5 \mu \mathrm{~A}$ for $\mathrm{V}_{\mathrm{TH}}=1.15$ volts $\therefore R_{1} \rightarrow 150 k \Omega$.

SETUP PROCEDURES FOR VOLTAGE LEVEL DETECTION

Case 1. Simple voltage detection - no hysteresis
Unless an input voltage of approximately 1.15 volts is to be detected, resistor networks will be used to divide or multiply the unknown voltage to be sensed. Figure 7 shows procedures on how to set up resistor networks to detect INPUT VOLTAGES of any magnitude and polarity.

For supply voltage level detection applications the input resistor network is connected across the supply terminals as shown in Figure 8.
Conditions for correct operation of OUTPUT (terminal \#4).

1. ICL8211
$1.8 \mathrm{~V} \leq \mathrm{V}+\leq 30 \mathrm{~V}$
2. ICL8212
$0 \leq V+\leq 30 \mathrm{~V}$
[^197]NOTE: All typical values have been characterized but are not tested. voltage detection is required. Hysteresis circuitry, however, is not limited to applications requiring better noise performance but may be expanded into highly complex systems with multiple voltage level detection and memory applications - refer to specific applications section.
There are two simple methods to apply hysteresis to a circuit for use in supply voltage level detection. These are shown in Figure 9.
The circuit (a) of Figure 9 requires that the full current flowing in the resistor network be sourced by the HYSTERESIS output, whereas for circuit (b) the current to be sourced by the HYSTERESIS output will be a function of the ratio of the two trip points and their values. For low values of hysteresis, circuit (b) is to be preferred due to the offset voltage of the hysteresis output transistor.
A third way to obtain hysteresis (ICL8211 only) is to connect a resistor between the OUTPUT and the THRESHOLD terminals thereby reducing the total external resistance between the THRESHOLD and GROUND when the OUTPUT is switched on.

Practical Applications

a) Low Voltage Battery Indicator

This application is particularly suitable for portable or remote operated equipment which requires an indication of a depleted or discharged battery. The quiescent current taken by the system will be typically $35 \mu \mathrm{~A}$ which will increase to 7 mA when the lamp is turned on. R_{3} will provide hysteresis if required.
b) |Non-Volatile| Low Voltage Detector

In this application the high trip voltage $V_{T R 2}$ is set to be above the normal supply voltage range. On power up the initial condition is A. On momentarily closing switch S_{1} the operating point changes to B and will remain at B until the supply voltage drops below $\mathrm{V}_{\mathrm{TR} 1}$, at which time the output will revert to condition A. Note that state A is always retained if the supply voltage is reduced below $\mathrm{V}_{\text {TR1 }}$ (even to zero volts) and then raised back to $\mathrm{V}_{\text {NOM }}$.
c) (Non-volatile) Power Supply Malfunction Recorder

In many systems a transient or an extended abnormal (or absence of a) supply voltage will cause a system failure. This failure may take the form of information lost in a volatile semiconductor memory stack, a loss of time in a timer or even possible irreversible damage to components if a supply voltage exceeds a certain value.

It is, therefore, necessary to be able to detect and store the fact that an out-of-operating range supply voltage condition has occurred, even in the case where a supply voltage may have dropped to zero. Upon power up to the normal operating voltage this record must have been retained and easily interrogated. This could be important in the case of a transient power failure due to a faulty component or intermittent power supply, open circuit, etc., where direct observation of the failure is difficult.

Case 2. Use of the HYSTERESIS function
The disadvantage of the simple detection circuits is that there is a small but finite input range where the outputs are neither totally 'ON' nor totally 'OFF'. The principle behind
hysteresis is to provide positive feedback to the input trip point such that there is a voltage difference between the input voltage necessary to turn the outputs ON and OFF.
The advantage of hysteresis is especially apparent in electrically noisy environments where simple but positive

0328-31
Low trip voltage
$V_{T R 1}=\left[\frac{\left(R_{1}+R_{2} \times 1.15\right.}{\left.R_{1}\right)}+0.1\right]$ volts
High trip voltage

$$
V_{T R 2}=\frac{\left(R_{1}+R_{2}+R_{3}\right)}{R_{1}} \times 1.15 \text { volts }
$$

0328-32

Low trip voltage

$V_{T R 1}=\left[\frac{R_{Q} R_{S}}{\left(R_{Q}+R_{S}\right)}+R P\right] \times \frac{1}{R_{P}} \times 1.15$ volts
High trip voltage

$$
V_{T R 2}=\frac{\left(R_{P}+R_{Q}\right)}{R_{P}} \times 1.15 \text { volts }
$$

Figure 9: Two alternative voltage detection circuits employing hysteresis to provide pairs of well defined trip voltages.

0328-34

0328-35
Figure 10: Low Voltage Battery Indicator

0328-36
Figure 11: Low Voltage Detector and Memory

[^198]The output of the ICL8212 is used to force the output of the ICL8211 into the ON state above V_{2}. Thus there is no value of the supply voltage that will result in the output of the ICL8211 changing from the ON state to the OFF state. This may be achieved only by shorting out R_{3} for values of supply voltage between V_{1} and V_{2}.
d) Constant Current Sources

The ICL8212 may be used as a constant current source of value of approximately $25 \mu \mathrm{~A}$ by connecting the THRESHOLD terminal to GROUND. Similarly the ICL8211 will provide a $130 \mu \mathrm{~A}$ constant current source. The equivalent parallel resistance is in the tens of megohms over the supply voltage range of 2 to 30 volts. These constant current sources may be used to provide biasing for various circuitry including differential amplifiers and comparators. See Typical Operating Characteristics for complete information.
e) Zener or Precision Voltage Reference

The ICL8212 may be used to simulate a zener diode by connecting the OUTPUT terminal to the V_{Z} output and using a resistor network connected to the THRESHOLD terminal to program the zener voltage

$$
\mathrm{V}_{\text {zener }}=\frac{\left(\mathrm{R}_{1}+\mathrm{R}_{2}\right)}{R_{1}} \times 1.15 \text { volts. }
$$

Since there is no internal compensation in the ICL8212 it is necessary to use a large capacitor across the output to prevent oscillation.

Zener voltages from 2 to 30 volts may be programmed and typical impedance values between $300 \mu \mathrm{~A}$ and 25 mA will range from 4 to 7Ω. The knee is sharper and occurs at a significantly lower current than other similar devices available.

f) Precision Voltage Regulators

The ICL8212 may be used as the controller for a highly stable series voltage regulator. The output voltage is simply programmed, using a resistor divider network R_{1} and R_{2}. Two capacitors C_{1} and C_{2} are required to ensure stability since the ICL8212 is uncompensated internally.

[^199]NOTE: All typical values have been characterized but are not tested.

any commercial regulator．Applications would therefore in－ clude battery operated equipment especially those operat－ ing at low voltages．
g）High supply voltage dump circuit
In many circuit applications it is desirable to remove the power supply in the case of high voltage overload．For cir－ cuits consuming less than 5mA this may be achieved using an ICL8211 driving the load directly．For higher load cur－ rents it is necessary to use an external pnp transistor or darlington pair driven by the output of the ICL8211．Resis－ tors R_{1} and R_{2} set up the disconnect voltage and R_{3} pro－ vides optional voltage hysteresis if so desired．
h）Frequency limit detectors
Simple frequency limit detectors providing a GO／NO－GO output for use with varying amplitude input signals may be conveniently implemented with the ICL8211／8212．In the application shown，the first ICL8212 is used as a zero cross－ ing detector．The output circuit consisting of $\mathrm{R}_{3}, \mathrm{R}_{4}$ and C_{2} results in a slow output positive ramp．The negative range is much faster than the positive range．R_{5} and R_{6} provide hys－ teresis so that under all circumstances the second ICL8212 is turned on for sufficient time to discharge C_{3} ．The time constant of $R_{7} C_{3}$ is much greater than $R_{4} C_{2}$ ．Depending upon the desired output polarities for low and high input frequencies，either an ICL8211 or an ICL8212 may be used as the output driver．

This circuit is sensitive to supply voltage variations and should be used with a stabilized power supply．At very low frequencies the output will switch at the input frequency．

This regulator may be used with lower input voltages than most other commercially available regulators and also con－ sumes less power for a given output control current than

0328－43
Figure 18：Frequency Limit Detector

INTERSIL＇S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE． THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES，EXPRESS，IMPLIED OR STATUTORY，INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE．
NOTE：All typical values have been characterized but are not tested．
i) Switch bounce filter

Single pole single throw (SPST) switches are less costly and more available than single pole double throw (SPDT) switches. SPST switches range from push button and slide types to calculator keyboards. A major problem with the use of switches is the mechanical bounce of the electrical contacts on closure. Contact bounce times can range from a fraction of a millisecond to several tens of milliseconds depending upon the switch type. During this contact bounce time the switch may make and break contact several times. The circuit shown in Figure 19 provides a rapid charge up of C_{1} to close to the positive supply voltage $\left(\mathrm{V}^{+}\right)$on a switch closure and a corresponding slow discharge of C_{1} on a switch break. By proportioning the time constant of $\mathrm{R}_{1} \mathrm{C}_{1}$ to approximately the manufacturer's bounce time the output as terminal \#4 of the ICL8211/8212 will be a single transition of state per desired switch closure.
j) Low voltage power disconnector

There are some classes of circuits that require the power supply to be disconnected if the power supply voltage falls below a certain value. As an example, the National LM199 precision reference has an on chip heater which malfunctions with supply voltages below 9 volts causing an excessive device temperature. The ICL8212 may be used to detect a power supply voltage of 9 volts and turn the power supply off to the LM199 heater section below that voltage.
For further applications, see A027 "Power Supply Design using the ICL8211 and ICL8212"' by D. Watson.

Section 6 - Special Analog

AD590	6-1
ICL8013	6-12
ICL8038	6-21
ICL8048	6-30
ICL8049	6-30
ICL8069	6-39

GENERAL DESCRIPTION

The AD590 is an integrated-circuit temperature transducer which produces an output current proportional to absolute temperature. The device acts as a high impedance constant current regulator, passing $1 \mu \mathrm{~A} /{ }^{\circ} \mathrm{K}$ for supply voltages between +4 V and +30 V . Laser trimming of the chip's thin film resistors is used to calibrate the device to $298.2 \mu \mathrm{~A}$ output at $298.2^{\circ} \mathrm{K}\left(+25^{\circ} \mathrm{C}\right)$.

The AD590 should be used in any temperature-sensing application between $-55^{\circ} \mathrm{C}$ and $+150^{\circ} \mathrm{C}\left(0^{\circ} \mathrm{C}\right.$ and $70^{\circ} \mathrm{C}$ for TO-92) in which conventional electrical temperature sensors are currently employed. The inherent low cost of a monolithic integrated circuit combined with the elimination of support circuitry makes the AD590 an attractive alternative for many temperature measurement situations. Linearization circuitry, precision voltage amplifiers, resistancemeasuring circuitry and cold-junction compensation are not needed in applying the AD590. In the simplest application, a resistor, a power source and any voltmeter can be used to measure temperature.
In addition to temperature measurement, applications include temperature compensation or correction of discrete components, and biasing proportional to absolute temperature. The AD590 is available in chip form making it suitable for hybrid circuits and fast temperature measurements in protected environments.

The AD590 is particularly useful in remote sensing applications. The device is insensitive to voltage drops over long lines due to its high-impedance current output. Any well-insulated twisted pair is sufficient for operation hundreds of feet from the receiving circuitry. The output characteristics also make the AD590 easy to multiplex: the current can be switched by a CMOS multiplexer or the supply voltage can be switched by a logic gate output.

FEATURES

- Linear Current Output: $1 \mu \mathrm{~A} /{ }^{\circ} \mathrm{K}$
- Wide Range: $-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
- Two-Terminal Device: Voltage In/Current Out
- Laser Trimmed to $\pm 0.5^{\circ} \mathrm{C}$ Callbration Accuracy (AD590M)
- Excellent Linearity: $\pm 0.5^{\circ} \mathrm{C}$ Over Full Range (AD590M)
- Wide Power Supply Range: $+\mathbf{4 V}$ to $+\mathbf{3 0 V}$
- Sensor Isolation From Case
- Low Cost

ORDERING INFORMATION

Non-Linearity $\left({ }^{\circ} \mathrm{C}\right)$	Part Number	Temperature Range	Package
± 3.0	AD590IH	$-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	TO-52
± 1.5	AD590JH	$-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	TO-52

Figure 1: Functional Diagram

0318-2

Figure 2: Pin Configurations

ABSOLUTE MAXIMUM RATINGS $T_{A}=+25^{\circ} \mathrm{C}$ unless otherwise noted)

Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
NOTE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
SPECIFICATIONS (Typical values at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{V}^{+}=5 \mathrm{~V}$ unless otherwise noted)

Characteristics	AD5901	AD590J	Units
Output Nominal Output Current @ $+125^{\circ} \mathrm{C}\left(298.2^{\circ} \mathrm{K}\right)$	298.2	298.2	$\mu \mathrm{A}$
Nominal Temperature Coefficient	1.0	1.0	$\mu \mathrm{A} /{ }^{\circ} \mathrm{K}$
Calibration Error @ $+25^{\circ} \mathrm{C}$ (Notes 1, 5)	± 10.0 max	± 5.0 max	${ }^{\circ} \mathrm{C}$
Absolute Error $\left(-55^{\circ} \mathrm{C}\right.$ to $\left.+150^{\circ} \mathrm{C}\right)($ Note 7$)$ Without External Calibration Adjustment With External Calibration Adjustment	$\begin{aligned} & \pm 20.0 \text { max } \\ & \pm 5.8 \text { max } \end{aligned}$	$\begin{aligned} & \pm 10.0 \text { max } \\ & \pm 3.0 \text { max } \end{aligned}$	$\begin{aligned} & { }^{\circ} \mathrm{C} \\ & { }^{\circ} \mathrm{C} \end{aligned}$
Non-Linearity (Note 6)	± 3.0 max	$\pm 1.5 \mathrm{max}$	${ }^{\circ} \mathrm{C}$
Repeatability (Notes 2, 6)	± 0.1 max	± 0.1 max	${ }^{\circ} \mathrm{C}$
Long Term Drift (Notes 3, 6)	± 0.1 max	± 0.1 max	${ }^{\circ} \mathrm{C} /$ month
Current Noise	40	40	$\mathrm{pA} / \sqrt{\mathrm{Hz}}$
Power Supply Rejection: $\begin{aligned} & +4 V<V+<+5 V \\ & +5 V<V+<+15 V \\ & +15 V<V+<+30 V \end{aligned}$	$\begin{aligned} & 0.5 \\ & 0.2 \\ & 0.1 \end{aligned}$	$\begin{aligned} & 0.5 \\ & 0.2 \\ & 0.1 \end{aligned}$	$\mu A / V$ $\mu \mathrm{A} / \mathrm{V}$ $\mu A / V$
Case Isolation to Either Lead	1010	1010	Ω
Effective Shunt Capacitance	100	100	pF
Electrical Turn-On Time (Note 1)	20	20	$\mu \mathrm{s}$
Reverse Bias Leakage Current (Note 4)	10	10	pA
Power Supply Range	+4 to +30	+4 to +30	V

NOTES: 1. Does not include self heating effects.
2. Maximum deviation between $+25^{\circ} \mathrm{C}$ reading after temperature cycling between $-55^{\circ} \mathrm{C}$ and $+150^{\circ} \mathrm{C}$.
3. Conditions: Constant +5 V , constant $+125^{\circ} \mathrm{C}$.
4. Leakage current doubles every $+10^{\circ} \mathrm{C}$.
5. Mechanical strain on package may disturb calibration of device.
6. Guaranteed. But not tested.
7. $-55^{\circ} \mathrm{C}$ Guaranteed by testing @ $+25^{\circ} \mathrm{C}$ and @ $+150^{\circ} \mathrm{C}$.

TRIMMING OUT ERRORS

The ideal graph of current versus temperature for the AD590 is a straight line, but as Figure 3 shows, the actual shape is slightly different. Since the sensor is limited to the range of $-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$, it is possible to optimize the accuracy by trimming. Trimming also permits extracting maximum performance from the lower-cost sensors.
The circuit of Figure 4 trims the slope of the AD590 output. The effect of this is shown in Figure 5.

The circuit of Figure 6 trims both the slope and the offset. This is shown in Figure 7. The diagrams are exaggerated to show effects, but it should be clear that these trims can be used to minimize errors over the whole range, or over any selected part of the range. In fact, it is possible to adjust the 1 -grade device to give less than $0.1^{\circ} \mathrm{C}$ error over the range $0^{\circ} \mathrm{C}$ to $90^{\circ} \mathrm{C}$ and less than $0.05^{\circ} \mathrm{C}$ error from $25^{\circ} \mathrm{C}$ to $60^{\circ} \mathrm{C}$.

[^200]

Figure 3: Trimming Out Errors

Figure 4: Slope Trimming

Figure 5: Effect of Slope Trim

0318-6
Figure 6: Slope and Offset Trimming

ACCURACY

Maximum errors over limited temperature spans, with $\mathrm{V}_{\mathrm{s}}=+5 \mathrm{~V}$, are listed by device grade in the following tables. The tables reflect the worst-case linearities, which invariably occur at the extremities of the specified temperature range. The trimming conditions for the data in the tables are shown in Figures 4 and 5.
All errors listed in the tables are $\pm^{\circ} \mathrm{C}$. For example, if $\pm 1^{\circ} \mathrm{C}$ maximum error is required over the $+25^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$ range (i.e., lowest temperature of $+25^{\circ} \mathrm{C}$ and span of $50^{\circ} \mathrm{C}$), then the trimming of a J-grade device, using the single-trim circuit (Figure 4), will result in output having the required accuracy over the stated range. An M-grade device with no trims will have less than $\pm 0.9^{\circ} \mathrm{C}$ error, and an l-grade device with two trims (Figure 5) will have less than $\pm 0.2^{\circ} \mathrm{C}$ error. If the requirement is for less than $\pm 1.4^{\circ} \mathrm{C}$ maximum error, from $-25^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$ (100° span from $-25^{\circ} \mathrm{C}$), it can be satisfied by an M-grade device with no trims, a Kgrade device with one trim, or an l-grade device with two trims.

Figure 7: Effect of Slope and Offset Trimming

I GRADE - MAXIMUM ERRORS, ${ }^{\circ} \mathrm{C}$

Number of Trims	Temperature Span- ${ }^{\circ} \mathbf{C}$	Lowest Temperature in Span - ${ }^{\circ} \mathbf{C}$							
		-55	-25	0	+25	+50	+75	+100	$+125$
None	10	8.4	9.2	10.0	10.8	11.6	12.4	13.2	14.4
None	25	10.0	10.4	11.0	11.8	12.0	13.8	15.0	16.0
None	50	13.0	13.0	12.8	13.8	14.6	16.4	18.0	
None	100	15.2	16.0	16.6	17.4	18.8			
None	150	18.4	19.0	19.2					
None	205	20.0							
One	10	0.6	0.4	0.4	0.4	0.4	0.4	0.4	0.6
One	25	1.8	1.2	1.0	1.0	1.0	1.2	1.6	1.8
One	50	3.8	3.0	2.0	2.0	2.0	3.0	3.8	
One	100	4.8	4.5	4.2	4.2	5.0			
One	150	5.5	4.8	5.5					
One	205	5.8							
Two	10	0.3	0.2	0.1	*	*	0.1	0.2	0.3
Two	25	0.5	0.3	0.2	*	0.1	0.2	0.3	0.5
Two	50	1.2	0.6	0.4	0.2	0.2	0.3	0.7	
Two	100	1.8	1.4	1.0	2.0	2.5			
Two	150	2.6	2.0	2.8					
Two	205	3.0							

* Less than $0.05^{\circ} \mathrm{C}$.

J GRADE — MAXIMUM ERRORS, ${ }^{\circ} \mathrm{C}$

Number of Trims	Temperature Span- ${ }^{\circ} \mathbf{C}$	Lowest Temperature in Span- ${ }^{\circ} \mathrm{C}$							
		-55	-25	0	+25	$+50$	+75	+100	+125
None	10	4.2	4.6	5.0	5.4	5.8	6.2	6.6	7.2
None	25	5.0	5.2	5.5	5.9	6.0	6.9	7.5	8.0
None	50	6.5	6.5	6.4	6.9	7.3	8.2	9.0	
None	100	7.7	8.0	8.3	8.7	9.4			
None	150	9.2	9.5	9.6					
None	205	10.0							
One	10	0.3	0.2	0.2	0.2	0.2	0.2	0.2	0.3
One	25	0.9	0.6	0.5	0.5	0.5	0.6	0.8	0.9
One	50	1.9	1.5	1.0	1.0	1.0	1.5	1.9	
One	100	2.3	2.2	2.0	2.0	2.3			
One	150	2.5	2.4	2.5					
One	205	3.0							
Two	10	0.1	*	*	*	*	*	*	0.1
Two	25	0.2	0.1	*	*	*	*	0.1	0.2
Two	50	0.4	0.2	0.1	*	*	0.1	0.2	*
Two	100	0.7	0.5	0.3	0.7	1.0			
Two	150	1.0	0.7	1.2					
Two	205	1.6							

* Less than $\pm 0.05^{\circ} \mathrm{C}$.

[^201]
NOTES

1. Maximum errors over all ranges are guaranteed based on the known behavior characteristic of the AD590.
2. For one-trim accuracy specifications, the $205^{\circ} \mathrm{C}$ span is assumed to be trimmed at $+25^{\circ} \mathrm{C}$; for all other spans, it is assumed that the device is trimmed at the midpoint
3. For the $205^{\circ} \mathrm{C}$ span, it is assumed that the two-trim temperatures are in the vicinity of $0^{\circ} \mathrm{C}$ and $+140^{\circ} \mathrm{C}$; for all other spans, the specified trims are at the endpoints.
4. In precision applications, the actual errors encountered are usually dependent upon sources of error which are often overlooked in error budgets. These typically include:
a. Trim error in the calibration technique used
b. Repeatability error
c. Long-term drift errors

Trim error is usually the largest error source. This error arises from such causes as poor thermal coupling between the device to be calibrated and the reference sensor; reference sensor errors; lack of adequate time for the device being calibrated to settle to the final temperature; radically different thermal resistances between the case and the surroundings $\left(\mathrm{R}_{\theta \mathrm{CA}}\right)$ when trimming and when applying the device.

Repeatability errors arise from a strain hysteresis of the package. The magnitude of this error is solely a function of the magnitude of the temperature span over which the device is used. For example, thermal shocks between $0^{\circ} \mathrm{C}$ and $100^{\circ} \mathrm{C}$ involve extremely low hysteresis and result in repeatability errors of less than $\pm 0.05^{\circ} \mathrm{C}$. When the thermal-shock excursion is widened to $-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$, the device will typically exhibit a repeatability error of $\pm 0.05^{\circ} \mathrm{C}(\pm 0.10$ guaranteed maximum).
Long-term drift errors are related to the average operating temperature and the magnitude of the thermal shocks experienced by the device. Extended use of the AD590 at temperatures above $100^{\circ} \mathrm{C}$ typically results in long-term drift of $\pm 0.03^{\circ} \mathrm{C}$ per month; the guaranteed maximum is $\pm 0.10^{\circ} \mathrm{C}$ per month. Continuous operation at temperatures below $100^{\circ} \mathrm{C}$ induces no measurable drifts in the device. Besides the effects of operating temperature, the severity of thermal shocks incurred will also affect absolute stability. For ther-mal-shock excursions less than $100^{\circ} \mathrm{C}$, the drift is difficult to measure ($<0.03^{\circ} \mathrm{C}$). However, for $200^{\circ} \mathrm{C}$ excursions, the device may drift by as much as $\pm 0.10^{\circ} \mathrm{C}$ after twenty such shocks. If severe, quick shocks are necessary in the application of the device, realistic simulated life tests are recommended for a thorough evaluation of the error introduced by such shocks.

TYPICAL APPLICATIONS

Figure 8: Simple connection. Output is proportional to absolute temperature.

0318-13
Figure 9: Lowest-temperature sensing scheme. Available current is that of the "coldest" sensor.

0318-14
Figure 10: Average-temperature sensing scheme. The sum of the AD590 currents appears across R, which is chosen by the formula:

$$
R=\frac{10 k \Omega}{n}
$$

n being the number of sensors.

0318-15
Figure 11: Single-setpoint temperature controller. The AD590 produces a temperature-dependent voltage across \mathbf{R} (\mathbf{C} is for filtering noise). Setting \mathbf{R}_{2} produces a scale-zero voltage. For the Celsius scale, make $R=1 \mathrm{k} \Omega$ and $\mathrm{V}_{\text {ZERO }}=0.273$ volts. For Fahrenheit, $R=1.8 \mathrm{k} \Omega$ and $V_{\text {ZERO }}=0.460$ volts.

0318-16
Figure 12: Multiplexing sensors. If shorted sensors are possible, a series resistor in series with the D line will limit the current (shown as R , above: only one is needed). A six-bit digital word will select one of $\mathbf{6 4}$ sensors.

[^202]

0318-17
Figure 13: Centigrade thermometer $\left(0^{\circ} \mathrm{C}-100^{\circ} \mathrm{C}\right)$. the ultra-low bias current of the ICL7611 allows the use of large-value gain-resistors, keeping meter-current error under $1 / 2 \%$, and therefore saving the expense of an extra meter-driving amplifier.

0318-18
Figure 14: Differential thermometer. The $50 \mathrm{k} \Omega$ pot trims offsets in the devices whether internal or external, so it can be used to set the size of the difference interval. This also makes it useful for liquid-level detection (where there will be a measurable temperature difference).

[^203]

Figure 15: Cold-junction compensation for type K thermocouple. The reference junction(s) should be in close thermal contact with the AD590 case. V+ must be at least 4V, while ICL8069 current should be set at $\mathbf{1 m A} \mathbf{- 2 m A}$. Calibration does not require shorting or removal of the thermocouple: set $\mathbf{R}_{\mathbf{1}}$ for $\mathbf{V}_{\mathbf{2}}=\mathbf{1 0 . 9 8} \mathbf{m V}$. If very precise measurements are needed, adjust R_{2} to the exact Seebeck coefficient for the thermocouple used (measured or from table) note V_{1}, and set R_{1} to buck out this voltage (i.e., set $V_{2}=V_{1}$). For other thermocouple types, adjust values to the appropriate Seebeck coefficient.

0318-20
Figure 16: Simplest thermometer. Meter displays current output directly in degrees Kelvin. Using the AD590M, sensor output is within ± 1.7 degrees over the entire range, and less than ± 1 degree over the greater part of it.

[^204]

Figure 17: Basic digital thermometer, Celsius and Fahrenheit scales

Figure 18: Basic digital thermometer, Kelvin scale. The Kelvin scale version reads from 0 to $1999^{\circ} \mathrm{K}$ theoretically, and from $223^{\circ} \mathrm{K}$ to $473^{\circ} \mathrm{K}$ actually. The $2.26 \mathrm{k} \Omega$ resistor brings the input within the ICL7106 $\mathrm{V}_{\mathbf{C M}}$ range: $\mathbf{2}$ general-purpose silicon diodes or an LED may be substituted.

0318-23
Figure 19: Basic digital thermometer, Kelvin scale with zero adjust. This circuit allows "zero adjustment" as well as slope adjustment. The ICL8069 brings the input within the common-mode range, while the $5 \mathrm{k} \Omega$ pots trim any offset at $218^{\circ} \mathrm{K}\left(-55^{\circ} \mathrm{C}\right)$, and set the scale factor.

Note on Figure 17, Figure 18 and Figure 19: Since all 3 scales have narrow $\mathrm{V}_{\text {IN }}$ spans, some optimization of ICL7106 components can be made to lower noise and preserve CMR. The table below shows the suggested values. Similar scaling can be used with the ICL7126/36.

Scale	$\mathbf{V}_{\mathbf{I N}}$ Range (V)	$\mathbf{R}_{\mathbf{I N T}(\mathbf{k} \Omega)}$	$\mathbf{C}_{\mathbf{A Z}(\mu \mathbf{F})}$
K	0.223 to 0.473	220	0.47
C	-0.25 to +1.0	220	0.1
F	-0.29 to +0.996	220	0.1

For all:

$$
\begin{array}{ll}
C_{\text {REF }}=0.1 \mu \mathrm{~F} & \mathrm{C}_{\mathrm{OSC}}=100 \mathrm{pF} \\
\mathrm{C}_{\text {INT }}=0.22 \mu \mathrm{~F} & \mathrm{R}_{\mathrm{OSC}}=100 \mathrm{k} \Omega
\end{array}
$$

GENERAL DESCRIPTION

The ICL8013 is a four quadrant analog multiplier whose output is proportional to the algebraic product of two input signals. Feedback around an internal op-amp provides level shifting and can be used to generate division and square root functions. A simple arrangement of potentiometers may be used to trim gain accuracy, offset voltage and feedthrough performance. The high accuracy, wide bandwidth, and increased versatility of the ICL8013 make it ideal for all multiplier applications in control and instrumentation systems. Applications include RMS measuring equipment, frequency doublers, balanced modulators and demodulators, function generators, and voltage controlled amplifiers.

FEATURES

- Accuracy of $\pm 0.5 \%$ ("A" Version)
- Full $\pm 10 \mathrm{~V}$ Input Voltage Range
- 1 MHz Bandwidth
- Uses Standard $\pm 15 \mathrm{~V}$ Supplies
- Bullt-In Op Amp Provides Level Shifting, Division and Square Root Functions

ORDERING INFORMATION

Part Number	Multiplication Error	Temperature Range	Package
ICL8013AM TZ	$\pm 0.5 \%$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	
ICL8013BM TZ	$\pm 1 \%$ MAX	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	
ICL8013CM TZ	$\pm 2 \%$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	10-LEAD
ICL8013AC TZ	$\pm 5 \%$)	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	TO-100
ICL8013BC TZ	$\pm 1 \%$ MAX	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	
ICL8013CC TZ	$\pm 2 \%$	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	

0325-2
Figure 2: Pin
Configuration

Figure 1: Functional Diagram (Multiplexer)

ABSOLUTE MAXIMUM RATINGS

NOTE 1: Derate at $6.8 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ for operation at ambient temperature above $75^{\circ} \mathrm{C}$.
NOTE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS (Unless otherwise specified $T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\text {SUPPLY }}= \pm 15 \mathrm{~V}$, Gain and Offset
Potentiometers Externally Trimmed)

Parameter		Test Conditions	ICL8013A			ICL8013B			ICL8013C			Units	
		Min	Typ	Max	Min	Typ	Max	Min	Typ	Max			
Multiplier Function					$\frac{\mathrm{XY}}{10}$			$\frac{X Y}{10}$			$\frac{X Y}{10}$		
Multiplication Error		$\begin{aligned} & -10<X<10 \\ & -10<Y<10 \end{aligned}$			0.5			1.0			2.0	\% Full Scale	
Divider Function				$\frac{10 Z}{X}$			$\frac{10 Z}{X}$			$\frac{10 Z}{X}$			
Division Error		$\begin{aligned} & X=-10 \\ & X=-1 \end{aligned}$		$\begin{aligned} & 0.3 \\ & 1.5 \end{aligned}$			$\begin{aligned} & 0.3 \\ & 1.5 \end{aligned}$			$\begin{aligned} & 0.3 \\ & 1.5 \end{aligned}$		\% Full Scale \% Full Scale	
Feedthrough		$\begin{aligned} & X=0, Y=20 V \\ & Y=0, X=20 V \end{aligned}$			$\begin{aligned} & 50 \\ & 50 \end{aligned}$			$\begin{array}{\|l\|} \hline 100 \\ 100 \\ \hline \end{array}$			$\begin{array}{\|l\|} \hline 200 \\ 150 \\ \hline \end{array}$	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \end{aligned}$	
Non-Linearity	X Input	$\begin{aligned} & \mathrm{X}=20 \mathrm{~V}_{\mathrm{p}-\mathrm{p}} \\ & \mathrm{Y}= \pm 10 \mathrm{Vdc} \end{aligned}$		± 0.5			± 0.5			$\pm{ }_{0.8}$		\%	
	Y Input	$\begin{aligned} & \mathrm{Y}=20 \mathrm{~V}_{\mathrm{p}-\mathrm{p}} \\ & \mathrm{X}= \pm 10 \mathrm{Vdc} \end{aligned}$		± 0.2			± 0.2			± 0.3		\%	
Frequency Response Small Signal Bandwidth (-3 dB)				1.0			1.0			1.0		MHz	
Full Power Bandwidth				750			750			750		kHz	
Slew Rate				45			45			45		$\mathrm{V} / \mu \mathrm{s}$	
1\% Amplitude Error				75			75			75		kHz	
1\% Vector Error (0.5 Chase Shift)				5			5			5		kHz	
Settling Time (to $\pm 2 \%$ of Final Value) Overload Recovery (to $\pm 2 \%$ of Final Value)		$\mathrm{V}_{\mathrm{IN}}= \pm 10 \mathrm{~V}$		$\begin{aligned} & 1 \\ & 1 \end{aligned}$			$\begin{aligned} & 1 \\ & 1 \end{aligned}$			$\begin{aligned} & 1 \\ & 1 \end{aligned}$		$\mu \mathrm{S}$ $\mu \mathrm{S}$	
Output Noise		5 Hz to 10 kHz 5 Hz to 5 MHz		$\begin{gathered} 0.6 \\ 3 \\ \hline \end{gathered}$			$\begin{gathered} 0.6 \\ 3 \\ \hline \end{gathered}$			$\begin{gathered} 0.6 \\ 3 \end{gathered}$		mV rms mV rms	
Input Resistance	X Input			10			10			10		$\mathrm{M} \Omega$	
	Y Input			6			6			6		$\mathrm{M} \Omega$	
	Z Input			36			36			36		k Ω	
Input Bias Current	X or Y Input			2	5			7.5			10	$\mu \mathrm{A}$	
	Z Input			25			25			25		$\mu \mathrm{A}$	
Power Supply Variation	Multiplication Error			0.2			0.2			0.2		\%/\%	
	Output Offset				50			75			100	mV / V	
	Scale Factor			0.1			0.1			0.1		\%/\%	
Quiescent Current				3.5	6.0		3.5	6.0		3.5	6.0	mA	

[^205]ELECTRICAL CHARACTERISTICS
(Unless otherwise specified $T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\text {SUPPLY }}= \pm 15 \mathrm{~V}$, Gain and Offset
Potentiometers Externally Trimmed) (Continued)

Parameter		Test Conditions	ICL8013A			ICL8013B			ICL8013C			Units	
		Min	Typ	Max	Min	Typ	Max	Min	Typ	Max			
The Following Specifications Apply Over the Operating Temperature Ranges													
Multiplication Error			$\begin{aligned} & -10 V<X_{\text {IN }}<10 V \\ & -10 V<Y_{\text {IN }}<10 V \end{aligned}$		1.5			2			3		\% Full Scale
Average Temperature Coefficients	Accuracy			0.06			0.06			0.06		\%/ ${ }^{\circ} \mathrm{C}$	
	Output Offset			0.2			0.2			0.2		$\mathrm{mV} /{ }^{\circ} \mathrm{C}$	
	Scale Factor			0.04			0.04			0.04		\%/ ${ }^{\circ} \mathrm{C}$	
Input Bias Current	X or Y Input				5			5			10	$\mu \mathrm{A}$	
	Z Input				25			25			35	$\mu \mathrm{A}$	
Input Voltage (X, Y, or Z)					± 10			± 10			± 10	V	
Output Voltage Swing		$\begin{aligned} & R_{L} \geq 2 k \Omega \\ & C_{L}<1000 p F \end{aligned}$		± 10			± 10			± 10		V	

0325-3
Figure 3: Differential Amplifier

Figure 4: Transconductance Multiplier

DETAILED DESCRIPTION

The fundamental element of the ICL8013 multiplier is the bipolar differential amplifier of Figure 3.

The small signal differential voltage gain of this circuit is given by

$$
A_{V}=\frac{V_{O U T}}{V_{I N}}=\frac{R_{L}}{r_{e}}
$$

Substituting $r_{\theta}=\frac{1}{g_{m}}=\frac{k T}{q l_{E}}$

$$
V_{\text {OUT }}=V_{I N} \frac{R_{L}}{r_{e}}=V_{I N} \bullet \frac{q_{E} R_{L}}{k T}
$$

The output voltage is thus proportional to the product of the input voltage V_{IN} and the emitter current I_{E}. In the simple transconductance multiplier of Figure 4, a current source comprising Q_{3}, D_{1}, and R_{Y} is used. If V_{Y} is large compared with the drop across D_{1}, then

$$
\begin{gathered}
I_{D} \sim \frac{V_{Y}}{R_{Y}}=2 I_{E} \text { and } \\
V_{\text {OUT }}=\frac{q R_{L}}{k T R_{Y}}\left(V_{X} \bullet V_{Y}\right)
\end{gathered}
$$

There are several difficulties with this simple modulator:
1: $\quad V_{Y}$ must be positive and greater than V_{D}.
2: Some portion of the signal at V_{X} will appear at the output unless $\mathrm{I}_{\mathrm{E}}=0$.
3: $\quad V_{X}$ must be a small signal for the differential pair to be linear.
4: The output voltage is not centered around ground.
The first problem relates to the method of converting the V_{Y} voltage to a current to vary the gain of the V_{X} differential pair. A better method, Figure 5, uses another differential pair but with considerable emitter degeneration. In this cir-

[^206]NOTE: All typical values have been characterized but are not tested.
cuit the differential input voltage appears across the common emitter resistor, producing a current which adds or subtracts from the quiescent current in either collector. This type of voltage to current converter handles signals from 0 volts to ± 10 volts with excellent linearity.

Figure 5: Voltage to Current Converter
The second problem is called feedthrough; i.e. the product of zero and some finite input signal does not produce zero output voltage. The circuit whose operation is illustrated by Figures 6A, B, and C overcomes this problem and forms the heart of many multiplier circuits in use today.

This circuit is basically two matched differential pairs with cross coupled collectors. Consider the case shown in 6A of exactly equal current sources biasing the two pairs. With a small positive signal at $V_{I N}$, the collector current of Q_{1} and Q_{4} will increase but the collector currents of Q_{2} and Q_{3} will decrease by the same amount. Since the collectors are cross coupled the current through the load resistors remains unchanged and independent of the V_{IN} input voltage.

0325-6
Figure 6A: Input Signal with Balanced Current Sources $\Delta V_{\text {OUT }}=0 V$

0325-5

In Figure 6B, notice that with $\mathrm{V}_{\mathrm{IN}}=0$ any variation in the ratio of biasing current sources will produce a common mode voltage across the load resistors. The differential output voltage will remain zero. In Figure 6C we apply a differential input voltage with unbalanced current sources. If IE_{E} is twice $I_{E 2}$, the gain of differential pair Q_{1} and Q_{2} is twice the gain of pair Q_{3} and Q_{4}. Therefore, the change in cross coupled collector currents will be unequal and a differential output voltage will result. By replacing the separate biasing current sources with the voltage to current converter of Figure 5 we have a balanced multiplier circuit capable of four quadrant operation (Figure 7).

0325-7
Figure 6B: No Input Signal with Unbalanced
Current Sources $\Delta V_{\text {OUT }}=0 V$

0325-8
Figure 6C: Input Signal with Unbalanced Current Sources, Differential Output Voltage

This circuit of Figure 7 still has the problem that the input voltage V_{IN} must be small to keep the differential amplifier in the linear region. To be able to handle large signals, we need an amplitude compression circuit.

Figure 5 showed a current source formed by relying on the matching characteristics of a diode and the emitter base junction of a transistor. Extension of this idea to a differential circuit is shown in Figure 8A. In a differential pair, the input voltage splits the biasing current in a logarithmic ratio. (The usual assumption of linearity is useful only for small signals.) Since the input to the differential pair in Figure 8A is the difference in voltage across the two diodes, which in turn is proportional to the log of the ratio of drive currents, it follows that the ratio of diode currents and the ratio of collector currents are linearly related and independent of amplitude. If we combine this circuit with the voltage to current converter of Figure 5, we have Figure 8B. The output of the differential amplifier is now proportional to the input voltage over a large dynamic range, thereby improving linearity while minimizing drift and noise factors.
The complete schematic is shown in Figure 9. The differential pair Q_{3} and Q_{4} form a voltage to current converter whose output is compressed in collector diodes Q_{1} and Q_{2}. These diodes drive the balanced cross-coupled differential amplifier $Q_{7} / Q_{8} Q_{14} / Q_{15}$. The gain of these amplifiers is modulated by the voltage to current converter Q_{9} and Q_{10}. Transistors Q_{5}, Q_{6}, Q_{11}, and Q_{12} are constant current sources which bias the voltage to current converter. The output amplifier comprises transistors Q_{16} through Q_{27}.

[^207]

Figure 9: ICL8013 Schematic
0325-12

MULTIPLICATION

In the standard multiplier connection, the \mathbf{Z} terminal is connected to the op amp output. All of the modulator output current thus flows through the feedback resistor R27 and produces a proportional output voltage.

Figure 10A: Multiplier Block Diagram

Multiplier Trimming Procedure

1. Set $X_{I N}=Y_{I N}=O V$ and adjust $Z_{O S}$ for zero Output.
2. Apply a $\pm 10 \mathrm{~V}$ low frequency ($\leq 100 \mathrm{~Hz}$) sweep (sine or triangle) to Y_{IN} with $\mathrm{X}_{\mathrm{IN}}=0 \mathrm{~V}$, and adjust X_{OS} for minimum output.
3. Apply the sweep signal of Step 2 to $X_{I N}$ with $Y_{I N}=O \mathrm{~V}$ and adjust Y_{OS} for minimum Output.
4. Readjust $Z_{O S}$ as in Step 1, if necessary.
5. With $X_{I N}=10.0 \mathrm{~V} D C$ and the sweep signal of Step 2 applied to $Y_{I N}$, adjust the Gain potentiometer for Output $=Y_{I N}$. This is easily accomplished with a differential scope plug-in $(A+B)$ by inverting one signal and adjusting Gain control for (Output-YiN) $=$ Zero.

0325-14
Figure 10B: Actual Circuit Connection

DIVISION

If the Z terminal is used as an input, and the output of the op-amp connected to the Y input, the device functions as a divider. Since the input to the op-amp is at virtual ground, and requires negligible bias current, the overall feedback forces the modulator output current to equal the current produced by Z.

$$
\begin{aligned}
\text { Therefore } I_{O} & =X_{I N} \bullet Y_{I N}=\frac{Z_{I N}}{R}=10 Z_{I N} \\
\text { Since } Y_{I N} & =E_{O U T}, E_{O U T}=\frac{10 Z_{I N}}{X_{I N}}
\end{aligned}
$$

[^208]Note that when connected as a divider, the X input must be a negative voltage to maintain overall negative feedback.

0325-15
Figure 11A: Division Block Diagram

Divider Trimming Procedure

1. Set trimming potentiometers at mid-scale by adjusting voltage on pins 7, 9 and 10 ($\mathrm{X}_{\mathrm{OS}}, \mathrm{Y}_{\mathrm{OS}}, Z_{O S}$) for zero volts.
2. With $\mathrm{Z}_{\mathrm{IN}}=0 \mathrm{~V}$, trim Z_{OS} to hold the Output constant, as $X_{\text {IN }}$ is varied from -10 V through -1 V .
3. With $Z_{I N}=0 \mathrm{~V}$ and $X_{I N}=-10.0 \mathrm{~V}$ adjust $Y_{O S}$ for zero Output voltage.
4. With $Z_{I N}=X_{I N}$ (and/or $Z_{I N}=-X_{I N}$) adjust $X_{O S}$ for minimum worst-case variation of Output, as $X_{I N}$ is varied from -10 V to -1 V .
5. Repeat Steps 2 and 3 if Step 4 required a large initial adjustment.
6. With $Z_{I N}=X_{I N}$ (and/or $Z_{I N}=-X_{I N}$) adjust the gain control until the output is the closest average around $+10.0 \mathrm{~V}\left(-10 \mathrm{~V}\right.$ for $\left.\mathrm{Z}_{\mathrm{IN}}=-\mathrm{X}_{\mathrm{IN}}\right)$ as X_{IN} is varied from -10 V to -3 V .

SQUARING

The squaring function is achieved by simply multiplying with the two inputs tied together. The squaring circuit may also be used as the basis for a frequency doubler since $\cos ^{2} \omega t=1 / 2(\cos 2 \omega t+1)$.

0325-17
Figure 12A: Squarer Block Diagram

0325-18
Figure 12B: Actual Circuit Connection

SQUARE ROOT

Tying the X and Y inputs together and using overall feedback from the Op Amp results in the square root function. The output of the modulator is again forced to equal the current produced by the Z input.

$$
\begin{gathered}
\mathrm{I}_{\mathrm{O}}=X_{I N} \bullet Y_{I N}=\left(-E_{\text {OUT }}\right)^{2}=10 Z_{I N} \\
E_{\text {OUT }}=-\sqrt{10 Z_{I N}}
\end{gathered}
$$

The output is a negative voltage which maintains overall negative feedback. A diode in series with the Op Amp output prevents the latchup that would otherwise occur for negative input voltages.

0325-19
Figure 13A: Square Root Block Diagram

[^209]ICL8013

0325-20
Figure 13B: Actual Circuit Connection

Square Root Trimming Procedure

1. Connect the ICL8013 in the Divider configuration.
2. Adjust $Z_{O S}, Y_{O S}, X_{O S}$, and Gain using Steps 1 through 6 of Divider Trimming Procedure.
3. Convert to the Square Root configuration by connecting $X_{I N}$ to the Output and inserting a diode between Pin 4 and the Output node.
4. With $Z_{I N}=O V$ adjust $Z_{O S}$ for zero Output voltage.

VARIABLE GAIN AMPLIFIER

Most applications for the ICL8013 are straight forward variations of the simple arithmetic functions described above. Although the circuit description frequently disguises the fact, it has already been shown that the frequency doubler is nothing more than a squaring circuit. Similarly the variable gain amplifier is nothing more than a multiplier, with the input signal applied at the X input and the control voltage applied at the Y input.

0325-21
Figure 14: Variable Gain Amplifier

TYPICAL APPLICATIONS

0325-24
Figure 17: Potentiometers for Trimming Offset and Feedthrough

Figure 18: Square Root

[^210]
TYPICAL PERFORMANCE CHARACTERISTICS
 AMPLITUDE AND PHASE AS A FUNCTION OF FREQUENCY

 NONLINEARITY AS A FUNCTION OF FREQUENCY

FEEDTHROUGH AS A FUNCTION OF FREQUENCY

0325-27

DEFINITION OF TERMS

Multiplication/Division Error: This is the basic accuracy specification. It includes terms due to linearity, gain, and offset errors, and is expressed as a percentage of the full scale output.
Feedthrough: With either input at zero, the output of an ideal multiplier should be zero regardless of the signal applied to the other input. The output seen in a non-ideal multiplier is known as the feedthrough.

Nonlinearity: The maximum deviation from the best straight line constructed through the output data, expressed as a percentage of full scale. One input is held constant and the other swept through its nominal range. The nonlinearity is the component of the total multiplication/division error which cannot be trimmed out.

[^211]
ICL8038

Precision Waveform
Generator/Voltage Controlled Oscillator

GENERAL DESCRIPTION

The ICL8038 Waveform Generator is a monolithic integrated circuit capable of producing high accuracy sine, square, triangular, sawtooth and pulse waveforms with a minimum of external components. The frequency (or repetition rate) can be selected externally from .001 Hz to more than 300 kHz using either resistors or capacitors, and frequency modulation and sweeping can be accomplished with an external voltage. The ICL8038 is fabricated with advanced monolithic technology, using Schottky-barrier diodes and thin film resistors, and the output is stable over a wide range of temperature and supply variations. These devices may be interfaced with phase locked loop circuitry to reduce temperature drift to less than $250 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$.

FEATURES

- Low Frequency Drift With Temperature - 250ppm/ ${ }^{\circ} \mathrm{C}$
- Simultaneous Sine, Square, and Triangle Wave Outputs
- Low Distortion - 1\% (Sine Wave Output)
- High Linearity - 0.1\% (Triangle Wave Output)
- Wide Operating Frequency Range $\mathbf{-} \mathbf{0 . 0 0 1} \mathbf{H z}$ to 300kHz
- Variable Duty Cycle - 2\% to 98\%
- High Level Outputs - TTL to 28V
- Easy to Use - Just A Handful of External Components Required

ORDERING INFORMATION

Part Number	Stability	Temp. Range	Package
ICL8038CCPD	$250 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ typ	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	14 pin MiniDIP
ICL8038CCJD	$250 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ typ	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	CERDIP
ICL8038BCJD	$180 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ typ	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	CERDIP
ICL8038ACJD	$120 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ typ 110	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	CERDIP
ICL8038BMJD*	$350 \mathrm{ppm} /{ }^{\circ} \mathrm{C} \max$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	CERDIP
ICL8038AMJD*	$250 \mathrm{ppm} /{ }^{\circ} \mathrm{C} \max$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	CERDIP

*Add /883B to part number if 883 processing is required.

[^212]
ABSOLUTE MAXIMUM RATINGS

Supply Voltage (V - to V^{+}) 36V
Power Dissipation(1) . 750mW
Input Voltage (any pin) V- to V^{+}
Input Current (Pins 4 and 5) 25mA
Output Sink Current (Pins 3 and 9) 25mA
Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ Operating Temperature Range:
8038AM, 8038BM
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

8038AC, $8038 \mathrm{BC}, 8038 \mathrm{CC}$. $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10sec)
. $300^{\circ} \mathrm{C}$
NOTE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
NOTE 1: Derate ceramic package at $12.5 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ for ambient temperatures above $100^{\circ} \mathrm{C}$.
ELECTRICAL CHARACTERISTICS $\quad \mathrm{V}_{\text {SUPPLY }}= \pm 10 \mathrm{~V}$ or $+20 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$, Test Circuit Unless
Otherwise Specified)

Symbol	General Characteristics	8038CC			8038BC(BM)			8038AC(AM)			Units
		Min	Typ	Max	Min	Typ	Max	Min	Typ	Max	
$V_{\text {SUPPLY }}$	Supply Voltage Operating Range										
V+	Single Supply	+10		+30	+10		30	+10		30	V
$\mathrm{V}^{+}, \mathrm{V}^{-}$	Dual Supplies	± 5		± 15	± 5		± 15	± 5		± 15	V
ISUPPLY	Supply Current (VSUPPLY $= \pm 10 \mathrm{~V})^{(2)}$										
	8038AM, 8038BM					12	15		12	15	mA
	8038AC, 8038BC, 8038CC		12	20		12	20		12	20	mA
Frequency Characteristics (all waveforms)											
$\mathrm{f}_{\text {max }}$	Maximum Frequency of Oscillation	100			100			100			kHz
$\mathrm{f}_{\text {sweep }}$	Sweep Frequency of FM Input		10			10			10		kHz
	Sweep FM Range(3)		35:1			35:1			35:1		
	FM Linearity 10:1 Ratio		0.5			0.2			0.2		\%
$\Delta f / \Delta T$	Frequency Drift With Temperature(5) $8038 \mathrm{AC}, \mathrm{BC}, \mathrm{CC} 0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$		250			180			120		ppm $/{ }^{\circ} \mathrm{C}$
	$8038 \mathrm{AM}, \mathrm{BM},-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$						350			250	
$\Delta f / \Delta V$	Frequency Drift With Supply Voltage (Over Supply Voltage Range)		0.05			0.05			0.05		\%/V
Output Characteristics											
IOLK	Square-Wave Leakage Current $\left(V_{9}=30 \mathrm{~V}\right)$			1			1			1	$\mu \mathrm{A}$
$\mathrm{V}_{\text {SAT }}$	Saturation Voltage ($\mathrm{ISINK}=2 \mathrm{~mA}$)		0.2	0.5		0.2	0.4		0.2	0.4	V
t_{r}	Rise Time ($\mathrm{R}_{\mathrm{L}}=4.7 \mathrm{k} \Omega$)		180			180			180		ns
$t_{\text {f }}$	Fall Time ($\mathrm{R}_{\mathrm{L}}=4.7 \mathrm{k} \Omega$)		40			40			40		ns
$\Delta \mathrm{D}$	Typical Duty Cycle Adjust (Note 6)	2		98	2		98	2		98	\%
$V_{\text {TRIANGLE }}$	Triangle/Sawtooth/Ramp Amplitude ($\mathrm{RTRI}_{\mathrm{TI}}=100 \mathrm{k} \Omega$)	0.30	0.33		0.30	0.33		0.30	0.33		x $\mathrm{V}_{\text {SUPPLY }}$
	Linearity		0.1			0.05			0.05		\%
ZOUT	Output Impedance (lout $=5 \mathrm{~mA}$)		200			200			200		Ω
$V_{\text {SINE }}$	Sine-Wave Amplitude ($\mathrm{R}_{\mathrm{SINE}}=100 \mathrm{k} \Omega$)	0.2	0.22		0.2	0.22		0.2	0.22		x $\mathrm{V}_{\text {SUPPLY }}$
THD	THD ($\left.\mathrm{R}_{\mathrm{S}}=1 \mathrm{M} \Omega\right)^{(4)}$		2.0	5		1.5	3		1.0	1.5	\%
THD	THD Adjusted (Use Figure 6)		1.5			1.0			0.8		\%

NOTES: 2. R_{A} and R_{B} currents not included.
3. $V_{\text {SUPPLY }}=20 \mathrm{~V} ; \mathrm{R}_{\mathrm{A}}$ and $\mathrm{R}_{\mathrm{B}}=10 \mathrm{k} \Omega, \mathrm{f} \cong 10 \mathrm{kHz}$ nominal; can be extended 1000 to 1 . See Figures 7 a and 7 b .
4. 82k Ω connected between pins 11 and 12, Triangle Duty Cycle set at 50%. (Use R_{A} and R_{B}.)
5. Figure 3 , pins 7 and 8 connected, $V_{\text {SUPPLY }}= \pm 10 \mathrm{~V}$. See Typical Curves for T.C. vs $\mathrm{V}_{\text {SUPPLY }}$.
6. Not tested, typical value for design purposes only.

TEST CONDITIONS

Parameter		$\mathbf{R}_{\mathbf{A}}$	$\mathbf{R}_{\mathbf{B}}$	\mathbf{R}_{L}	C_{1}	SW 1	Measure
Supply Current		$10 \mathrm{k} \Omega$	$10 \mathrm{k} \Omega$	10k Ω	3.3 nF	Closed	Current into Pin 6
Sweep FM Range(1)		$10 \mathrm{k} \Omega$	$10 \mathrm{k} \Omega$	10k Ω	3.3 nF	Open	Frequency at Pin 9
Frequency Drift with Temperature		$10 \mathrm{k} \Omega$	$10 \mathrm{k} \Omega$	10k Ω	3.3 nF	Closed	Frequency at Pin 3
Frequency Drift with Supply Voltage(2)		$10 \mathrm{k} \Omega$	$10 \mathrm{k} \Omega$	10k Ω	3.3 nF	Closed	Frequency at Pin 9
Output Amplitude: (Note 4)	Sine	$10 \mathrm{k} \Omega$	$10 \mathrm{k} \Omega$	10k Ω	3.3nF	Closed	Pk-Pk output at Pin 2
	Triangle	$10 \mathrm{k} \Omega$	$10 \mathrm{k} \Omega$	10k Ω	3.3 nF	Closed	Pk-Pk output at Pin 3
Leakage Current (off)(3)		$10 \mathrm{k} \Omega$	$10 \mathrm{k} \Omega$		3.3 nF	Closed	Current into Pin 9
Saturation Voltage (on) ${ }^{(3)}$		$10 \mathrm{k} \Omega$	$10 \mathrm{k} \Omega$		3.3 nF	Closed	Output (low) at Pin 9
Rise and Fall Times (Note 5)		$10 \mathrm{k} \Omega$	$10 \mathrm{k} \Omega$	$4.7 \mathrm{k} \Omega$	3.3 nF	Closed	Waveform at Pin 9
Duty Cycle Adjust: (Note 5)	MAX	$50 \mathrm{k} \Omega$	$\sim 1.6 \mathrm{k} \Omega$	$10 \mathrm{k} \Omega$	3.3 nF	Closed	Waveform at Pin 9
	MIN	$\sim 25 \mathrm{k} \Omega$	$50 \mathrm{k} \Omega$	$10 \mathrm{k} \Omega$	3.3 nF	Closed	Waveform at Pin 9
Triangle Waveform Linearity		$10 \mathrm{k} \Omega$	$10 \mathrm{k} \Omega$	$10 \mathrm{k} \Omega$	3.3 nF	Closed	Waveform at Pin 3
Total Harmonic Distortion		$10 \mathrm{k} \Omega$	$10 \mathrm{k} \Omega$	10k Ω	3.3nF	Closed	Waveform at Pin 2

NOTES: 1. The hi and lo frequencies can be obtained by connecting pin 8 to pin 7 (f_{hi}) and then connecting pin 8 to pin 6 (f_{l}). Otherwise apply Sweep Voltage at pin $8\left(2 / 3 V_{\text {SUPPLY }}+2 \mathrm{~V}\right) \leq \mathrm{V}_{\text {SWEEP }} \leq \mathrm{V}_{\text {SUPPLY }}$ where $\mathrm{V}_{\text {SUPPLY }}$ is the total supply voltage. In Figure 7 b , pin 8 should vary between 5.3 V and 10 V with respect to ground.
2. $10 \mathrm{~V} \leq \mathrm{V}+\leq 30 \mathrm{~V}$, or $\pm 5 \mathrm{~V} \leq \mathrm{V}_{\text {SUPPLY }} \leq \pm 15 \mathrm{~V}$.
3. Oscillation can be halted by forcing pin 10 to +5 volts or -5 volts.
4. Output Amplitude is tested under static conditions by forcing pin 10 to 5.0 V then to -5.0 V .
5. Not tested; for design purposes only.

DEFINITION OF TERMS:

Supply Voltage (VSUPPLY). The total supply voltage from V+ to V^{-}
Supply Current. The supply current required from the power supply to operate the device, excluding load currents and the currents through R_{A} and R_{B}.
Frequency Range. The frequency range at the square wave output through which circuit operation is guaranteed.
Sweep FM Range. The ratio of maximum frequency to minimum frequency which can be obtained by applying a sweep voltage to pin 8 . For correct operation, the sweep voltage should be within the range

$$
\left(2 / 3 V_{\text {SUPPLY }}+2 \mathrm{~V}\right)<\mathrm{V}_{\text {SWEEP }}<\mathrm{V}_{\text {SUPPLY }}
$$

FM Linearity. The percentage deviation from the best-fit straight line on the control voltage versus output frequency curve.
Output Amplitude. The peak-to-peak signal amplitude appearing at the outputs.
Saturation Voltage. The output voltage at the collector of Q_{23} when this transistor is turned on. It is measured for a sink current of 2 mA .
Rise and Fall Times. The time required for the square wave output to change from 10% to 90%, or 90% to 10%, of its final value.

Triangle Waveform Linearity. The percentage deviation from the best-fit straight line on the rising and falling triangle waveform.
Total Harmonic Distortion. The total harmonic distortion at the sine-wave output.

[^213]TYPICAL PERFORMANCE CHARACTERISTICS

0326-13

[^214]

0326-14

0326-15
Square-Wave Duty Cycle-80\%

Figure 4: Phase Relationship of Waveforms

DETAILED DESCRIPTION

(See Figure 1)

An external capacitor C is charged and discharged by two current sources. Current source \#2 is switched on and off by a flip-flop, while current source \#1 is on continuously. Assuming that the flip-flop is in a state such that current source \# 2 is off, and the capacitor is charged with a current I , the voltage across the capacitor rises linearily with time. When this voltage reaches the level of comparator \# 1 (set at $2 / 3$ of the supply voltage), the flip-flop is triggered, changes states, and releases current source \#2. This current source normally carries a current 21, thus the capacitor is discharged with a net-current I and the voltage across it drops linearly with time. When it has reached the level of comparator \# 2 (set at $1 / 3$ of the supply voltage), the flip-flop is triggered into its original state and the cycle starts again.

Four waveforms are readily obtainable from this basic generator circuit. With the current sources set at 1 and 21 respectively, the charge and discharge times are equal. Thus a triangle waveform is created across the capacitor and the flip-flop produces a square-wave. Both waveforms are fed to buffer stages and are available at pins 3 and 9.

The levels of the current sources can, however, be selected over a wide range with two external resistors. Therefore, with the two currents set at values different from I and 21 , an asymmetrical sawtooth appears at terminal 3 and pulses with a duty cycle from less than 1% to greater than 99% are available at terminal 9.
The sine-wave is created by feeding the triangle-wave into a non-linear network (sine-converter). This network provides a decreasing shunt-impedance as the potential of the triangle moves toward the two extremes.

WAVEFORM TIMING

The symmetry of all waveforms can be adjusted with the external timing resistors. Two possible ways to accomplish this are shown in Figure 5. Best results are obtained by keeping the timing resistors R_{A} and R_{B} separate (a). R_{A}
controls the rising portion of the triangle and sine-wave and the 1 state of the square-wave.
The magnitude of the triangle-waveform is set at $1 / 3 \vee_{\text {SUP. }}$. PLY; therefore the rising portion of the triangle is,

$$
t_{1}=\frac{C \times v}{1}=\frac{C \times 1 / 3 \times V_{\text {SUPPLY }} \times R_{A}}{0.22 \times V_{\text {SUPPLY }}}=\frac{R_{A} \times C}{0.66}
$$

The falling portion of the triangle and sine-wave and the 0 state of the square-wave is:
$t_{2}=\frac{C \times Y}{1}=\frac{C \times \frac{1}{3} V_{\text {SUPPLY }}}{2(0.22) \frac{V_{\text {SUPPLY }}}{R_{B}}-0.22 \frac{V_{\text {SUPPLY }}}{R_{A}}}=\frac{R_{A} R_{B} C}{0.66\left(2 R_{A}-R_{B}\right)}$
Thus a 50% duty cycle is achieved when $R_{A}=R_{B}$.
If the duty-cycle is to be varied over a small range about 50% only, the connection shown in Figure 5b is slightly more convenient. If no adjustment of the duty cycle is desired, terminals 4 and 5 can be shorted together, as shown in Figure 5c. This connection, however, causes an inherently larger variation of the duty-cycle, frequency, etc.
With two separate timing resistors, the frequency is given by

$$
f=\frac{1}{t_{1}+t_{2}}=\frac{1}{\frac{R_{A} C}{0.66}\left(1+\frac{R_{B}}{2 R_{A}-R_{B}}\right)}
$$

or, if $R_{A}=R_{B}=R$

$$
f=\frac{0.33}{R C}(\text { for Figure } 5 a)
$$

If a single timing resistor is used (Figure 5 c only), the frequency is

$$
f=\frac{0.165}{R C}
$$

Figure 5: Possible Connections for the External Timing Resistors

Neither time nor frequency are dependent on supply voltage, even though none of the voltages are regulated inside the integrated circuit. This is due to the fact that both currents and thresholds are direct, linear functions of the supply voltage and thus their effects cancel.
To minimize sine-wave distortion the $82 \mathrm{k} \Omega$ resistor between pins 11 and 12 is best made variable. With this arrangement distortion of less than 1% is achievable. To reduce this even further, two potentiometers can be connected as shown in Figure 6; this configuration allows a typical reduction of sine-wave distortion close to 0.5%.

SELECTING $\mathbf{R}_{\mathbf{A}}, \mathbf{R}_{\mathbf{B}}$ and C

For any given output frequency, there is a wide range of RC combinations that will work, however certain constraints are placed upon the magnitude of the charging current for optimum performance. At the low end, currents of less than $1 \mu \mathrm{~A}$ are undesirable because circuit leakages will contribute significant errors at high temperatures. At higher currents ($1>5 \mathrm{~mA}$), transistor betas and saturation voltages will contribute increasingly larger errors. Optimum performance will, therefore, be obtained with charging currents of $10 \mu \mathrm{~A}$ to 1 mA . If pins 7 and 8 are shorted together, the magnitude of the charging current due to R_{A} can be calculated from:

$$
I=\frac{R_{1} \times\left(V^{+}-V^{-}\right)}{\left(R_{1}+R_{2}\right)} \times \frac{1}{R_{A}}=\frac{0.22\left(V^{+}-V^{-}\right)}{R_{A}}
$$

A similar calculation holds for R_{B}.
The capacitor value should be chosen at the upper end of its possible range.

WAVEFORM OUT LEVEL CONTROL AND POWER SUPPLIES

The waveform generator can be operated either from a single power-supply (10 to 30 Volts) or a dual power-supply (± 5 to ± 15 Volts). With a single power-supply the average levels of the triangle and sine-wave are at exactly one-half of the supply voltage, while the square-wave alternates between V^{+}and ground. A split power supply has the advantage that all waveforms move symmetrically about ground.

The square-wave output is not committed. A load resistor can be connected to a different power-supply, as long as the applied voltage remains within the breakdown capability of the waveform generator (30 V). In this way, the squarewave output can be made TTL compatible (load resistor connected to +5 Volts) while the waveform generator itself is powered from a much higher voltage.

[^215]NOTE: All typical values have been characterized but are not tested.

Figure 7: Connections for Frequency Modulation (a) and Sweep (b)

FREQUENCY MODULATION AND SWEEPING

The frequency of the waveform generator is a direct function of the DC voltage at terminal 8 (measured from V^{+}). By altering this voltage, frequency modulation is performed. For small deviations (e.g. $\pm 10 \%$) the modulating signal can be applied directly to pin 8, merely providing DC decoupling with a capacitor as shown in Figure 7a. An external resistor between pins 7 and 8 is not necessary, but it can be used to increase input impedance from about $8 \mathrm{k} \Omega$ (pins 7 and 8 connected together), to about ($\mathrm{R}+8 \mathrm{k} \Omega$).

For larger FM deviations or for frequency sweeping, the modulating signal is applied between the positive supply voltage and pin 8 (Figure 7b). In this way the entire bias for the current sources is created by the modulating signal, and a very large (e.g. 1000:1) sweep range is created ($f=0$ at $\mathrm{V}_{\text {sweep }}=0$). Care must be taken, however, to regulate the supply voltage; in this configuration the charge current is no longer a function of the supply voltage (yet the trigger thresholds still are) and thus the frequency becomes dependent on the supply voltage. The potential on Pin 8 may be swept down from $\mathrm{V}+$ by ($1 / 3 \mathrm{~V}_{\text {SUPPLY }}-2 \mathrm{~V}$).

APPLICATIONS

The sine wave output has a relatively high output impedance ($1 \mathrm{k} \Omega$ Typ). The circuit of Figure 8 provides buffering, gain and amplitude adjustment. A simple op amp follower could also be used.

With a dual supply voltage the external capacitor on Pin 10 can be shorted to ground to halt the ICL8038 oscillation. Figure 9 shows a FET switch, diode ANDed with an input strobe signal to allow the output to always start on the same slope.

To obtain a 1000:1 Sweep Range on the ICL8038 the voltage across external resistors R_{A} and R_{B} must decrease to nearly zero. This requires that the highest voltage on con-

Figure 8: Sine Wave Output Buffer Amplifiers
trol Pin 8 exceed the voltage at the top of R_{A} and R_{B} by a few hundred millivolts. The Circuit of Figure 10 achieves this by using a diode to lower the effective supply voltage on the ICL8038. The large resistor on pin 5 helps reduce duty cycle variations with sweep.
The linearity of input sweep voltage versus output frequency can be significantly improved by using an op amp as shown in Figure 11.

USE IN PHASE-LOCKED LOOPS

Its high frequency stability makes the ICL8038 an ideal building block for a phase-locked loop as shown in Figure 12. In this application the remaining functional blocks, the

[^216]

Figure 9: Strobe-Tone Burst Generator

0326-24
Figure 10: Variable Audio Oscillator, 20 Hz to 20 kHz

0326-25
Figure 11: Linear Voltage Controlled Oscillator
phase-detector and the amplifier, can be formed by a number of available IC's (e.g. MC4344, NE562, HA2800, HA2820)

In order to match these building blocks to each other, two steps must be taken. First, two different supply voltages are used and the square wave output is returned to the supply of the phase detector. This assures that the VCO input voltage will not exceed the capabilities of the phase detector. If a smaller VCO signal is required, a simple resistive voltage divider is connected between pin 9 of the waveform generator and the VCO input of the phase-detector.

Second, the DC output level of the amplifier must be made compatible to the $D C$ level required at the FM input of the waveform generator ($\mathrm{pin} 8,0.8 \mathrm{~V}+$). The simplest solution here is to provide a voltage divider to $\mathrm{V}^{+}\left(\mathrm{R}_{1}, \mathrm{R}_{2}\right.$ as shown) if the amplifier has a lower output level, or to ground if its level is higher. The divider can be made part of the lowpass filter.

This application not only provides for a free-running frequency with very low temperature drift, but it also has the unique feature of producing a large reconstituted sinewave signal with a frequency identical to that at the input.

For further information, see Intersil Application Note A013, "Everything You Always Wanted to Know About The ICL8038." MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

Figure 12: Waveform Generator Used as Stable VCO in a Phase-Locked Loop

[^217]
GENERAL DESCRIPTION

The 8048 is a monolithic logarithmic amplifier capable of handling six decades of current input，or three decades of voltage input．It is fully temperature compensated and is nominally designed to provide 1 volt of output for each dec－ ade change of input．For increased flexibility，the scale fac－ tor，reference current and offset voltage are externally ad－ justable．
The 8049 is the antilogarithmic counterpart of the 8048；it nominally generates one decade of output voltage for each 1 volt change at the input．

FEATURES

－ $1 / 2 \%$ Full Scale Accuracy
－Temperature Compensated for $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ Operation
－Scale Factor 1V／Decade，Adjustable
－120dB Dynamic Current Range（8048）
－60dB Dynamic Voltage Range（8048 \＆8049）
－Dual JFET－Input Op－Amps

ORDERING INFORMATION

Part Number	Error $\left(\mathbf{2 5} 5^{\circ} \mathrm{C}\right)$	Temperature Range	Package
ICL8048BCJE	30 mV	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	16 Pin CERDIP
ICL8048CCJE	60 mV	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	16 Pin CERDIP
ICL8049BCJE	10 mV	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	16 Pin CERDIP
ICL8049CCJE	25 mV	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	16 Pin CERDIP

Figure 1：Functional Diagram

[^218] maximum rating conditions for extended periods may affect device reliability.
ELECTRICAL CHARACTERISTICS (ICL8048) $\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, $\mathrm{I}_{\text {REF }}=1 \mathrm{~mA}$, scale factor adjusted for 1V/decade unless otherwise specified.

Parameter	Test Conditions	8048BC			8048CC			Units
		Min	Typ	Max	Min	Typ	Max	
Dynamic Range $\begin{aligned} & \operatorname{liN}(1 \mathrm{nA} A-1 \mathrm{~mA}) \\ & \mathrm{V}_{\mathbb{I N}}(10 \mathrm{mV}-10 \mathrm{~V}) \end{aligned}$	$\mathrm{R}_{\text {IN }}=10 \mathrm{k} \Omega$	$\begin{gathered} 120 \\ 60 \end{gathered}$			$\begin{gathered} 120 \\ 60 \end{gathered}$			$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \end{aligned}$
Error, \% of Full Scale	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{l}_{\mathrm{IN}}=1 \mathrm{nA}$ to 1 mA		. 20	0.5		. 25	1.0	\%
Error, \% of Full Scale	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C}, \\ & \mathrm{I}_{\mathrm{N}}=1 \mathrm{nA} \text { to } 1 \mathrm{~mA} \end{aligned}$. 60	1.25		. 80	2.5	\%
Error, Absolute Value	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{l}_{\mathrm{I}}=1 \mathrm{nA}$ to 1 mA		12	30		14	60	mV
Error, Absolute Value	$\begin{aligned} & T_{A}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ & \mathrm{I}_{\mathrm{N}}=1 \mathrm{nA} \text { to } 1 \mathrm{~mA} \end{aligned}$		36	75		50	150	mV
Temperature Coefficient of $\mathrm{V}_{\text {OUT }}$	$\mathrm{I}_{1 \times}=1 \mathrm{nA}$ to 1 mA		0.8			0.8		$\mathrm{mV} /{ }^{\circ} \mathrm{C}$
Power Supply Rejection Ratio	Referred to Output		2.5			2.5		mV / V
Offset Voitage (A_{1} \& A_{2})	Before Nulling		15	25		15	50	mV
Wideband Noise	At Output, for $\mathrm{l}_{\mathrm{IN}}=100 \mu \mathrm{~A}$		250			250		$\mu \mathrm{V}$ (RMS)
Output Voltage Swing	$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$	± 12	± 14		± 12	± 14		V
	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$	± 10	± 13		± 10	± 13		V
Power Consumption			150	200		150	200	mW
Supply Current			5	6.7		5	6.7	mA

TYPICAL PERFORMANCE CHARACTERISTICS

TRANSFER FUNCTION FOR VOLTAGE INPUTS

0313-5
MAXIMUM ERROR VOLTAGE AT THE OUTPUT AS A FUNCTION OF

0313-8

TRANSFER FUNCTION FOR CURRENT INPUTS

0313-6
MAXIMUM ERROR VOLTAGE AT THE OUTPUT AS A FUNCTION OF INPUT VOLTAGE

0313-9

0313-7
SMALL SIGNAL VOLTAGE GAIN AS A FUNCTION OF INPUT VOLTAGE FOR
$R_{S}=10 k \Omega$

0313-10

NOTE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS (ICL8049) $\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{l}_{\text {REF }}=1 \mathrm{~mA}$, scale factor adjusted for 1 decade (out) per volt (in), unless otherwise specified.

Parameter	Test Conditions	8049BC			8049CC			Units
		Min	Typ	Max	Min	Typ	Max	
Dynamic Range (VOUT)	$\mathrm{V}_{\text {OUT }}=10 \mathrm{mV}$ to 10 V	60			60			dB
Error, Absolute Value	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, 0 \mathrm{~V} \leq \mathrm{V}_{1 \mathrm{I}} \leq 2 \mathrm{~V}$		3	15		5	25	mV
Error, Absolute Value	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C}, \\ & 0 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq 3 \mathrm{~V} \end{aligned}$		20	75		30	150	mV
Temperature Coefficient, Referred to V_{IN}	$\mathrm{V}_{\text {IN }}=3 \mathrm{~V}$		0.38			0.55		$\mathrm{mV} /{ }^{\circ} \mathrm{C}$
Power Supply Rejection Ratio	Referred to Input, for $\mathrm{V}_{\mathrm{N}}=0 \mathrm{~V}$		2.0			2.0		$\mu \mathrm{V} / \mathrm{V}$
Offset Voltage (A_{1} \& A_{2})	Before Nulling		15	25		15	50	mV
Wideband Noise	Referred to Input, for $\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$		26			26		$\mu \mathrm{V}$ (RMS)
Output Voltage Swing	$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$	± 12	± 14		± 12	± 14		V
	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$	± 10	± 13		± 10	± 13		V
Power Consumption			150	200		150	200	mW
Supply Current			5	6.7		5	6.7	mA

TYPICAL PERFORMANCE CHARACTERISTICS

TRANSFER FUNCTION

MAXIMUM ERROR VOLTAGE REFERRED TO THE INPUT AS A FUNCTION OF VIN

0313-11
0313-12

INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.
NOTE: Al/ typical values have been characterized but are not tested.

TYPICAL PERFORMANCE CHARACTERISTICS
(Continued)

0313-13

ICL8048 DETAILED DESCRIPTION

The ICL8048 relies for its operation on the well-known exponential relationship between the collector current and the base-emitter voltage of a transistor:

$$
\begin{equation*}
\mathrm{I}_{\mathrm{C}}=\mathrm{I}_{\mathrm{S}}\left[\mathrm{q} \mathrm{qV}_{\mathrm{BE}} / \mathrm{kT}-1\right] \tag{1}
\end{equation*}
$$

For base-emitter voltages greater than 100 mV , Eq. (1) becomes

$$
\begin{equation*}
\mathrm{I}_{\mathrm{C}}=\mathrm{IseqV}_{\mathrm{BE}} / \mathrm{kT} \tag{2}
\end{equation*}
$$

From Eq. (2), it can be shown that for two identical transistors operating at different collector currents, the $V_{B E}$ difference ($\Delta \mathrm{V}_{\mathrm{BE}}$) is given by:

$$
\begin{equation*}
\Delta V_{B E}=-2.303 \times \frac{k T}{q} \log _{10}\left[\frac{\mathrm{I}_{\mathrm{C} 1}}{\mathrm{I}_{\mathrm{C} 2}}\right] \tag{3}
\end{equation*}
$$

Referring to Figure 3, it is clear that the potential at the collector of Q_{2} is equal to the $\Delta V_{B E}$ between Q_{1} and Q_{2}. The output voltage is $\Delta V_{B E}$ multiplied by the gain of A_{2} :
$V_{\text {OUT }}=-2.303\left(\frac{R_{1}+R_{2}}{R_{2}}\right)\left(\frac{k T}{q}\right) \log _{10}\left[\frac{l_{I N}}{l_{\text {REF }}}\right]$
The expression $2.303 \times \frac{\mathrm{kT}}{\mathrm{q}}$ has a numerical value of 59 mV at $25^{\circ} \mathrm{C}$; thus in order to generate 1 volt/decade at the output, the ratio $\left(R_{1}+R_{2}\right) / R_{2}$ is chosen to be 16.9. For this scale factor to hold constant as a function of temperature, the $\left(R_{1}+R_{2}\right) / R_{2}$ term must have a $1 / T$ characteristic to compensate for kT / q.

In the ICL8048 this is achieved by making R_{1} a thin film resistor, deposited on the monolithic chip. It has a nominal value of $15.9 \mathrm{k} \Omega$ at $25^{\circ} \mathrm{C}$, and its temperature coefficient is carefully designed to provide the necessary compensation.

0313-14
Resistor R_{2} is external and should be a low T.C. type; it should have a nominal value of $1 \mathrm{k} \Omega$ to provide 1 volt/decade, and must have an adjustment range of $\pm 20 \%$ to allow for production variations in the absolute value of R_{1}.

ICL8048 OFFSET AND SCALE FACTOR ADJUSTMENT*

A log amp, unlike an op-amp, cannot be offset adjusted by simply grounding the input. This is because the log of zero approaches minus infinity; reducing the input current to zero starves Q_{1} of collector current and opens the feedback loop around A_{1}. Instead, it is necessary to zero the offset voltage of A_{1} and A_{2} separately, and then to adjust the scale factor. Referring to Figure 3, this is done as follows:

1) Temporarily connect a $10 \mathrm{k} \Omega$ resistor $\left(R_{0}\right)$ between pins 2 and 7 . With no input voltage, adjust R_{4} until the output of A_{1} (pin 7) is zero. Remove R_{0}.
Note that for a current input, this adjustment is not necessary since the offset voltage of A_{1} does not cause any error for current-source inputs.
2) Set $l_{I_{N}}=I_{\text {REF }}=1 \mathrm{~mA}$. Adjust R_{5} such that the output of A_{2} (pin 10) is zero.
3) Set $l_{I N}=1 \mu A, l_{\text {REF }}=1 \mathrm{~mA}$. Adjust R_{2} for $V_{O U T}=3$ volts (for a 1 volt/decade scale factor) or 6 volts (for a 2 volt/decade scale factor).
Step \#3 determines the scale factor. Setting $l_{\mathrm{IN}}=1 \mu \mathrm{~A}$ optimizes the scale factor adjustment over a fairly wide dynamic range, from 1 mA to 1 nA . Clearly, if the 8048 is to be used for inputs which only span the range $100 \mu \mathrm{~A}$ to 1 mA , it would be better to set $l_{\mathbb{N}}=100 \mu A$ in Step \#3. Similarly, adjustment for other scale factors would require different l_{I} and $V_{\text {OUT }}$ values.
*See A053 for an automatic offset nulling circuit.

[^219]

0313-15
Figure 3: ICL8048 Offset and Scale Factor Adjustment

ICL8049 DETAILED DESCRIPTION

The ICL8049 relies on the same logarithmic properties of the transistor as the ICL8048. The input voltage forces a specific $\Delta V_{B E}$ between Q_{1} and Q_{2} (Figure 4). This $V_{B E}$ difference is converted into a difference of collector currents by the transistor pair. The equation governing the behavior of the transistor pair is derived from (2) on the previous page and is as follows:

$$
\frac{\mathrm{I}_{\mathrm{C}_{1}}}{\mathrm{I}_{\mathrm{C}_{2}}}=\exp \left[\frac{\mathrm{q} \Delta \mathrm{~V}_{\mathrm{BE}}}{\mathrm{kT}}\right]
$$

When numerical values for q / kT are put into this equation, it is found that a $\Delta V_{B E}$ of 59 mV (at $25^{\circ} \mathrm{C}$) is required to change the collector current ratio by a factor of ten. But for ease of application, it is desirable that a 1 volt change at the input generate a tenfold change at the output. The required input attenuation is achieved by the network comprising R_{1} and R_{2}. In order that scale factors other than one decade per volt may be selected, R_{2} is external to the chip. It should have a value of $1 \mathrm{k} \Omega$, adjustable $\pm 20 \%$, for one decade per volt. R_{1} is a thin film resistor deposited on the monolithic chip; its temperature characteristics are chosen to compensate the temperature dependence of equation 5 , as explained on the previous page.
The overall transfer function is as follows:
$\frac{\text { IOUT }^{\prime}}{I_{\text {REF }}}=\exp \left[\frac{-R_{2}}{\left(R_{1}+R_{2}\right)} \times \frac{q V_{\text {IN }}}{k T}\right]$
Substituting $\mathrm{V}_{\text {OUT }}=I_{\text {OUT }} \times$ R $_{\text {OUT }}$ gives:
$V_{\text {OUT }}=R_{\text {OUT }} I_{\text {REF }} \exp \left[\frac{-R_{2}}{\left(R_{1}+R_{2}\right)} \times \frac{q V_{\text {IN }}}{k T}\right]$

For voltage references equation 7 becomes

$$
\begin{equation*}
v_{\text {OUT }}=v_{\text {REF }} \times \frac{R_{\text {OUT }}}{R_{\text {REF }}} \exp \left[\frac{-R_{2}}{\left(R_{1}+R_{2}\right)} \times \frac{q V_{\text {IN }}}{k T}\right] \tag{8}
\end{equation*}
$$

ICL8049 OFFSET AND SCALE FACTOR ADJUSTMENT*

As with the log amplifier, the antilog amplifier requires three adjustments. The first step is to null out the offset voltage of A_{2}. This is accomplished by reverse biasing the base-emitter of $Q_{2} . A_{2}$ then operates as a unity gain buffer with a grounded input. The second step forces $\mathrm{V}_{1 \mathrm{~N}}=0$; the output is adjusted for $\mathrm{V}_{\text {OUT }}=10 \mathrm{~V}$. This step essentially "anchors" one point on the transfer function. The third step applies a specific input and adjusts the output to the correct voltage. This sets the scale factor. Referring to Figure 4, the exact procedure for 1 decade/volt is as follows:

1) Connect the input (pin \# 16) to +15 V . This reverse biases the base-emitter of Q_{2}. Adjust R_{7} for $\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$. Disconnect the input from +15 V .
2) Connect the input to Ground. Adjust R_{4} for $\mathrm{V}_{\text {OUT }}=10 \mathrm{~V}$. Disconnect the input from Ground.
3) Connect the input to a precise 2 V supply and adjust R_{2} for $V_{\text {OUT }}=100 \mathrm{mV}$.
The procedure outlined above optimizes the performance over a 3 decade range at the output (i.e., VOUT from 10 mV to 10 V). For a more limited range of output voltages, for example 1 V to 10 V , it would be better to use a precise 1 volt supply and adjust for $\mathrm{V}_{\text {OUT }}=1 \mathrm{~V}$. For other scale factors and/or starting points, different values for R_{2} and R REF will be needed, but the same basic procedure applies.
*See A053 for an automatic offset nulling circuit.

[^220]

0313-16
Figure 4: ICL8049 Offset and Scale Factor Adjustment

APPLICATIONS INFORMATION
 ICL8048 Scale Factor Adjustment

The scale factor adjustment procedures outlined previously for the ICL8048 and ICL8049, are primarily directed towards setting up 1 volt ($\Delta \mathrm{V}_{\text {OUT }}$) per decade ($\Delta \mathrm{I}_{\mathrm{IN}}$ or $\Delta \mathrm{V}_{\mathrm{IN}}$) for the log amp, or one decade ($\Delta V_{\text {OUT }}$) per volt ($\Delta \mathrm{V}_{\mathrm{IN}}$) for the antilog amp.
This corresponds to $\mathrm{K}=1$ in the respective transfer functions:
Log Amp: $V_{\text {OUT }}=-K \log _{10}\left[\frac{l_{\text {IN }}}{I_{\text {REF }}}\right]$
Antilog Amp: $V_{\text {OUT }}=R_{\text {OUT }} I_{\text {REF }} 10 \frac{-V_{\text {IN }}}{K}$
By adjusting R_{2} (Figure 3 and Figure 4) the scale factor " K " in equation 9 and 10 can be varied. The effect of changing K is shown graphically in Figure 5 for the log amp, and Figure 6 for the antilog amp. The nominal value of R_{2} required to give a specific value of K can be determined from equation 11. It should be remembered that R_{1} has a $\pm 20 \%$ tolerance in absolute value, so that allowance shall be made for adjusting the nominal value of R_{2} by $\pm 20 \%$.

$$
\begin{equation*}
\mathrm{R}_{2}=\frac{941}{(\mathrm{~K}-.059)} \Omega \tag{11}
\end{equation*}
$$

Frequency Compensation

Although the op-amps in both the ICL8048 and the ICL8049 are compensated for unity gain, some additional frequency compensation is required. This is because the log transistors in the feedback loop add to the loop gain. In the 8048, 150pF should be connected between Pins 2 and 7 (Figure 3). In the 8049, 200pF between Pins 3 and 7 is recommended (Figure 4).

EFFECT OF VARYING "K" ON THE ANTILOG AMPLIFIER

0313-17
Figure 5

[^221]EFFECT OF VARYING "K" ON THE LOG AMPLIFIER

0313-18
Figure 6

Error Analysis

Performing a meaningful error analysis of a circuit containing log and antilog amplifiers is more complex than dealing with a similar circuit involving only op-amps. In this data sheet every effort has been made to simplify the analysis task, without in any way compromising the validity of the resultant numbers.

The key difference in making error calculations in log/antilog amps, compared with op-amps, is that the gain of the former is a function of the input signal level. Thus, it is necessary, when referring errors from output to input, or vice versa, to check the input voltage level, then determine the gain of the circuit by referring to the graphs given in the Typical Performance Characteristics section.

The various error terms in the log amplifier, the ICL8048, are Referred To the Output (RTO) of the device. The error terms in the antilog amplifier, the ICL8049, are Referred To the Input (RTI) of the device. The errors are expressed in this way because in the majority of systems a number of log amps interface with an antilog amp, as shown in Figure 7.

It is very straightforward to estimate the system error at node (A) by taking the square root of the sum-of-the squares of the errors of each contributing block.

$$
\text { Total Error }=\sqrt{x^{2}+y^{2}+z^{2}} \text { at }(A)
$$

If required, this error can be referred to the system output through the voltage gain of the antilog circuit, using the voltage gain versus input voltage plot.

The numerical values of x, y, and z in the above equation are obtained from the maximum error voltage plots. For example, with the ICL8048BC, the maximum error at the output is 30 mV at $25^{\circ} \mathrm{C}$. This means that the measured output will be within 30 mV of the theoretical transfer function, provided the unit has been adjusted per the procedures described previously. Figure 8 illustrates this point.
To determine the maximum error over the operating temperature range, the 0 to $70^{\circ} \mathrm{C}$ absolute error values given in the table of electrical characteristics should be used. For intermediate temperatures, assume a linear increase in the error between the $25^{\circ} \mathrm{C}$ value and the $70^{\circ} \mathrm{C}$ value.
For the antilog amplifier, the only difference is that the error refers to the input, i.e., the horizontal axis. It will be noticed that the maximum error voltage of the ICL8049, over the temperature range, is strongly dependent on the input voltage. This is because the output amplifier, A_{2}, has an offset voltage drift which is directly transmitted to the output. When this error is referred to the input, it must be divided by the voltage gain, which is input voltage dependent. At $\mathrm{V}_{\mathrm{IN}}=3 \mathrm{~V}$, for example, errors at the output are multiplied by $1 / .023(=43.5)$ when referred to the input.

TRANSFER FUNCTION FOR CURRENT INPUTS

It is important to note that both the ICL8048 and the ICL8049 require positive values of $l_{\text {REF }}$, and the input (ICL8048) or output (ICL8049) currents (or voltages) respectively must also be positive. Application of negative l_{N} to the ICL8048 or negative IREF to either circuit will cause malfunction, and if maintained for long periods, would lead to device degradation. Some protection can be provided by placing a diode between pin 7 and ground.

SETTING UP THE REFERENCE CURRENT

In both the ICL8048 and the ICL8049 the input current reference pin (lREF) is not a true virtual ground. For the ICL8048, a fraction of the output voltage is seen on Pin 16 (Figure 3). This does not constitute an appreciable error provided $\mathrm{V}_{\text {REF }}$ is much greater than this voltage. A 10 V or 15 V reference satisfies this condition. For the ICL8049, a fraction of the input voltage appears on Pin 3 (Figure 4), placing a similar restraint on the value of $\mathrm{V}_{\text {REF }}$.

Alternatively, I IREF can be provided from a true current source. One method of implementing such a current source is shown in Figure 9.

ICL8048/ICL8049

LOG OF RATIO CIRCUIT, DIVISION

The 8048 may be used to generate the \log of a ratio by modulating the l ${ }_{\text {REF }}$ input. The transfer function remains the same, as defined by equation 9 :
$V_{\text {OUT }}=-K \log _{10}\left[\frac{I_{\text {IN }}}{I_{\text {REF }}}\right]$
Clearly it is possible to perform division using just one ICL8048, followed by an ICL8049. For multiplication, it is generally necessary to use two log amps, summing their outputs into an antilog amp.

To avoid the problems caused by the I REF input not being a true virtual ground (discussed in the previous section), the circuit of Figure 9 is again recommended if the I REF input is to be modulated.

DEFINITION OF TERMS

In the definitions which follow, it will be noted that the various error terms are referred to the output of the log amp, and to the input of the antilog amp. The reason for this is explained on the previous page.

DYNAMIC RANGE The dynamic range of the ICL8048 refers to the range of input voltages or currents over which the device is guaranteed to operate. For the ICL8049 the dynamic range refers to the range of output voltage over which the device is guaranteed to operate.

ERROR, ABSOLUTE VALUE The absolute error is a measure of the deviation from the theoretical transfer function, after performing the offset and scale factor adjustments as outlined, (ICL8048) or (ICL8049). It is expressed in mV and referred to the linear axis of the transfer function plot. Thus, in the case of the ICL8048, it is a measure of the deviation from the theoretical output voltage for a given input current or voltage. For the ICL8049 it is a measure of the deviation from the theoretical input voltage required to generate a specific output voltage.
The absolute error specification is guaranteed over the dynamic range.

ERROR, \% OF FULL SCALE The error as a percentage of full scale can be obtained from the following relationship:

Error, \% of Full Scale $=\frac{100 \times \text { Error, absolute value }}{\text { Full Scale Output Voltage }}$

TEMPERATURE COEFFICIENT OF VOUT OR VIN For the ICL8048 the temperature coefficient refers to the drift with temperature of $\mathrm{V}_{\text {OUT }}$ for a constant input current.

For the ICL8049 it is the temperature drift of the input voltage required to hold a constant value of $V_{\text {OUT }}$.

POWER SUPPLY REJECTION RATIO The ratio of the voltage change in the linear axis of the transfer function (VOUT for the ICL8048, $\mathrm{V}_{\text {IN }}$ for the ICL8049) to the change in the supply voltage, assuming that the log axis is held constant.

WIDEBAND NOISE For the ICL8048, this is the noise occurring at the output under the specified conditions. In the case of the ICL8049, the noise is referred to the input.

SCALE FACTOR For the log amp, the scale factor (K) is the voltage change at the output for a decade (i. e. 10:1) change at the input. For the antilog amp, the scale factor is the voltage change required at the input to cause a one decade change at the output. See equations 9 and 10.

APPLICATION NOTES

For further applications assistance, see
A007 "The ICL8048/8049 Monolithic Log-Antilog Amplifiers"

ICL8069

Low Voltage Reference

GENERAL DESCRIPTION

The ICL8069 is a 1.2 V temperature compensated voltage reference. It uses the band-gap principle to achieve excellent stability and low noise at reverse currents down to $50 \mu \mathrm{~A}$. Applications include analog-to-digital converters, dig-ital-to-analog converters, threshold detectors, and voltage regulators. Its low power consumption makes it especially suitable for battery operated equipment.

FEATURES

- Low Blas Current - 50 $\mathbf{~ A A}$ Min
- Low Dynamic Impedance
- Low Reverse Voltage
- Low Cost

ORDERING INFORMATION

Order P/N TO-92	Order P/N TO-52	Temperature Range	Max. Temp. Coeff. of V ${ }^{\text {REF }}$
ICL8069CCZR	ICL8069CCSQ	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$0.005 \% /{ }^{\circ} \mathrm{C}$
-	ICL8069CMSQ	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$0.005 \% /{ }^{\circ} \mathrm{C}$
ICL8089DCZR	ICL8069DCSQ	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$0.01 \% /{ }^{\circ} \mathrm{C}$
-	ICL8069DMSQ	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$0.01 \% /{ }^{\circ} \mathrm{C}$

**Parameter Min/Max Limits guaranteed at $25^{\circ} \mathrm{C}$ only for DICE orders.

TO-52

0327-4

Figure 2: Pin Configurations
absolute maximum ratings
Reverse Voltage . See Note 2
Forward Current 10mA
Reverse Current . 10mA
Power Dissipation Limited by max
forward/reverse current

Storage Temperature $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ Operating Temperature
ICL8069C
$.0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
ICL8069M $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec)
$300^{\circ} \mathrm{C}$

NOTE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
ELECTRICAL CHARACTERISTICS $\quad\left(T_{A}=25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

Characteristics	Test Conditions	Min	Typ	Max	Units
Reverse breakdown Voltage	$\mathrm{I}_{\mathrm{R}}=500 \mu \mathrm{~A}$	1.20	1.23	1.25	V
Reverse breakdown Voltage change	$50 \mu \mathrm{~A} \leq \mathrm{I}_{\mathrm{R}} \leq 5 \mathrm{~mA}$		15	20	mV
Reverse dynamic impedance	$\begin{aligned} & I_{R}=50 \mu \mathrm{~A} \\ & I_{R}=500 \mu \mathrm{~A} \end{aligned}$		$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 2 \\ & 2 \end{aligned}$	Ω
Forward Voltage Drop	$I_{F}=500 \mu \mathrm{~A}$		0.7	1	V
RMS Noise Voltage	$\begin{aligned} & 10 \mathrm{~Hz} \leq \mathrm{f} \leq 10 \mathrm{kHz} \\ & \mathrm{I}_{\mathrm{R}}=500 \mu \mathrm{~A} \end{aligned}$		5		$\mu \mathrm{V}$
Long Term Stability	$\begin{aligned} & \mathrm{I}_{\mathrm{R}}=4.75 \mathrm{~mA} \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$		1		ppm/kHR
Breakdown voltage Temperature coefficient ICL8069C ICL8069D	$\left\{\begin{array}{l} I_{R}=500 \mu \mathrm{~A} \\ T_{A}=\text { operating } \\ \text { Temperature range } \\ \text { (Note 3) } \end{array}\right.$			$\begin{gathered} .005 \\ .01 \end{gathered}$	\%/ ${ }^{\circ} \mathrm{C}$
Reverse Current Range		0.050		5	mA

TYPICAL PERFORMANCE CHARACTERISTICS

voltage change as a FUNCTION OF REVERSE CURRENT

0327-6
reverse voltage as a FUNCTION OF CURRENT

REVERSE VOLTAGE AS A FUNCTION OF TEMPERATURE

0327-7
Notes: 1) If circuit strays in excess of 200 pF are anticipated, a $4.7 \mu \mathrm{~F}$ shunt capacitor will ensure stability under all operating conditions.
2) In normal use, the reverse voltage cannot exceed the reference voltage. However when plugging units into a powered-up test fixture, an instantaneous voltage equal to the compliance of the test circuit will be seen. This should not exceed 20 V .
3) For the military part, measurements are made at $25^{\circ} \mathrm{C},-55^{\circ} \mathrm{C}$, and $+125^{\circ} \mathrm{C}$. The unit is then classified as a function of the worst case $\mathrm{T} . \mathrm{C}$. from $25^{\circ} \mathrm{C}$ to $-55^{\circ} \mathrm{C}$, or $25^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$.

[^222]
Section 7 - Operational Amplifiers

ICH8500/A 7-1
ICL7600 7-7
ICL7601 7-7
ICL7605 7-19
ICL7606 7-19
ICL76XX 7-31
ICL7650 7-46
ICL7650S 7-54
ICL7652 7-64
ICL7652S 7-72
ICL8007 7-82
ICL8021 7-86
ICL8023 7-86
ICL8043 7-91
ICL8063 7-99
LM4250 7-108

GENERAL DESCRIPTION

The ICH8500 and ICH8500A are hybrid circuits designed for ultra low input bias current operational amplifier applications. They are ideally suited for analog and electrometer applications where high input resistance and low input current are of prime importance.

Functionally, they are pin for pin identical to the popular 741 monolithic amplifier. These amplifiers are unconditionally stable and the input offset voltage can be adjusted to zero with an external $20 \mathrm{k} \Omega$ potentiometer. The input bias current for the inverting and noninverting inputs is 0.1 pA maximum for the ICH8500, and 0.01pA maximum for the ICH8500A.

Pin 8 is connected to the case. This permits the designer to operate the case at any desired potential. This is the key to achieving the ultra low input currents associated with these two amplifiers. Forcing the case to the same potential as the inputs eliminates current flow between the case and the input pins, and leakage currents that may have otherwise existed between any of the other pins and the inputs are intercepted by the case.

0303-1
Figure 1: Functional Diagram

FEATURES

- Input Diode Protection
- Input Blas Current Less Than 0.01pA (8500A)
- No Frequency Compensation Required
- Offset Voltage Null Capability
- Short Circuit Protection
- Low Power Consumption

APPLICATIONS

- Femto Ammeter
- Electrometers
- Long Time Integrators
- Flame Detectors
- pH Meters
- Proximity Detector
- Sample and Hold Circuits

ORDERING INFORMATION

[^223]
ABSOLUTE MAXIMUM RATINGS

Supply Voltage . $\pm 18 \mathrm{~V}$ Internal Power Dissipation (1) . 500mW
Differential Voltage . $\pm 0.5 \mathrm{~V}$
Storage Temperature $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Operating Temperature $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10sec) 300³
Output Short Circuit Duration
Indefinite

NOTE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Note: 1. Rating applies for ambient temperature to $+70^{\circ} \mathrm{C}$
ELECTRICAL CHARACTERISTICS $\quad\left(T_{A}=25^{\circ} \mathrm{C}\right.$ unless otherwise specified, $\mathrm{V}_{\text {SUPPLY }}= \pm 15 \mathrm{~V}$)

Symbol	Characteristics	Test Conditions	ICH8500			ICH8500A			Units
			Min	Typ	Max	Min	Typ	Max	
IBIAS	Input Bias Current (Inverting and Non-Inverting)	Case at same potential as inputs			± 0.1			± 0.01	pA
V OS	Input Offset Voitage				± 75			± 50	mV
	Offset Voltage Adjustment Range	20k Ω Potentiometer		± 50			± 50		mV
$\Delta \mathrm{V}_{\text {OS }} / \Delta \mathrm{T}$	Change in Input Offset Voltage Over Temperature	$\begin{aligned} & +25 \text { to }+85^{\circ} \mathrm{C} \\ & -25 \text { to }+25^{\circ} \mathrm{C} \\ & \hline \end{aligned}$		± 200			± 100		mV
$\Delta \mathrm{V}_{\text {OS }} / \Delta \mathrm{t}$	Long Term Input Offset Voltage Stability	At $25^{\circ} \mathrm{C}$		± 3.0			± 3.0		mV
CMRR	Common Mode Rejection Ratio	± 5 volts common mode voltage		75			75		dB
$\Delta \mathrm{V}_{\mathrm{O}}$	Output Voltage Swing	$R_{L} \geq 10 \mathrm{k} \Omega$	± 11			± 11			V
CMVR	Common Mode Voltage Range		± 10			± 10			V
Avol	Large Signal Voltage Gain		20,000	10^{5}		20,000	105		-
C_{fb}	Feedback Capacitance	Case guarded		0.1			0.1		pF
SR	Slew Rate	$\mathrm{R}_{\mathrm{L}} \geq 2 \mathrm{k} \Omega$		0.5			0.5		$\mathrm{V} / \mu \mathrm{s}$
$\mathrm{ClN}_{\mathrm{IN}}$	Input Capacitance	Case guarded		0.7			0.7		pF
$\mathrm{CIN}^{\text {N }}$	Input Capacitance	Case grounded		1.5			1.5		pF

VOLTAGE OFFSET NULL CIRCUIT

VOLTAGE FOLLOWER

0303-4

LOW LEVEL CURRENT MEASURING CIRCUIT

0303-5
0303-3
NOTE: Adjust input offset voltage to $\mathrm{OV} \pm 10 \mu \mathrm{~V}$ before measuring leakage.
Figure 3: Circuit Notes

TYPICAL PERFORMANCE CHARACTERISTICS

OPEN LOOP VOLTAGE GAIN vs.
FREQUENCY

0303-6
INPUT OFFSET VOLTAGE vs. SUPPLY VOLTAGE

0303-9

0303-12

INPUT VOLTAGE RANGE vs. SUPPLY VOLTAGE

0303-7
\pm POWER SUPPLY REJECTION RATIO vs. SUPPLY VOLTAGE

0303-10

0303-13

COMMON MODE REJECTION RATIO V8. SUPPLY VOLTAGE

0303-8
OUTPUT VOLTAGE SWING vs. SUPPLY VOLTAGE

0303-11
POWER CONSUMPTION vs. SUPPLY VOLTAGE

0303-14

[^224]
APPLICATIONS

The Pico Ammeter

A very sensitive pico ammeter can be constructed with the ICH8500. The basic circuit (illustrated in Figure 4) employs the amplifier in the inverting or current summing mode.

Care must be taken to eliminate any stray currents from flowing into the current summing node. This can be accomplished by forcing all points surrounding the input to the same potential as the input. In this case the potential of the input is at virtual ground, or OV. Therefore, the case of the device is grounded to intercept any stray leakage currents
that may otherwise exist between the $\pm 15 \mathrm{~V}$ input terminals and the inverting input summing junctions. Feedback capacitance* should be kept to a minimum in order to maximize the response time of the circuit to step function input currents. The time constant of the circuit is approximately the product of the feedback capacitance C_{fb} times the feedback resistor R_{fb}. For instance, the time constant of the circuit in Figure 4 is 1 sec if $\mathrm{C}_{\mathrm{fb}}=1 \mathrm{pF}$. Thus, it takes approximately 5 sec (5 time constants) for the circuit to stabilize to within 1% of its final output voltage after a step function of input current has been applied. C_{fb} of less than 0.2 to 0.3 pF can be achieved with proper circuit layout. A practical pico ammeter circuit is illustrated in Figure 5.

0303-15
Figure 4: Basic Pico Ammeter Circuit

0303-16
Figure 5: Pico Ammeter Circuit

[^225]

The internal diodes CR1 and CR2 together with external resistor R1 protect the input stage of the amplifier from voltage transients. The two diodes contribute no error currents, since under normal operating conditions there is no voltage across them.
*Feedback capacitance is the capacitance between the output and the inverting input terminal of the amplifier.

Sample and Hold Circuit

The basic principle of this circuit (Figure 6) is to rapidly charge a capacitor $\mathrm{C}_{\mathrm{S} \text { то }}$ to a voltage equal to an input signal. The input signal is then electrically disconnected from the capacitor with the charge still remaining on $\mathrm{C}_{\text {STO }}$. Since $\mathrm{C}_{\text {Sto }}$ is in the negative feedback loop of the operational amplifier, the output voltage of the amplifier is equal to the voltage across the capacitor. Ideally, the voltage across $\mathrm{C}_{\text {STO }}$ should remain constant, causing the output of the amplifier to remain constant as well. However, the voltage across $\mathrm{C}_{\text {STO }}$ will decay at a rate proportional to the current being injected or taken out of the current summing node of the amplifier. This current can come from four sources: leakage resistance of C_{ST}, leakage current due to the solid state switch SW2, currents due to high resistance paths on the circuit fixture, and most important, bias current of the operational amplifier. If the ICH8500A operational amplifier is employed, this bias current is almost non-existant (<0.01 pA). Note that the voltages on the source, drain and
gate of switch SW2 are zero or near zero when the circuit is in the hold mode. Careful construction will eliminate stray resistance paths and capacitor resistance can be eliminated if a quality capacitor is selected. The net result is a low drift sample and hold circuit.

As an example, suppose the leakage current due to all sources flowing into the current summing node of the sample and hold circuit is 100 pA . The rate of change of the voltage across the $0.01 \mu \mathrm{~F}$ storage capacitor is then $10 \mathrm{mV} /$ sec. In contrast, if an operational amplifier which exhibited an input bias current of 1 nA were employed, the rate of change of the voltage across $\mathrm{C}_{\text {STO }}$ would be $0.1 \mathrm{~V} / \mathrm{sec}$. An error build up such as this could not be tolerated in most applications.

Waveforms illustrating the operation of the sample and hold circuit are shown in Figure 7.

The Gated Integrator

The circuit in Figure 6 can double as an integrator. In this application the input voltage is applied to the integrator input terminal. The time constant of the circuit is the product of R1 and Csto. Because of the low leakage current associated with the ICH8500 and ICH8500A, very large values of R1 (Up to 10^{12} ohms) can be employed. This permits the use of small values of integrating capacitor ($\mathrm{C}_{\mathrm{STO}}$) in applications that require long time delays. Waveforms for the integrator circuit are illustrated in Figure 8.

Figure 8: Gated Integrator Waveforms

ICL7600/ICL7601 Commutating Auto-Zero (CAZ) Operational Amplifier

GENERAL DESCRIPTION

The ICL7600/ICL7601 commutating auto-zero (CAZ) operational amplifiers are designed to replace almost any of today's hybrid or monolithic ultra-low offset op amps, and will provide almost three orders of magnitude reduction in input offset voltage compared with conventional device designs. This is achieved through Intersil's CAZ amp principle, an entirely new approach to low-frequency operational amplifier design.

The key feature of the CAZ principle is automatic compensation for long-term drift phenomena and temperature effects. Two internal op amps are connected so that when one amplifier is processing an input signal the other is maintained in an "auto-zero" mode. The ICL7600/ICL7601 contains all of the circuitry required for system operation, including an oscillator, a counter, level translators, analog switches and operational amplifiers. Only two auto-zero capacitors are needed for complete operational amplifier function. Control of the oscillator and counter section is provided through the OSC and DR (division ratio) terminals. Internal biasing of the two on-chip op amps is programmable through a three-voltage-level terminal designated BIAS.

The ICL7600 is internally-compensated and is intended for applications which require voltage gains from unity through 20. The uncompensated ICL7601 is intended for those situations which require voltage gains of greater than 20. Major advantage of the ICL7601 over the ICL7600 at high gain settings is the reduction in commutation noise and subsequent greater accuracy.
Minimum periodic adjustments and extremely low offset voltage and temperature coefficients make the CAZ operational amplifiers very desirable for operation in adverse environments (temperature, humidity, toxic or radioactive) where equipment service is difficult. Since the device will auto-zero its internal offset errors, no adjustment is required other than that of gain, which is established by the external resistors.

FEATURES

- Exceptionally low input offset voltage- $5 \mu \mathrm{~V}$
- Low long-term input offset voltage drift$0.2 \mu \mathrm{~V} /$ year
- Low input offset voltage temperature drift- $\mathbf{0 . 0 0 5}$ $\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
- Low DC input blas current-300 pA
- Low DC input offset bias current-150 pA
- Wide common mode and differential input voltage ranges
- Excellent low supply voltage operation-Down to $\pm 2 \mathrm{~V}$
- Static-protected Inputs-no special handling required
- Fabricated using proprietary MAXCMOSTM technology
- Compensated (ICL7600) or uncompensated (ICL7601) versions

ORDERING INFORMATION

Part Number	Temperature Range	Package
ICL7600IJD	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	14 Lead CERDIP
ICL7600MJD	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	14 Lead CERDIP
ICL7601IJD	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	14 Lead CERDIP
ICL7601MJD	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	14 Lead CERDIP

ABSOLUTE MAXIMUM RATINGS

Total Supply Voltage (sum of both positive and negative supply voltages, V^{+}and V^{-}) 18 Volts
DR Input Voltage ($\mathrm{V}^{+}+0.3$) to ($\mathrm{V}^{+}-\delta$) Volts
Input Voltage $\left(\mathrm{C}_{1}, \mathrm{C}_{2}+\right.$ INPUT, -INPUT, BIAS, OSC (Note 1) $\ldots \ldots \ldots \ldots . .\left(V^{+}+0.3\right)$ to $\left(V^{-}-0.3\right)$ Volts
Differential Input Voltage (Note 1) $\pm\left(\mathrm{V}^{+}+0.3\right)$ to $\left(\mathrm{V}^{-}-0.3\right)$ Duration of Output Short Circuit (Note 2) Unlimited
Continuous Total Power Dissipation at or below $+25^{\circ} \mathrm{C}$ free air temperature (Note 3)
CERDIP Package \qquad
\qquad .500 mW

Operating Temperature Range
ICL760XI $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
ICL760XM . $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Storage Temperature Range -55 to $+150^{\circ} \mathrm{C}$
Lead Temperature (soldering, 60 seconds) $\ldots+300^{\circ} \mathrm{C}$
NOTE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

NOTE 1: An SCR structure is inherent in the CMOS process used in the fabrication of these devices. If voltages in excess of $\left(\mathrm{V}^{+}+0.3\right)$ to $\left(\mathrm{V}^{-}-0.3\right)$ volts are connected to either inputs or outputs, destructive latchup can occur. For this reason it is recommended that no inputs from sources not on the same power supply or supplies be applied before the ICL7600/ICL7601 supplies are established, and that if multiple supplies are used the ICL7600/ICL7601 supplies be activated first. No restrictions are placed on the differential input voltages on either the inverting or non-inverting inputs, so long as these voltages do not exceed the power supply voltages by more than 0.3 V .
2: Outputs may be shorted to ground (GND) or to either supply $\left(\mathrm{V}^{+}, \mathrm{V}^{-}\right)$. Temperature and/or supply voltages must be limited to insure that the dissipation rating is not exceeded.

3: For operation above $25^{\circ} \mathrm{C}$ free-air temperature, derate $4 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ from 500 mW for CERDIP and $3 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ from 375 mW for plastic.

Figure 2: Functional Diagram

Figure 3: Symbol

ELECTRICAL CHARACTERISTICS
Test Conditions： $\mathrm{V}^{+}=+5$ volts， $\mathrm{V}^{-}=-5$ volts， $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ ， DR pin connected to $\mathrm{V}^{+}\left(\mathrm{fcOM} \cong 160 \mathrm{~Hz}\right.$ ）， $\mathrm{C}_{1}=\mathrm{C}_{2}=1 \mu \mathrm{~F}$ ， Test Circuit 1，unless otherwise specified．

Symbol	Parameter	Test Conditions		Min	Typ	Max	Units
$\mathrm{V}_{\text {OS }}$	Input Offset Voltage	$\begin{aligned} & R_{S} \leq 1 \mathrm{k} \Omega \\ & C_{1}=C_{2}=1 \mu \mathrm{~F} \end{aligned}$ MIL version over temp．	Low Bias Setting Med Bias Setting High Bias Setting Med Bias Setting		$\begin{aligned} & \pm 2 \\ & \pm 5 \\ & \pm 7 \end{aligned}$	$\begin{aligned} & \pm 10 \\ & \pm 40 \end{aligned}$	$\mu \mathrm{V}$ $\mu \mathrm{V}$ $\mu \mathrm{V}$ $\mu \mathrm{V}$
Vos Time	Long Term Input Offset Voltage Stability	Low or Med Bias Settings			0.2		$\mu \mathrm{V} / \mathrm{year}$
TCVos	Average Input Offset Voltage Temperature Coefficient（Note 4）	Low or Med Bias Settings	$\begin{aligned} & -55^{\circ} \mathrm{C}>\mathrm{T}_{\mathrm{A}}>+25^{\circ} \mathrm{C} \\ & +25^{\circ} \mathrm{C}>\mathrm{T}_{\mathrm{A}}>+85^{\circ} \mathrm{C} \\ & +25^{\circ} \mathrm{C}>\mathrm{T}_{\mathrm{A}}>+125^{\circ} \mathrm{C} \\ & \hline \end{aligned}$		$\begin{array}{\|c\|} \hline 0.005 \\ 0.01 \\ 0.05 \\ \hline \end{array}$	$\begin{aligned} & 0.2 \\ & 0.2 \\ & 0.2 \end{aligned}$	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$ $\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$ $\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
θ_{n}	Noise Voltage（RMS）	Band Width 0.1 to 10 Hz $\mathrm{R}_{\mathrm{S}} \leq 1 \mathrm{k} \Omega$	Low Bias Med Bias High Bias		$\begin{aligned} & 0.8 \\ & 0.8 \\ & 1.0 \end{aligned}$		$\begin{aligned} & \mu V \\ & \mu V \\ & \mu V \end{aligned}$
$\theta_{n p-p}$	Equivalent Input Noise Voltage Peak－to－peak	Band Width 0.1 to 10 Hz $\mathrm{R}_{\mathrm{S}} \leq 1 \mathrm{k} \Omega$	Low Bias Med Bias High Bias		$\begin{aligned} & 4.0 \\ & 4.0 \\ & 5.0 \\ & \hline \end{aligned}$		$\begin{aligned} & \mu V \\ & \mu V \\ & \mu V \end{aligned}$
$e_{n 10}$	Spot equivalent Noise voltage	$\mathrm{f}=10 \mathrm{~Hz} \quad$ Band Width 1 Hz				700	$\mathrm{nV} / \sqrt{ } \mathrm{Hz}$
in^{10}	Spot equivalent Noise Current	$\mathrm{f}=10 \mathrm{~Hz} \quad$ Band Width 1 Hz				0.1	$\mathrm{pA} / \sqrt{ } \mathrm{Hz}$
DIF VIN	Differential Input Voltage Range			V－－0．3	to	$\mathrm{V}++0.3$	V
CMVR	Common Mode Input Range	Low Bias Med Bias High Bias		$\begin{aligned} & -4.2 \\ & -4.0 \\ & -3.5 \end{aligned}$		$\begin{aligned} & +4.2 \\ & +4.0 \\ & +3.5 \end{aligned}$	$\begin{aligned} & V \\ & v \\ & v \end{aligned}$
CMRR	Common Mode Rejection Ratio	Any Bias Setting			88		dB
PSRR	Power Supply Rejection Ratio	Any Bias Setting			110		dB
${ }^{\text {INIB }}$	Non Inverting Input Bias Current	Any Bias Setting， （Includes charge injection currents）			0.300	3	nA
IIB	Inverting Input Bias Current	Any Bias Setting， （Includes charge injection currents）			0.150	1.5	nA
A_{V}	Voltage Gain	$R_{L}=100 \mathrm{k} \Omega$	Low Bias Med Bias High Bias	$\begin{aligned} & 90 \\ & 90 \\ & 80 \\ & \hline \end{aligned}$	105 105 100		dB dB dB
VOUT	Maximum Output Voltage Swing	$\begin{aligned} & R_{L}=1 \mathrm{M} \Omega \\ & R_{L}=100 \mathrm{k} \Omega \\ & R_{\mathrm{L}}=10 \mathrm{k} \Omega \end{aligned}$	Positive Swing Negative Swing	＋ 4.4	$\begin{aligned} & \pm 4.9 \\ & \pm 4.8 \end{aligned}$	－4．5	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$

[^226]| Test Conditions: $\mathrm{V}^{+}=+5$ volts, $\mathrm{V}^{-}=-5$ volts, $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, DR pin connected to $\mathrm{V}^{+}\left(\mathrm{f} \mathrm{COM} \cong 160 \mathrm{~Hz}\right.$), $\mathrm{C}_{1}=\mathrm{C}_{2}=1 \mu \mathrm{~F}$, Test Circuit 1, unless otherwise specified. | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Symbol | Parameter | | onditions | Min | Typ | Max | Units |
| SR | Large Signal Slew Rate | Unity
 Gain
 ICL7600 | High Bias Setting
 Med Bias Setting
 Low Bias Setting | | $\begin{aligned} & 1.8 \\ & 0.5 \\ & 0.2 \end{aligned}$ | | $\begin{aligned} & \mathrm{V} / \mu \mathrm{s} \\ & \mathrm{~V} / \mu \mathrm{s} \\ & \mathrm{~V} / \mu \mathrm{s} \end{aligned}$ |
| GBW | Unity Gain Band Width | ICL7600
 Test Circuit 2 | High Bias Setting
 Med Bias Setting
 Low Bias Setting | | $\begin{gathered} 1.2 \\ 0.3 \\ 0.12 \end{gathered}$ | | $\begin{aligned} & \mathrm{MHz} \\ & \mathrm{MHz} \\ & \mathrm{MHz} \end{aligned}$ |
| GBW | Extrapolated Unity Gain Band Width | ICL7601 | High Bias Setting Med Bias Setting Low Bias Setting | | $\begin{aligned} & 1.8 \\ & 0.4 \\ & 0.2 \end{aligned}$ | | $\begin{aligned} & \mathrm{MHz} \\ & \mathrm{MHz} \\ & \mathrm{MHz} \end{aligned}$ |
| libiAs | BIAS Terminal Input Current | $\mathrm{V}-\mathrm{-0.3} \leq$ | + +0.3 volt | | ± 30 | | pA |
| $\begin{aligned} & V_{B H} \\ & V_{B M} \\ & V_{B L} \\ & \hline \end{aligned}$ | BIAS Voltage to Define Current Modes | Low Bias Set
 Med Bias Set High Bias Set | | $\begin{aligned} & v^{+}-0.3 \\ & v^{-}+1.4 \\ & v^{-}-0.3 \end{aligned}$ | V+
 GND V- | $\begin{aligned} & V^{+}+0.3 \\ & V^{+}-1.4 \\ & V^{-}+0.3 \end{aligned}$ | V $\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$ |
| ldR | DR (Division Ratio) Input Current | $\mathrm{V}+-8.0 \mathrm{~V} \leq$ | $V++0.3 V$ | | ± 30 | | pA |
| $\begin{aligned} & V_{\text {DRH }} \\ & V_{\text {DRL }} \end{aligned}$ | DR Voltage to define oscillator division ratio | Internal oscill
 Internal oscill | sion ratio 32
 sion ratio 2 | $\begin{aligned} & v+-0.3 \\ & v+-8 \end{aligned}$ | | $\begin{aligned} & \mathrm{V}^{+}+0.3 \\ & \mathrm{~V}+-1.4 \end{aligned}$ | V
 V |
| fCOM | Nominal Commutation Frequency | $\mathrm{C}_{\text {OSC }}=0 \mathrm{pF}$ | DR Connected to V ${ }^{+}$ DR Connected to GND | | $\begin{gathered} 160 \\ 2560 \end{gathered}$ | | $\begin{aligned} & \mathrm{Hz} \\ & \mathrm{~Hz} \end{aligned}$ |
| Is | Supply Current | High Bias Set Medium Bias Low Bias Set | | | $\begin{gathered} 7 \\ 1.7 \\ 0.6 \end{gathered}$ | $\begin{gathered} 15 \\ 5 \\ 1.5 \end{gathered}$ | $\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \\ & \mathrm{~mA} \end{aligned}$ |
| $V^{+}-V^{-}$ | Operating Supply Voltage Range | High Bias Set Medium or Low | Setting | $\begin{aligned} & 5 \\ & 4 \end{aligned}$ | | $\begin{aligned} & 16 \\ & 16 \\ & \hline \end{aligned}$ | $\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$ |

NOTE 4: For design only, not tested.

[^227]

Test Circuit 1: Voltage Gain $=\mathbf{1 0 0 0}$

0105-6

$$
\text { Test Circuit 3: Voltage Gain = } 10
$$

Test Circuit 4: DC to $\mathbf{1 0 H z}$ Unity Gain Low Pass Fliter
Figure 4: Test Circuits

INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

NOTE: All typical values have been characterized but are not tested.

TYPICAL PERFORMANCE CHARACTERISTICS

INPUT OFFSET VOLTAGE AS A FUNCTION OF AMBIENT TEMPERATURE

0105-8

INPUT OFFSET VOLTAGE AND PK TO PK NOISE
VOLTAGE AS A FUNCTION OF SUPPLY VOLTAGES

0105-9

INPUT OFFSET VOLTAGE AND PK TO PK NOISE

VOLTAGE AS A FUNCTION OF

 COMMUTATION FREQUENCY$$
\left(C_{6} C_{2}=0.1 \mu F\right)
$$

0105-11

INPUT OFFSET VOLTAGE AND
PK TO PK NOISE AS A FUNCTION OF SUPPLY VOLTAGE ($\mathbf{V}^{+}-\mathbf{V}-$)

INPUT OFFSET VOLTAGE AND PK TO PK NOISE
VOLTAGE AS A FUNCTION OF COMMUNTATION FREQUENCY
($\mathrm{C}_{5} \mathrm{C}_{2}=1 \mu \mathrm{~F}$)

0105-10

0105-12

INPUT CURRENT AS A FUNCTION OF COMMUTATION FREQUENCY

MAXIMUM OUTPUT VOLTAGE AS
A FUNCTION OF OUTPUT LOAD RESISTANCE

SUPPLY CURRENT OF SUPPLY VOLTAGE

0105-15

0105-16

OSCILLATOR FREQUENCY AS A FUNCTION OF EXTERNAL CAPACITIVE LOADING

0105-17

FREQUENCY RESPONSE
OF THE 10 Hz LOW PASS FILTER USED TO MEASURE NOISE (TEST CIRCUIT 4).

0105-19

DETAILED DESCRIPTION

CAZ Operational Amplifier Operation

The CAZ operational amplifier functions on principles which are very different from those encountered in conventional op amp types. An important advantage of the ICL7600/ICL7601 devices is the ability to self-compensate for internal error voltages, whether they are steady-state, related to temperature or supply voltage, or variable in nature over a long term.
Operation of the ICL7600/ICL7601 CAZ operational amplifier is demonstrated in Figure 5. The basic amplifier configuration represented by the large triangles has one more input than does a regular op amp-the AZ, or auto-zero input. The voltage at the $A Z$ input is that to which each of the internal op amps will be auto-zeroed. In Mode A, op amp \#2 is connected into a unity gain mode through on-chip analog switches, and charges the external capacitor C_{2} to a

TOTAL EQUIVALENT INPUT OFFSET VOLTAGE AS A FUNCTION OF SOURCE IMPEDANCE--INPUT

voltage equal to the DC offset voltage of that amplifier and the instantaneous low frequency noise voltage. A short time later, the analog switches reconnect the on-chip op amps in the configuration shown in Mode B. In this mode, op amp \# 2 has capacitor C_{2} (which was charged to a voltage equal to its offset and noise voltage) connected in series to its non-inverting (+) input and nulls out the input offset and noise voltage of the amplifier. While one of the op amps is processing the input signal, the other is placed in the autozero mode and charges its capacitor to a voltage equal to its equivalent DC and low-frequency error voltage. The internal op amps are reconnected at a rate designated as the commutation frequency, fCOM.

The CAZ amp concept offers a number of other advantages to the designer, as compared to standard bipolar or FET-input op amps:

[^228]NOTE: All typical values have been characterized but are not tested.

- Effective input offset voltages can be made between 1000x and 10,000x less without trimming.
- Long-term drift phenomena are compensated for and dramatically reduced.
- Temperature effects are compensated for over a wide range. Reductions can be as high as 100 times or higher.
- Supply voltage sensitivity is reduced.

The on-chip op amps are connected internally to the external input and output terminals via CMOS analog switches, as shown in Figure 6. The analog switch structure shown in Figure 6 is arranged so that at any time three switches are open and three switches are conducting. Each analog switch includes a P-channel transistor in parallel with an N -channel transistor.

Figure 5: Diagramatic Representation of the 2 Half Cycles of Operation of the CAZ OP AMP

0105-22
Figure 6: Schematic of Analog Switches Connecting Each Internal OP AMP to the External Inputs and Output

[^229]
APPLICATIONS

The ICL7600/ICL7601 CAZ op amp is ideal for use as a front-end preamplifier for dual-slope A/D converters which require high sensitivity for single-ended input sources such as thermocouples.
A typical high-sensitivity A/D converter system is shown in Figure 7. The system uses an Intersil ICL7109 12-bit monolithic A/D binary converter, and is intended for direct interface with microprocessors. Both the ICL7600/ICL7601 and the ICL7109 use power supply voltages of $\pm 5 \mathrm{~V}$, and the entire system consumes typically 2.5 mA of current.

The input signal is applied through a low-pass filter (150 Hz) to the CAZ op amp, which is connected in a non-inverting gain configuration of either 10 or 100 . The internal oscillator of the CAZ amp is allowed to run free at about 5,200 Hz , resulting in a commutation frequency of 160 Hz , with the DR terminal connected to $\mathrm{V}+$. The error-storage capacitors C_{1} and C_{2} are each $1 \mu \mathrm{~F}$ value, and provide a good compromise between the minimum equivalent input offset voltage and the lowest value of low-frequency noise.

The output signal is then passed through a low-pass filter ($1 \mathrm{M} \Omega$ and $0.1 \mu \mathrm{~F}$), with a bandwidth of 1.5 Hz . This results in an equivalent DC offset voltage of $1 \mu \mathrm{~V}$ to $2 \mu \mathrm{~V}$, and a peak-to-peak noise voltage of $1.7 \mu \mathrm{~V}$, referred to the input of the CAZ amp. The output from the low-pass filter feeds directly into the input of the ICL7109.

In a system such as that shown in Figure 7 there is a degree of flexibility possible in assigning various gains to the ICL7600/ICL7601 pre-amplifier, and to various sensitivities for the ICL7109. For optimum performance, the CAZ op amp must amplify the input signal so that the equivalent, $15 \mu \mathrm{~V}$ input noise voltage of the A/D converter is masked.

This implies a gain of at least 10 for the CAZ op amp preamplifier.

On the other hand, if the gain of the CAZ op amp is increased too much, its output swing will be limited by the $\pm 5 \mathrm{~V}$ supplies. This condition imposes a maximum gain of 200 to produce an output of ± 0.000005 times 4,096 times 200 , or $\pm 4,096 \mathrm{~V}$, for a $5 \mu \mathrm{~V}$ per count sensitivity. Use of an ICL7600 is recommended for low gains (<20) and the ICL7601 for gains of more than 20.

The values of the integrating resistor and the reference voltage must be chosen to suit the overall sensitivity of the system. For example, in a system requiring a sensitivity of $5 \mu \mathrm{~V}$ per count, use a CAZ amp in a gain configuration of 50 (with ICL7601). Thus for a full scale count of 4096 (12 bits), the input voltage to the ICL7109 would be $5 \mu \mathrm{~V}$ times 50 times 4096 or 1.024 volts. Since the ratio of input to reference is $2: 1$, the value of the reference voltage becomes 0.512 and a $50 \mathrm{k} \Omega$ integrating resistor is recommended. A system such as that shown in Figure 7 will allow a resolution of $1^{\circ} \mathrm{C}$ for low sensitivity platinum/rhodium junctions. For $0.1^{\circ} \mathrm{C}$ resolution, use high sensitivity thermocouples having copper/constantan junctions.

The low-pass filter between the output of the CAZ op amp and the input of the ICL7109 A/D converter can be used to improve the signal-to-noise ratio of the system by reducing bandwidth. A 10 Hz filter will result in an equivalent peak-to-peak noise voltage figure of $4 \mu \mathrm{~V}$. If the bandwidth is reduced to 1.5 Hz , the peak-to-peak noise voltage will be reduced to about $1.7 \mu \mathrm{~V}$, a reduction by a factor of three. The penalty for this reduction will be a longer system response time; however in most cases this will not be a major consideration, because of the large thermal inertia of many thermocouple probes.

[^230]NOTE: All typical values have been characterized but are not tested.

SOME HELPFUL HINTS Testing the ICL7600/ICL7601 CAZ Operational Amplifier

A simple and relatively accurate means of testing the CAZ op amp is to use a Tektronix Type 577 curve tracer, with the CAZ op amp inserted in a special 14-lead socket which plugs into a Tektronix 178, and which contains two soldered-in auto-zero capacitors of $1 \mu \mathrm{~F}$ each. This simple and convenient tester will provide most of the information needed for low-frequency parameters. The test setup will allow resolution of input offset voltages to about $10 \mu \mathrm{~V}$.

For greater accuracy, it is suggested that a breadboard be built which minimizes thermoelectric effects and which includes an output low-pass filter of the type shown in Test Circuit \#4. The output from the CAZ amp can be connected to a dual-slope A/D converter as shown in Figure 7. The low-frequency noise can then be displayed on a storage scope or on a strip chart recorder.

Bias Control

The on-chip op amps consume over 90% of the power required for the ICL7600/ICL7601. Three externally-programmable bias levels are provided. These levels are set by connecting the BIAS terminal to V^{+}, GND or V^{-}, for LOW, MED of HIGH BIAS levels, respectively. The difference between each bias setting is approximately a factor of three, which allows a $9: 1$ ratio between supply current and the bias setting. The reason for this current programmability is to provide the user with a choice of device power dissipation levels, slew rate values (the higher the slew rate the better the recovery from commutation spikes), and offset errors due to chip "voltage drop" and thermoelectric effects (the higher the power dissipation the higher the input offset error). In most cases, the medium (MED BIAS) setting will be the best choice.

Output Loading (Resistive)

With a $10 \mathrm{k} \Omega$ load the output swing can cover nearly the entire supply voltage range, and the device can be used with loads as low as $2 \mathrm{k} \Omega$. However, with loads of less than $50 \mathrm{k} \Omega$, the on-chip op amps become transconductance amplifiers, since their output impedances are about $50 \mathrm{k} \Omega$ each. Thus the open-loop gain is 20 dB less with a $2 \mathrm{k} \Omega$ load than it would be with a $20 \mathrm{k} \Omega$ load. For high gain configurations requiring high accuracy, output loads of $100 \mathrm{k} \Omega$ or more are suggested.

Another consideration which must not be overlooked is the additional power dissipation of the chip which results from a large output swing into a low value load. This added variable can affect the initial input offset voltages under certain conditions.

Output Loading (Capacitive)

In many applications, it is desirable to include a low-pass filter at the output to reduce high-frequency noise outside the signal passband of interest. With conventional op amps, the obvious solution would be to place a capacitor across the external feedback resistor to provide the low pass filter.

However, with the CAZ op amp, this is not feasible because of the nature of commutation voltage spikes. The voltage spikes show a low impedance characteristic in the direction of the auto-zero voltage, and a high impedance on
the recovery edge, as shown in Figure 8. It can be seen that the effect of the large load capacitor is to produce an area error in the output waveform, and hence an effective gain error. The output low pass filter must be a high impedance type to avoid output voltage area errors. For example, a 1.5 Hz filter should use a $100 \mathrm{k} \Omega$ resistor and a $1.0 \mu \mathrm{~F}$ capacitor, or a $1.0 \mathrm{M} \Omega$ resistor and an $0.1 \mu \mathrm{~F}$ capacitor. This effect also causes problems with integrator circuits.

Oscillator and Digital Considerations

The oscillator has been designed to run free at about 5.2 kHz when the OSC terminal is open-circuited. If the full divider network is used, this will result in a commutation frequency of about 160 Hz nominal. The commutation frequency is the frequency at which the on-chip op amps are switched between the signal processing and the auto-zero modes. A 160 Hz commutation frequency represents approximately the optimum frequency at which the input offset voltage is close to minimum, where the low-frequency noise is acceptable, and where errors derived from noise spikes will be low. Other commutation frequencies may provide optimization of other parameters, but always to the detriment of major characteristics.

The oscillator is of a high impedance type, so that a load of only a few picofarads on the OSC terminal will cause a significant shift in frequency. It is therefore recommended that if the desired frequency of the oscillation is 5.2 kHz , the terminal should be left unattached and open. In other instances, it may be desirable to lock the oscillator to a clock or to run it at another frequency. The ICL7600/ICL7601 provides two degrees of flexibility. First, the DR (division ratio) terminal permits the user to choose between dividing the oscillator by 32 (DR terminal to V^{+}) or by 2 (DR terminal to GND), to obtain the commutation frequency. Second, the oscillator may have its frequency lowered by the addition of an external capacitor connected between the OSC terminal and V^{+}, or system ground terminals. For situations which require the commutation frequency to be locked onto a master clock, the OSC terminal can be driven from TTL logic (with resistive pull-up) or from CMOS logic, provided that the $\mathrm{V}+$ supply (with respect to ground) is $+5 \mathrm{~V}(\pm 10 \%)$ and the logic driver also operates from a similar supply voltage. This is because the logic section-including the oscillatoroperates from an internal -5 V supply referenced to V^{+} generated on-chip, and is not accessible externally.

Thermoelectric Effects

The ultimate limitations to ultra-high-precision DC amplifiers are thermoelectric, Peltier or thermocouple effects in junctions consisting of various metals, alloys, silicon, etc. Unless all junctions are at precisely the same temperature, small thermoelectric voltages will be produced, generally about $0.1 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$. However, these voltages can be several tens of microvolts per ${ }^{\circ} \mathrm{C}$ for certain thermocouple materials.

In order to realize the extremely low offset voltages which the CAZ op amp can provide, it is essential to take precautions to avoid temperature gradients. All components should be enclosed to eliminate air movement across device surfaces. In addition, the supply voltages and power dissipation should be kept to a minimum. Use the medium bias mode as well as a high impedance load, and keep well away from heat dissipated by surrounding equipment.

Component Selection

The two required auto-zero capacitors, C_{1} and C_{2}, should each be of $1.0 \mu \mathrm{~F}$ value. These are large values for nonelectrolytic capacitors, but since the voltages impressed on them do not change significantly, problems of dielectric absorption and the like are not important.

Excellent results have been obtained in operation at commercial temperature ranges using several of the smallersize and more economical capacitors, since the absolute values of the capacitors is not critical. Even polarized electrolytic capacitors rated at $1.0 \mu \mathrm{~F} / 50 \mathrm{~V}$, though not recommended, have been used with success.

Commutating Voltage Transient Effects

While in most respects the CAZ op amp behaves like a conventional op amp, its principal applications will be in very low level, low-frequency preamplifiers limited to DC through 100 Hz . This is because of the finite switching transients which occur in the input and output terminals due to commutation effects. These transients have a frequency spectrum beginning at the commutation frequency, and include all of the higher harmonics. If the commutation frequency is higher than the highest in-band frequency, these transients can be effectively blanked with a low-pass filter.

The input commutation transients arise when each of the on-chip op amps experiences a shift in voltage equal to the input offset voltage(about $5-10 \mathrm{mV}$) which occurs during the transition to the signal processing mode from the auto-
zero mode. Since the input capacitances of the on-chip op amps are typically in the 10 pF range, and since it is desirable to reduce the effective input offset voltage about 10,000 times, the offset voltage auto-zero capacitors C_{1} and C_{2} must be at least $10,000 \times 10 \mathrm{pF}$, or $0.1 \mu \mathrm{~F}$ each.

Figure 9: Output waveform from Test Circuit 1.
The charge which is injected into the op amp when it is switched into the signal-processing mode produces a rapid-ly-decaying voltage spike at the input, in addition to an equivalent DC bias current averaged over a full cycle. This bias current is directly proportional to the commutation frequency, and in most instances will greatly exceed the inherent leakage currents of the input analog switches, which are typically about 1.0 pA at ambient temperature of $25^{\circ} \mathrm{C}$.
The output waveform of Test Circuit \#1 (with no input) is shown in Figure 9. Note that the equivalent noise voltage shown is amplified 1000 times, and that because of the finite slew rate of the on-chip op amps the 7 mV input transients are not amplified by 1000.

The output transient voltage effects (as distinct from the input effects which are propagated through the on-chip op amps) will occur if there is a difference in the output voltage of the internal op amps between the auto-zero modes and the signal-processing modes. The output stage of the onchip op amp must slew from its auto-zero output voltage to the desired signal-processing output voltage. This is shown in Figure 10, where the system is auto-zeroed to ground.
The duration of the output transients is greatly affected by the gain configuration and the bias setting, since these two parameters have an effect on system slew rate. At low gains and high bias settings, the output transient durations are very short. For this reason there are two versions of the

CAZ op amp, the ICL7600 which is compensated for unity gain and which can be used for gain configurations up to 20 , and the ICL7601, which is uncompensated and recommended for operation in gain configurations greater than 20 Thus, when a signal is being processed in a high gain configuration, the effective output signal error is greater for the ICL7600 than it is for the ICL7601.

Non-Amplifier Applications

In principle, this is one of the few "chopper-stabilized" type amplifiers that could be used as a comparator; the transient effects on the output will normally require careful synchronism of output strobes with oscillator drive.

0105-28

0105-27
Figure 10: Simple CAZ OP AMP Circuit and the Output Voltage Waveform

[^231]
ICL7605/ICL7606
 Commutating Auto-Zero
 (CAZ) Instrumentation Amplifier

GENERAL DESCRIPTION

The ICL7605/ICL7606 CMOS commutating auto-zero (CAZ) instrumentation amplifiers are designed to replace most of today's hybrid or monolithic instrumentation amplifiers, for low frequency applications from DC to 10 Hz . This is made possible by the unique construction of this Intersil device, which takes an entirely new design approach to low frequency amplifiers.

Unlike conventional amplifier designs, which employ three op-amps and require ultra-high accuracy in resistor tracking and matching, the CAZ instrumentation amplifier requires no trimming except for gain. The key features of the CAZ principle involve automatic compensation for longterm drift phenomena and temperature effects, and a flying capacitor input.
The ICL7605/ICL7606 consist of two analog sections a unity gain differential to single-ended voltage converter and a CAZ op amp. The first section senses the differential input and applies it to the CAZ amp section. This section consists of an operational amplifier circuit which continuously corrects itself for input voltage errors, such as input offset voltage, temperature effects, and long term drift.
The ICL7605/ICL7606 is intended for low-frequency operation in applications such as strain gauge amplifiers which require voltage gains from 1 to 1000 and bandwidths from DC to 10 Hz . Since the CAZ amp automatically corrects itself for internal errors, the only periodic adjustment required is that of gain, which is established by two external resistors. This, combined with extremely low offset and temperature coefficient figures, makes the CAZ instrumentation amplifier very desirable for operation in severe environments (temperature, humidity, toxicity, radiation, etc.) where equipment service is difficult.

FEATURES

- Exceptionally Low Input Offset Voltage - $2 \mu \mathrm{~V}$
- Low Long Term Input Offset Voltage Drift — $0.2 \mu \mathrm{~V}$ / Year
- Low Input Offset Voltage Temperature Coefficient $0.05 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$
- Wide Common Mode Input Voltage Range - 0.3V Above Supply Rail
- High Common Mode Rejection Ratio - 100 dB
- Operates at Supply Voltages As Low As $\pm 2 \mathrm{~V}$
- Short Circuit Protection On Outputs for $\pm 5 \mathrm{~V}$ Operation
- Static-Protected Inputs - No Special Handling Required
- Compensated (ICL7605) or Uncompensated (ICL7606) Versions

Figure 1: Pin Configuration

ORDERING INFORMATION
Order parts by the following part numbers:

Part Number	Compensation	Temperature Range	Package
ICL7605CJN	INTERNAL	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	18 -PIN CERDIP
ICL7605IJN	INTERNAL	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	18 -PIN CERDIP
ICL7605MJN	INTERNAL	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	18 -PIN CERDIP
ICL7606CJN	EXTERNAL	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	18 -PIN CERDIP
ICL7606IJN	EXTERNAL	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	18 -PIN CERDIP
ICL7606MJN	EXTERNAL	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	18 -PIN CERDIP

[^232]

[^233]
ABSOLUTE MAXIMUM RATINGS

Total Supply Voltage (V^{+}to V^{-}) 18 V
DR Input Voltage $\ldots \ldots \ldots . \ldots . .\left(\mathrm{V}^{+}-8\right)$ to $\left(\mathrm{V}^{+}+0.3\right) \mathrm{V}$
Input Voltage ($\mathrm{C}_{1}, \mathrm{C}_{2}, \mathrm{C}_{3}, \mathrm{C}_{4}+$ DIFF IN, -DIFF IN,
-INPUT, BIAS, OSC),
(Note 1) \qquad

$$
\left(\mathrm{V}^{-}-0.3\right) \text { to }\left(\mathrm{V}^{+}+0.3\right) \mathrm{V}
$$

Differential Input Voltage (+ DIFF IN to -DIFF IN)
(Note 2) ($\mathrm{V}^{-}-0.3$) to ($\mathrm{V}^{+}+0.3$) V Duration of Output Short Circuit (Note 3) \qquad
Continuous Total Power Dissipation (Note 4) 500mW Operating Temperature Range:

ICL7605/ICL7606C	$+70^{\circ} \mathrm{C}$
ICL7605/ICL76061	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
ICL7605/ICL7606M	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Storage Temperature	$65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Sold	300°

NOTE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
Note 1: Due to the SCR structure inherent in all CMOS devices, exceeding these limits may cause destructive latch up. For this reason, it is recommended that no inputs from sources operating on a separate power supply be applied to the $7605 / 6$ before its own power supply is established, and that when using multiple supplies, the supply for the 7605/6 should be turned on first.
Note 2: No restrictions are placed on the differential input voltages on either the + DIFF \mathbb{N} or -DIFF IN inputs so long as these voltages do not exceed the power supply voltages by more than 0.3 V .
Note 3: The outputs may be shorted to ground (GND) or to either supply (V^{+}or V^{-}). Temperatures and/or supply voltages must be limited to insure that the dissipation ratings are not exceeded.
Note 4: For operation above $25^{\circ} \mathrm{C}$ ambient temperature, derate $4 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ from 500 mW above $25^{\circ} \mathrm{C}$.

ELECTRICAL CHARACTERISTICS

Test Conditions: $\mathrm{V}^{+}=+5 \mathrm{~V}, \mathrm{~V}^{-}=-5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, DR pin connected to $\mathrm{V}+(\mathrm{fCOM} \cong 160 \mathrm{~Hz}, \mathrm{fCOM} \cong 80 \mathrm{~Hz}$), $C_{1}=C_{2}=C_{3}=C_{4}=1 \mu \mathrm{~F}$, Test Circuit 1 unless otherwise specified.

Symbol	Parameter	Test Conditions		Value			Units
				Min	Typ	Max	
Vos	Input Offset Voltage	$R_{S} \leq 1 \mathrm{k} \Omega$ MIL version over temp.	Low Bias Setting Med Bias Setting High Bias Setting Med Bias Setting		$\begin{aligned} & \pm 2 \\ & \pm 2 \\ & \pm 7 \end{aligned}$	$\begin{gathered} \pm 5 \\ \pm 30 \end{gathered}$	$\mu \mathrm{V}$ $\mu \mathrm{V}$ μV $\mu \mathrm{V}$
$\Delta V_{\text {OS }} / \Delta T$	Average Input Offset Voltage Temperature Coefficient (Note 5)	Low or Med Bias Settings	$\begin{aligned} & -55^{\circ} \mathrm{C}>\mathrm{T}_{A}>+25^{\circ} \mathrm{C} \\ & +25^{\circ} \mathrm{C}>\mathrm{T}_{A}>+85^{\circ} \mathrm{C} \\ & +25^{\circ} \mathrm{C}>\mathrm{T}_{A}>+125^{\circ} \mathrm{C} \end{aligned}$		$\begin{aligned} & 0.01 \\ & 0.01 \\ & 0.05 \end{aligned}$	$\begin{aligned} & 0.2 \\ & 0.2 \\ & 0.2 \end{aligned}$	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$ $\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$ $\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
$\Delta \mathrm{V}_{\text {OS }} / \Delta \mathrm{t}$	Long Term Input Offset Voltage Stability	Low or Med Bias Settings			0.5		$\mu \mathrm{V} /$ Year
CMVR	Common Mode Input Range			-5.3		+5.3	V
CMRR	Common Mode Rejection Ratio	$\begin{aligned} & \mathrm{C}_{\mathrm{OSC}}=0, \text { DR connected to } \mathrm{V}+, \mathrm{C}_{3}=\mathrm{C}_{4}=1 \mu \mathrm{~F} \\ & \mathrm{C}_{\text {OSC }}=1 \mu \mathrm{~F}, \text { DR connected to GND, } \\ & \mathrm{C}_{3}=\mathrm{C}_{4}=1 \mu \mathrm{~F} \\ & \mathrm{C}_{\text {OSC }}=1 \mu \mathrm{~F}, \text { DR connected to GND, } \\ & \mathrm{C}_{3}=\mathrm{C}_{4}=10 \mu \mathrm{~F} \\ & \hline \end{aligned}$			$\begin{gathered} 94 \\ 100 \\ 104 \end{gathered}$		dB dB dB
PSRR	Power Supply Rejection Ratio				110		dB
$-I_{\text {BIAS }}$	-INPUT Bias Current	Any bias setting, $\mathrm{f}_{\mathrm{c}}=160 \mathrm{~Hz}$ (Includes charge injection currents)			0.15	1.5	nA
$\bar{e}_{n}(p-p)$	Equivalent Input Noise Voltage peak-to-peak	Band Width 0.1 to 10 Hz	Low Bias Mode Med Bias Mode High Bias Mode		$\begin{aligned} & 4.0 \\ & 4.0 \\ & 5.0 \\ & \hline \end{aligned}$		$\mu \mathrm{V}$ $\mu \mathrm{V}$ $\mu \mathrm{V}$

ELECTRICAL CHARACTERISTICS

Test Conditions: $\mathrm{V}^{+}=+5 \mathrm{~V}, \mathrm{~V}^{-}=-5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, DR pin connected to $\mathrm{V}^{+}\left(\mathrm{fCOM} \cong 160 \mathrm{~Hz}, \mathrm{f}_{\mathrm{COM}} \cong 80 \mathrm{~Hz}\right.$), $\mathrm{C}_{1}=\mathrm{C}_{2}=\mathrm{C}_{3}=\mathrm{C}_{4}=1 \mu \mathrm{~F}$, Test Circuit 1 unless otherwise specified. (Continued)

Symbol	Parameter	Test Conditions		Value			Units
				Min	Typ	Max	
\bar{e}_{n}	Equivalent Input Noise voltage	Band Width 0.1 to 1.0 Hz	All Bias Modes		1.7		$\mu \mathrm{V}$
AVOL	Open Loop Voltage Gain	$R_{L}=10 \mathrm{k} \Omega$	Low Bias Setting Med Bias Setting High Bias Setting	$\begin{aligned} & 90 \\ & 90 \\ & 80 \\ & \hline \end{aligned}$	$\begin{aligned} & 105 \\ & 105 \\ & 100 \\ & \hline \end{aligned}$		dB dB dB
$\pm \mathrm{V}_{0}$	Maximum Output Voltage Swing	$\begin{aligned} & R_{\mathrm{L}}=1 \mathrm{M} \Omega \\ & \mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega \\ & \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega \end{aligned}$	Positive Swing Negative Swing	+4.4	$\begin{aligned} & \pm 4.9 \\ & \pm 4.8 \end{aligned}$	-4.5	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \\ & \mathrm{~V} \\ & \mathrm{~V} \end{aligned}$
GBW	Bandwidth of Input Voltage Translator	$\mathrm{C}_{3}=\mathrm{C}_{4}=1 \mu \mathrm{~F}$	All Bias Modes		10		Hz
$\mathrm{f}_{\mathrm{COM}}$	Nominal Commutation Frequency	$\mathrm{Cosc}^{\text {a }}=0$	DR Connected to V + DR Connected to GND		$\begin{gathered} 160 \\ 2560 \end{gathered}$		$\begin{aligned} & \mathrm{Hz} \\ & \mathrm{~Hz} \end{aligned}$
fCOM1	Nominal Input Converter Commutation Frequency	$\mathrm{Cosc}=0$	DR Connected to V+ DR Connected to GND		$\begin{gathered} 80 \\ 1280 \end{gathered}$		$\begin{aligned} & \mathrm{Hz} \\ & \mathrm{~Hz} \end{aligned}$
$\begin{aligned} & \mathrm{V}_{\mathrm{BH}} \\ & \mathrm{~V}_{\mathrm{BM}} \\ & \mathrm{~V}_{\mathrm{BL}} \\ & \hline \end{aligned}$	Bias Voltage required to set Quiescent Current	Low Bias Setting Med Bias Settin High Bias Set		$\begin{aligned} & V^{+}-0.3 \\ & V^{-}+1.4 \\ & V^{-}-0.3 \end{aligned}$	V+ GND V-	$\begin{aligned} & V^{+}+0.3 \\ & V^{+}-1.4 \\ & V^{-}+0.3 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \\ & \mathrm{~V} \end{aligned}$
$l_{\text {BIAS }}$	Bias (Pin 8) Input Current				± 30		pA
IDR	Division Ratio Input Current	$\mathrm{V}^{+-8.0} \leq \mathrm{V}_{\mathrm{DR}} \leq \mathrm{V}^{+}+0.3$ volt			± 30		pA
$V_{\text {DRH }}$ VDRL	DR Voltage required to set Oscillator division ratio	Internal oscillator division ratio 32 Internal oscillator division ratio 2		$\begin{gathered} V^{+}-0.3 \\ V^{+}-8 \end{gathered}$		$\begin{aligned} & V++0.3 \\ & V+-1.4 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{v} \end{aligned}$
$\mathrm{R}_{\text {AS }}$	Effective Impedance of Voltage Translator Analog Switches				30		k Ω
ISUPP	Supply Current	High Bias Set Med Bias Set Low Bias Sett			$\begin{gathered} 7 \\ 1.7 \\ 0.6 \end{gathered}$	$\begin{gathered} 15 \\ 5 \\ 1.5 \end{gathered}$	mA mA mA
$V^{+}-V^{-}$	Operating Supply Voltage Range	High Bias Set Med or Low B	Setting	$\begin{aligned} & 5 \\ & 4 \end{aligned}$		$\begin{aligned} & 10 \\ & 10 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$

Note 5: For Design only, not tested.

TYPICAL PERFORMANCE CHARACTERISTICS

INPUT OFFSET VOLTAGE AS A FUNCTION OF AMBIENT TEMPERATURE

0306-4

0306-7

INPUT OFFSET VOLTAGE AND PK-TO-PK NOISE VOLTAGE AS A FUNCTION OF SUPPLY VOLTAGES

0306-5

INPUT OFFSET VOLTAGE AND PK-TO-PK NOISE AS A FUNCTION OF SUPPLY VOLTAGE ($\mathbf{V}^{+-V}{ }^{-}$)

0306-8

INPUT OFFSET VOLTAGE AND PK-TO-PK NOISE VOLTAGE AS A FUNCTION OF COMMUTATION FREQUENCY $\left(C_{1}, C_{2}=1 \mu F\right)$

COMMON MODE REJECTION RATIO AS A FUNCTION OF THE INPUT DIFFERENTIAL TO SINGLE ENDED VOLTAGE CONVERTER CAPACITORS

TYPICAL PERFORMANCE CHARACTERISTICS (Continued)

INPUT CURRENT AS A FUNCTION OF COMMUTATION FREQUENCY

0306-10

SUPPLY CURRENT AS A FUNCTION OF TEMPERATURE

0306-13
AMPLITUDE RESPONSE OF
THE INPUT DIFFERENTIAL TO
SINGLE ENDED VOLTAGE CONVERTER

MAXIMUM OUTPUT VOLTAGE AS A FUNCTION OF OUTPUT LOAD RESISTANCE

0306-11

SUPPLY CURRENT AS A FUNCTION OF SUPPLY VOLTAGE

0306-12

OSCILLATOR FREQUENCY AS A FUNCTION OF EXTERNAL CAPACITIVE LOADING

0306-14
FREQUENCY RESPONSE OF THE 10 Hz LOW PASS FILTER USED TO MEASURE NOISE (TEST CIRCUIT 2).

0306-15

0306-17
Figure 4: Test Circuit 1

0306-18
Figure 5: Test Circuit 2
DC to $\mathbf{1 0 H z}$ Unity Gain Low Pass Filter

DETAILED DESCRIPTION

CAZ Instrumentation Amp Overview

The CAZ instrumentation amplifier operates on principles which are very different from those of the conventional three op-amp designs, which must use ultra-precise trimmed resistor networks in order to achieve acceptable accuracy. An important advantage of the ICL7605/ICL7606 CAZ instrumentation amp is the provision for self-compensation of internal error voltages, whether they are derived from steady-state conditions, such as temperature and supply voltage fluctuations, or are due to long term drift.
The CAZ instrumentation amplifier is constructed with monolithic CMOS technology, and consists of three distinct sections, two analog and one digital. The two analog sections - a differential to single-ended voltage converter, and a CAZ op amp - have on-chip analog switches to steer the input signal. The analog switches are driven from a selfcontained digital section which consists of an RC oscillator, a programmable divider, and associated voltage translators. A functional layout of the ICL7605/ICL7606 is shown in Figure 6.

0306-19
Figure 6: Simplified Block Diagram
The ICL7605/ICL7606 have approximately constant equivalent input noise voltage, CMRR, PSRR, input offset voltage and drift values independent of the gain configuration. By comparison, hybrid-type modules which use the traditional three op amp configuration have relatively poor performance at low gain (1 to 100) with improved performance above a gain of 100 .

The only major limitation of the ICL7605/ICL7606 is its low-frequency operation (10 to 20 Hz maximum). However in many applications bandwidth is not the most important parameter.

CAZ Op Amp Section

Operation of the CAZ op-amp section of the ICL7605/ ICL7606 is best illustrated by referring to Figure 7. The basic amplifier configuration, represented by the large triangles, has one more input than does a regular op amp - the $A Z$, or auto-zero terminal. The voltage on the AZ input is that level at which each of the internal op amps will be autozeroed. In Mode A, op amp \# 2 is connected in a unity gain mode through on-chip analog switches. It charges external capacitor C_{2} to a voltage equal to the DC input offset voltage of the amplifier plus the instantaneous low-frequency noise voltage. A short time later, the analog switches reconnect the on-chip op amps to the configuration shown in Mode B. In this mode, op amp \#2 has capacitor C_{2} (which is charged to a voltage equal to the offset and noise voltage of op amp \#2) connected in series to its non-inverting (+) input in such a manner as to null out the input offset and noise voltages of the amplifier. While one of the on-chip op amps is processing the input signal, the second op amp is in an auto-zero mode, charging a capacitor to a voltage equal to its equivalent DC and low frequency error voltage. The on-chip amplifiers are connected and reconnected at a rate designated as the commutation frequency (f COM), so that at all times one or the other of the on-chip op amps is processing the input signal, while the voltages on capacitors C_{1} and C_{2} are being updated to compensate for variables such as low frequency noise voltage and input offset voltage changes due to temperature, drift or supply voltages effects.

Figure 7: Diagrammatic representation of the $\mathbf{2}$ half cycles of operation of the CAZ OP AMP.

Compared to the standard bipolar or FET input op amps, the CAZ amp scheme demonstrates a number of important advantages:

* Effective input offset voltages can be reduced from 1000 to 10,000 times without trimming.
* Long-term offset voltage drift phenomena can be compensated and dramatically reduced.
* Thermal effects can be compensated for over a wide operating temperature range. Reductions can be as much as 100 times or better.
* Supply voltage sensitivity is reduced.

CMOS processing is ideally suited to implement the CAZ amp structure. The digital section is easily fabricated, and the transmission gates (analog switches) which connect the on-chip op amps can be constructed for minimum charge
injection and the widest operating voltage range. The ana\log section, which includes the on-chip op amps, contributes performance figures which are similar to bipolar or FET input designs. The CMOS structure provides the CAZ opamp with open-loop gains of greater than 100 dB , typical input offset voltages of $\pm 5 \mathrm{mV}$, and ultra-low leakage currents, typically 1 pA .

The CMOS transmission gates connect the on-chip op amps to external input and output terminals, as shown in Figure 8. Here, one op amp and its associated analog switches are required to connect each on-chip op amp, so that at any time three switches are open and three switches are closed. Each analog switch consists of a P-channel transistor in parallel with an N -channel transistor.

[^234]

The frequency at which modes $A \& B$ are cycled is known as the INPUT COMMUTATION FREQUENCY

Figure 9: Schematic of the differential to single ended voltage converter

DIFFERENTIAL-TO-SINGLE-ENDED UNITY GAIN VOLTAGE CONVERTER

An idealized schematic of the voltage converter block is shown in Figure 9. The mode of operation is quite simple, involving two capacitors and eight switches. The switches are arranged so that four are open and four are closed. The four conducting switches connect one of the capacitors across the differential input, and the other from a ground or reference voltage to the input of the CAZ instrumentation amp. The output signal of this configuration is shown in Figure 10 , where the voltage steps equal the differential voltage $\left(V_{A}-V_{B}\right)$ at commutation times a, b, c, etc. The output waveform thus represents all information contained in the input signal from DC up to the commutation frequency, including commutation and noise voltages. Sampling theory states that to preserve the information to be processed, at least two samples must be taken within a period (1/f) of the highest frequency being sampled. Consequently this scheme preserves information up to the commutation frequency. Above the commutation frequency, the input signal is translated to a lower frequency. This phenomenon is known as aliasing. Although the output responds to inputs above the commutation frequency, the frequencies of the output responses will be below the commutation frequency.

0306-23
Figure 10: Input to Output Voltage waveforms from the differential to single ended voltage converter. For additional information, see frequency characteristics in Amplitude Response of the Input Differential to single ended voltage converter graph on page 5.

[^235]

0306-24
Figure 11: 3-1⁄2 Digit Digital Readout Torque Wrench

The voltage converter is fabricated with CMOS analog switches, which contain a parallel combination of P-channel and N -channel transistors. The switches have a finite ON impedances of $30 \mathrm{k} \Omega$, plus parasitic capacitances to the substrate. Because of the charge injection effects which appear at both the switches and the output of the voltage converter, the values of capacitors C_{3} and C_{4} must be about $1 \mu \mathrm{~F}$ to preserve signal translation accuracies to 0.01%. The $1 \mu \mathrm{~F}$ capacitors, coupled with the $30 \mathrm{k} \Omega$ equivalent impedance of the switches, produce a low-pass filter response from the voltage converter which is down approximately 3 dB at 10 Hz .

APPLICATIONS

Using the ICL7605/ICL7606 to Build a Digital Readout Torque Wrench

A typical application for the ICL7605/ICL7606 is in a strain gauge system, such as the digital readout torque wrench circuit shown in Figure 6. In this application, the CAZ instrumentation amplifier is used as a preamplifier, taking the differential voltage of the bridge and converting it to a single-ended voltage referenced to ground. The signal is then amplified by the CAZ instrumentation amplifier and applied to the input of a $3-1 / 2$ digit dual-slope A/D converter which drives the LCD panel meter display. The A/D converter device used in this instance is the Intersil ICL7106.

In the digital readout torque wrench circuit, the reference voltage for the ICL7106 is derived from the stimulus applied to the strain gauge, to utilize the ratiometric capabilities of
the A/D. In order to set the full-scale reading, a value of gain for the ICL7605/ICL7606 instrumentation CAZ amp must be selected along with an appropriate value for the reference voltage. The gain should be set so that at full scale, the output will swing about 0.5 V . The reference voltage required is about one-half the maximum output swing, or approximately 0.25 V .
In this type of system, only one adjustment is required. Either the amplifier gain or the reference voltage must be varied for full-scale adjustment. Total current consumption of all circuitry, less the current through the strain gauge bridge, is typically 2 mA . The accuracy is limited only by resistor ratios and the transducer

SOME HELPFUL HINTS
 Testing the ICL7605/ICL7606 CAZ Instrumentation Amplifier

Figure 4 and 5 (Test Circuits) provide a convenient means of measuring most of the important electrical parameters of the CAZ instrumentation amp. The output signal can be viewed on an oscilloscope after being fed through a lowpass filter. It is recommended that for most applications, a low-pass filter of about 1.0 to 1.5 Hz be used to reduce the peak-to-peak noise to about the same level as the input offset voltage.
The output low-pass filter must be a high-input impedance RC type - not simply a capacitor across the feedback resistor R_{2}. Resistor and capacitor values of about $100 \mathrm{k} \Omega$ and $1.0 \mu \mathrm{~F}$ are necessary so that the output load impedance on the CAZ op-amp is greater than $100 \mathrm{k} \Omega$.

[^236]NOTE: All typical values have been characterized but are not tested.

Figure 12: Effect of a load capacitor on output voltage waveforms.

Bias Control

The on-chip op amps consume over 90% of the power required by the ICL7605/ICL7606. For this reason, the internal op amps have externally programmable bias levels. These levels are set by connecting the BIAS terminal to either V^{+}, GND, or V^{-}, for LOW, MED or HIGH BIAS levels, respectively. The difference between each bias setting is about a factor of 3, allowing a 9:1 ratio of quiescent supply current versus bias setting. This current programmability provides the user with a choice of device power dissipation levels, slew rates (the higher the slew rate, the better the recovery from commutation spikes), and offset errors due to "IR" voltage drops and thermoelectric effects (the higher the power dissipation, the higher the input offset error). In most cases, the medium bias (MED BIAS) setting will be found to be the best choice.

Output Loading (Resistive)

With a $10 \mathrm{k} \Omega$ load, the output voltage swing can vary across nearly the entire supply voltage range, and the device can be used with loads as low as $2 \mathrm{k} \Omega$.

However, with loads of less than $50 \mathrm{k} \Omega$, the on-chip op amps will begin to exhibit the characteristics of transconductance amplifiers, since their respective output impedances are nearly $50 \mathrm{k} \Omega$ each. Thus the open-loop gain is 20 dB less with a $2 \mathrm{k} \Omega$ load than it would be with a $20 \mathrm{k} \Omega$ load. Therefore, for high gain configurations requiring high accuracy, an output load of $100 \mathrm{k} \Omega$ or more is suggested.

There is another consideration in applying the CAZ instrumentation op amps which must not be overlooked. This is the additional power dissipation of the chip which will result from a large output voltage swing into a low resistance load. This added power dissipation can affect the initial input offset voltages under certain conditions.

Output Loading (Capacitive)

In many applications, it is desirable to include a low-pass filter at the output of the CAZ instrumentation op amp to reduce high-frequency noise outside the desired signal passband. An obvious solution when using a conventional op amp would be to place a capacitor across the external feedback resistor and thus produce a low-pass filter.

However, with the CAZ op amp concept this is not possible because of the nature of the commutation spikes. These voltage spikes exhibit a low-impedance characteris-
tic in the direction of the auto-zero voltage and a high-impedance characteristic on the recovery edge, as shown in Figure 12. It can be seen that the effect of a large load capacitor produces an area error in the output waveform, and hence an effective gain error. The output low-pass filter must be of a high-impedance type to avoid these area errors. For example, a 1.5 Hz filter will require a $100 \mathrm{k} \Omega$ resistor and a $1.0 \mu \mathrm{~F}$ capacitor, or a $1 \mathrm{M} \Omega$ resistor and a $0.1 \mu \mathrm{~F}$ capacitor.

Oscillator and Digital Circuitry Considerations

The oscillator has been designed to run free at about 5.2 kHz when the OSC terminal is open circuit. If the full divider network is used, this will result in a nominal commutation frequency of approximately 160 Hz . The commutation frequency is that frequency at which the on-chip op amps are switched between the signal processing and the autozero modes. A 160 Hz commutation frequency represents the best compromise between input offset voltage and low frequency noise. Other commutation frequencies may provide optimization of some parameters, but always at the expense of others.
The oscillator has a very high output impedance, so that a load of only a few picofarads on the OSC terminal will cause a significant shift in frequency. It is therefore recommended that if the natural oscillator frequency is desired $(5.2 \mathrm{kHz})$ the terminal remains open circuit. In other instances, it may be desirable to synchronize the oscillator with an external clock source, or to run it at another frequency. The ICL7605/ICL7606 CAZ amp provides two degrees of flexibility in this respect. First, the DR (division ratio) terminal allows a choice of either dividing the oscillator by 32 (DR terminal to V^{+}) or by 2 (DR terminal to GND) to obtain the commutation frequency. Second, the oscillator may have its frequency lowered by the addition of an external capacitor connected between the OSC terminal and the V^{+}or system GND terminals. For situations which require that the commutation frequency be synchronized with a master clock, (Figure 13) the OSC terminal may be driven from TTL logic (with resistive pull-up) or by CMOS logic, provided that the V^{+}supply is $+5 \mathrm{~V}(\pm 10 \%)$ and the logic driver also operates from a similar voltage supply. The reason for this requirement is that the logic section (including the oscillator) operates from an internal -5 V supply, referenced to V^{+} supply, which is not accessible externally.

Thermoelectric Effects

The ultimate limitations to ultra-high-sensitivity DC amplifiers are due to thermoelectric, Peltier, or thermocouple effects in electrical junctions consisting of various metals (alloys, silicon, etc.) Unless all junctions are at precisely the same temperature, small thermoelectric voltages will be produced, generally about $0.1 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$. However, these voltages can be several tens of microvolts per ${ }^{\circ} \mathrm{C}$ for certain thermocouple materials.

0306-27
Figure 13: ICL7605 being clocked from external logic into the oscillator terminal.

In order to realize the extremely low offset voltages which the CAZ op amp can produce, it is necessary to take precautions to avoid temperature gradients. All components should be enclosed to eliminate air movement across device surfaces. In addition, the supply voltages and power dissipation should be kept to a minimum by use of the MED BIAS setting. Employ a high impedance load and keep the ICL7605/ICL7606 away from equipment which dissipates heat.

Component Selection

The four capacitors (C_{1} thru C_{4}) should each be about $1.0 \mu \mathrm{~F}$. These are relatively large values for non-electrolytic capacitors, but since the voltages stored on them change significantly, problems of dielectric absorption, charge bleed-off and the like are as significant as they would be for integrating dual-slope A/D converter applications. Polypropylene types are the best for C_{3} and C_{4}, although Mylar may be adequate for C_{1} and C_{2}.

Excellent results have been obtained for commercial temperature ranges using several of the less-expensive, small-er-size capacitors, since the absolute values of the capacitors are not critical. Even polarized electrolytic capacitors rated at $1.0 \mu \mathrm{~F}$ and 50 V have been used successfully at room temperature, although no recommendations are made concerning the use of such capacitors.

Commutation Voltage Transient Effects

Although in most respects the CAZ instrumentation amplifier resembles a conventional op amp, its principal applications will be in very low level, low-frequency preamplifiers limited to DC through 10 Hz . The is due to the finite switching transients which occur at both the input and output terminals because of commutation effects. These transients have a frequency spectrum beginning at the commutation frequency, and including all of the higher harmonics of the commutation frequency. Assuming that the commutation frequency is higher than the highest in-band frequency, then the commutation transients can be filtered out with a lowpass filter.

The input commutation transients arise when each of the on-chip op amps experiences a shift in voltage which is equal to the input offset voltages (about $5-10 \mathrm{mV}$), usually occurring during the transition between the signal processing mode and the auto-zero mode. Since the input capacitances of the on-chip op-amps are typically in the 10 pF range, and since it is desirable to reduce the effective input offset voltage about 10,000 times, the offset voltage autozero capacitors C_{1} and C_{2} must have values of at least $10,000 \times 10 \mathrm{pF}$, or $0.1 \mu \mathrm{~F}$ each.

The charge that is injected into the input of each op amp when being switched into the signal processing mode produces a rapidly-decaying voltage spike at the input, plus an equivalent DC input bias current averaged over a full cycle. This bias current is directly proportional to the commutation frequency, and in most instances will greatly exceed the inherent leakage currents of the input analog switches, which are typically 1.0 pA at an ambient temperature of $25^{\circ} \mathrm{C}$.

The output waveform in Figure 4 (with no input signal) is shown in Figure 14. Note that the equivalent noise voltage is amplified 1000 times, and that due to the slew rate of the on-chip op amps, the input transients of approximately 7 mV are amplified by a factor of less than 1000.

Figure 14: Output waveform from Test Circuit 1.

Layout Considerations

Care should be exercised in positioning components on the PC board particularly the capacitors $\mathrm{C}_{1}, \mathrm{C}_{2}, \mathrm{C}_{3}$ and C_{4}, which must all be shielded from the OSC terminal. Also, parasitic PC board leakage capacitances associated with these four capacitors should be kept as low as possible to minimize charge injection effects.

[^237]NOTE: All typical values have been characterized but are not tested.

ICL76XX Series Low Power CMOS Operational Amplifiers

GENERAL DESCRIPTION

The ICL761X/762X/763X/764X series is a family of monolithic CMOS operational amplifiers. These devices provide the designer with high performance operation at low supply voltages and selectable quiescent currents, and are an ideal design tool when ultra low input current and low power dissipation are desired.

The basic amplifier will operate at supply voltages ranging from $\pm 1 \mathrm{~V}$ to $\pm 8 \mathrm{~V}$, and may be operated from a single Lithium cell.

A unique quiescent current programming pin allows setting of standby current to $1 \mathrm{~mA}, 100 \mu \mathrm{~A}$, or $10 \mu \mathrm{~A}$, with no external components. This results in power consumption as low as $20 \mu \mathrm{~W}$. Output swings range to within a few millivolts of the supply voltages.

Of particular significance is the extremely low (1pA) input current, input noise current of $.01 \mathrm{pA} / \sqrt{\mathrm{Hz}}$, and $10^{12} \Omega$ input impedance. These features optimize performance in very high source impedance applications.

The inputs are internally protected and require no special handling procedures. Outputs are fully protected against short circuits to ground or to either supply.

AC performance is excellent, with a slew rate of $1.6 \mathrm{~V} / \mu \mathrm{s}$, and unity gain bandwidth of 1 MHz at $\mathrm{I}_{\mathrm{Q}}=1 \mathrm{~mA}$.

Because of the low power dissipation, operating temperatures and drift are quite low. Applications utilizing these features may include stable instruments, extended life designs, or high density packages.

SELECTION GUIDE

FEATURES

- Wide Operating Voltage Range $\pm 1 \mathrm{~V}$ to $\pm 8 \mathrm{~V}$
- High Input Impedance - $10^{12} \Omega$
- Programmable Power Consumption - Low As $20 \mu \mathrm{~W}$
- Input Current Lower Than BIFETs - Typ 1pA
- Available As Singles, Duals, Triples, and Quads
- Output Voltage Swings to Within Millivolts Of \mathbf{V}^{-}and V +
- Low Power Replacement for Many Standard Op Amps
- Compensated and Uncompensated Versions
- Input Common Mode Voltage Range Greater Than Supply Rails (ICL7612)

APPLICATIONS

- Portable Instruments
- Telephone Headsets
- Hearing Aid/Microphone Amplifiers
- Meter Amplifiers
- Medical Instruments
- High Impedance Buffers

DEVICE NOMENCLATURE

SPECIAL FEATURE CODES

C	$=$ INTERNALLY COMPENSATED
H	$=$ HIGH QUIESCENT CURRENT $(1 \mathrm{~mA})$
L	$=$ LOW QUIESCENT CURRENT $(10 \mu \mathrm{~A})$
M	$=$ MEDIUM QUIESCENT CURRENT $(100 \mu \mathrm{~A})$
O	$=$ OFFSET NULL CAPABILITY
P	$=$ PROGRAMMABLE QUIESCENT CURRENT
V	$=$ EXTENDED CMVR

ORDERING INFORMATION

Basic Part Number	Number of OP-AMPS in Package, and Special Features (SEE CODES)	Package Type and Suffix						
		8-Lead TO-99		8-PinMINIDIP	$\begin{gathered} \text { 8-Pin } \\ \text { SOIC } \\ \hline 0^{\circ} \mathrm{C} \text { to } \\ +70^{\circ} \mathrm{C} \end{gathered}$	Plastic DIP (1) $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	Ceramic DIP (1)	
		$\begin{aligned} & 0^{\circ} \mathrm{C} \text { to } \\ & +70^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & -55^{\circ} \mathrm{C} \text { to } \\ & +125^{\circ} \mathrm{C} \end{aligned}$				$\begin{aligned} & 0^{\circ} \mathrm{C} \text { to } \\ & +70^{\circ} \mathrm{C} \end{aligned}$	$\begin{gathered} -55^{\circ} \mathrm{C} \text { to } \\ +125^{\circ} \mathrm{C} \end{gathered}$
$\begin{aligned} & \text { ICL7611 } \\ & \text { ICL7612 } \end{aligned}$	SINGLE OP-AMP: C, O, P C, O, P, V	ACTV BCTV	AMTV BMTV	ACPA BCPA	$\begin{aligned} & \text { DCPA } \\ & \text { DCBA } \end{aligned}$			
ICL7621	DUAL OP-AMP: C, M	ACTV BCTV DCTV	AMTV BMTV	ACPA BCPA DCPA				
ICL7631	TRIPLE OP-AMP: C, P					ECPE	ECJE	
$\begin{aligned} & \text { ICL7641 } \\ & \text { ICL7642 } \end{aligned}$	QUAD OP-AMP: C, H C, L					$\begin{aligned} & \text { CCPD } \\ & \text { ECPD } \end{aligned}$	$\begin{aligned} & \text { CCJD } \\ & \text { ECJD } \end{aligned}$	CMJD

NOTES: 1. Duals and quads are available in 14 pin DIP package, triples in 16 pin only.
2. Ordering code must consist of basic part number and package suffix, e.g., ICL7611BCPA.

Device	Description	Pin Assignments
ICL7611XCPA ICL7611XCTV ICL7611XMTV ICL7612XCPA ICL7612XCTV ICL7612XMTV	Internal compensation, plus offset null capability and external I_{Q} control	*Pin 7 connected to case. 8 PIN DIP (TOP VIEW) (outline dwg BA)

Figure 1: Pin Configurations

[^238]NOTE: All typical values have been characterized but are not tested.

Figure 1: Pin Configurations (Cont.)

[^239]

Figure 2: Functional Diagram

ABSOLUTE MAXIMUM RATINGS

Total Supply Voltage V $^{+}$to V^{-}........................ . 18 V
Input Voltage V- -0.3 to $\mathrm{V}^{+}+0.3 \mathrm{~V}$
Differential Input Voltage ${ }^{11]} . \pm\left[\left(V^{+}+0.3\right)-\left(V^{-}-0.3\right)\right] V$
Duration of Output Short Circuit[2] Unlimited

Continuous Power Dissipation

	@25 ${ }^{\circ} \mathrm{C}$	Above $25^{\circ} \mathrm{C}$ derate as below:
TO-99	250 mW	$2 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
8 Lead Minidip	250mW	$2 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
14 Lead Plastic	375 mW	$3 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
14 Lead Cerdip	500 mW	$4 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
16 Lead Plastic	375 mW	$3 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
16 Lead Cerdip	500mW	$4 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$		
Operating Temperature Range		
ICL76XXM . $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$		
ICL76XXC $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$		
Lead Temperature (Soldering, 10sec) 3000		

NOTE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
NOTE 1. Long term offset voltage stability will be degraded if large input differential voltages are applied for long periods of time.
2. The outputs may be shorted to ground or to either supply. for $\mathrm{V}_{\text {SUPP }} \leq 10 \mathrm{~V}$. Care must be taken to insure that the dissipation rating is not exceeded.

ELECTRICAL CHARACTERISTICS (7611/12 and 7621 ONLY)

($V_{\text {SUPPLY }}= \pm 5.0 \mathrm{~V}, \mathrm{~T}_{A}=25^{\circ} \mathrm{C}$, unless otherwise specified.)

Symbol	Parameter	Test Conditions	76XXA			76XXB			76XXD			Units
			Min	Typ	Max	Min	Typ	Max	Min	Typ	Max	
Vos	Input Offset Voltage	$\begin{aligned} & \mathrm{R}_{\mathrm{S}} \leq 100 \mathrm{k} \Omega, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\text {MIN }} \leq \mathrm{T}_{\mathrm{A}} \leq \mathrm{T}_{\text {MAX }} \end{aligned}$			$\begin{aligned} & 2 \\ & 3 \end{aligned}$			$\begin{aligned} & 5 \\ & 7 \end{aligned}$			$\begin{aligned} & 15 \\ & 20 \end{aligned}$	mV
$\Delta \mathrm{V}_{\text {OS }} / \Delta \mathrm{T}$	Temperature Coefficient of V_{OS}	$\mathrm{R}_{S} \leq 100 \mathrm{k} \Omega$		10			15			25		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
los	Input Offset Current	$\begin{aligned} & T_{A}=25^{\circ} \mathrm{C} \\ & \Delta T_{A}=C_{(2)} \\ & \Delta T_{A}=M_{(2)} \end{aligned}$		0.5	$\begin{array}{\|c\|} \hline 30 \\ 300 \\ 800 \\ \hline \end{array}$		0.5	$\begin{array}{\|c\|} \hline 30 \\ 300 \\ 800 \\ \hline \end{array}$		0.5	$\begin{array}{\|c\|} \hline 30 \\ 300 \\ 800 \\ \hline \end{array}$	pA
IBIAS	Input Bias Current	$\begin{aligned} & T_{A}=25^{\circ} \mathrm{C} \\ & \Delta T_{A}=C \\ & \Delta T_{A}=M \end{aligned}$		1.0	$\begin{array}{\|c\|} \hline 50 \\ 400 \\ 4000 \\ \hline \end{array}$		1.0	$\begin{array}{\|c\|} \hline 50 \\ 400 \\ 4000 \\ \hline \end{array}$		1.0	$\begin{array}{\|c\|} \hline 50 \\ 400 \\ 4000 \\ \hline \end{array}$	pA
$\mathrm{V}_{\text {CMR }}$	Common Mode Voltage Range (Except ICL7612)	$\begin{aligned} & \mathrm{l}_{\mathrm{Q}}=10 \mu \mathrm{~A}(1) \\ & \mathrm{l}=100 \mu \mathrm{~A} \\ & \mathrm{Q}=1 \mathrm{~mA}(1) \\ & \mathrm{Q}^{2}= \end{aligned}$	$\begin{aligned} & \pm 4.4 \\ & \pm 4.2 \\ & \pm 3.7 \\ & \hline \end{aligned}$			$\begin{array}{\|l\|} \hline \pm 4.4 \\ \pm 4.2 \\ \pm 3.7 \\ \hline \end{array}$			$\begin{array}{\|l\|} \hline \pm 4.4 \\ \pm 4.2 \\ \pm 3.7 \\ \hline \end{array}$			V
$V_{\text {CMR }}$	Extended Common Mode Voltage Range (ICL7612 Only)	$\mathrm{l}_{\mathrm{Q}}=10 \mu \mathrm{~A}$	± 5.3			± 5.3			± 5.3			
		$\mathrm{I}_{\mathrm{Q}}=100 \mu \mathrm{~A}$	$\begin{array}{\|l\|} \hline+5.3 \\ -5.1 \end{array}$			$\begin{array}{\|l\|} +5.3 \\ -5.1 \end{array}$			$\begin{array}{\|l\|} \hline+5.3 \\ -5.1 \end{array}$			V
		$\mathrm{l}_{\mathrm{Q}}=1 \mathrm{~mA}$	$\begin{array}{\|l\|} \hline+5.3 \\ -4.5 \\ \hline \end{array}$			$\begin{array}{\|l\|} \hline+5.3 \\ -4.5 \\ \hline \end{array}$			$\begin{array}{\|l\|} \hline+5.3 \\ -4.5 \\ \hline \end{array}$			
Vout	Output Voltage Swing	$\begin{aligned} & \text { (1) } I_{Q}=10 \mu A, R_{L}=1 \mathrm{M} \Omega \\ & T_{A}=25^{\circ} \mathrm{C} \\ & \Delta T_{A}=C \\ & \Delta T_{A}=M \end{aligned}$	$\begin{aligned} & \pm 4.9 \\ & \pm 4.8 \\ & \pm 4.7 \\ & \hline \end{aligned}$			$\begin{aligned} & \pm 4.9 \\ & \pm 4.8 \\ & \pm 4.7 \\ & \hline \end{aligned}$			$\begin{aligned} & \pm 4.9 \\ & \pm 4.8 \\ & \pm 4.7 \\ & \hline \end{aligned}$			
		$\begin{aligned} & \mathrm{l}_{\mathrm{Q}}=100 \mu \mathrm{~A}, \mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega \\ & T_{A}=25^{\circ} \mathrm{C} \\ & \Delta T_{A}=C \\ & \Delta T_{A}=M \end{aligned}$	$\begin{aligned} & \pm 4.9 \\ & \pm 4.8 \\ & \pm 4.5 \\ & \hline \end{aligned}$			$\begin{array}{\|} \pm 4.9 \\ \pm 4.8 \\ \pm 4.5 \\ \hline \end{array}$			$\begin{aligned} & \pm 4.9 \\ & \pm 4.8 \\ & \pm 4.5 \\ & \hline \end{aligned}$			V
		$\begin{aligned} & (1) I_{Q}=1 \mathrm{~mA}, R_{L}=10 \mathrm{k} \Omega \\ & T_{A}=25^{\circ} \mathrm{C} \\ & \Delta T_{A}=C \\ & \Delta T_{A}=M \end{aligned}$	$\begin{aligned} & \pm 4.5 \\ & \pm 4.3 \\ & \pm 4.0 \end{aligned}$			$\begin{aligned} & \pm 4.5 \\ & \pm 4.3 \\ & \pm 4.0 \end{aligned}$			$\begin{aligned} & \pm 4.5 \\ & \pm 4.3 \\ & \pm 4.0 \end{aligned}$			

[^240]ELECTRICAL CHARACTERISTICS (7611/12 and 7621 ONLY) (Continued)
($V_{\text {SUPPLY }}= \pm 5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise specified.)

Symbol	Parameter	Test Conditions	76XXA			76XXB			76XXD			Units
			Min	Typ	Max	Min	Typ	Max	Min	Typ	Max	
Avol	Large Signal Voltage Gain	$\begin{aligned} & V_{O}= \pm 4.0 \mathrm{~V}, R_{L}=1 \mathrm{M} \Omega \\ & l_{Q}=10 \mu \mathrm{~A}(1), T_{A}=25^{\circ} \mathrm{C} \\ & \Delta T_{A}=C \\ & \Delta T_{A}=M \end{aligned}$	$\begin{aligned} & 86 \\ & 80 \\ & 74 \end{aligned}$	104		$\begin{array}{\|l\|} 80 \\ 75 \\ 68 \\ \hline \end{array}$	104		$\begin{aligned} & 80 \\ & 75 \\ & 68 \end{aligned}$	104		dB
		$\begin{aligned} & \mathrm{V}_{\mathrm{O}}= \pm 4.0 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega \\ & \mathrm{l}_{\mathrm{Q}}=100 \mu \mathrm{~A}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & \Delta T_{A}=\mathrm{C} \\ & \Delta T_{A}=\mathrm{M} \\ & \hline \end{aligned}$	$\begin{aligned} & 86 \\ & 80 \\ & 74 \\ & \hline \end{aligned}$	102		$\begin{array}{\|l\|} \hline 80 \\ 75 \\ 68 \\ \hline \end{array}$	102		$\begin{aligned} & 80 \\ & 75 \\ & 68 \end{aligned}$	102		
		$\begin{aligned} & \mathrm{V}_{\mathrm{O}}= \pm 4.0 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega \\ & \mathrm{l}_{\mathrm{Q}}=1 \mathrm{~mA}(1), \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & \Delta T_{A}=\mathrm{C} \\ & \Delta T_{A}=\mathrm{M} \end{aligned}$	$\begin{aligned} & 80 \\ & 76 \\ & 72 \\ & \hline \end{aligned}$	83		$\begin{array}{\|l\|} \hline 76 \\ 72 \\ 68 \\ \hline \end{array}$	83		$\begin{aligned} & 76 \\ & 72 \\ & 68 \end{aligned}$	83		
GBW	Unity Gain Bandwidth	$\begin{aligned} & \mathrm{I}_{\mathrm{Q}}=10 \mu \mathrm{~A}(1) \\ & \mathrm{I}_{\mathrm{Q}}=100 \mu \mathrm{~A} \\ & \mathrm{I}_{\mathrm{Q}}=1 \mathrm{~mA}(1) \\ & \hline \end{aligned}$		$\begin{array}{\|c\|} \hline 0.044 \\ 0.48 \\ 1.4 \\ \hline \end{array}$			$\begin{array}{\|c\|} \hline 0.044 \\ 0.48 \\ 1.4 \\ \hline \end{array}$			$\begin{array}{\|c\|} \hline 0.044 \\ 0.48 \\ 1.4 \\ \hline \end{array}$		MHz
R_{IN}	Input Resistance			1012			10^{12}			10^{12}		Ω
CMRR	Common Mode Rejection Ratio	$\begin{aligned} & R_{S} \leq 100 \mathrm{k} \Omega, \mathrm{I}_{\mathrm{Q}}=10 \mu \mathrm{~A}(1) \\ & R_{S} \leq 100 \mathrm{k} \Omega, I_{Q}=100 \mu \mathrm{~A} \\ & R_{S} \leq 100 \mathrm{k} \Omega, I_{Q}=1 \mathrm{~mA}(1) \end{aligned}$	$\begin{aligned} & 76 \\ & 76 \\ & 66 \end{aligned}$	$\begin{aligned} & 96 \\ & 91 \\ & 87 \end{aligned}$		$\begin{array}{\|l\|} \hline 70 \\ 70 \\ 60 \\ \hline \end{array}$	$\begin{aligned} & 96 \\ & 91 \\ & 87 \end{aligned}$		$\begin{aligned} & 70 \\ & 70 \\ & 60 \\ & \hline \end{aligned}$	$\begin{aligned} & 96 \\ & 91 \\ & 87 \end{aligned}$		dB
PSRR	Power Supply Rejection Ratio	$\begin{aligned} & \mathrm{R}_{S} \leq 100 \mathrm{k} \Omega, \mathrm{I}_{\mathrm{Q}}=10 \mu \mathrm{~A}(1) \\ & \mathrm{R}_{S} \leq 100 \mathrm{k} \Omega, \mathrm{I}_{\mathrm{Q}}=100 \mu \mathrm{~A} \\ & \mathrm{R}_{S} \leq 100 \mathrm{k} \Omega, \mathrm{I}_{\mathrm{Q}}=1 \mathrm{~mA}(1) \\ & \hline \end{aligned}$	$\begin{aligned} & 80 \\ & 80 \\ & 70 \\ & \hline \end{aligned}$	$\begin{aligned} & 94 \\ & 86 \\ & 77 \\ & \hline \end{aligned}$		$\begin{array}{\|l\|} \hline 80 \\ 80 \\ 70 \\ \hline \end{array}$	$\begin{aligned} & 94 \\ & 86 \\ & 77 \\ & \hline \end{aligned}$		$\begin{aligned} & \hline 80 \\ & 80 \\ & 70 \\ & \hline \end{aligned}$	$\begin{aligned} & 94 \\ & 86 \\ & 77 \\ & \hline \end{aligned}$		dB
e_{n}	Input Referred Noise Voltage	$\mathrm{R}_{S}=100 \Omega, \mathrm{f}=1 \mathrm{kHz}$		100			100			100		$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
in	Input Referred Noise Current	$\mathrm{R}_{S}=100 \Omega, \mathrm{f}=1 \mathrm{kHz}$		0.01			0.01			0.01		$\mathrm{pA} / \sqrt{\mathrm{Hz}}$
ISUPPLY	Supply Current (Per Amplifier)	No Signal, No Load $\mathrm{I}_{\mathrm{Q}} \mathrm{SET}=+5 \mathrm{~V}(1)$ $\mathrm{I}_{\mathrm{Q}} \mathrm{SET}=0 \mathrm{~V}$ $\mathrm{IQ}_{\mathrm{Q}} \mathrm{SET}=-5 \mathrm{~V}(1)$		$\begin{gathered} 0.01 \\ 0.1 \\ 1.0 \end{gathered}$	$\left\|\begin{array}{c} 0.02 \\ 0.25 \\ 2.5 \end{array}\right\|$		$\begin{array}{\|c\|} \hline 0.01 \\ 0.1 \\ 1.0 \\ \hline \end{array}$	$\begin{gathered} 0.02 \\ 0.25 \\ 2.5 \end{gathered}$		$\begin{gathered} 0.01 \\ 0.1 \\ 1.0 \end{gathered}$	$\left\|\begin{array}{c} 0.02 \\ 0.25 \\ 2.5 \end{array}\right\|$	mA
$\mathrm{V}_{\mathrm{O} 1} / \mathrm{V}_{\mathrm{O} 2}$	Channel Separation	$A_{\text {VOL }}=100$		120			120			120		dB
SR	Slew Rate ${ }^{(3)}$	$\begin{aligned} & A_{V O L}=1, C_{L}=100 \mathrm{pF} \\ & \mathrm{~V}_{\mathrm{IN}}=8 \mathrm{Vp}-\mathrm{p} \\ & \mathrm{l}_{\mathrm{Q}}=10 \mu \mathrm{~A}(1), R_{\mathrm{L}}=1 \mathrm{M} \Omega \\ & \mathrm{Q}_{\mathrm{Q}}=100 \mu \mathrm{~A}, \mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega \\ & \mathrm{Q}_{\mathrm{Q}}=1 \mathrm{~mA}(1), \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega \\ & \hline \end{aligned}$		$\begin{gathered} 0.016 \\ 0.16 \\ 1.6 \\ \hline \end{gathered}$			$\begin{gathered} 0.016 \\ 0.16 \\ 1.6 \\ \hline \end{gathered}$			$\begin{gathered} 0.016 \\ 0.16 \\ 1.6 \\ \hline \end{gathered}$		$\mathrm{V} / \mu \mathrm{s}$
t_{r}	Rise Time ${ }^{(3)}$	$\begin{aligned} & V_{I N}=50 \mathrm{mV}, \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF} \\ & \mathrm{I}_{\mathrm{Q}}=10 \mu \mathrm{~A}(1), R_{\mathrm{L}}=1 \mathrm{M} \Omega \\ & \mathrm{l}_{\mathrm{Q}}=100 \mu \mathrm{~A}, \mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega \\ & \mathrm{Q}_{\mathrm{Q}}=1 \mathrm{~mA}(1), \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega \end{aligned}$		$\begin{gathered} 20 \\ 2 \\ 0.9 \\ \hline \end{gathered}$			$\begin{gathered} 20 \\ 2 \\ 0.9 \\ \hline \end{gathered}$			$\begin{gathered} 20 \\ 2 \\ 0.9 \\ \hline \end{gathered}$		$\mu \mathrm{s}$
	Overshoot Factor(3)	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=50 \mathrm{mV}, \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF} \\ & \mathrm{IQ}_{\mathrm{Q}}=10 \mu \mathrm{~A}^{1}, R_{\mathrm{L}}=1 \mathrm{M} \Omega \\ & \mathrm{I}_{\mathrm{Q}}=100 \mu \mathrm{~A}, \mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega \\ & \mathrm{I}_{\mathrm{Q}}=1 \mathrm{~mA}^{1}, R_{\mathrm{L}}=10 \mathrm{k} \Omega \end{aligned}$		$\begin{gathered} 5 \\ 10 \\ 40 \end{gathered}$			$\begin{gathered} 5 \\ 10 \\ 40 \end{gathered}$			$\begin{gathered} 5 \\ 10 \\ 40 \end{gathered}$		\%

NOTES: 1. ICL7611, 7612 only.
2. $\mathrm{C}=$ Commercial Temperature Range: $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
$\mathrm{M}=$ Military Temperature Range: $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

[^241]
ELECTRICAL CHARACTERISTICS (7611/12 AND 7621 ONLY)

($V_{\text {SUPPLY }}= \pm 1.0 \mathrm{~V}, \mathrm{I}_{\mathrm{Q}}=10 \mu \mathrm{~A}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise specified.)

Symbol	Parameter	Test Conditions	76XXA			76XXB			Units
			Min	Typ	Max	Min	Typ	Max	
Vos	Input Offset Voltage	$\begin{aligned} & R_{S} \leq 100 \mathrm{k} \Omega, \mathrm{~T}_{A}=25^{\circ} \mathrm{C} \\ & T_{M I N} \leq T_{A} \leq \mathrm{T}_{\text {MAX }} \\ & \hline \end{aligned}$			$\begin{aligned} & 2 \\ & 3 \\ & \hline \end{aligned}$			$\begin{aligned} & 5 \\ & 7 \end{aligned}$	mV
$\Delta \mathrm{V}_{\text {OS }} / \Delta \mathrm{T}$	Temperature Coefficient of $\mathrm{V}_{\text {OS }}$	$\mathrm{R}_{S} \leq 100 \mathrm{k} \Omega$		10			15		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
los	Input Offset Current	$\begin{aligned} & T_{A}=25^{\circ} \mathrm{C} \\ & \Delta T_{A}=C \end{aligned}$		0.5	$\begin{array}{\|c\|} 30 \\ 300 \\ \hline \end{array}$		0.5	$\begin{array}{\|c\|} \hline 30 \\ 300 \\ \hline \end{array}$	pA
IBIAS	Input Bias Current	$\begin{aligned} & T_{A}=25^{\circ} \mathrm{C} \\ & \Delta T_{A}=C \end{aligned}$		1.0	$\begin{gathered} 50 \\ 500 \\ \hline \end{gathered}$		1.0	$\begin{array}{\|c\|} 50 \\ 500 \\ \hline \end{array}$	pA
$V_{\text {CMR }}$	Common Mode Voltage Range (Except ICL7612)		± 0.6			± 0.6			V
$V_{\text {CMR }}$	Extended Common Mode Voltage Range (ICL7612 Only)		$\begin{gathered} +0.6 \\ \text { to } \\ -1.1 \end{gathered}$			$\begin{gathered} +0.6 \\ \text { to } \\ -1.1 \end{gathered}$			V
V OUT	Output Voltage Swing	$\begin{aligned} & R_{L}=1 M \Omega, T_{A}=25^{\circ} \mathrm{C} \\ & \Delta T_{A}=C \end{aligned}$		$\begin{aligned} & \pm 0.98 \\ & \pm 0.96 \end{aligned}$			$\begin{aligned} & \pm 0.98 \\ & \pm 0.96 \end{aligned}$		V
Avol	Large Signal Voltage Gain	$\begin{aligned} & V_{O}= \pm 0.1 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{M} \Omega \\ & \mathrm{~T}_{A}=25^{\circ} \mathrm{C} \\ & \Delta T_{A}=C \\ & \hline \end{aligned}$		$\begin{aligned} & 90 \\ & 80 \\ & \hline \end{aligned}$			$\begin{aligned} & 90 \\ & 80 \\ & \hline \end{aligned}$		dB
GBW	Unity Gain Bandwidth			0.044					MHz
RIN	Input Resistance			1012			10^{12}		
CMRR	Common Mode Rejection Ratio	$\mathrm{R}_{S} \leq 100 \mathrm{k} \Omega$		80			80		
PSRR	Power Supply Rejection Ratio	$\mathrm{R}_{S} \leq 100 \mathrm{k} \Omega$		80			80		dB
e_{n}	Input Referred Noise Voltage	$\mathrm{R}_{\mathrm{S}}=100 \Omega, f=1 \mathrm{kHz}$		100			100		$n \mathrm{~V} / \sqrt{\mathrm{Hz}}$
in	Input Referred Noise Current	$\mathrm{R}_{S}=100 \Omega, \mathrm{f}=1 \mathrm{kHz}$		0.01			0.01		$\mathrm{pA} / \sqrt{ } \overline{\mathrm{Hz}}$
ISUPPLY	Supply Current (Per Amplifier)	No Signal, No Load		6	15		6	15	$\mu \mathrm{A}$
SR	Slew Rate	$\begin{aligned} & A_{V O L}=1, C_{L}=100 \mathrm{pF} \\ & V_{I N}=0.2 \mathrm{Vp}-\mathrm{p} \\ & R_{\mathrm{L}}=1 \mathrm{M} \Omega \end{aligned}$		0.016			0.016		$\mathrm{V} / \mu \mathrm{s}$
t_{r}	Rise Time	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=50 \mathrm{mV}, \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=1 \mathrm{M} \Omega \\ & \hline \end{aligned}$		20			20		$\mu \mathrm{S}$
	Overshoot Factor	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=50 \mathrm{mV}, \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=1 \mathrm{M} \Omega \end{aligned}$		5			5		\%

NOTE: $\mathrm{C}=$ Commercial Temperature Range $\left(0^{\circ} \mathrm{C}\right.$ to $\left.+70^{\circ} \mathrm{C}\right) \quad \mathrm{M}=$ Military Temperature Range $\left(-55^{\circ} \mathrm{C}\right.$ to $\left.+125^{\circ} \mathrm{C}\right)$.

[^242]NOTE: All typical values have been characterized but are not tested.

ELECTRICAL CHARACTERISTICS (7631, 7641/42 ONLY)

($V_{\text {SUPPLY }}= \pm 5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise specified.)

Symbol	Parameter	Test Conditions	76XXC (6)			76XXE (6)			Units
			Min	Typ	Max	Min	Typ	Max	
Vos	Input Offset Voltage	$\begin{aligned} & R_{S} \leq 100 \mathrm{k} \Omega, T_{A}=25^{\circ} \mathrm{C} \\ & T_{\text {MIN }} \leq T_{A} \leq T_{\text {MAX }} \end{aligned}$			$\begin{aligned} & 10 \\ & 15 \\ & \hline \end{aligned}$			$\begin{aligned} & 20 \\ & 25 \\ & \hline \end{aligned}$	mV
$\Delta \mathrm{V}_{\text {OS }} / \Delta \mathrm{T}$	Temperature Coefficient of $\mathrm{V}_{\text {OS }}$	$R_{S} \leq 100 \mathrm{k} \Omega$ (Note 5)		20			30		
los	Input Offset Current	$\begin{aligned} & T_{A}=25^{\circ} \mathrm{C} \\ & \Delta T_{A}=C \\ & \Delta T_{A}=M \\ & \hline \end{aligned}$		0.5	$\begin{gathered} 30 \\ 300 \\ 800 \end{gathered}$		0.5	$\begin{gathered} 30 \\ 300 \\ 800 \end{gathered}$	pA
$I_{\text {BIAS }}$	Input Bias Current	$\begin{aligned} & T_{A}=25^{\circ} \mathrm{C} \\ & \Delta T_{A}=C \\ & \Delta T_{A}=M \end{aligned}$		1.0	$\begin{gathered} 50 \\ 500 \\ 4000 \end{gathered}$		1.0	$\begin{gathered} 50 \\ 500 \\ 4000 \end{gathered}$	pA
$V_{\text {CMR }}$	Common Mode Voltage Range	$\begin{aligned} & I_{Q}=10 \mu A(1) \\ & I_{Q}=100 \mu A(3) \\ & I_{Q}=1 m A(2) \end{aligned}$	$\begin{aligned} & \pm 4.4 \\ & \pm 4.2 \\ & \pm 3.7 \end{aligned}$			$\begin{aligned} & \pm 4.4 \\ & \pm 4.2 \\ & \pm 3.7 \end{aligned}$			V
VOUT	Output Voltage Swing	$\begin{aligned} & \text { (1) } I_{Q}=10 \mu \mathrm{~A}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{M} \Omega \\ & T_{A}=25^{\circ} \mathrm{C} \\ & \Delta T_{A}=C \\ & \Delta T_{A}=M \end{aligned}$	$\begin{aligned} & \pm 4.9 \\ & \pm 4.8 \\ & \pm 4.7 \end{aligned}$			$\begin{aligned} & \pm 4.9 \\ & \pm 4.8 \\ & \pm 4.7 \end{aligned}$			V
		$\begin{aligned} & \mathrm{I}_{\mathrm{Q}}=100 \mu \mathrm{~A}, \mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega \\ & (3) \quad T_{A}=25^{\circ} \mathrm{C} \\ & \Delta T_{A}=C \\ & \Delta T_{A}=M \end{aligned}$	$\begin{aligned} & \pm 4.9 \\ & \pm 4.8 \\ & \pm 4.5 \end{aligned}$			$\begin{aligned} & \pm 4.9 \\ & \pm 4.8 \\ & \pm 4.5 \\ & \hline \end{aligned}$			
		$\begin{aligned} & \text { (2) } I_{Q}=1 \mathrm{~mA}, R_{L}=10 \mathrm{k} \Omega \\ & T_{A}=25^{\circ} \mathrm{C} \\ & \Delta T_{A}=C \\ & \Delta T_{A}=M \end{aligned}$	$\begin{aligned} & \pm 4.5 \\ & \pm 4.3 \\ & \pm 4.0 \end{aligned}$			$\begin{aligned} & \pm 4.5 \\ & \pm 4.3 \\ & \pm 4.0 \\ & \hline \end{aligned}$			
Avol	Large Signal Voltage Gain	$\begin{aligned} & V_{O}= \pm 4.0 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{M} \Omega(1) \\ & \mathrm{I}_{Q}=10 \mu \mathrm{~A}(1), \mathrm{T}_{A}=25^{\circ} \mathrm{C} \\ & \Delta T_{A}=C \\ & \Delta T_{A}=M \end{aligned}$	$\begin{aligned} & 80 \\ & 75 \\ & 68 \end{aligned}$	104		$\begin{aligned} & 80 \\ & 75 \\ & 68 \end{aligned}$	104		dB
		$\begin{aligned} & V_{O}= \pm 4.0 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega \text { (3) }^{(3)} \\ & \mathrm{I}_{\mathrm{Q}}=100 \mu \mathrm{~A}, \mathrm{~T}_{A}=25^{\circ} \mathrm{C} \\ & \Delta T_{A}=\mathrm{C} \\ & \Delta T_{A}=M \end{aligned}$	$\begin{aligned} & 80 \\ & 75 \\ & 68 \\ & \hline \end{aligned}$	102		$\begin{aligned} & 80 \\ & 75 \\ & 68 \end{aligned}$	102		
		$\begin{aligned} & V_{Q}= \pm 4.0 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega^{(2)} \\ & \mathrm{I}_{Q}=1 \mathrm{~mA} \mathrm{~A}^{(1)}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & \Delta T_{A}=\mathrm{C} \\ & \Delta T_{A}=M \end{aligned}$	$\begin{aligned} & 80 \\ & 75 \\ & 68 \\ & \hline \end{aligned}$	98		$\begin{aligned} & 80 \\ & 75 \\ & 68 \end{aligned}$	98		
GBW	Unity Gain Bandwidth	$\begin{aligned} & I_{Q}=10 \mu A(1) \\ & I_{Q}=100 \mu A(3) \\ & I_{Q}=1 m A(2) \end{aligned}$		$\begin{gathered} 0.044 \\ 0.48 \\ 1.4 \end{gathered}$			$\begin{gathered} 0.044 \\ 0.48 \\ 1.4 \end{gathered}$		MHz
$\mathrm{R}_{\text {IN }}$	Input Resistance			10^{12}			10^{12}		Ω
CMRR	Common Mode Rejection Ratio	$\begin{aligned} & R_{S} \leq 100 \mathrm{k} \Omega, I_{Q}=10 \mu \mathrm{~A}(1) \\ & R_{S} \leq 100 \mathrm{k} \Omega, \mathrm{I}_{Q}=100 \mu \mathrm{~A} \\ & R_{S} \leq 100 \mathrm{k} \Omega, \mathrm{I}_{\mathrm{Q}}=1 \mathrm{~mA}(2) \end{aligned}$	$\begin{aligned} & 70 \\ & 70 \\ & 60 \end{aligned}$	$\begin{aligned} & 96 \\ & 91 \\ & 87 \end{aligned}$		$\begin{aligned} & 70 \\ & 70 \\ & 60 \end{aligned}$	$\begin{aligned} & 96 \\ & 91 \\ & 87 \end{aligned}$		dB

INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. the warranty shall be exclusive and shall be in lieu of all other warranties, express, implied or statutory, including the implied warranties of MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.
NOTE: All typical values have been characterized but are not tested.

ICL76XX
ELECTRICAL CHARACTERISTICS (7631, 7641/42 ONLY) (Continued)
($V_{\text {SUPPLY }}= \pm 5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise specified.)

Symbol	Parameter	Test Conditions	76XXC (6)			76XXE (6)			Units
			Min	Typ	Max	Min	Typ	Max	
PSRR	Power Supply Rejection Ratio	$\begin{aligned} & \mathrm{R}_{S} \leq 100 \mathrm{k} \Omega, \mathrm{I}_{\mathrm{Q}}=10 \mu \mathrm{~A}(1) \\ & R_{S} \leq 100 \mathrm{k} \Omega, \mathrm{I}_{\mathrm{Q}}=100 \mu \mathrm{~A} \\ & \mathrm{R}_{\mathrm{S}} \leq 100 \mathrm{k} \Omega, \mathrm{I}_{\mathrm{Q}}=1 \mathrm{~mA}(2) \\ & \hline \end{aligned}$	$\begin{aligned} & 80 \\ & 80 \\ & 70 \\ & \hline \end{aligned}$	$\begin{aligned} & 94 \\ & 86 \\ & 77 \end{aligned}$		$\begin{aligned} & 80 \\ & 80 \\ & 70 \end{aligned}$	$\begin{aligned} & 94 \\ & 86 \\ & 77 \end{aligned}$		dB
e_{n}	Input Referred Noise Voltage	$\mathrm{R}_{S}=100 \Omega, \mathrm{f}=1 \mathrm{kHz}$		100			100		$\mathrm{nV} / \sqrt{ } \overline{\mathrm{Hz}}$
In	Input Referred Noise Current	$R_{S}=100 \Omega, f=1 \mathrm{kHz}$		0.01			0.01		$\mathrm{pA} / \sqrt{ } \overline{\mathrm{Hz}}$
ISUPPLY	Supply Current (Per Amplifier)	No Signal, No Load 7642 ONLY $I_{Q}=10 \mu A(1)$ $I_{Q}=100 \mu A$ $\mathrm{I}_{\mathrm{Q}}=1 \mathrm{~mA}(2)$		$\begin{gathered} 0.01 \\ 0.01 \\ 0.1 \\ 1.0 \\ \hline \end{gathered}$	$\begin{gathered} 0.03 \\ \\ 0.022 \\ 0.25 \\ 2.5 \\ \hline \end{gathered}$		$\begin{gathered} 0.01 \\ 0.01 \\ 0.1 \\ 1.0 \\ \hline \end{gathered}$	$\begin{gathered} 0.03 \\ \\ 0.022 \\ 0.25 \\ 2.5 \\ \hline \end{gathered}$	mA
$\mathrm{V}_{\mathrm{O} 1} / \mathrm{V}_{\mathrm{O} 2}$	Channel Separation	$A_{\text {VOL }}=100$		120			120		dB
SR	Slew Rate	$\begin{aligned} & A_{V O L}=1, C_{L}=100 \mathrm{pF} \\ & V_{I N}=8 \mathrm{Vp}-\mathrm{p} \\ & \mathrm{I}_{\mathrm{Q}}=10 \mu \mathrm{~A}(1), R_{\mathrm{L}}=1 \mathrm{M} \Omega \\ & \mathrm{I}_{\mathrm{Q}}=100 \mu \mathrm{~A}, \mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega \\ & \mathrm{I}_{\mathrm{Q}}=1 \mathrm{~mA}(1), \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega^{(2)} \end{aligned}$		$\begin{gathered} 0.016 \\ 0.16 \\ 1.6 \\ \hline \end{gathered}$			$\begin{gathered} 0.016 \\ 0.16 \\ 1.6 \\ \hline \end{gathered}$		$\mathrm{V} / \mu \mathrm{s}$
tr_{r}	Rise Time	$\begin{aligned} & V_{I N}=50 \mathrm{mV}, C_{L}=100 \mathrm{pF} \\ & \mathrm{l}_{\mathrm{Q}}=10 \mu \mathrm{~A}(1), R_{\mathrm{L}}=1 \mathrm{M} \Omega \\ & \mathrm{l}_{\mathrm{Q}}=100 \mu \mathrm{~A}, \mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega \\ & \mathrm{l}_{\mathrm{Q}}=1 \mathrm{~mA}(2), \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega \end{aligned}$		$\begin{gathered} 20 \\ 2 \\ 0.9 \\ \hline \end{gathered}$			$\begin{gathered} 20 \\ 2 \\ 0.9 \\ \hline \end{gathered}$		$\mu \mathrm{S}$
	Overshoot Factor	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=50 \mathrm{mV}, \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF} \\ & \mathrm{I}_{\mathrm{Q}}=10 \mu \mathrm{~A}(1), \mathrm{R}_{\mathrm{L}}=1 \mathrm{M} \Omega \\ & \mathrm{I}_{\mathrm{Q}}=100 \mu \mathrm{~A}, \mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega \\ & \mathrm{I}_{\mathrm{Q}}=1 \mathrm{~mA}(2), \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega \end{aligned}$		$\begin{gathered} 5 \\ 10 \\ 40 \\ \hline \end{gathered}$			$\begin{gathered} 5 \\ 10 \\ 40 \\ \hline \end{gathered}$		\%

NOTES: 1. Does not apply to 7641.
2. Does not apply to 7642 .
3. ICL7631 only.

For Test Conditions:
$\mathrm{C}=$ Commercial Temperature Range: $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
$\mathrm{M}=$ Military Temperature Range: $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS (7631 AND 7642 ONLY)

($V_{\text {SUPPLY }}= \pm 1.0 \mathrm{~V}, \mathrm{I}_{\mathrm{Q}}=10 \mu \mathrm{~A}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise specified.)

Symbol	Parameter	Test Conditions	76XXC			Units
			Min	Typ	Max	
$\mathrm{V}_{\text {OS }}$	Input Offset Voltage	$\begin{aligned} & \mathrm{R}_{S} \leq 100 \mathrm{k} \Omega, \mathrm{~T}_{A}=25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\text {MIN }} \leq \mathrm{T}_{\mathrm{A}} \leq \mathrm{T}_{\text {MAX }} \end{aligned}$			$\begin{aligned} & 10 \\ & 12 \end{aligned}$	mV
$\Delta \mathrm{V}_{\text {OS }} / \Delta \mathrm{T}$	Temperature Coefficient of $\mathrm{V}_{\text {OS }}$	$\mathrm{R}_{\mathrm{S}} \leq 100 \mathrm{k} \Omega$		20		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
los	Input Offset Current	$\begin{aligned} & \mathrm{T}_{A}=25^{\circ} \mathrm{C} \\ & \Delta \mathrm{~T}_{\mathrm{A}}=\mathrm{C} \end{aligned}$		0.5	$\begin{array}{r} 30 \\ 300 \\ \hline \end{array}$	pA
$l_{\text {BIAS }}$	Input Bias Current	$\begin{aligned} & \mathrm{T}_{A}=25^{\circ} \mathrm{C} \\ & \Delta \mathrm{~T}_{A}=\mathrm{C} \\ & \hline \end{aligned}$		1.0	$\begin{gathered} 50 \\ 500 \end{gathered}$	pA
$\mathrm{V}_{\text {CMR }}$	Common Mode Voltage Range		± 0.6			V

[^243]ELECTRICAL CHARACTERISTICS (7631 AND 7642 ONLY) (Continued)
($V_{\text {SUPPLY }}= \pm 1.0 \mathrm{~V}, \mathrm{I}_{\mathrm{Q}}=10 \mu \mathrm{~A}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise specified.)

Symbol	Parameter	Test Conditions	76XXC			Units
			Min	Typ	Max	
$\mathrm{V}_{\text {OUT }}$	Output Voltage Swing	$\begin{aligned} & R_{L}=1 M \Omega, T_{A}=25^{\circ} \mathrm{C} \\ & \Delta T_{A}=C \end{aligned}$		$\begin{aligned} & \pm 0.98 \\ & \pm 0.96 \end{aligned}$		V
Avol	Large Signal Voltage Gain	$\begin{aligned} & \mathrm{V}_{\mathrm{O}}= \pm 0.1 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{M} \Omega \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & \Delta T_{A}=\mathrm{C} \end{aligned}$		$\begin{aligned} & 90 \\ & 80 \end{aligned}$		dB
GBW	Unity Gain Bandwidth			0.044		MHz
$\mathrm{R}_{\text {IN }}$	Input Resistance			1012		Ω
CMRR	Common Mode Rejection Ratio	$\mathrm{R}_{\mathrm{S}} \leq 100 \mathrm{k} \Omega$		80		dB
PSRR	Power Supply Rejection Ratio			80		dB
e_{n}	Input Referred Noise Voltage	$R_{S}=100 \Omega, f=1 \mathrm{kHz}$		100		$n \mathrm{~V} / \sqrt{\mathrm{Hz}}$
i_{n}	Input Referred Noise Current	$\mathrm{R}_{\mathrm{S}}=100 \Omega, \mathrm{f}=1 \mathrm{kHz}$		0.01		$\mathrm{pA} / \sqrt{\mathrm{Hz}}$
IsUPPLY	Supply Current (Per Amplifier)	No Signal, No Load		6	15	$\mu \mathrm{A}$
$\mathrm{V}_{\mathrm{O} 1 / \mathrm{VO} 2}$	Channel Separation	$A_{\text {VOL }}=100$		120		dB
SR	Slew Rate	$\begin{aligned} & \mathrm{AVOL}=1, C_{L}=100 \mathrm{pF} \\ & \mathrm{~V}_{\mathrm{IN}}=0.2 \mathrm{Vp}-\mathrm{p} \\ & R_{\mathrm{L}}=1 \mathrm{M} \Omega \end{aligned}$		0.016		$\mathrm{V} / \mu \mathrm{s}$
t_{r}	Rise Time	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=50 \mathrm{mV}, \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=1 \mathrm{M} \Omega \end{aligned}$		20		$\mu \mathrm{S}$
	Overshoot Factor	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=50 \mathrm{mV}, \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=1 \mathrm{M} \Omega \end{aligned}$		5		\%

NOTE: $\mathrm{C}=$ Commercial Temperature Range $\left(0^{\circ} \mathrm{C}\right.$ to $\left.+70^{\circ} \mathrm{C}\right)$

TYPICAL PERFORMANCE CHARACTERISTICS

SUPPLY CURRENT PER AMPLIFIER AS A FUNCTION OF SUPPLY VOLTAGE

SUPPLY VOLTAGE - VOLTS
0307-12
 0307-15

POWER SUPPLY REJECTION RATIO AS A FUNCTION OF FREE-AIR TEMPERATURE

free.air temperature - c
0307-18

SUPPLY CURRENT PER AMPLIFIER AS A FUNCTION OF FREE-AIR TEMPERATURE

0307-13
LARGE SIGNAL DIFFERENTIAL VOLTAGE GAIN AND PHASE SHIFT AS A FUNCTION OF FREQUENCY

0307-16

EQUIVALENT INPUT NOISE VOLTAGE AS A FUNCTION OF FREQUENCY

0307-19

INPUT BIAS CURRENT AS A FUNCTION OF TEMPERATURE

0307-14
COMMON MODE REJECTION RATIO AS A FUNCTION OF FREE-AIR TEMPERATURE

0307-17
PEAK-TO-PEAK OUTPUT VOLTAGE AS A FUNCTION OF FREQUENCY

0307-20

TYPICAL PERFORMANCE CHARACTERISTICS

0307-21

MAXIMUM OUTPUT SOURCE CURRENT AS A FUNCTION OF SUPPLY VOLTAGE

0307-24
VOLTAGE FOLLOWER LARGE SIGNAL PULSE RESPONSE

0307-27

MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE AS A FUNCTION OF SUPPLY VOLTAGE

0307-22
MAXIMUM OUTPUT SINK CURRENT AS A FUNCTION OF SUPPLY VOLTAGE

0307-25
VOLTAGE FOLLOWER LARGE SIGNAL PULSE RESPONSE

0307-28

MAXIMUM PEAK-TO-PEAK VOLTAGE AS A FUNCTION OF FREE-AIR TEMPERATURE

0307-23
MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE AS A FUNCTION OF LOAD RESISTANCE

0307-26
VOLTAGE FOLLOWER LARGE SIGNAL PULSE RESPONSE

0307-29

DETAILED DESCRIPTION

Static Protection

All devices are static protected by the use of input diodes. However, strong static fields should be avoided, as it is possible for the strong fields to cause degraded diode junction characteristics, which may result in increased input leakage currents.

Latchup Avoidance

Junction-isolated CMOS circuits employ configurations which produce a parasitic 4-layer (p-n-p-n) structure. The 4layer structure has characteristics similar to an SCR, and under certain circumstances may be triggered into a low impedance state resulting in excessive supply current. To avoid this condition, no voltage greater than 0.3 V beyond the supply rails may be applied to any pin. In general, the op-amp supplies must be established simultaneously with, or before any input signals are applied. If this is not possible, the drive circuits must limit input current flow to 2 mA to prevent latchup.

Choosing the Proper $\mathbf{I}_{\mathbf{Q}}$

Each device in the ICL76XX family has a similar l_{Q} set-up scheme, which allows the amplifier to be set to nominal quiescent currents of $10 \mu \mathrm{~A}, 100 \mu \mathrm{~A}$ or 1 mA . These current settings change only very slightly over the entire supply voltage range. The ICL7611/12 and ICL7631 have an external I_{Q} control terminal, permitting user selection of each amplifiers' quiescent current. (The 7621 and 7641/42 have fixed I_{Q} settings - refer to selector guide for details.) To set the l_{Q} of programmable versions, connect the I_{Q} terminal as follows:
$l_{Q}=10 \mu \mathrm{~A}-\mathrm{l}_{\mathrm{Q}}$ pin to V^{+}
$I_{Q}=100 \mu A-l_{Q}$ pin to ground. If this is not possible, any voltage from $\mathrm{V}^{+}-0.8$ to $\mathrm{V}^{-}+0.8$ can be used.
$I_{Q}=1 \mathrm{~mA}-I_{Q}$ pin to V^{-}
NOTE: The negative output current available is a function of the quiescent current setting. For maximum p-p output voltage swings into low impedance loads, I_{Q} of 1 mA should be selected.

Output Stage and Load Driving Considerations

Each amplifiers' quiescent current flows primarily in the output stage. This is approximately 70% of the I_{Q} settings. This allows output swings to almost the supply rails for output loads of $1 \mathrm{M} \Omega, 100 \mathrm{k} \Omega$, and $10 \mathrm{k} \Omega$, using the output stage
in a highly linear class A mode. In this mode, crossover distortion is avoided and the voltage gain is maximized. However, the output stage can also be operated in Class AB for higher output currents. (See graphs under Typical Operating Characteristics). During the transition from Class A to Class B operation, the output transfer characteristic is non-linear and the voltage gain decreases.

A special feature of the output stage is that it approximates a transconductance amplifier, and its gain is directly proportional to load impedance. Approximately the same open loop gains are obtained at each of the I_{Q} settings if corresponding loads of $10 \mathrm{k} \Omega, 100 \mathrm{k} \Omega$, and $1 \mathrm{M} \Omega$ are used.

Input Offset Nulling

For those models provided with OFFSET NULLING pins, nulling may be achieved by connecting a 25 K pot between the OFFSET terminals with the wiper connected to V^{+}. At quiescent currents of 1 mA and $100 \mu \mathrm{~A}$, the nulling range provided is adequate for all $V_{O S}$ selections; however with $I_{Q}=10 \mu \mathrm{~A}$, nulling may not be possible with higher values of Vos.

Frequency Compensation

The ICL76XX are internally compensated, and are stable for closed loop gains as low as unity with capacitive loads up to 100 pF

Extended Common Mode Input Range

The ICL7612 incorporates additional processing which allows the input CMVR to exceed each power supply rail by 0.1 volt for applications where $\mathrm{V}_{\text {SUPP }} \geq \pm 1.5 \mathrm{~V}$. For those applications where $\mathrm{V}_{\text {SUPP }} \leq \pm 1.5 \mathrm{~V}$, the input CMVR is limited in the positive direction, but may exceed the negative supply rail by 0.1 volt in the negative direction (eg. for $V_{\text {SUPP }}= \pm 1.0 \mathrm{~V}$, the input CMVR would be +0.6 volts to -1.1 volts).

OPERATION AT $V_{\text {SUPP }}= \pm 1.0$ VOLTS

Operation at $V_{\text {SUPP }}= \pm 1.0 \mathrm{~V}$ is guaranteed at $\mathrm{I}_{\mathrm{Q}}=10 \mu \mathrm{~A}$ only. This applies to those devices with selectable $\left.\right|_{Q}$, and devices that are set internally to $I_{Q}=10 \mu \mathrm{~A}$ (i.e., ICL7611, 7612, 7631, 7642).

Output swings to within a few millivolts of the supply rails are achievable for $R_{L} \geq 1 M \Omega$. Guaranteed input CMVR is $\pm 0.6 \mathrm{~V}$ minimum and typically +0.9 V to -0.7 V at $\mathrm{V}_{\text {SUPP }}= \pm 1.0 \mathrm{~V}$. For applications where greater common mode range is desirable, refer to the description of ICL7612 above.

[^244]The user is cautioned that, due to extremely high input impedances, care must be exercised in layout, construction, board cleanliness, and supply filtering to avoid hum and noise pickup.

APPLICATIONS

Note that in no case is l_{Q} shown. The value of l_{Q} must be chosen by the designer with regard to frequency response and power dissipation.

*By using the ICL7612 in these applications, the circuits will follow rail to rail inputs.

Figure 4: Level Detector*

0307-32
*Low leakage currents allow integration times up to several hours.
Figure 5: Photocurrent Integrator

0307-33
Since the output range swings exactly from rail to rail, frequency and duty cycle are virtually independent of power supply variations.

Figure 6: Precise Triangle/Square Wave Generator

0307-34
Figure 7: Averaging AC to DC Converter for A/D Converters Such as ICL7106, $7107,7109,7116$, 7117

Figure 8: Medical Instrument Preamp

[^245]The low bias currents permit high resistance and low capacitance values to be used to achieve low frequency cutoff. $\mathrm{f}_{\mathrm{c}}=10 \mathrm{~Hz}, \mathrm{~A}_{\mathrm{vcl}}=4$, Passband ripple $=0.1 \mathrm{~dB}$
*Note that small capacitors ($25-50 \mathrm{pF}$) may be needed for stability in some cases.
Figure 9: Fifth Order Chebyshev Multiple Feedback Low Pass Filter

Note that I_{Q} on each amplifier may be different. $A_{V C L}=10, Q=100, f_{0}=100 \mathrm{~Hz}$.
Figure 10: Second Order Biquad Bandpass Filter

0307-38
NOTE 1. For devices with external compensation, use 33pF.
2. For devices with programmable standby current, connect l_{Q} pin to V^{-}($l_{Q}=1 \mathrm{~mA}$ mode).
Figure 11: Burn-In and Life Test Circuit
INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INGLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.
NOTE: All typical values have been characterized but are not tested.

Operational Amplifier

GENERAL DESCRIPTION

The ICL7650 chopper-stabilized amplifier is a high-performance device which offers exceptionally low offset voltage and input-bias parameters, combined with excellent bandwidth and speed characteristics. Intersil's unique CMOS approach to chopper-stabilized amplifier design yields a versatile precision component that can replace more expensive hybrid or monolithic devices.

The chopper amplifier achieves its low offset by comparing the inverting and non-inverting input voltages in a nulling amplifier, nulled by alternate clock phases. Two external capacitors are required to store the correcting potentials on the two amplifier nulling inputs; these are the only external components necessary.

The clock oscillator and all the other control circuitry is entirely self-contained, however the 14-pin version includes a provision for the use of an external clock, if required for a particular application. In addition, the ICL7650 is internally compensated for unity-gain operation.

An enhanced direct replacement for this part called ICL7650S will become available shortly and will be more appropriate for new designs.

FEATURES

- Extremely Low Input Offset Voltage $-2 \mu \mathrm{~V}$
- Low Long-Term and Temperature Drifts of Input Offset Voltage
- Low DC Input Bias Current - 10pA (20pA 7650B)
- Extremely High Gain, CMRR and PSRR - Min 120dB
- High Slew Rate - $2.5 \mathrm{~V} / \mu \mathrm{s}$
- Wide Bandwidth - $\mathbf{2 M H z}$
- Unity-Gain Compensated
- Very Low Intermodulation Effects (Open Loop Phase Shift $<1 \mathbf{0}^{\circ} \mathrm{C}$ @ Chopper Frequency)
- Clamp Circuit to Avoid Overload Recovery Problems and Allow Comparator Use
- Extremely Low Chopping Spikes at Input and Output

ORDERING INFORMATION

Part	Temperature Range	Package
ICL7650CPA-1	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	8-PIN Plastic
ICL7650BCPA-1	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	8-PIN Plastic
ICL7650CPD	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	14 -PIN Plastic
ICL7650BCPD	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	14-PIN Plastic
ICL7650CTV-1	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	8-PIN TO-99
ICL7650BCTV-1	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	8-PIN TO-99
ICL7650IJA-1	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8-PIN CERDIP
ICL7650BIJA-1	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8-PIN CERDIP
ICL7650IJD	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	14 -PIN CERDIP
ICL7650BIJD	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	14 -PIN CERDIP
ICL7650ITV-1	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8-PIN TO-99
ICL7650BITV-1	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8-PIN TO-99
ICL7650MJD	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	14 -PIN CERDIP
ICL7650BMJD	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	14 -PIN CERDIP
ICL7650MTV-1	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	8-PIN TO-99
ICL7650BMTV-1	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	8-PIN TO-99

ABSOLUTE MAXIMUM RATINGS
Total Supply Voltage (V^{+}to V^{-}) 18 Volts Input Voltage $\ldots \ldots \ldots \ldots . .\left(\mathrm{V}^{+}+0.3\right)$ to $\left(\mathrm{V}^{-}-0.3\right)$ Volts Voltage on oscillator control pins V+ to V^{-} except EXT CLOCK IN: $\ldots . .\left(V^{+}+0.3\right)$ to $\left(V^{+}-6.0\right)$ Volts Duration of Output short circuit Indefinite Current into any pin 10 mA
—while operating (Note 4) $100 \mu \mathrm{~A}$

Cont. Total Power Dissipn ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$)
CERDIP Package 500 mW
Plastic Package . 375mW

Storage Temp. Range $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Operating Temp. Range See Note 1
Lead Temperature (Soldering, 10 sec)

NOTE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

8 - PIN DIP

0308-2

Figure 2: Pin Configuration

ELECTRICAL CHARACTERISTICS

Test Conditions: $\mathrm{V}^{+}=+5 \mathrm{~V}, \mathrm{~V}^{-}=-5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, (unless otherwise specified)

Symbol	Parameter	Test Conditions	Limits 7650			Limits 7650B			Units
			Min	Typ	Max	Min	Typ	Max	
V_{OS}	Input Offset Voltage	$\begin{aligned} & \hline \mathrm{T}_{A}=+25^{\circ} \mathrm{C} \\ & -25^{\circ} \mathrm{C}<\mathrm{T}_{A}<+85^{\circ} \mathrm{C} \\ & -55^{\circ} \mathrm{C}<\mathrm{T}_{A}<+125^{\circ} \mathrm{C} \\ & \hline \end{aligned}$		$\begin{aligned} & \pm 2 \\ & \pm 5 \end{aligned}$	$\begin{gathered} \pm 5 \\ \pm 50 \end{gathered}$		$\begin{aligned} & \pm 2 \\ & \pm 5 \end{aligned}$	$\begin{gathered} \pm 10.0 \\ \pm 75 \end{gathered}$	$\mu \mathrm{V}$
$\frac{\Delta V_{\mathrm{OS}}}{\Delta \mathrm{~T}}$	Average Temp. Coefficient of Input Offset Voltage	$-25^{\circ} \mathrm{C}<\mathrm{T}_{A}<+85^{\circ} \mathrm{C}$		0.1			0.1		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
$\frac{\Delta V_{\mathrm{OS}}}{\Delta t}$	Change in Input Offset Voltage With Time			100			100		$\mathrm{nV} /$ month
IBIAS	Input Bias Current (doubles every $10^{\circ} \mathrm{C}$) Polarity is + or - (Note 6)	$\begin{aligned} & \mathrm{T}_{A}=+25^{\circ} \mathrm{C} \\ & 0^{\circ} \mathrm{C}<\mathrm{T}_{A}<+70^{\circ} \mathrm{C} \\ & -25^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<+85^{\circ} \mathrm{C} \\ & \hline \end{aligned}$		$\begin{gathered} \pm 1.5 \\ \pm 35 \\ \pm 100 \end{gathered}$	± 10		$\begin{gathered} \pm 1.5 \\ \pm 35 \\ \pm 100 \\ \hline \end{gathered}$	± 20	pA
los	Input Offset Current (Note 5)	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		5.0			5.0		pA
R_{IN}	Input Resistance			1012			10^{12}		Ω
Avol	Large Signal Voltage Gain	$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$	1×10^{6}	5×10^{6}		1×106	5×10^{6}		V/V
V OUT	Output Voltage Swing (Note 3)	$\begin{aligned} & R_{L}=10 \mathrm{k} \Omega \\ & R_{L}=100 \mathrm{k} \Omega \\ & \hline \end{aligned}$	± 4.7	$\begin{aligned} & \pm 4.85 \\ & \pm 4.95 \\ & \hline \end{aligned}$		± 4.7	$\begin{aligned} & \pm 4.85 \\ & \pm 4.95 \\ & \hline \end{aligned}$		V
CMVR	Common Mode Voltage Range		-5.0	$\begin{gathered} -5.2 \text { to } \\ +2.0 \\ \hline \end{gathered}$	$\begin{array}{c\|} 1.5 \\ +2.0 \\ \hline \end{array}$	-5.0	-5.2 to	1.5	V
CMRR	Common Mode Rejection Ratio	CMVR $=-5 \mathrm{~V}$ to +1.5	110	120		110	120		dB
PSRR	Power Supply Rejection Ratio	$\pm 3 \mathrm{~V}$ to $\pm 8 \mathrm{~V}$	120	130		120	130		dB
e_{n}	Input Noise Voltage	$\begin{aligned} & R_{S}=100 \Omega \\ & f=0 \text { to } 10 \mathrm{~Hz} \end{aligned}$		2			2		$\mu \mathrm{V}_{\mathrm{p}-\mathrm{p}}$
i_{n}	Input Noise Current	$\mathrm{f}=10 \mathrm{~Hz}$		0.01			0.01		$\mathrm{pA} / \sqrt{\mathrm{Hz}}$
GBW	Unity Gain Bandwidth			2.0			2.0		MHz
SR	Slew Rate	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$		2.5			2.5		$\mathrm{V} / \mu \mathrm{s}$
t_{r}	Rise Time			0.2			0.2		$\mu \mathrm{s}$
	Overshoot			20			20		\%
V + to V-	Operating Supply Range		4.5		16	4.5		16	V
ISUPP	Supply Current	no load		2.0	3.5		2.0	3.5	mA
f_{ch}	Internal Chopping Frequency	pins 12-14 open (DIP)	120	200	375	120	200	375	Hz
	Clamp ON Current (note 2)	$\mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega$	25	70	150	25	70	150	$\mu \mathrm{A}$
	Clamp OFF Current (note 2)	$-4.0 \mathrm{~V}<\mathrm{V}_{\text {OUT }}<+4.0 \mathrm{~V}$		1			1		pA

NOTES: 1. Operating temperature range for M series parts is $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$, for I series is $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, for C series is $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
2. See OUTPUT CLAMP under detailed description.
3. OUTPUT CLAMP not connected. See typical characteristic curves for output swing vs clamp current characteristics.
4. Limiting input current to $100 \mu \mathrm{~A}$ is recommended to avoid latchup problems. Typically 1 mA is safe, however this is not guaranteed.
5. $\mathrm{I}_{\mathrm{OS}}=2 \bullet I_{\text {BIAS }}$
6. I $\mathrm{I}_{\mathrm{BIAS}}$ tested with clock disabled.

[^246]
TYPICAL PERFORMANCE CHARACTERISTICS

0308-3

EACH SUPPLY VOLTACE (+ AND -)

0308-6

INPUT OFFSET VOLTAGE CHANGE vs. SUPPLY VOLTAGE

0308-9

SUPPLY CURRENT vs. AMBIENT TEMPERATURE

0308-4
CLOCK RIPPLE REFERRED TO THE INPUT vs. TEMPERATURE
 0308-7

CMOPPHG FREOUEMCY (CLOCK-OUT) H2

MAXIMUM OUTPUT CURRENT vs. SUPPLY VOLTAGE

0308-5
10Hz P-P NOISE VOLTAGE vs. CHOPPING FREQUENCY

CHOPPNNG FREQUENCY (CLOCK-OUH) Hz
0308-8

OUTPUT WITH ZERO INPUT; GAIN = 1000; BALANCED SOURCE

0308-11

[^247]
TYPICAL PERFORMANCE CHARACTERISTICS (Continued)

0308-14

* THE TWO DIFFERENT RESPONSES CORRESPOND TO THE TWO PHASES OF THE CLOCK.

N-CHANNEL CI_AMP CURRENT vs.

0308-16

P-CHANNEL CLAMP CURRENT vs.
OUTPUT VOLTAGE

OUTPUT VOLTAGE ΔV^{+}

DETAILED DESCRIPTION
 Amplifier

The functional diagram shows the major elements of the ICL7650. There are two amplifiers, the main amplifier, and the nulling amplifier. Both have offset-null capability. The main amplifier is connected continuously from the input to the output, while the nulling amplifier, under the control of the chopping oscillator and clock circuit, alternately nulls itself and the main amplifier. The nulling connections, which are MOSFET gates, are inherently high impedance, and two external capacitors provide the required storage of the nulling potentials and the necessary nulling-loop time constants. The nulling arrangement operates over the full com-mon-mode and power-supply ranges, and is also independent of the output level, thus giving exceptionally high CMRR, PSRR, and Avol.
Careful balancing of the input switches, and the inherent balance of the input circuit, minimizes chopper frequency charge injection at the input terminals, and also the feedfor-ward-type injection into the compensation capacitor, which is the main cause of output spikes in this type of circuit.

Intermodulation

Previous chopper-stabilized amplifiers have suffered from intermodulation effects between the chopper frequency and input signals. These arise because the finite $A C$ gain of the amplifier necessitates a small AC signal at the input. This is seen by the zeroing circuit as an error signal, which is chopped and fed back, thus injecting sum and difference frequencies and causing disturbances to the gain and phase vs. frequency characteristics near the chopping frequency. These effects are substantially reduced in the ICL7650 by feeding the nulling circuit with a dynamic current, corresponding to the compensation capacitor current, in such a way as to cancel that portion of the input signal due to finite AC gain. Since that is the major error contribution to the ICL7650, the intermodulation and gain/phase disturbances are held to very low values, and can generally be ignored.

Capacitor Connection

The null/storage capacitors should be connected to the $\mathrm{C}_{\text {exta }}$ and $\mathrm{C}_{\text {extb }}$ pins, with a common connection to the $\mathrm{C}_{\text {RETN }}$ pin. This connection should be made directly by either a separate wire or PC trace to avoid injecting load current IR drops into the capacitive circuitry. The outside foil, where available, should be connected to CRETN.

Output Clamp

The OUTPUT CLAMP pin allows reduction of the overload recovery time inherent with chopper-stabilized amplifiers. When tied to the inverting input pin, or summing junction, a current path between this point and the OUTPUT pin occurs just before the device output saturates. Thus uncontrolled differential input voltages are avoided, together with the consequent charge build-up on the correction-storage capacitors. The output swing is slightly reduced.

Clock

The ICL7650 has an internal oscillator giving a chopping frequency of 200 Hz , available at the CLOCK OUT pin on the 14 -pin devices. Provision has also been made for the use of an external clock in these parts. The INT/EXT pin has an internal pull-up and may be left open for normal operation, but to utilize an external clock this pin must be tied to V^{-}to disable the internal clock. The external clock signal may then be applied to the EXT. CLOCK IN pin. At low frequencies, the duty cycle of the external clock is not critical, since an internal divide-by-two provides the desired 50% switching duty cycle. However, since the capacitors are charged only when EXT CLK IN is HIGH, a $50-80 \%$ positive duty cycle is favored for frequencies above 500 Hz to ensure that any transients have time to settle before the capacitors are turned OFF. The external clock should swing between V+ and GROUND for power supplies up to $\pm 6 \mathrm{~V}$, and between V^{+}and $\mathrm{V}^{+}-6 \mathrm{~V}$ for higher supply voltages. Note that a signal of about 400 Hz will be present at the EXT CLK IN pin with INT/EXT high or open. This is the internal clock signal before the divider.

In those applications where a strobe signal is available, an alternate approach to avoid capacitor misbalancing during overload can be used. If a strobe signal is connected to EXT CLK IN so that it is low during the time that the overload signal is applied to the amplifier, neither capacitor will be charged. Since the leakage at the capacitor pins is quite low at room temperature, the typical amplifier will drift less than $10 \mu \mathrm{~V} / \mathrm{sec}$, and relatively long measurements can be made with little change in offset.

BRIEF APPLICATION NOTES

Component Selection

The two required capacitors, $\mathrm{C}_{\text {EXTA }}$ and $\mathrm{C}_{\text {EXTB }}$, have optimum values depending on the clock or chopping frequency. For the present internal clock, the correct value is $0.1 \mu \mathrm{~F}$, and to maintain the same relationship between the chopping frequency and the nulling time constant this value should be scaled approximately in proportion if an external clock is used. A high-quality film-type capacitor such as mylar is preferred, although a ceramic or other lower-grade capacitor may prove suitable in many applications. For quickest settling on initial turn-on, low dielectric absorption capacitors (such as polypropylene) should be used. With ceramic capacitors, several seconds may be required to settle to $1 \mu \mathrm{~V}$.

Static Protection

All device pins are static-protected by the use of input diodes. However, strong static fields and discharges should be avoided, as they can cause degraded diode junction characteristics, which may result in increased input-leakage currents.

Latchup Avoidance

Junction-isolated CMOS circuits inherently include a parasitic 4-layer ($p-n-p-n$) structure which has characteristics similar to an SCR. Under certain circumstances this junction may be triggered into a low-impedance state, resulting in excessive supply current. To avoid this condition, no voltage greater than 0.3 V beyond the supply rails should be applied to any pin. In general, the amplifier supplies must be established either at the same time or before any input signals are applied. If this is not possible, the drive circuits must limit input current flow to under 1 mA to avoid latchup, even under fault conditions.

Output Stage/Load Driving

The output circuit is a high-impedance type (approximately $18 \mathrm{k} \Omega$), and therefore with loads less than this value, the chopper amplifier behaves in some ways like a transconductance amplifier whose open-loop gain is proportional to load resistance. For example, the open-loop gain will be 17 dB lower with a $1 \mathrm{k} \Omega$ load than with a $10 \mathrm{k} \Omega$ load. If the amplifier is used strictly for DC, this lower gain is of little consequence, since the DC gain is typically greater than 120 dB even with a $1 \mathrm{k} \Omega$ load. However, for wideband applications, the best frequency response will be achieved with a load resistor of $10 \mathrm{k} \Omega$ or higher. This will result in a smooth $6 \mathrm{~dB} /$ octave response from 0.1 Hz to 2 MHz , with phase shifts of less than 10° in the transition region where the main amplifier takes over from the null amplifier.

Thermo-Electric Effects

The ultimate limitations to ultra-high precision DC amplifiers are the thermo-electric or Peltier effects arising in thermocouple junctions of dissimilar metals, alloys, silicon, etc. Unless all junctions are at the same temperature, thermoelectric voltages typically around $0.1 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$, but up to tens of $\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$ for some materials, will be generated. In order to realize the extremely low offset voltages that the chopper amplifier can provide, it is essential to take special precautions to avoid temperature gradients. All components should be enclosed to eliminate air movement, especially that caused by power-dissipating elements in the system. Low thermoelectric-coefficient connections should be used where possible and power supply voltages and power dissipation should be kept to a minimum. High-impedance loads are preferable, and good separation from surrounding heatdissipating elements is advisable.

Guarding

Extra care must be taken in the assembly of printed circuit boards to take full advantage of the low input currents of the ICL7650. Boards must be thoroughly cleaned with TCE or alcohol and blown dry with compressed air. After cleaning, the boards should be coated with epoxy or silicone rubber to prevent contamination.

Even with properly cleaned and coated boards, leakage currents may cause trouble, particularly since the input pins are adjacent to pins that are at supply potentials. This leakage can be significantly reduced by using guarding to lower the voltage difference between the inputs and adjacent metal runs. Input guarding of the 8-lead TO-99 package is accomplished by using a 10 -lead pin circle, with the leads of the device formed so that the holes adjacent to the inputs are empty when it is inserted in the board. The guard, which is a conductive ring surrounding the inputs, is connected to a low impedance point that is at approximately the same voltage as the inputs. Leakage currents from high-voltage pins are then absorbed by the guard.

The pin configuration of the 14 -pin dual in-line package is designed to facilitate guarding, since the pins adiacent to the inputs are not used (this is different from the standard 741 and 101A pin configuration, but corresponds to that of the LM108).

Pin Compatibility

The basic pinout of the 8 -pin device corresponds, where possible, to that of the industry-standard 8-pin devices, the LM741, LM101, etc. The null-storing external capacitors are connected to pins 1 and 8 , usually used for offset null or compensation capacitors, or simply not connected. In the case of the OP-05 and OP-07 devices, the replacement of the offset-null pot, connected between pins 1 and 8 and V^{+}, by two capacitors from those pins to pin 5 , will provide easy compatibility. As for the LM108, replacement of the compensation capacitor between pins 1 and 8 by the two capacitors to pin 5 is all that is necessary. The same operation, with the removal of any connection to pin 5 , will suffice for the LM101, μ A748, and similar parts.
The 14-pin device pinout corresponds most closely to that of the LM108 device, owing to the provision of "NC" pins for guarding between the input and all other pins. Since this device does not use any of the extra pins, and has no provision for offset-nulling, but requires a compensation capacitor, some changes will be required in layout to convert it to the ICL7650.

TYPICAL APPLICATIONS

Clearly the applications of the ICL7650 will mirror those of other op. amps. Anywhere that the performance of a circuit can be significantly improved by a reduction of input-offset voltage and bias current, the ICL7650 is the logical choice. Basic non-inverting and inverting amplifier circuits are shown in Figures 5 and 6. Both circuits can use the output clamping circuit to enhance the overload recovery performance. The only limitations on the replacement of other op amps by the ICL7650 are the supply voltage ($\pm 8 \mathrm{~V}$ max.) and the output drive capability ($10 \mathrm{k} \Omega$ load for full swing). Even these limitations can be overcome using a simple booster circuit, as shown in Figure 7, to enable the full output capabilities of the LM741 (or any other standard device) to be combined with the input capabilities of the ICL7650. The pair form a composite device, so loop gain stability, when the feedback network is added, should be watched carefully.

Figure 8 shows the use of the clamp circuit to advantage in a zero-offset comparator. The usual problems in using a chopper stabilized amplifier in this application are avoided, since the clamp circuit forces the inverting input to follow the input signal. The threshold input must tolerate the output clamp current $\approx \mathrm{V}_{\mathrm{IN}} / R$ without disturbing other portions of the system.

0308-22
Figure 7: Using 741 to Boost Output Drive Capacity

Normal logarithmic amplifiers are limited in dynamic range in the voltage-input mode by their input-offset voltage. The built-in temperature compensation and convenience features of the ICL8048 can be extended to a voltage-input dynamic range of close to 6 decades by using the ICL7650 to offset-null the ICL8048, as shown in Figure 9. The same concept can also be used with such devices as the HA2500 or HA2600 families of op amps to add very low offset voltage capability to their very high slew rates and bandwidths. Note that these circuits will also have their DC gains, CMRR, and PSRR enhanced.

Figure 9: ICL8048 Offset Nulled by ICL7650

FOR FURTHER APPLICATIONS ASSISTANCE, SEE A053

 AND R017[^248]
ICL7650S Super Chopper-Stabilized Operational Amplifier

GENERAL DESCRIPTION

The ICL7650S Super Chopper-Stabilized Amplifier offers exceptionally low input offset voltage and is extremely stable with respect to time and temperature. It is a direct replacement for the industry-standard ICL7650 offering improved input offset voltage, lower input offset voltage temperature coefficient, reduced input bias current, wider common mode voltage range and ESD protection greater than 2000 volts. All improvements are highlighted in bold Italics in the Electrical Characteristics section. Critical parameters are guaranteed over the entire commercial, industrial and military temperature ranges.

Intersil's unique CMOS chopper-stabilized amplifier circuitry is user-transparent, virtually eliminating the traditional chopper amplifier problems of intermodulation effects, chopping spikes, and overrange lock-up.
The chopper amplifier achieves its low offset by comparing the inverting and non-inverting input voltages in a nulling amplifier, nulled by alternate clock phases. Two external capacitors are required to store the correcting potentials on the two amplifier nulling inputs; these are the only external components necessary.
The clock oscillator and all the other control circuitry is entirely self-contained. However the 14 -lead version includes a provision for the use of an external clock, if required for a particular application. In addition, the ICL7650S is internally compensated for unity-gain operation.

FEATURES

- Guaranteed Max Input Offset Voltage for All Temperature Ranges
- Low Long-Term and Temperature Drifts of Input Offset Voltage
- Guaranteed Max Input Bias Current-10 pA
- Enhanced ESD Protection > 2000V
- Extremely Wide Common Mode Voltage Range+3.5 to -5 V
- Reduced Supply Current-2 mA
- Guaranteed Minimum Output Source/Sink Current
- Extremely High Gain-150 dB
- Extremely High CMRR and PSRR—140 dB
- High Slew Rate-2.5V/ $\mu \mathrm{s}$
- Wide Bandwidth-2 MHz
- Unity-gain Compensated
- Clamp Circuit to Avoid Overload Recovery Problems and Allow Comparator Use
- Extremely Low Chopping Spikes at Input and Output
- Characterized Fully Over A/l Temperature Ranges
- Improved, Direct Replacement for Industry-Standard ICL7650 and other Second-Source Parts

ORDERING INFORMATION

Part	Temperature Range	Package
ICL7650SCPA-1	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	8-Pin Plastic
ICL7650SCPD		14-Pin Plastic
ICL7650SCTV-1		8-Pin TO-99
ICL7650SIJA-1	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8-Pin CERDIP
ICL7650SIPA-1		8-Pin Plastic
ICL7650SIPD		14-Pin Plastic
ICL7650SIJD		14-Pin CERDIP
ICL7650SITV-1		8-Pin TO-99
ICL7650SMJD	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	14-Pin CERDIP
ICL7650SMTV-1		8-Pin TO-99

ABSOLUTE MAXIMUM RATINGS	
Total Supply Voltage (V^{+}to V -	
Input Voltage	$\left(\mathrm{V}^{+}+0.3\right)$ to $\left(\mathrm{V}^{-}-0.3\right)$
Voltage on Oscillator Control Pi	
Duration of Output Short Circuit	e
Current into Any Pin —while operating (Note 1)	$\begin{aligned} & .10 \mathrm{~mA} \\ & 100 \mu \mathrm{~A} \end{aligned}$
Continuous Total Power Dissipation ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$)	
CERDIP Package	500 mW
Plastic Package	375 mW
TO-99	250

Storage Temperature Range $-55^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec) $\ldots \ldots . \ldots \ldots+300^{\circ} \mathrm{C}$
Operating Temperature Range

ICL7650SC	$.0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
ICL7650SI	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
ICL7650SM	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

NOTE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

Test Conditions: ($\mathrm{V}^{+}=+5 \mathrm{~V}, \mathrm{~V}^{-}=-5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, Test Circuit as in Fig. 3 (unless otherwise specified)

Symbol	Parameter	Test Conditions	Limits			Units
			Min	Typ	Max	
Vos	Input Offset Voltage (Note 2)	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		± 0.7	+5	$\mu \mathrm{V}$
		$0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}$		± 1	± 8	
		$-25^{\circ} \mathrm{C} \leq \mathrm{T}_{A} \leq+85^{\circ} \mathrm{C}$		± 2	± 10	
		$-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$		± 4	± 20	
$\Delta V_{O S} / \Delta T$	Average Temperature Coefficient of Input Offset Voltage (Note 2)	$0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}$		0.02		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
		$-25^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}$		0.02		
		$-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$		0.03	0.1	
$\Delta \mathrm{V}_{\mathrm{OS}} / \Delta \mathrm{t}$	Change in Input Offset with Time			100		$\mathrm{nV} / \sqrt{\text { month }}$
Ibias	Input Bias Current$\|I(+)\|,\|I(-)\|$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		4	10	pA
		$0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}$		5	20	
		$-25^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}$		20	50	
		$-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}$		20	50	
		$+85^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$		100	500	
Ios	Input Offset Current $\|I(-)-\|(+)\|$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		8	20	pA
		$0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}$		10	40	
		$-25^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}$		20	40	
		$-55^{\circ} \mathrm{C} \leq \mathrm{T}_{A} \leq+85^{\circ} \mathrm{C}$		20	40	
		$+85^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$		20	50	
$\mathrm{R}_{\text {IN }}$	Input Resistance			10^{12}		Ω
$A_{\text {VOL }}$	Large Signal Voltage Gain (Note 2)	$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega, \mathrm{V}_{\mathrm{O}}= \pm 4 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	135	150		dB
		$0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}$	130			
		$-25^{\circ} \mathrm{C} \leq \mathrm{T}_{A} \leq+85^{\circ} \mathrm{C}$	130			
		$-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$	120			
VOUT	Output Voltage Swing (Note 3)	$R_{L}=10 \mathrm{k} \Omega$	± 4.7	± 4.85		V
		$\mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega$		± 4.95		

[^249]
ELECTRICAL CHARACTERISTICS (Continued)

Test Conditions: $\left(\mathrm{V}^{+}=+5 \mathrm{~V}, \mathrm{~V}^{-}=-5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$, Test Circuit as in Fig. 3 (unless otherwise specified)

Symbol	Parameter	Test Conditions	Limits			Units
			Min	Typ	Max	
CMVR	Common Mode Voltage Range (Note 2)	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	-5	-5.2 to + 4	+3.5	V
		$0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}$	-5		+3.5	
		$-25^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}$	-5		+ 3.5	
		$-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$	-5		+ 3.5	
CMRR	Common Mode Rejection Ratio (Note 2)	$\mathrm{CMVR}=-5 \mathrm{~V}$ to $+3.5 \mathrm{~V}, \mathrm{~T}_{A}=25^{\circ} \mathrm{C}$	120	140		dB
		$0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}$	120			
		$25^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}$	115			
		$-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$	110			
PSRR	Power Supply Rejection Ratio	$\mathrm{V}+, \mathrm{V}-= \pm 3 \mathrm{~V}$ to $\pm 8 \mathrm{~V}$	120	140		dB
en	Input Noise Voltage	$R_{S}=100 \Omega, f=D C$ to 10 Hz		2		$\mu \mathrm{Vp}-\mathrm{p}$
in	Input Noise Current	$\mathrm{f}=10 \mathrm{~Hz}$		0.01		$\mathrm{pA} / \sqrt{\mathrm{Hz}}$
GBW	Gain Bandwidth Product			2		MHz
SR	Slew Rate	$C_{L}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$		2.5		$\mathrm{V} / \mu \mathrm{s}$
t_{r}	Rise Time			0.2		$\mu \mathrm{s}$
	Overshoot			20		\%
$\mathrm{V}+$ to V^{-}	Operating Supply Range		4.5		16	V
$I_{\text {supp }}$	Supply Current	No Load, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		2	3	mA
		$0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}$			3.2	
		$-25^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}$			3.5	
		$-55^{\circ} \mathrm{C} \leq \mathrm{T}_{A} \leq+125^{\circ} \mathrm{C}$			4	
IO source	Output Source Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	2.9	4.5		mA
		$0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}$	2.3			
		$-25^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}$	2.2			
		$-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$	2			
Io sink	Output Sink Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	25	30		mA
		$0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}$	20			
		$-25^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}$	19			
		$-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$	17			
f_{ch}	Internal Chopping Frequency	Pins 12 \& 14 Open	120	250	375	Hz
	Clamp ON Current (Note 4)	$\mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	25	70		$\mu \mathrm{A}$
	Clamp OFF Current (Note 4)	$-4 \mathrm{~V} \leq \mathrm{V}_{\text {out }} \leq+4 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		0.001	5	nA
		$0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}$			10	
		$-25^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}$			10	
		$-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$			15	

NOTE 1: Limiting input current to $100 \mu \mathrm{~A}$ is recommended to avoid latchup problems. Typically 1 mA is safe, however this is not guaranteed.
2: These parameters are guaranteed by design and characterization, but not tested at temperature extremes because thermocouple effects prevent precise measurement of these voltages in automatic test equipment.
3: OUTPUT CLAMP not connected. See typical characteristic curves for output swing vs. clamp current characteristics.
4: See OUTPUT CLAMP under detailed description.
5: All significant improvements over the industry-standard ICL7650 are highlighted in bold italics.
INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

NOTE: All typical values have been characterized but are not tested.

Figure 1: Functional Diagram

TYPICAL PERFORMANCE CHARACTERISTICS

Supply Current
vs. Supply Voltage

Common-Mode Input Voltage Range vs. Supply Voltage

0089-6

Input Offset Voltage Change

 vs. Supply Voltage

0089-9

Supply Current
vs. Ambient Temperature

0089-4

Clock Ripple Referred to the Input vs. Temperature

0089-7

Input Offset Voltage vs. Chopping Frequency

Maximum Output Current

 vs. Supply Voltage

0089-5
10Hz P-P Noise Voltage vs. Chopping Frequency

CHOPPING FREQUENCY (CLOCK-OUT) Mz
0089-8
Output with Zero Input; Gain = 1000; Balanced Source Impedance $=10 \mathrm{k} \Omega$

0089-11

TYPICAL PERFORMANCE CHARACTERISTICS
 Open Loop Gain and Phase Shift

(Continued)
vs. Frequency

0089-12

Open Loop Gain and Phase Shift
vs. Frequency

0089-13

Voltage Follower Large Signal Pulse Response*

0089-14
*THE TWO DIFFERENT RESPONSES CORRESPOND TO THE TWO PHASES OF THE CLOCK.

0089-16

[^250]

0089-18
Figure 3: ICL7650S Test Circuit

DETAILED DESCRIPTION

Amplifier

The functional diagram shows the major elements of the ICL7650S. There are two amplifiers, the main amplifier, and the nulling amplifier. Both have offset-null capability. The main amplifier is connected continuously from the input to the output, while the nulling amplifier, under the control of the chopping oscillator and clock circuit, alternately nulls itself and the main amplifier. The nulling connections, which are MOSFET gates, are inherently high impedance, and two external capacitors provide the required storage of the nulling potentials and the necessary nulling-loop time constants. The nulling arrangement operates over the full com-mon-mode and power-supply ranges, and is also independent of the output level, thus giving exceptionally high CMRR, PSRR, and Avol.

Careful balancing of the input switches, and the inherent balance of the input circuit, minimizes chopper frequency charge injection at the input terminals, and also the feedfor-ward-type injection into the compensation capacitor, which is the main cause of output spikes in this type of circuit.

Intermodulation

Previous chopper-stabilized amplifiers have suffered from intermodulation effects between the chopper frequency and input signals. These arise because the finite AC gain of the amplifier necessitates a small AC signal at the input. This is seen by the zeroing circuit as an error signal, which is chopped and fed back, thus injecting sum and difference frequencies and causing disturbances to the gain and phase vs. frequency characteristics near the chopping frequency. These effects are substantially reduced in the ICL7650S by feeding the nulling circuit with a dynamic current, corresponding to the compensation capacitor current, in such a way as to cancel that portion of the input signal due to finite AC gain. Since that is the major error contribution to the ICL7650S, the intermodulation and gain/phase disturbances are held to very low values, and can generally be ignored.

Capacitor Connection

The null/storage capacitors should be connected to the $\mathrm{C}_{\text {EXTA }}$ and $\mathrm{C}_{\text {EXTB }}$ pins, with a common connection to the $\mathrm{C}_{\text {RETN }}$ pin. This connection should be made directly by either a separate wire or PC trace to avoid injecting load current IR drops into the capacitive circuitry. The outside foil, where available, should be connected to $\mathrm{C}_{\text {RETN }}$.

Output Clamp

The OUTPUT CLAMP pin allows reduction of the overload recovery time inherent with chopper-stabilized amplifiers. When tied to the inverting input pin, or summing junction, a current path between this point and the OUTPUT pin occurs just before the device output saturates. Thus uncontrolled input differential inputs are avoided, together with the consequent charge build-up on the correction-storage capacitors. The output swing is slightly reduced.

Clock

The ICL7650S has an internal oscillator, giving a chopping frequency of 200 Hz , available at the CLOCK OUT pin on the 14-pin devices. Provision has also been made for the use of an external clock in these parts. The INT/EXT pin has an internal pull-up and may be left open for normal operation, but to utilize an external clock this pin must be tied to V - to disable the internal clock. The external clock signal may then be applied to the EXT CLOCK $\mathbb{I N}$ pin. An internal divide-by-two provides the desired 50% input switching duty cycle. Since the capacitors are charged only when EXT CLOCK IN is high, a $50 \%-80 \%$ positive duty cycle is recommended, especially for higher frequencies. The external clock can swing between V^{+}and V^{-}. The logic threshold will be at about 2.5 V below V^{+}. Note also that a signal of about 400 Hz , with a 70% duty cycle, will be present at the EXT CLOCK IN pin with INT/EXT high or open. This is the internal clock signal before being fed to the divider.

In those applications where a strobe signal is available, an alternate approach to avoid capacitor misbalancing during overload can be used. If a strobe signal is connected to EXT CLK IN so that it is low during the time that the overload signal is applied to the amplifier, neither capacitor will be charged. Since the leakage at the capacitor pins is quite low at room temperature, the typical amplifier will drift less than $10 \mu \mathrm{~V} / \mathrm{sec}$, and relatively long measurements can be made with little change in offset.

BRIEF APPLICATION NOTES Component Selection

The two required capacitors, $\mathrm{C}_{\text {EXTA }}$ and $\mathrm{C}_{\text {EXTB }}$, have optimum values depending on the clock or chopping frequency. For the preset internal clock, the correct value is $0.1 \mu \mathrm{~F}$, and to maintain the same relationship between the chopping frequency and the nulling time constant this value should be scaled approximately in proportion if an external clock is used. A high-quality film-type capacitor such as mylar is preferred, although a ceramic or other lower-grade capacitor may prove suitable in many applications. For quickest setting on initial turn-on, low dielectric absorption capacitors (such as polypropylene) should be used. With ceramic capacitors, several seconds may be required to settle to $1 \mu \mathrm{~V}$.

Static Protection

All device pins are static-protected by the use of input diodes. However, strong static fields and discharges should be avoided, as they can cause degraded diode junction characteristics, which may result in increased input-leakage currents.

Latchup Avoidance

Junction-isolated CMOS circuits inherently include a parasitic 4-layer (p-n-p-n) structure which has characteristics similar to an SCR. Under certain circumstances this junction may be triggered into a low-impedance state, resulting in excessive supply current. To avoid this condition, no voltage greater than 0.3 V beyond the supply rails should be applied to any pin. In general, the amplifier supplies must be established either at the same time or before any input signals are applied. If this is not possible, the drive circuits must limit input current flow to under 1 mA to avoid latchup, even under fault conditions.

Output Stage/Load Driving

The output circuit is a high-impedance type (approximately $18 \mathrm{k} \Omega$), and therefore with loads less than this value, the chopper amplifier behaves in some ways like a transconductance amplifier whose open-loop gain is proportional to load resistance. For example, the open-loop gain will be 17 dB lower with a $1 \mathrm{k} \Omega$ load than with a $10 \mathrm{k} \Omega$ load. If the amplifier is used strictly for DC, this lower gain is of little consequence, since the DC gain is typically greater than 120 dB even with a $1 \mathrm{k} \Omega$ load. However, for wideband applications, the best frequency response will be achieved with a load resistor of $10 \mathrm{k} \Omega$ or higher. This will result in a smooth 6 dB /octave response from 0.1 Hz to 2 MHz , with phase shifts of less than 10° in the transition region where the main amplifier takes over from the null amplifier.

Thermo-Electric Effects

The ultimate limitations to ultra-high precision DC amplifiers are the thermo-electric or Peltier effects arising in thermocouple junctions of dissimilar metals, alloys, silicon, etc. Unless all junctions are at the same temperature, thermoelectric voltages typically around $0.1 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$, but up to tens of $\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$ for some materials, will be generated. In order to
realize the extremely low offset voltages that the chopper amplifier can provide, it is essential to take special precautions to avoid temperature gradients. All components should be enclosed to eliminate air movement, especially that caused by power-dissipating elements in the system. Low thermoelectric-efficient connections should be used where possible and power supply voltages and power dissipation should be kept to a minimum. High-impedance loads are preferable, and good separation from surrounding heatdissipating elements is advisable.

Guarding

Extra care must be taken in the assembly of printed circuit boards to take full advantage of the low input currents of the ICL7650S. Boards must be thoroughly cleaned with TCE or alcohol and blown dry with compressed air. After cleaning, the boards should be coated with epoxy or silicone rubber to prevent contamination.

Even with properly cleaned and coated boards, leakage currents may cause trouble, particularly since the input pins are adjacent to pins that are at supply potentials. This leakage can be significantly reduced by using guarding to lower the voltage difference between the inputs and adjacent metal runs. Input guarding of the 8 -lead TO-99 package is accomplished by using a 10 -lead pin circle, with the leads of the device formed so that the holes adjacent to the inputs are empty when it is inserted in the board. The guard, which is a conductive ring surrounding the inputs, is connected to a low impedance point that is at approximately the same voltage as the inputs. Leakage currents from high-voltage pins are then absorbed by the guard.

The pin configuration of the 14-pin dual in-line package is designed to facilitate guarding, since the pins adjacent to the inputs are not used (this is different from the standard 741 and 101A pin configuration, but corresponds to that of the LM108).

[^251]
Pin Compatibility

The basic pinout of the 8-pin device corresponds, where possible, to that of the industry-standard 8-pin devices, the LM741, LM101, etc. The null-storing external capacitors are connected to pins 1 and 8 , usually used for offset null or compensation capacitors, or simply not connected. In the case of the OP-05 and OP-07 devices, the replacement of the offset-null pot, connected between pins 1 and 8 and $\mathrm{V}+$, by two capacitors from those pins to pin 5 , will provide easy compatibility. As for the LM108, replacement of the compensation capacitor between pins 1 and 8 by the two capacitors to pin 5 is all that is necessary. The same operation, with the removal of any connection to pin 5 , will suffice for the LM101, μ A748, and similar parts.
The 14-pin device pinout corresponds most closely to that of the LM108 device, owing to the provision of "NC" pins for guarding between the input and all other pins. Since this device does not use any of the extra pins, and has no provision for offset-nulling, but requires a compensation capacitor, some changes will be required in layout to convert it to the ICL7650S.

TYPICAL APPLICATIONS

Clearly the applications of the ICL7650S will mirror those of other op amps. Anywhere that the performance of a circuit can be significantly improved by a reduction of input-offset voltage and bias current, the ICL7650S is the logical choice. Basic non-inverting and inverting amplifier circuits are shown in Figures 5 and 6. Both circuits can use the output clamping circuit to enhance the overload recovery performance. The only limitations on the replacement of other op amps by the ICL7650S are the supply voltage ($\pm 8 \mathrm{~V}$ max.) and the ofutput drive capability ($10 \mathrm{k} \Omega$ load for full swing). Even these limitations can be overcome using a simple booster circuit, as shown in Figure 7, to enable the full output capabilities of the LM741 (or any other standard device) to be combined with the input capabilities of the ICL7650S. The pair form a composite device, so loop gain stability, when the feedback network is added, should be watched carefully.

NOTE: R_{1} / R_{2} indicates the parallel combination of R_{1} and R_{2}

Figure 8 shows the use of the clamp circuit to advantage in a zero-offset comparator. The usual problems in using a chopper stabilized amplifier in this application are avoided, since the clamp circuit forces the inverting input to follow the input signal. The threshold input must tolerate the output clamp current $\approx \mathrm{V}_{\mathrm{IN}} / \mathrm{R}$ without disturbing other portions of the system.

0089-22
Figure 7: Using 741 to Boost Output Drive Capacity

0089-23
Figure 8: Low Offset Comparator
Normal logarithmic amplifiers are limited in dynamic range in the voltage-input mode by their input-offset voltage. The built-in temperature compensation and convenience features of the ICL8048 can be extended to a voltage-input dynamic range of close to 6 decades by using the ICL7650S to offset-null the ICL8048, as shown in Figure 9. The same concept can also be used with such devices as the HA2500 or HA2600 families of op amps to add very low offset voltage capability to their very high slew rates and bandwidths. Note that these circuits will also have their DC gains, CMRR, and PSRR enhanced.

Figure 9: ICL8048 Offset Nulled by ICL7650S
FOR FURTHER APPLICATIONS ASSISTANCE, SEE A053 AND R017

ICL7652

Chopper-Stabilized Low-Noise Operational Amplifier

GENERAL DESCRIPTION

The ICL7652 chopper-stabilized amplifier offers exceptionally low input offset voltage and is extremely stable with respect to time and temperature. It is similar to INTERSIL's ICL7650 but offers improved noise performance and a wider common-mode input voltage range. The bandwidth and slew rate are reduced slightly.

INTERSIL's unique CMOS chopper-stabilized amplifier circuitry is user-transparent, virtually eliminating the traditional chopper amplifier problems of intermodulation effects, chopping spikes, and overrange lock-up.

The chopper amplifier achieves its low offset by comparing the inverting and non-inverting input voltages in a nulling amplifier, nulled by alternate clock phases. Two external capacitors are required to store the correcting potentials on the two amplifier nulling inputs; these are the only external components necessary.

The clock oscillator and all the other control circuitry is entirely self-contained, however the 14-pin version includes a provision for the use of an external clock, if required for a particular application. In addition, the ICL7652 is internally compensated for unity-gain operation.
An enhanced direct replacement for this part called ICL7652S will become available shortly and will be more appropriate for new designs.

FEATURES

- Extremely Low Input Offset Voltage - $\mathbf{1 0} \mu \mathrm{V}$ Over Temperature Range
- Ultra Low Long-Term and Temperature Drifts of Input Offset Voltage ($150 \mathrm{nV} /$ Month, $100 \mathrm{nV} /{ }^{\circ} \mathrm{C}$)
- Low DC Input Bias Current - 15pA
- Extremely High Gain, CMRR and PSRR - Min 110dB
- Low Input Noise Voltage - $0.2 \mu \mathrm{Vp}-\mathrm{p}(\mathrm{DC}-1 \mathrm{~Hz})$
- Internally Compensated for Unity-Gain Operation
- Very Low Intermodulation Effects (Open-Loop Phase Shift <2ㅇ Chopper Frequency)
- Clamp Circuit to Avoid Overload Recovery Problems and Allow Comparator Use
- Extremely Low Chopping Spikes at Input and Output

ORDERING INFORMATION

Part Number	Temperature Range	Package
ICL7652CPD	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	14-pin plastic
ICL7652IJD	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	14-pin CERDIP
ICL7652CTV	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	8-pin TO-99
ICL7652ITV	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8-pin TO-99

0309-1
Figure 1: Functional Diagram

Figure 2: Pin Configuration

ABSOLUTE MAXIMUM RATINGS

Total Supply Voltage (V^{+}to V^{-}) Input Voltage	$\left(\mathrm{V}^{+}+0.3\right) \text { to }\left(\mathrm{V}^{-}-0.3\right) \mathrm{V}$
Voltage on Oscillator Control Pins	. V^{+}to V^{-}
Duration of Output Short Circuit	. Indefinite
Current into Any Pin	10 mA
- while operating (Note 4)	$100 \mu \mathrm{~A}$

Continuous Total Power Dissipation ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$)

CERDIP Package 500 mW	
Plastic Package	375 mW
TO-99	250 mW
Storage Temperature Range - $55^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$	
Operating Temperature Range	
ICL7652C	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
ICL7652\|	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
	$300^{\circ} \mathrm{C}$

\qquad
Storage Temperature Range $-55^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$ Operating Temperature Range

CERDIP Package	500
Plastic Package	375 mW
TO-99	250 mW
Storage Temperature Range	
Operating Temperature Range	
ICL7652C	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
ICL7652\|	$25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
ead Temperature (Soldering,	300°

NOTE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

Test Conditions: $\mathrm{V}^{+}=+5 \mathrm{~V}, \mathrm{~V}^{-}=-5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, Test Circuit (unless otherwise specified)

Symbol	Parameter	Test Conditions	Limits			Units
			Min	Typ	Max	
Vos	Input Offset Voltage	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		± 2	± 5	$\mu \mathrm{V}$
		Over Operating Temperature Range (Note 1)		± 10		
$\frac{\Delta \mathrm{V}_{\mathrm{OS}}}{\Delta \mathrm{~T}}$	Average Temperature Coefficient of Input Offset Voltage	Operating Temperature Range (Note 1)		0.1		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
$\frac{\Delta V_{O S}}{\Delta T}$	Offset Voltage vs Time			150		nV/month
IBIAS	Input Bias Current (Doubles every $10^{\circ} \mathrm{C}$) (Note 5)	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		15	30	pA
		$0^{\circ} \mathrm{C}<\mathrm{T}_{A}<+70^{\circ} \mathrm{C}$		35		
		$-25^{\circ} \mathrm{C}<\mathrm{T}_{A}<+85^{\circ} \mathrm{C}$		100		
los	Input Offset Current	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		25		pA
R_{IN}	Input Resistance			1012		Ω
Avol	Large Signal Voltage Gain	$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega, \mathrm{V}_{\text {OUT }}= \pm 4 \mathrm{~V}$	120	150		dB
V OUT	Output Voltage Swing (Note 3)	$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$	± 4.7	± 4.85		V
		$\mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega$		± 4.95		
CMVR	Common-Mode Voltage Range		-4.3	-4.8 to +4.0	3.5	V
CMRR	Common-Mode Rejection Radio	CMVR $=-4.3 \mathrm{~V}$ to +3.5 V	110	130		dB
PSRR	Power Supply Rejection Ratio	$\pm 3 \mathrm{~V}$ to $\pm 8 \mathrm{~V}$	110	130		dB
e_{n}	Input Noise Voltage	$\mathrm{R}_{\mathrm{S}}=100 \Omega, \mathrm{DC}$ to 1 Hz		0.2		$\mu \vee p$-p
		DC to 10 Hz		0.7		
i_{n}	Input Noise Current	$\mathrm{f}=10 \mathrm{~Hz}$		0.01		$\mathrm{pA} / \sqrt{ } \mathrm{Hz}$
GBW	Unity-Gain Bandwidth			0.4		MHz
SR	Slew Rate	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$		0.5		$\mathrm{V} / \mu \mathrm{s}$
	Overshoot			15		\%
$\mathrm{V}+$ to V^{-}	Operating Supply Range		5.0		16	V
IsUPPLY	Supply Current	No Load		2.0	3.5	mA
f_{ch}	Internal Chopping Frequency	Pins 12-14 Open (DIP)	200	400	600	Hz
	Clamp ON Current (Note 2)	$\mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega$	25	100	150	$\mu \mathrm{A}$
	Clamp OFF Current (Note 2)	$-4.0 \mathrm{~V}<\mathrm{V}_{\text {OUT }}<+4.0 \mathrm{~V}$		1		pA

NOTES: 1. $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, or $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$.
2. See OUTPUT CLAMP under detailed description
3. OUTPUT CLAMP not connected. See typical characteristics curves for output swing vs clamp current characteristics.
4. Limiting input current to $100 \mu \mathrm{~A}$ is recommended to avoid latchup problems. Typically 1 mA is safe, however this is not guaranteed.
5. IBIAS tested with clock disabled.

TYPICAL PERFORMANCE CHARACTERISTICS

Maximum Output Current vs Supply Voltage

0309-5
10Hz P-P Noise Voltage Voltage

CHOPPING FREQUENCY (CLOCK OUT)
0309-8

Broadband Noise Balanced Source
Impedance $=1 \mathbf{k} \Omega$ Gain $=1000$ $\mathrm{C}_{\mathrm{EXT}}=1.0 \mu \mathrm{~F}$

0309-11

TYPICAL PERFORMANCE CHARACTERISTICS

Open-Loop Gain and Phase

 Shift vs Frequency

0309-13
*The two different responses correspond to the two phases of the clock.

0309-16

0309-17
the input to the output. The nulling amplifier, under the control of the chopping frequency oscillator and clock circuit, alternately nulls itself and the main amplifier. The nulling connections, which are MOSFET gates, are inherently highimpedance, and two external capacitors provide the required storage of the nulling potentials and the necessary nulling-loop time constants. The nulling arrangement operates over the full common-mode and power supply ranges, and is also independent of the output level, thus giving exceptionally high CMRR, PSRR, and Avol.
Careful balancing of the input switches, together with the inherent balance of the input circuit, minimizes chopper frequency charge injection at the input terminals. Feedforwardtype injection into the compensation capacitor is also minimized, which is the main cause of output spikes in this type of circuit.

Intermodulation

Previous chopper-stabilized amplifiers have suffered from intermodulation effects between the chopper frequency and input signals. These arise because the finite AC gain of the amplifier necessitates a small AC signal at the input. This is seen by the zeroing circuit as an error signal, which is chopped and fed back, thus injecting sum and difference frequencies and causing disturbances to the gain and
phase vs frequency characteristics near the chopping frequency. These effects are substantially reduced in the ICL.7652 by feeding the nulling circuit with a dynamic current, corresponding to the compensation capacitor current, in such a way as to cancel that portion of the input signal due to finite AC gain. Since that is the major error contribution to the ICL7652, the intermodulation and gain/phase disturbances are held to very low values, and can generally be ignored.

Capacitor Connection

The null-storage capacitors should be connected to the $\mathrm{C}_{\text {exta }}$ and Cextb pins, with a common connection to the $\mathrm{C}_{\text {RETN }}$ pin. This connection should be made directly by either a separate wire or PC trace to avoid injecting load current IR drops into the capacitive circuitry. The outside foil, where available, should be connected to CRETN.

Output Clamp

The OUTPUT CLAMP pin allows reduction of the overload recovery time inherent with chopper-stabilized amplifiers. When tied to the inverting input pin, or summing junction, a current path between this point and the OUTPUT pin occurs just before the device output saturates. Thus uncontrolled differential input voltages are avoided, together with the consequent charge build-up on the correction-storage capacitors. The output swing is slightly reduced.

Clock

The ICL7652 has an internal oscillator, giving a chopping frequency of 400 Hz , available at the CLOCK OUT pin on the 14 -pin devices. Provision has also been made for the use of an external clock in these parts. The INT/EXT pin has an internal pull-up and may be left open for normal operation, but to utilize an external clock this pin must be tied to V^{-}to disable the internal clock. The external clock signal may then be applied to the EXT CLOCK IN pin. An internal di-vide-by-two provides the desired 50% input switching duty cycle. Since the capacitors are charged only when EXT CLOCK IN is high, a $50 \%-80 \%$ positive duty cycle is recommended, especially for higher frequencies. The external clock can swing between V^{+}and V^{-}. The logic threshold will be at about 2.5 V below V^{+}. Note also that a signal of about 800 Hz , with a 70% duty cycle, will be present at the EXT CLOCK IN pin with INT/EXT high or open. This is the internal clock signal before being fed to the divider.

In those applications where a strobe signal is available, an alternate approach to avoid capacitor misbalancing during overload can be used. If a strobe signal is connected to EXT CLK iN so that it is low during the time that the overload signal is applied to the amplifier, neither capacitor will be charged. Since the leakage at the capacitor pins is quite low at room temperature, the typical amplifier will drift less than $10 \mu \mathrm{~V} /$ sec, and relatively long measurements can be made with little change in offset.

BRIEF APPLICATION NOTES

Component Selection

The required capacitors, $\mathrm{C}_{\text {EXTA }}$ and $\mathrm{C}_{\text {EXTB }}$, are normally in the range of $0.1 \mu \mathrm{~F}$ to $1.0 \mu \mathrm{~F}$. A $1.0 \mu \mathrm{~F}$ capacitor should be used in broad bandwidth circuits if minimum clock ripple
noise is desired. For limited bandwidth applications where clock ripple is filtered out, using a $0.1 \mu \mathrm{~F}$ capacitor results in slightly lower offset voltage. A high-quality film-type capacitor such as mylar is preferred, although a ceramic or other lower-grade capacitor may prove suitable in many applications. For quickest settling on initial turn-on, low dielectric absorption capacitors (such as polypropylene) should be used. With ceramic capacitors, several seconds may be required to settle to $1 \mu \mathrm{~V}$.

Static Protection

All device pins are static-protected by the use of input diodes. However, strong static fields and discharges should be avoided, as they can cause degraded diode junction characteristics which may result in increased input-leakage currents.

Latchup Avoidance

Junction-isolated CMOS circuits inherently include a parasitic 4-layer ($p-n-p-n$) structure which has characteristics similar to an SCR. Under certain circumstances this junction may be trigerred into a low-impedance state, resulting in excessive supply current. To avoid this condition no voltage greater than 0.3 V beyond the supply rails should be applied to any pin. In general, the amplifier supplies must be established either at the same time or before any input signals are applied. If this is not possible, the drive circuits must limit input current flow to under 1 mA to avoid latchup, even under fault conditions.

Output Stage/Load Driving

The output circuit is a high-impedance type (approximately $18 \mathrm{k} \Omega$), and therefore, with loads less than this the chopper amplifier behaves in some ways like a transconductance amplifier whose open-loop gain is proportional to load resistance. For example, the open-loop gain will be 17 dB lower with a $1 \mathrm{k} \Omega$ load than with a $10 \mathrm{k} \Omega$ load. If the amplifier is used strictly for DC, this lower gain is of little consequence, since the DC gain is typically greater than 120 dB even with a $1 \mathrm{k} \Omega$ load. However, for wideband applications, the best frequency response will be achieved with a load resistor of $10 \mathrm{k} \Omega$ or higher. This will result in a smooth $6 \mathrm{~dB} /$ octave response from 0.1 Hz to 2 MHz , with phase shifts of less than 2° in the transition region where the main amplifier takes over from the null amplifier.

Thermo-Electric Effects

The ultimate limitations to ultra-high precision DC amplifiers are the thermo-electric or Peltier effects arising in ther-mo-couple junctions of dissimilar metals, alloys, silicon, etc. Unless all junctions are at the same temperature, thermoelectric voltages typically around $0.1 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$, but up to tens of $\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$ for some materials, will be generated. In order to realize the extremely low offset voltages that the chopper amplifier can provide, it is essential to take special precautions to avoid temperature gradients. All components should be enclosed to eliminate air movement, especially that caused by power-dissipating elements in the system. Low thermoelectric-coefficient connections should be used where possible and power supply voltages and power dissipation should be kept to a minimum. High-impedance loads are preferable, and good separation from surrounding heatdissipating elements is advisable.

Guarding

Extra care must be taken in the assembly of printed circuit boards to take full advantage of the low input currents of the ICL7652. Boards must be thoroughly cleaned with TCE or alcohol and blown dry with compressed air. After cleaning, the boards should be coated with epoxy or silicone rubber to prevent contamination.

Even with properly cleaned and coated boards, leakage currents may cause trouble, particularly since the input pins are adjacent to pins that are at supply potentials. This leakage can be significantly reduced by using guarding to lower the voltage difference between the inputs and adjacent metal runs. Input guarding of the 8 lead TO-99 package is accomplished by using a 10 lead pin circle, with the leads of the device formed so that the holes adjacent to the inputs are empty when it is inserted in the board. The guard, which is a conductive ring surrounding the inputs, is connected to a low-impedance point that is at approximately the same voltage as the inputs. Leakage currents from high-voltage pins are then absorbed by the guard.

The pin configuration of the 14-pin dual-in-line package is designed to facilitate guarding, since the pins adjacent to the inputs are not used (this is different from the standard 741 and 101A pin configuration, but corresponds to that of the LM108).

PIN COMPATIBILITY

The basic pinout of the 8-pin device corresponds, where possible, to that of the industry-standard 8 -pin devices, the LM741, LM101, etc. The null-storing external capacitors are connected to pins 1 and 8 , which are usually used for off-set-null or compensation capacitors. In the case of the OP05 and OP-07 devices, the replacement of the offset-null pot, connected between pins 1 and 8 and $\mathrm{V}+$, by two capacitors from those pins to pin 5 , will provide easy compatibility. As for the LM108, replacement of the compensation capacitor between pins 1 and 8 by the two capacitors to pin 5 is all that is necessary. The same operation, with the removal of any connection to pin 5 , will suffice for the LM101, $\mu A 748$, and similar parts.
The 14-pin device pinout corresponds most closely to that of the LM108 device, owing to the provision of "NC" pins for guarding between the input and all other pins. Since this device does not use any of the extra pins, and has no provision for offset-nulling, but requires a compensation capacitor, some changes will be required in layout to convert to the ICL7652.

$$
\text { Note: } \frac{R_{1} R_{2}}{R_{1}+r_{2}}
$$

0309-20
Follower

0309-22
Bottom View
Board Layout for Input Guarding With TO-99 Package

Figure 4: Connection of Input Guards
INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

NOTE: All typical values have been characterized but are not tested.

TYPICAL APPLICATIONS

Clearly the applications of the ICL7652 will mirror those of other op-amps. Thus, anywhere that the performance of a circuit can be significantly improved by a reduction of inputoffset voltage and bias current, the ICL7652 is the logical choice. Basic non-inverting and inverting amplifier circuits are shown in Figures 5 and 6. Both circuits can use the output clamping circuit to enhance the overload recovery performance. The only limitations on the replacement of other op-amps by the ICL7652 are the supply voltage ($\pm 8 \mathrm{~V}$ max) and the output drive capability ($10 \mathrm{k} \Omega$ load for full swing). Even these limitations can be overcome using a simple booster circuit, as shown in Figure 7, to enable the full output capabilities of the LM741 (or any other standard device) to be combined with the input capabilities of the ICL7652. The pair form a composite device, so loop gain stability, when the feedback network is added, should be watched carefully.

0309-25
Figure 7: Using 741 to Boost Output Drive Capability

Figure 8 shows the use of the clamp circuit to advantage in a zero-offset comparator. The usual problems in using a chopper-stabilized amplifier in this application are avoided, since the clamp circuit forces the inverting input to follow the input signal. The threshold input must tolerate the output clamp current $\approx \mathrm{V}_{\mathbb{I N}} / R$ without disturbing other portions of the system.

Figure 8: Low Offset Comparator
It is possible to use the ICL7652 to offset-null such high slew raie and bandwidth amplifiers as the HA2500 and HA2600 series, as shown in Figure 9. The same basic idea can be used with low-noise bipolar devices, such as the OP05, and also with the ICL8048 logarithmic amplifier, to achieve a voltage-input dynamic range of close to 6 decades. Note that these circuits will also have their DC gains, CMRR and PSRR enhanced. More details on these and other ideas are explained in application note A053.

Mixing the ICL7652 with circuits operating at $\pm 15 \mathrm{~V}$ supplies requires the provision of a lower voltage. Although this can be done fairly easily, a highly efficient voltage divider can be built using the ICL7660 voltage converter circuit "backwards". A suitable connection is shown in Figure 10.

[^252]NOTE: All typical values have been characterized but are not tested.

0309-27
HA2500/10/20
HA2600/20
OR SIMILAR DEVICE
Figure 9: HA2500 or HA2600 Offset-Nulled by ICL7652

For further applications assistance, see A053 and R017
intersil's sole and exclusive warranty obligation with respect to this product shall be that stated in the warranty article of the condition of sale. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

NOTE: All typical values have been characterized but are not tested.

ICL7652S Super Chopper-Stabilized LowNoise Operational Amplifier

GENERAL DESCRIPTION

The ICL7652S Super Chopper-Stabilized Low-Noise Amplifier offers exceptionally low input offset voltage and is extremely stable with respect to time and temperature. It is a direct replacement for the industry-standard ICL7652 offering improved input offset voltage, lower input offset voltage temperature coefficient, reduced input bias current, wide common mode voltage range, and ESD protectlon greater than 2000 volts. All improvements are highlighted in bold Italics in the Electrical Characteristics Section. Critical parameters are guaranteed over the entire commercial, industrial, and military temperature range.

Intersil's unique CMOS chopper-stabilized amplifier circuitry is user-transparent, virtually eliminating the traditional chopper amplifier problems of intermodulation effects, chopping spikes, and overrange lock-up.
The chopper amplifier achieves its low offset by comparing the inverting and non-inverting input voltages in a nulling amplifier, nulled by alternate clock phases. Two external capacitors are required to store the correcting potentials on the two amplifier nulling inputs; these are the only external components necessary.

The clock oscillator and all the other control circuitry is entirely self-contained, however the 14-lead version includes a provision for the use of an external clock, if required for a particular application. In addition, the ICL7652S is internally compensated for unity-gain operation.

FEATURES

- Guaranteed Max Input Offset Voltage for Al/ Temperature Ranges
- Low Long-Term and Temperature Drifts of Input Offset Voltage
- Reduced Input Bias Current-3 pA Typ; 30 pA Max over Temperature
- Enhanced ESD Protection > 2000V
- Extremely Wide Common Mode Voltage Range+3.5 to -4.3 Volts
- Reduced Supply Current-1.7 mA; 3.5 mA Max over mil Temperature
- Guaranteed Minimum Output Source/Sink Current
- Extremely High Gain - 150 dB
- Low Input Noise Voltage- $\mathbf{0 . 2} \mu \mathrm{Vp}$-p (DC-1 Hz)
- Unity-Gain Compensated
- Very Low Intermodulation Effects (Open-Loop Phase Shift $<2^{\circ} \mu$ @ Chopper Frequency)
- Clamp Circuit to Avoid Overioad Recovery Problems and Allow Comparator Use (14-Lead only)
- Extremely Low Chopping Spikes at Input and Output
- Characterized Fully Over Military Temperature Range
- Improved Direct Replacement for Industry-Standard IC7652 and other Second-Source Parts

ORDERING INFORMATION

Part	Temperature Range	Package
ICL7652SCPD		$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
ICL7652SCJD		14-Pin Plastic
ICL7652SCTV		14 -Pin CERDIP
ICL7652SIJD		8 -Pin TO-99
ICL7652SITV	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	14 -Pin CERDIP
ICL7652SIPD		8 -Pin TO-99
ICL7652SMJD		14 -Pin Plastic
ICL7652SMTV		14 -Pin CERDIP

Storage Temperature Range $55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ Lead Temperature (Soldering, 10 sec) $+300^{\circ} \mathrm{C}$ Operating Temperature Range
ICL7652SC $.0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
ICL7652SI $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
ICL7652SM
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

NOTE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

Test Conditions: $\mathrm{V}^{+}=+5 \mathrm{~V}, \mathrm{~V}^{-}=-5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, Test Circuit as in Figure 3 (unless otherwise specified)

Symbol	Parameter	Test Conditions	Limits			Units
			Min	Typ	Max	
VOS	Input Offset Voltage	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		± 0.7	± 5	$\mu \mathrm{V}$
		$0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}$		± 2	± 7	
		$-25^{\circ} \mathrm{C} \leq \mathrm{T}_{A} \leq+85^{\circ} \mathrm{C}$		± 3	± 10	
		$-55^{\circ} \mathrm{C} \leq \mathrm{T}_{A} \leq+125^{\circ} \mathrm{C}$		± 15	± 50	
$\Delta V_{\text {OS }} / \Delta T$	Average Temp. Coefficlent of Input Offset Voltage (Note 2)	$0^{\circ} \mathrm{C} \leq \mathrm{T}_{A} \leq+70^{\circ} \mathrm{C}$		0.01	0.06	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
		$-25^{\circ} \mathrm{C} \leq \mathrm{T}_{A} \leq+85^{\circ} \mathrm{C}$		0.02	0.07	
		$-55^{\circ} \mathrm{C} \leq \mathrm{T}_{A} \leq+85^{\circ} \mathrm{C}$		0.02	0.07	
		$-85^{\circ} \mathrm{C} \leq \mathrm{T}_{A} \leq+125^{\circ} \mathrm{C}$		0.4	1.0	
		$-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$		0.1	0.4	
$\Delta \mathrm{V}_{\text {OS }} / \Delta \mathrm{t}$	Change in Input Offset with Time			150		$\mathrm{nV} / \sqrt{\text { month }}$
Iblas	Input Blas Current$\|1(+)\|,\|1(-)\|$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		3	30	pA
		$0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}$			30	
		$-25^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}$			30	
		$-55^{\circ} \mathrm{C} \leq \mathrm{T}_{A} \leq+85^{\circ} \mathrm{C}$			30	
		$+85^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$			500	
Ios	Input Offset Current$\|1(-)-1(+)\|$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		15	40	pA
		$0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}$			40	
		$-25^{\circ} \mathrm{C} \leq \mathrm{T}_{A} \leq+85^{\circ} \mathrm{C}$			40	
		$-55^{\circ} \mathrm{C} \leq \mathrm{T}_{A} \leq+85^{\circ} \mathrm{C}$			40	
		$+85^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$			75	
R_{IN}	Input Resistance			10^{12}		Ω
$A_{\text {VOL }}$	Large Signal Voltage Gain (Note 2)	$\mathrm{RL}=10 \mathrm{~K} \Omega, \mathrm{~V}_{\mathrm{O}}= \pm 4 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	135	150		dB
		$0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}$	130			
		$-25^{\circ} \mathrm{C} \leq \mathrm{T}_{A} \leq+85^{\circ} \mathrm{C}$	130			
		$-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$	120			
V OUT	Output Voltage Swing (Note 3)	$\mathrm{RL}=10 \mathrm{~K} \Omega$	± 4.7	± 4.85		V
		$\mathrm{RL}=100 \mathrm{~K} \Omega$		± 4.95		

[^253]
ELECTRICAL CHARACTERISTICS

Test Conditions: $\mathrm{V}^{+}=+5 \mathrm{~V}, \mathrm{~V}^{-}=-5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, Test Circuit (unless otherwise specified) (Continued)

Symbol	Parameter	Test Conditions	Limits			Units
			Min	Typ	Max	
CMRR	Common Mode Rejection Ratlo (Note 2)	CMVR $=-4.3 \mathrm{~V}$ to $+3.5, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	120	130		dB
		$0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}$	110			
		$-25^{\circ} \mathrm{C} \leq \mathrm{T}_{A} \leq+85^{\circ} \mathrm{C}$	110			
		$-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$	100			
PSRR	Power Supply Rejection Ratlo (Note 2)	$\mathrm{V}^{+}, \mathrm{V}^{-}= \pm 3 \mathrm{~V}$ to $\pm 8 \mathrm{~V}$	120	130		dB
		$0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}$	110			
		$-25^{\circ} \mathrm{C} \leq \mathrm{T}_{A} \leq+85^{\circ} \mathrm{C}$	110			
		$-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$	100			
en	Input Noise Voltage	Rs $=100 \Omega, f=D C$ to 1 Hz		0.2		$\mu \vee p-p$
		$f=$ DC to 10 Hz		0.7		
in	Input Noise Current	$f=10 \mathrm{~Hz}$		0.01		$\mathrm{pA} / \sqrt{\mathrm{Hz}}$
GBW	Gain Bandwidth			500		kHz
SR	Slew Rate	$\mathrm{CL}=50 \mathrm{pF}, \mathrm{RL}=10 \mathrm{~K} \Omega$		1.0		$\mathrm{V} / \mu \mathrm{s}$
	Overshoot			15		\%
$\mathrm{V}+$ to V^{-}	Operating Supply Range		5.0		16	V
ISUPP	Supply Current	No Load $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		1.7	2.5	mA
		$0^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<70^{\circ} \mathrm{C}$			3.0	
		$-25^{\circ} \mathrm{C}<\mathrm{T}_{A}<85^{\circ} \mathrm{C}$			3.0	
		$-55^{\circ} \mathrm{C}<\mathrm{T}_{A}<125^{\circ} \mathrm{C}$			3.5	
IO source	Output Source Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	2.4	4.4		mA
		$0^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<70^{\circ} \mathrm{C}$	2.0			
		$-25^{\circ} \mathrm{C}<\mathrm{T}_{A}<85^{\circ} \mathrm{C}$	1.9			
		$-55^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<125^{\circ} \mathrm{C}$	1.7			
$l_{0 \text { sink }}$	Output Sink Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	15.0	20.0		mA
		$0^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<70^{\circ} \mathrm{C}$	12.0			
		$-25^{\circ} \mathrm{C}<\mathrm{T}_{A}<85^{\circ} \mathrm{C}$	12.0			
		$-55^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<125^{\circ} \mathrm{C}$	11.0			
fch	Internal Chopping Frequency	Pins 12 \& 14 Open (dip)	250	450	650	Hz
	Clamp ON Current (Note 4)	$\mathrm{RL}=100 \mathrm{~K} \Omega, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	30	100		$\mu \mathrm{A}$
	Clamp OFF Current (Note 4)	$-4.0 \mathrm{~V}<\mathrm{V}_{\text {OUT }}<+4.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		0.001	10	$n A$
		$0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}$			10	
		$-25^{\circ} \mathrm{C} \leq \mathrm{T}_{A} \leq+85^{\circ} \mathrm{C}$			10	
		$-55^{\circ} \mathrm{C} \leq \mathrm{T}_{A} \leq+125^{\circ} \mathrm{C}$			10	

NOTE 1: Limiting input current to $100 \mu \mathrm{~A}$ is recommended to avoid latchup problems. Typically 1 mA is safe, however this is not guaranteed.
2: These parameters are guaranteed by design and characterization, but not tested at temperature extremes because thermocouple effects prevent precise measurement of these voltages in automatic test equipment.
3: OUTPUT CLAMP not connected. See typical characteristic curves for output swing vs clamp current characteristics.
4: See OUTPUT CLAMP under detailed description.
5: All significant improvements over the industry-standard ICL7652 are highlighted in bold Italics.

INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

NOTE: All typical values have been characterized but are not tested.

TYPICAL PERFORMANCE CHARACTERISTICS

0087-2

Figure 2: Pin Configuration

Figure 1: Functional Diagram

[^254]
TYPICAL PERFORMANCE CHARACTERISTICS (Continued)

Clock Ripple Referred to the Input vs Temperature

0087-9
Voltage Follower Large Signal Pulse Response*

0087-12

Broadband Noise Balanced
Source Impedance $=1 \mathrm{k} \Omega$
Gain $=1000 C_{\text {EXT }}=0.1 \mu \mathrm{~F}$

0087-10

Voltage Follower Large Signal

 Pulse Response*

Broadband Noise Balanced
Source Impedance $=1 \mathrm{k} \Omega$
Gain $=1000$ CEXT $=1.0 \mu \mathrm{~F}$

0087-11

Open-Loop Gain and Phase Shift vs Frequency

0087-14

0087-13
*THE TWO DIFFERENT RESPONSES CORRESPOND TO THE TWO PHASES OF THE CLOCK.

N-Channel Clamp Current vs

 Output Voltage

P-Channel Clamp Current vs Output Voltage

0087-16

Input Offset Voltage Change vs Supply Voltage

0087-17

DETAILED DESCRIPTION

The Functional Diagram (Figure 1) shows the major elements of the ICL7652S. There are two amplifiers, the main amplifier, and the nulling amplifier. Both have offset-null capability. The main amplifier is connected continuously from the input to the output. The nulling amplifier, under the control of the chopping frequency oscillator and clock circuit, alternately nulls itself and the main amplifier. The nulling connections, which are MOSFET gates, are inherently highimpedance, and two external capacitors provide the required storage of the nulling potentials and the necessary nulling-loop time constants. The nulling arrangement operates over the full common-mode and power supply ranges, and is also independent of the output level, thus giving exceptionally high CMRR, PSRR, and Avol.
Careful balancing of the input switches, together with the inherent balance of the input circuit, minimizes chopper frequency charge injection at the input terminals. Feedforwardtype injection into the compensation capacitor is also minimized, which is the main cause of output spikes in this type of circuit.

Intermodulation

Previous chopper-stabilized amplifiers have suffered from intermodulation effects between the chopper frequency and input signals. These arise because the finite AC gain of the amplifier necessitates a small AC signal at the input. This is seen by the zeroing circuit as an error signal, which is chopped and fed back, thus injecting sum and difference frequencies and causing disturbances to the gain and phase vs frequency characteristics near the chopping frequency. These effects are substantially reduced in the ICL7652S by feeding the nulling circuit with a dynamic current, corresponding to the compensation capacitor current, in such a way as to cancel that portion of the input signal due to finite AC gain. Since that is the major error contribution to the ICL7652S, the intermodulation and gain/phase disturbances are held to very low values, and can generally be ignored.

Capacitor Connection

The null-storage capacitors should be connected to the $\mathrm{C}_{\text {EXTA }}$ and $\mathrm{C}_{\text {EXTB }}$ pins, with a common connection to the $\mathrm{C}_{\text {RETN }}$ pin. This connection should be made directly by either a separate wire or PC trace to avoid injecting load current IR drops into the capacitive circuitry. The outside foil, where available, should be connected to CRETN.

Output Clamp

The OUTPUT CLAMP pin allows reduction of the overload recovery time inherent with chopper-stabilized amplifiers. When tied to the inverting input pin, or summing junction, a current path between this point and the OUTPUT pin occurs just before the device output saturates. Thus uncontrolled differential input voltages are avoided, together with the consequent charge build-up on the correction-storage capacitors. The output swing is slightly reduced.

Clock

The ICL7652S has an internal oscillator, giving a chopping frequency of 400 Hz , available at the CLOCK OUT pin on the 14-pin devices. Provision has also been made for the use of an external clock in these parts. The INT/EXT pin has an internal pull-up and may be left open for normal operation, but to utilize an external clock this pin must be tied to V - to disable the internal clock. The external clock signal may then be applied to the EXT CLOCK IN pin. An internal divide-by-two provides the desired 50% input switching duty cycle. Since the capacitors are charged only when EXT CLOCK \mathbb{N} is high, a $50 \%-80 \%$ positive duty cycle is recommended, especially for higher frequencies. The external clock can swing between V^{+}and V^{-}. The logic threshold will be at about 2.5 V below $\mathrm{V}+$. Note also that a signal of about 800 Hz , with a 70% duty cycle, will be present at the EXT CLOCK IN pin with INT/EXT high or open. This is the internal clock signal before being fed to the divider.

In those applications where a strobe signal is available, an alternate approach to avoid capacitor misbalancing during overload can be used. If a strobe signal is connected to EXT CLK IN so that it is low during the time that the overload signal is applied to the amplifier, neither capacitor will be charged. Since the leakage at the capacitor pins is quite low at room temperature, the typical amplifier will drift less than $10 \mu \mathrm{~V} / \mathrm{sec}$, and relatively long measurements can be made with little change in offset.

BRIEF APPLICATION NOTES Component Selection

The required capacitors, $\mathrm{C}_{\text {EXTA }}$ and $\mathrm{C}_{\text {EXTB }}$, are normally in the range of $0.1 \mu \mathrm{~F}$ to $1.0 \mu \mathrm{~F}$. A $1.0 \mu \mathrm{~F}$ capacitor should be used in broad bandwidth circuits if minimum clock ripple noise is desired. For limited bandwidth applications where clock ripple is filtered out, using a $0.1 \mu \mathrm{~F}$ capacitor results in slightly lower offset voltage. A high-quality film-type capacitor such as mylar is preferred, although a ceramic or other lower-grade capacitor may prove suitable in many applications. For quickest setting on initial turn-on, low dielectric absorption capacitors (such as polypropylene) should be used. With ceramic capacitors, several seconds may be required to settle to $1 \mu \mathrm{~V}$.

Static Protection

All device pins are static-protected by the use of input diodes. However, strong static fields and discharges should be avoided, as they can cause degraded diode junction characteristics which may result in increased input-leakage currents.

Latchup Avoidance

Junction-isolated CMOS circuits inherently include a parasitic 4-layer ($p-n-p-n$) structure which has characteristics similar to an SCR. Under certain circumstances this junction may be triggered into a low-impedance state, resulting in excessive supply current. To avoid this condition no voltage greater than 0.3 V beyond the supply rails should be applied to any pin. In general, the amplifier supplies must be established either at the same time or before any input signals are applied. If this is not possible, the drive circuits must limit input current flow to under 1 mA to avoid latchup, even under fault conditions.

Output Stage/Load Driving

The output circuit is a high-impedance type (approximately $18 \mathrm{k} \Omega$), and therefore, with loads less than this the chopper amplifier behaves in some ways like a transconductance amplifier whose open-loop gain is proportional to load resistance. For example, the open-loop gain will be 17 dB lower with a $1 \mathrm{k} \Omega$ load than with a $10 \mathrm{k} \Omega$ load. If the amplifier is used strictly for DC, this lower gain is of little consequence, since the DC gain is typically greater than 120 dB even with a $1 \mathrm{k} \Omega$ load. However, for wideband applications, the best frequency response will be achieved with a load resistor of $10 \mathrm{k} \Omega$ or higher. This will result in a smooth 6 dB /octave response from 0.1 Hz to 2 MHz , with phase shifts of less than 2° in the transition region where the main amplifier takes over from the null amplifier.

Thermo-Electric Effects

The ultimate limitations to ultra-high precision DC amplifiers are the thermo-electric or Peltier effects arising in thermocouple junctions of dissimilar metals, alloys, silicon etc. Unless all junctions are at the same temperature, thermo-electric voltages typically around $0.1 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$, but up to tens of $\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$ for some materials, will be generated. In order to realize the extremely low offset voltages that the chopper amplifier can provide, it is essential to take special precautions to avoid temperature gradients. All components should be enclosed to eliminate air movement, especially that caused by power-dissipating elements in the system. Low thermoelectric-coefficient connections should be used where possible and power supply voltages and power dissipation should be kept to a minimum. High-impedance loads are preferable, and good separation from surrounding heatdissipating elements is advisable.

Guarding

Extra care must be taken in the assembly of printed circuit boards to take full advantage of the low input currents of the ICL7652S. Boards must be thoroughly cleaned with TCE or alcohol and blown dry with compressed air. After cleaning, the boards should be coated with epoxy or silicone rubber to prevent contamination.
Even with properly cleaned and coated boards, leakage currents may cause trouble, particularly since the input pins are adjacent to pins that are at supply potentials. This leakage can be significantly reduced by using guarding to lower the voltage difference between the inputs and adjacent metal runs. Input guarding of the 8 lead TO-99 package is accomplished by using a 10 lead pin circle, with the leads of the device formed so that the holes adjacent to the inputs are empty when it is inserted in the board. The guard, which is a conductive ring surrounding the inputs, is connected to a low-impedance point that is at approximately the same voltage as the inputs. Leakage currents from high-voltage pins are then absorbed by the guard.
The pin configuration of the 14-pin dual-in-line package is designed to facilitate guarding, since the pins adjacent to the inputs are not used (this is different from the standard 741 and 101A pin configuration, but corresponds to that of the LM108).

PIN COMPATIBILITY

The basic pinout of the 8 -pin device corresponds, where possible, to that of the industry-standard 8-pin devices, the LM741, LM101, etc. The null-storing external capacitors are connected to pins 1 and 8 , which are usually used for off-set-null or compensation capacitors. In the case of the OP-05 and OP-07 devices, the replacement of the offsetnull pot, connected between pins 1 and 8 and V^{+}, by two capacitors from those pins to pin 5 , will provide easy compatibility. As for the LM108, replacement of the compensation capacitor between pins 1 and 8 by the two capacitors to pin 5 is all that is necessary. The same operation, with the removal of any connection to pin 5 , will suffice for the LM101, $\mu \mathrm{A} 748$, and similar parts.
The 14-pin device pinout corresponds most closely to that of the LM108 device, owing to the provision of "NC" pins for guarding between the input and all other pins. Since this device does not use any of the extra pins, and has no provision for offset-nulling, but requires a compensation capacitor, some changes will be required in layout to convert to the ICL7652S.

0087-19
Inverting Amplifier

0087-21
Note: $\frac{R_{1} R_{2}}{R_{1}+r_{2}}$
Should be low impedance for optimum guarding
Non-Inverting Amplifier

0087-20
Follower

BOTTOM VIEW
Board Layout for Input Guarding with TO-99 Package

Figure 4: Connection of Input Guards

TYPICAL APPLICATIONS

Clearly the applications of the ICL7652S will mirror those of other op-amps. Thus, anywhere that the performance of a circuit can be significantly improved by a reduction of in-put-offset voltage and bias current, the ICL7652S is the logical choice. Basic non-inverting and inverting amplifier circuits are shown in Figures 5 and 6. Both circuits can use the output clamping circuit to enhance the overload recovery performance. The only limitations on the replacement of other op-amps by the ICL7652S are the supply voltage ($\pm 8 \mathrm{~V}$ max) and the output drive capability ($10 \mathrm{k} \Omega$ load for full swing). Even these limitations can be overcome using a simple booster circuit, as shown in Figure 7, to enable the full output capabilities of the LM741 (or any other standard device) to be combined with the input capabilities of the ICL7652S. The pair form a composite device, so loop gain stability, when the feedback network is added, should be watched carefully.

0087-25
Figure 7: Using 741 to Boost Output Drive Capability

Figure 8 shows the use of the clamp circuit to advantage in a zero-offset comparator. The usual problems in using a chopper-stabilized amplifier in this application are avoided, since the clamp circuit forces the inverting input to follow the input signal. The threshold input must tolerate the output clamp current $\approx \mathrm{V}_{\mathrm{IN}} / R$ without disturbing other portions of the system.

0087-26
Figure 8: Low Offset Comparator
It is possible to use the ICL7652S to offset-null such high slew rate and bandwidth amplifiers as the HA2500 and HA2600 series, as shown in Figure 9. The same basic idea can be used with low-noise bipolar devices, such as the OP05 , and also with the ICL8048 logarithmic amplifier, to achieve a voltage-input dynamic range of close to 6 decades. Note that these circuits will also have their DC gains, CMRR and PSRR enhanced. More details on these and other ideas are explained in application note A053.

Mixing the ICL7652S with circuits operating at $\pm 15 \mathrm{~V}$ supplies requires the provision of a lower voltage. Although this can be done fairly easily, a highly efficient voltage divider can be built using the ICL7660S voltage converter circuit "backwards". A suitable connection is shown in Figure 10.

0087-27
HA2500/10/20
HA2600/20
or Similar Device
Figure 9: HA2500 or HA2600 Offset-Nulled by ICL7652S

0087-28
Figure 10: Splitting +15 V with ICL7660S at $>95 \%$ Efficiency. Same for -15 V

FOR FURTHER APPLICATIONS ASSISTANCE, SEE A053 AND R017.

GENERAL DESCRIPTION

The Intersil ICL8007 is a low input current JFET input operational amplifier. The ICL8007A is selected for 4 pA max input current.
The devices are designed for use in very high input impedance applications. Because of their high slew rate, high common mode voltage range and absence of "latch-up", they are ideal for use as a voltage follower.

The Intersil 8007 and 8007A are short circuit protected. They require no external components for frequency compensation because the internal $6 \mathrm{~dB} /$ roll-off insures stability in closed loop applications. A unique bootstrap circuit insures unusually good common mode rejection for a JFET input op-amp and prevents large input currents as seen in some amplifiers at high common mode voltage.

- 1MHz Band Width
- Excellent Stability
- Ideal for Unity Gain Applications

FEATURES

- Ultra Low Input Current
- High Slew Rate - 6V/ $\mu \mathrm{s}$
- Wide Input Common Mode Voltage
- UATURES

ORDERING INFORMATION

Part Number	Temperature Range	Package
ICL8007CTY ICL8007ACTV	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	8 LEAD
ICL8007MTY ICL8007AMTV	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	METAL CAN

0310-1

Figure 1: Functional Diagram

ABSOLUTE MAXIMUM RATINGS

Supply Voltage . $\pm 18 \mathrm{~V}$
Power Dissipation (Note 1) 500mW
Differential Input Voltage $\pm 30 \mathrm{~V}$
Input Voltage (Note 2) . $\pm 15 \mathrm{~V}$
Storage Temperature Range $\ldots \ldots \ldots . .-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Operating Temperature Range

$$
\text { 8007M, 8007AM }-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C}
$$

8007C, 8007AC $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10sec) $300^{\circ} \mathrm{C}$ Output Short-Circuit Duration (Note 3) Indefinite

NOTES:

1. Rating applies for case temperatures to $125^{\circ} \mathrm{C}$; derate linearly at $6.5 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ for ambient temperatures above $+75^{\circ} \mathrm{C}$.
2. For supply voltages less than $\pm 15 \mathrm{~V}$, the absolute maximum input voltage is equal to the supply voltage.
3. Short circuit may be to ground or either supply. Rating applies to $+125^{\circ} \mathrm{C}$ case temperature or $+75^{\circ} \mathrm{C}$ ambient temperature.
4. For Design only, not 100% tested.

NOTE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS ($\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$ unless otherwise specified)

Characteristics	Test Conditions	8007M			8007C			$\begin{aligned} & \text { 8007AM \& } \\ & \text { 8007AC } \end{aligned}$			Units
		Min	Typ	Max	Min	Typ	Max	Min	Typ	Max	
The following specifications apply for $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$:											
Input Offset Voltage	$\mathrm{R}_{S} \leq 100 \mathrm{k} \Omega$		10	20		20	50		15	30	mV
Input Offset Current			0.5			0.5			0.2		pA
Input Bias Current (either input)			2.0	20		3.0	50		0.5	4.0	pA
Input Resistance			10^{6}			10^{6}			10^{6}		$\mathrm{M} \Omega$
Input Capacitance			2.0			2.0			2.0		pF
Large Signal Voltage Gain	$\mathrm{R}_{\mathrm{L}} \geq 2 \mathrm{k} \Omega, \mathrm{V}_{\text {OUT }}= \pm 10 \mathrm{~V}$	50,000			20,000			20,000			V/V
Output Resistance			75			75			75		Ω
Output Short-Circuit Current			25			25			25		mA
Supply Current			3.4	5.2		3.4	6.0		3.4	6.0	mA
Power Consumption			102	156		102	180		102	180	mW
Slew Rate			6.0			6.0		2.5	6.0		$\mathrm{V} / \mu \mathrm{s}$
Unity Gain Bandwidth			1.0			1.0			1.0		MHz
Risetime	$\mathrm{C}_{\mathrm{L}} \leq 100 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$		300			300			300		ns
Overshoot	$\mathrm{C}_{\mathrm{L}} \leq 100 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$		10			10			10		\%

The following specifications apply for $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}$ (8007C and 8007 AC), and $-55^{\circ} \mathrm{C} \leq \mathrm{T}_{A} \leq+125^{\circ} \mathrm{C}$ (8007 M and 8007AM):

Input Voltage Range		± 10	± 12		± 10	± 12		± 10	± 12		V
Common Mode Rejection Ratio		70	90		70	90		86	95		dB
Supply Voltage Rejection Ratio			70	300		70	600		70	200	$\mu \mathrm{V} / \mathrm{V}$
Large Signal Voltage Gain		25,000			15,000			15,000			V/V
Output Voltage Swing	$\begin{aligned} & R_{L} \geq 10 k \Omega \\ & R_{L} \geq 2 k \Omega \end{aligned}$	$\begin{aligned} & \pm 12 \\ & \pm 10 \end{aligned}$	$\begin{aligned} & \pm 14 \\ & \pm 13 \end{aligned}$		$\begin{aligned} & \pm 12 \\ & \pm 10 \end{aligned}$	$\begin{aligned} & \pm 14 \\ & \pm 13 \end{aligned}$		$\begin{aligned} & \pm 12 \\ & \pm 10 \end{aligned}$	$\begin{aligned} & \pm 14 \\ & \pm 13 \end{aligned}$		$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
Input Bias Current (either input)	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=+125^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{A}}=+70^{\circ} \mathrm{C} \end{aligned}$		2.0			50			$\begin{aligned} & 1.0 \\ & 30 \end{aligned}$		$\begin{aligned} & \mathrm{nA} \\ & \mathrm{pA} \\ & \hline \end{aligned}$
Average Temperature Coefficient of Input Offset Voltage	(Note 4)			75			75			50	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$

0310-3
Figure 3: Transient Response Test Circuit

TYPICAL PERFORMANCE CHARACTERISTICS

0310-4

0310-7

VOLTAGE FOLLOWER LARGE SIGNAL PULSE RESPONSE

0310-5
INPUT BIAS CURRENT AS A FUNCTION OF TEMPERATURE

OUTPUT VOLTAGE SWING AS A FUNCTION OF FREQUENCY

0310-6
OUTPUT SWING AS A FUNCTION OF SUPPLY VOLTAGE

0310-9

0310-8

[^255]
ICL8007

TYPICAL PERFORMANCE CHARACTERISTICS (Continued)

For additional information, see Application Note A005.

[^256]
GENERAL DESCRIPTION

The Intersil ICL8021 series are low power operational amplifiers specifically designed for applications requiring very low standby power consumption over a wide range of supply voltages. The electrical characteristics of the 8021 series can be tailored to a particular application by adjusting an external resistor, R ${ }_{\text {SET }}$, which controls the quiescent current. This is advantageous because I_{Q} can be made independent of the supply voltages: it can be set to an extremely low value where power is critical, or to a larger value for high slew rate or wideband applications.

Other features of the 8021 series include low input current that remains constant with temperature, low noise, high input impedance, internal compensation and pin-for-pin compatibility with the 741.
The Intersil 8023 consists of three low power operational amplifiers in a single 16 -pin DIP. Each amplifier is identical to an 8021 low power op amp, and has separate connections for adjusting its electrical characteristics by means of an external resistor, R RET , which controls the quiescent current of that amplifier.

ORDERING INFORMATION

0311-20

FEATURES

- $\mathrm{V}_{\mathrm{OS}}=3 \mathrm{mV}$ Max (Adjustable to Zero)
- $\pm 1.5 \mathrm{~V}$ to $\pm 18 \mathrm{~V}$ Power Supply Operation
- Power Consumption - $20 \mu \mathrm{~W}$ @ $\pm 1 \mathrm{~V}$
- Input Bias Current - 30nA Max
- Internal Compensation
- Pin-For-Pin Compatible With 741
- Short Circuit Protected

Part Number	Temperature Range	Package
ICL8021CJA	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	8 Lead CERDIP
ICL8021CBA	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	8 Lead S.O.I.C
ICL8021CPA	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	8 Lead MINIDIP
ICL8021CTY	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	8 Lead Metal Can
ICL8021MJA	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	8 Lead CERDIP
ICL8021MTY*	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	8 Lead Metal Can
ICL8023CJE	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	16 Lead CERDIP
ICL8023CPE	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	16 Lead MINIDIP
ICL8023MJE*	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16 Lead CERDIP

[^257]NGS
ABSOLUTE MAXIMUM RATINGS

Supply Voltage . $\pm 18 \mathrm{~V}$
Differential Input Voltage (Note 1) $\pm 15 \mathrm{~V}$
Common Mode Input Voltage (Note 1) $\pm 15 \mathrm{~V}$
Output Short Circuit Duration Indefinite
Power Dissipation (Note 2) . 300 mW

Operating Temperature Range	
8021M/8023M	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
$8021 \mathrm{C} / 8023 \mathrm{C}$. $0^{\circ} \mathrm{C}$ C to $+70^{\circ} \mathrm{C}$	
Storage Temperature Range	$65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering,	$+300^{\circ} \mathrm{C}$

NOTE 1: For supply voltages less than $\pm 15 \mathrm{~V}$, the absolute maximum input voltage is equal to the supply voltage.
NOTE 2: Rating applies for case temperatures to $+125^{\circ} \mathrm{C}$; derate linearly at $5.6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ for ambient temperatures above $+95^{\circ} \mathrm{C}$
NOTE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Figure 1: Functional Diagram

(outline dwg PA)

0311-5
Figure 2: Pin Configurations

[^258]

0311-6
Figure 3: Voltage Offset Null Circuit
ELECTRICAL CHARACTERISTICS $\quad\left(V_{S U P P L Y}= \pm 6 \mathrm{~V}, \mathrm{I}_{Q}=30 \mu \mathrm{~A}\right.$, unless otherwise specified.)

Characteristics	Test Condlitions	8021M			8021C			Units
		Min	Typ	Max	Min	Typ	Max	
The following specifications apply for $\mathrm{T}_{\mathbf{A}}=25^{\circ} \mathrm{C}$:								
Input Offset Voltage	$\mathrm{R}_{\mathrm{S}} \leq 100 \mathrm{k} \Omega$		2	3		2	6	mV
Input Offset Current			0.5	7.5		0.7	10	nA
Input Bias Current			5	20		7	30	nA
Input Resistance		3	10		3	10		$\mathrm{M} \Omega$
Input Voltage Range	$V_{\text {SUPPLY }}= \pm 15 \mathrm{~V}$	± 12	± 13		± 12	± 13		V
Common Mode Rejection Ratio	$\mathrm{R}_{\mathrm{S}} \leq 10 \mathrm{k} \Omega$	70	80		70	80		dB
Supply Voltage Rejection Ratio	$\mathrm{R}_{\mathrm{S}} \leq 10 \mathrm{k} \Omega$		30	150		30	150	$\mu \mathrm{V} / \mathrm{V}$
Output Resistance	Open Loop		2			2		$\mathrm{k} \Omega$
Output Voltage Swing	$R_{L} \geq 20 \mathrm{k} \Omega, \mathrm{V}_{\text {SUPPLY }}= \pm 15 \mathrm{~V}$	± 12	± 14		± 12	± 14		V
	$R_{L} \geq 10 \mathrm{k} \Omega, \mathrm{V}_{\text {SUPPLY }}= \pm 15 \mathrm{~V}$	± 11	± 13		± 11	± 13		V
Output Short-Circuit Current			± 13			± 13		mA
Power Consumption	$\mathrm{V}_{\text {OUT }}=0$		360	480		360	600	$\mu \mathrm{W}$
Slew Rate (Unity Gain)			0.16			0.16		$\mathrm{V} / \mu \mathrm{s}$
Unity Gain Bandwidth	$\mathrm{R}_{\mathrm{L}}=20 \mathrm{k} \Omega, \mathrm{V}_{\text {IN }}=20 \mathrm{mV}$		270			270		kHz
Transient Response (Unity Gain) Risetime Overshoot	$\mathrm{R}_{\mathrm{L}}=20 \mathrm{k} \Omega, \mathrm{V}_{\text {IN }}=20 \mathrm{mV}$		$\begin{aligned} & 1.3 \\ & 10 \\ & \hline \end{aligned}$			$\begin{aligned} & 1.3 \\ & 10 \end{aligned}$		$\begin{aligned} & \mu \mathrm{s} \\ & \% \end{aligned}$
Specifications Applicable over Temperature		$-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$			$0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}$			
Input Offset Voltage	$\mathrm{R}_{\mathbf{S}} \leq 10 \mathrm{k} \Omega$		2.0	5.0		2.0	7.5	mV
Input Offset Current			1.0	11		1.5	15	nA
Input Bias Current			10	32		15	50	nA
Average Temperature Coefficient of Input Offset Voltage	$\mathrm{R}_{\mathbf{S}} \leq 10 \mathrm{k} \Omega$		5			5		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Average Temperature Coefficient of Input Offset Current			1.7			0.8		$\mathrm{pA} /{ }^{\circ} \mathrm{C}$
Large Signal Voltage Gain	$R_{L}=10 \mathrm{k} \Omega$	50	200		50	200		V / mV
Output Voltage Swing	$R_{L} \geq 10 \mathrm{k} \Omega$	± 10	± 13		± 10	± 13		V

[^259]QUIESCENT CURRENT ADJUSTMENT QUIESCENT CURRENT SETTING RESISTOR
(PIN 8 to V^{-})

$\mathbf{V}_{\mathbf{S}}$	$\mathbf{I}_{\mathbf{Q}}$			
	$10 \mu \mathbf{A}$	$30 \mu \mathbf{A}$	$100 \mu \mathrm{~A}$	$300 \mu \mathbf{A}$
	$1.5 \mathrm{M} \Omega$	$470 \mathrm{k} \Omega$	$150 \mathrm{k} \Omega$	-
± 3	$3.3 \mathrm{M} \Omega$	$1.1 \mathrm{M} \Omega$	$330 \mathrm{k} \Omega$	$100 \mathrm{k} \Omega$
± 6	$7.5 \mathrm{M} \Omega$	$2.7 \mathrm{M} \Omega$	$750 \mathrm{k} \Omega$	$220 \mathrm{k} \Omega$
± 9	$13 \mathrm{M} \Omega$	$4 \mathrm{M} \Omega$	$1.3 \mathrm{M} \Omega$	$350 \mathrm{k} \Omega$
± 12	$18 \mathrm{M} \Omega$	$5.6 \mathrm{M} \Omega$	$1.5 \mathrm{M} \Omega$	$510 \mathrm{k} \Omega$
± 15	$22 \mathrm{M} \Omega$	$7.5 \mathrm{M} \Omega$	$2.2 \mathrm{M} \Omega$	$620 \mathrm{k} \Omega$

QUIESCENT CURRENT SETTING RESISTOR (PIN 8 to ${ }^{-}$-)

0311-7

TYPICAL PERFORMANCE CHARACTERISTICS*

($T_{A}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}= \pm 6 \mathrm{~V}, \mathrm{I}_{\mathrm{Q}}=30 \mu \mathrm{~A}$ unless otherwise specified.)

DIFFERENTIAL INPUT IMPEDANCE VS QUIESCENT CURRENT

0311-10

TYPICAL PERFORMANCE CHARACTERISTICS*

($T_{A}=+25^{\circ} \mathrm{C}, \mathrm{V}_{S}= \pm 6 \mathrm{~V}, \mathrm{I}_{\mathrm{Q}}=30 \mu \mathrm{~A}$ unless otherwise specified.) (Continued)

0311-11
OPEN-LOOP FREQUENCY RESPONSE

0311-14
OUTPUT VOLTAGE SWING VS SUPPLY VOLTAGE

0311-17

FREQUENCY RESPONSE VS QUIESCENT CURRENT

0311-12

TRANSIENT RESPONSE

0311-15

EQUIVALENT INPUT NOISE

 VOLTAGE VS FREQUENCY

PHASE MARGIN VS QUIESCENT CURRENT

0311-13

0311-16
EQUIVALENT INPUT NOISE CURRENT VS FREQUENCY

0311-19
${ }^{*}$ ICL8021C guaranteed only for $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}$

ICL8043
 Dual JFET Input Operational Amplifier

GENERAL DESCRIPTION

The ICL8043 contains two FET input op amps, each similar in performance to the ICL8007. The inputs and outputs are fully short circuit protected, and no latch-up problems exist. Offset nulling is accomplished by using a single pot (for each amplifier) connected to the positive supply voltage. The devices have excellent common mode rejection.

FEATURES

- Very Low Input Current - 2pA Typical
- High Slew Rate - 6V/ $\mu \mathrm{s}$
- Internal Frequency Compensation
- Low Power Dissipation - 135mW Typical
- Monolithic Construction

ORDERING INFORMATION

Part Number	Temperature Range	Package
ICL8043MJE	$-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$	CERAMIC 16 Pin DIP
ICL8043CJE	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	CERAMIC 16 Pin DIP

0312-2
Figure 2: Pin Configuration 16 Pin DIP (Top View)

Figure 1: Functional Diagram
(One Side)

[^260]ABSOLUTE MAXIMUM RATINGS

Supply Voltage	V
Internal Power Dissipation (Note 1)	500 mW
Differential Input Voltage	$\pm 30 \mathrm{~V}$
Input Voltage (Note 2)	15 V
Voltage between Offset Null and V ${ }^{+}$	$\pm 0.5 \mathrm{~V}$
Storage Temperature Range	$+150^{\circ} \mathrm{C}$

Operating Temperature Range	
8043M	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
8043 C $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	
Lead Temperature (Soldering, 10sec)	$300^{\circ} \mathrm{C}$
Output Short-Circuit Duration	Indefinit

NOTE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

NOTES: 1. Rating applies for case temperatures to $125^{\circ} \mathrm{C}$; derate linearly at $9 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ for ambient temperatures above $+95^{\circ} \mathrm{C}$.
2. For supply voltages less than $\pm 15 \mathrm{~V}$, the absolute maximum input voltage is equal to the supply voltage.

ELECTRICAL CHARACTERISTICS ($V_{\text {SUPPLY }}= \pm 15 \mathrm{~V}$ unless otherwise specified)

Symbol	Characteristic	Test Conditions	8043M			8043C			Units
			Min	Typ	Max	Min	Typ	Max	

The following specifications apply for $\mathrm{T}_{\mathrm{A}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$:

V_{OS}	Input Offset Voltage	$\mathrm{R}_{\mathrm{S}}<100 \mathrm{k} \Omega$		10	20		20	50	mV
los	Input Offset Current			0.5			0.5		pA
In	Input Current (either input)			2.0	20		3.0	50	pA
$\mathrm{R}_{\text {IN }}$	Input Resistance			10^{6}			10^{6}		$\mathrm{M} \Omega$
$\mathrm{Cl}_{\mathrm{IN}}$	Input Capacitance			2.0			2.0		pF
A_{V}	Large Signal Voltage Gain	$\mathrm{R}_{\mathrm{L}}>2 \mathrm{k} \Omega, \mathrm{V}_{\text {out }}= \pm 10 \mathrm{~V}$	50,000			20,000			V / V
Ro	Output Resistance			75			75		Ω
ISC	Output Short-Circuit Current			25			25		mA
ISUPPLY	Supply Current (Total)			4.5	6		4.5	6.8	mA
PDISS	Power Consumption			135	180		135	204	mW
SR	Slew Rate			6.0			6.0		$\mathrm{V} / \mu \mathrm{s}$
GBW	Unity Gain Bandwidth			1.0			1.0		MHz
tr_{r}	Transient Response (Unity Gain) Risetime Overshoot	$\mathrm{C}_{\mathrm{L}}<100 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$		300 10			300 10		$\begin{aligned} & \text { ns } \\ & \% \end{aligned}$

The following specifications apply for $0^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<+70^{\circ} \mathrm{C}$ (8043C), $-55^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<+125^{\circ} \mathrm{C}$ (8043M):

$\Delta \mathrm{V}_{\text {IN }}$	Input Voltage Range		± 10	± 12		± 10	± 12		V
CMRR	Common Mode Rejection Ratio		70	90		70	90		dB
PSRR	Supply Voltage Rejection Ratio			70	300		70	600	$\mu \mathrm{V} / \mathrm{V}$
A_{V}	Large Signal Voltage Gain		25,000			15,000			V / V
$\Delta \mathrm{V}_{\mathrm{O}}$	Output Voltage Swing	$\mathrm{R}_{\mathrm{L}}>10 \mathrm{k} \Omega$	± 12	± 14		± 12	± 14		V
		$\mathrm{R}_{\mathrm{L}}>2 \mathrm{k} \Omega$	± 10	± 13		± 10	± 13		V
$\mathrm{V}_{\text {OS }}$	Input Offset Voltage			15	30		30	60	mV
IN	Input Current (either input)	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=+125^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{A}}=+70^{\circ} \mathrm{C} \\ & \hline \end{aligned}$		2.0	15				nA
							50	175	pA
$\Delta \mathrm{V}_{\text {OS }} / \Delta \mathrm{T}$	Average Temperature Coefficient of Input Offset Voltage	(Note 3)		75			75		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$

NOTE: 3. For Design only, not 100% tested.
intersil's sole and exclusive warranty obligation with respect to this product shall be that stated in the warranty article of the condition of sale. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INGLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.
NOTE: All typical values have been characterized but are not tested.

TYPICAL PERFORMANCE CHARACTERISTICS

0312-3

0312-6
OPEN LOOP VOLTAGE GAIN AS A

0312-9

OUTPUT VOLTAGE SWING AS A FUNCTION OF FREQUENCY

0312-4
INPUT CURRENT AS A FUNCTION OF TEMPERATURE

0312-7
INPUT VOLTAGE RANGE AS A FUNCTION OF SUPPLY VOLTAGE

0312-10

VOLTAGE FOLLOWER LARGESIGNAL PULSE RESPONSE

0312-5
OUTPUT SWING AS A FUNCTION OF SUPPLY VOLTAGE

0312-8
QUIESCENT SUPPLY CURRENT AS A

0312-11

TYPICAL PERFORMANCE CHARACTERISTICS (Continued)

TOTAL QUIESCENT SUPPLY
CURRENT AS A FUNCTION OF TEMPERATURE

0312-12

INPUT NOISE VOLTAGE AS A FUNCTION OF FREQUENCY

0312-13

WIDEBAND NOISE AS A FUNCTION OF SOURCE RESISTANCE

0312-14

0312-16
Figure 4: Channel Separation Test Circuit

0312-17
Figure 5: Channel Separation Performance

[^261]
APPLICATIONS

Applications for any dual amplifier fall into two categories. There are those which use the two-in-one package concept simply to save circuit-board space and cost, but more interesting are those circuits where the two sides of the dual are used to complement one another in a subsystem application. The circuits which follow have been selected on this basis.

AUTOMATIC OFFSET SUPPRESSION CIRCUIT

The circuit shown in Figure 6 uses one amplifier $\left(\mathrm{A}_{1}\right)$ as a normal gain stage, while the other $\left(A_{2}\right)$ forms part of an offset voltage zeroing loop. There are two modes of operation which occur sequentially. First, an offset null correction mode occurs during which the offset voltage of A_{1} is nulled
out. Following this nulling operation, A_{1} is used as a normal amplifier while the voltage necessary to zero its offset voltage is stored on the integrator comprised of A_{2} and C_{1}.

The advantage of this circuit is that it allows chopper amplifier performance to be achieved at one-tenth the cost. The only limitation is that during the offset nulling mode, A_{1} is disconnected from the input. However, in most data acquisition systems, many inputs are scanned sequentially. It is fairly simple to synchronize the offset nulling operation so that it does not occur when that particular amplifier is being "looked at". For the component values shown in Figure 3, and assuming a total leakage of 50pA at the inverting input of A_{2}, the offset voltage referred to the input of A_{1} will drift away from zero at only $40 \mu \mathrm{~V} / \mathrm{sec}$. Thus, the offset nulling information stored on C_{1} can be "refreshed" relatively infrequently. The measured offset voltage of A_{1} during the amplification mode was $11 \mu \mathrm{~V}$; offset voltage drift with temperature was less than $0.1 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$.

*SW ${ }_{1}, \mathrm{SW}_{2}, \& \mathrm{SW}_{3}$ ARE ALL PART OF A SINGLE IH5043 CMOS ANALOG SWITCH CONNECTED AS SHOWN IN FIGURE 6(b)
Figure 6(a): Automatic Offset Null Circuit

[^262]

Figure 7: Staircase Generator Circuit

0312-21
Figure 8: Analog Counter Circuit

STAIRCASE GENERATOR

The circuit shown in Figure 7 is a high input impedance version of the so-called "diode pump" or staircase generator. Note that charge transfer takes place at the negativegoing edge of the input-signal.

The most common application for staircase generators is in low cost counters. By resetting the capacitor when the output reaches a predetermined level, the circuit may be made to count reliably up to a maximum of about 10. A straightforward circuit using a LM311 for the level detector, and a CMOS analog gate to discharge the capacitor, is shown in Figure 8. An important property of this type of counter is the ease with which the count can be changed; it is only necessary to change the voltage at which the comparator trips. A low cost A-D converter can also be designed using the same principle since the digital count between reset periods is directly proportional to the analog voltage used as a reference for the comparator.

A considerable amount of hysteresis is used in the comparator shown in Figure 8. This ensures that the capacitor is completely discharged during the reset period. In a more sophisticated circuit, a dual comparator "window detector" could be used, the lower trip point set close to ground to
assure complete discharge. The upper trip point could then be adjusted independently to determine the pulse count.

SAMPLE \& HOLD CIRCUIT

Two important properties of the 8043 are used to advantage in this circuit. The low input bias currents give rise to slow output decay rates ("droop") in the hold mode, while the high slew rate ($6 \mathrm{~V} / \mu \mathrm{s}$) improves the tracking speed and the response time of the circuit. See Figure 6.

The ability of the circuit to track fast moving inputs is shown in Figure 10A. The upper waveform is the input ($10 \mathrm{~V} / \mathrm{div}$), the lower waveform the output ($5 \mathrm{~V} / \mathrm{div}$). The logic input is high.

Actual sample and hold waveforms are shown in Figure 10B. The center waveform is the analog input, a ramp moving at about $67 \mathrm{~V} / \mathrm{ms}$, the lower waveform is the logic input to the sample \& hold; a logic " 1 " initiates the sample mode. The upper waveform is the output, displaced by about 1 scope division (2V) from the input to avoid superimposing traces. The hold mode, during which the output remains constant, is clearly visible. At the beginning of a sample period, the output takes about $8 \mu \mathrm{~s}$ to catch up with the input, after which it tracks until the next hold period.

[^263]

Figure 9: Sample And Hold Circuit

[^264]
INSTRUMENTATION AMPLIFIER

A dual JFET-input operational amplifier is an attractive component around which to build an instrumentation amplifier because of the high input resistance. The circuit shown in Figure 11 uses the popular triple op-amp approach. The output amplifier is a High Speed 741 (741 HS, slew rate guaranteed $20.7 \mathrm{~V} / \mu \mathrm{s}$) so that the high slew rate of the 8043 is utilized to the full extent. Input resistance of the circuit (either input, regardless of gain configuration) is in excess of 10^{12} ohms.

For the component values shown, the overall amplifier gain is 200 (front end gain $=\frac{2 R_{1}+R_{2}}{R_{2}}$, back end gain, $=R_{6} / R_{4}$).
Common mode rejection is largely determined by the matching between R_{4} and R_{5}, and R_{6} and R_{7}. In applications where offset nulling is required, a single potentiometer can be connected as shown in Figure 12.
Another popular circuit is given in Figure 13. In this case the gain is $1+R_{1} / R_{2}$, and the CMRR determined by the match between R_{1} and R_{4}, R_{2} and R_{3}.
For more information on FET input operational amplifiers, see Intersil Application Bulletin A005 "The 8007: A High Performance FET-input Operational Amplifier."

Figure 11: Instrumentation Amplifier

0312-26
Figure 12: Offset Nulling Both Amplifiers With One Potentiometer

0312-27
Figure 13: Modified Instrumentation Amplifier

[^265]NOTE: All typical values have been characterized but are not tested.

GENERAL DESCRIPTION

The ICL8063 is a unique monolithic power transistor driver and amplifier that allows construction of minimum chip power amplifier systems. It includes built in safe operating area circuitry, short circuit protection and voltage regulators, and is primarily intended for driving complementary output stages.

Designed to operate with all varieties of operational amplifiers and other functions, two external power transistors, and 8 to 10 passive components, the ICL8063 is ideal for use in such applications as linear and rotary actuator drivers, stepper motor drivers, servo motor drivers, power supplies, power DACs and electronically controlled orifices.

The ICL8063 takes the output levels (typically $\pm 11 \mathrm{~V}$) from an op amp and boosts them to $\pm 30 \mathrm{~V}$ to drive power transistors, (e.g. 2N3055 (NPN) and 2N3789 (PNP)). The outputs from the ICL8063 supply up to 100 mA to the base leads of the external power transistors.
The amplifier-driver contains internal positive and negative regulators, to power an op amp or other device; thus, only $\pm 30 \mathrm{~V}$ supplies are needed for a complete power amp.

FEATURES

- Converts $\pm 12 \mathrm{~V}$ Outputs From Op Amps and Other Linear Devices to $\pm 30 \mathrm{~V}$ Levels
- When Used in Conjunction With General-Purpose Op Amps and External Complementary Power Transistors, System Can Deliver>50 Watts to External Loads
- Bullt-in Safe Area Protection and Short-Circult Protection
- Produces 25mA Quiescent Current in Power Output Stage
- Bullt-in $\pm 13 V$ Regulators to Power Op Amps or Other External Functions
- $500 \mathrm{k} \Omega$ Input Impedance With $\mathrm{R}_{\mathrm{BIAS}}=1 \mathrm{M} \Omega$

ORDERING INFORMATION

Part Number	Temperature Range	Package
ICL8063MJE	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	CERDIP
ICL8063CJE	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	CERDIP
ICL8063CPE	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	PLASTIC DIP

0314-1
Figure 1: Functional Diagram

0314-2
Figure 2: Pin Configuration

[^266]
ABSOLUTE MAXIMUM RATINGS

Supply Voltage . $\pm 35 \mathrm{~V}$
Power Dissipation . 500mW
Input Voltage (Note 1) . $\pm 30 \mathrm{~V}$
Regulator Output Currents 10mA
Operating Temperature Range

ICL8063MJE	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
ICL8063CPE	$\ldots 0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
ICL8063CJE	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temper	$65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
ad Temperatu	$300^{\circ} \mathrm{C}$

NOTE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS $\quad\left(T_{A}=25^{\circ} \mathrm{C} ; \mathrm{V}_{\text {SUPPLY }}= \pm 30 \mathrm{~V}\right.$)

Symbol	Characteristic	Test Conditions	Min/Max Limits						Units
			ICL8063M			ICL8063C			
			$-55^{\circ} \mathrm{C}$	$+25^{\circ} \mathrm{C}$	$+125^{\circ} \mathrm{C}$	$0^{\circ} \mathrm{C}$	$+25^{\circ} \mathrm{C}$	$+70^{\circ} \mathrm{C}$	
Vos	Max. Offset Voltage	See Figure 3	150	50	50		75		mV
${ }^{\mathrm{IOH}}$	Min. Positive Drive Current	See Figure 4	50	50	50		40		mA
loo	Max. Positive Output Quiescent Current	See Figure 5	500	250	250		300		$\mu \mathrm{A}$
lol	Min. Negative Drive Current	See Figure 4	25	25	25		20		mA
${ }_{\text {l }}^{\text {QL }}$	Max. Negative Output Quiescent Current	See Figure 6	500	250	250		300		$\mu \mathrm{A}$
VREG	Regulator Output Voltages Range		$\begin{aligned} & \pm 13.7 \\ & \pm 1.2 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \pm 13.7 \\ & \pm 1.0 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \pm 13.7 \\ & \pm 1.5 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \pm 13.7 \\ & \pm 1.0 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \pm 13.7 \\ & \pm 1.0 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \pm 13.7 \\ & \pm 1.0 \mathrm{~V} \end{aligned}$	V
IREG	Regulator Output Current	(See Note 2)	10	10			10		mA
Z_{IN}	A.C. Input Impedance	See Figure 8		$\begin{gathered} 400 \\ \text { (Typ) } \end{gathered}$			$\begin{gathered} 400 \\ \text { (Typ) } \\ \hline \end{gathered}$		k Ω
V SUPPLY	Power Supply Range				± 5 to	$\pm 35 \mathrm{~V}$			V
$1 Q$	Power Supply Quiescent Currents		10	6	6		7		mA
A_{V}	Range of Voltage Gain	See Figure 9 $\mathrm{V}_{\mathrm{IN}}=8 \mathrm{Vp}-\mathrm{p}$	6 ± 2	6 ± 2	6 ± 2		6 ± 2		V/V
$\mathrm{V}_{\text {OUT(MIN }}$	Minimum Output Swing	See Figure 9; Increase $\mathrm{V}_{\text {IN }}$ until $\mathrm{V}_{\text {OUT }}$ flattens	± 27	± 27	± 27		± 27		V
IBIAS	Input Bias Current	See Figure 10	100	100	100		100		$\mu \mathrm{A}$

NOTES: 1. For supply voltages less than $\pm 30 \mathrm{~V}$ the absolute maximum input voltage is equal to the supply voltage.
2. Care should be taken to ensure that maximum power dissipation is not exceeded.

TEST CIRCUITS

0314-4
FOR IOUT: $V_{\text {IN }}$ IS POSITIVE: INCREASE $V_{\text {IN }}$ UNTIL IOUT LIMITS
FOR IOUT: VIN IS NEGATIVE: INCREASE VIN UNTIL IOUT LIMITS
Figure 3: Offset Voltage Measurement
Figure 4: Output Current Measurement

Figure 5: Positive Output Quiescent Current

Figure 6: Negative Output Quiescent Current

0314-7
Figure 7: On Chip Regulator Measurement

0314-8
Figure 8: A.C. Input Impedance Measurement

INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTIGLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

NOTE: All typical values have been characterized but are not tested.

TEST CIRCUITS (Continued)

0314-10
Figure 10: Input Bias Current Measurement

APPLICATIONS INFORMATION

One problem faced almost every day by circuit designers is how to interface the low voltage, low current outputs of linear and digital devices to that of power transistors and darlingtons.

For example, a low level op amp has a typical output voltage range of ± 6 to $\pm 12 \mathrm{~V}$, and output current usually on the order of about 5 milliamperes. A power transistor with a ± 35 volt supply, a collector current of 5 amperes, and a beta, or gain of 100 needs at least 50 milliamperes of drive.

In the past, connecting two transistors with widely dissimilar requirements meant that a rather ornate discrete circuit had to be built to convert the weak output signals from the first into levels large enough to drive the second. However, in addition to converting voltage and current, it was also necessary to include a number of protection circuits to guard against damage from shorts, for example, and all this design work was both tedious and expensive.

The ICL8063 provides a solution to these problems. It's a monolithic power transistor driver and power transistor amplifier circuit on the same chip, has all the necessary safe operating area circuitry and short circuit protection, and has on-chip $\pm 13 \mathrm{~V}$ voltage regulators to eliminate the need for extra external power supplies.

Using the ICL8063 to make a complete Power Amplifier

As Figure 11 shows, using the ICL8063 allows the circuit designer to build a power amplifier block capable of delivering ± 2 amperes at ± 25 volts (50 watts) to any load, with only three additional discrete devices and 8 passive components. Moreover, the circuit draws only about ± 30 milliamperes of quiescent current from either of the $\pm 30 \mathrm{~V}$ power supplies. A similar design using discrete components would require anywhere from 50 to 100 components.

Slew rate is about the same as that of a 741 op amp, approximately $1 \mathrm{~V} / \mu \mathrm{s}$. Input current, voltage offset, CMRR and PSRR are also the same. Use of 1,000 picofarad compensation capacitors (three in this configuration) allows good stability down to unity gain non-inverting (the worst case). This circuit will drive a $1000 \mathrm{pF} \mathrm{C}_{\mathrm{L}}$ to Gnd , or in other words, the circuit can drive 30 feet of RG-58 coaxial cable for line driver applications with no problems.

Figure 11: Standard Circuit Diagram

[^267]NOTE: All typical values have been characterized but are not tested.

As Figure 12 indicates, setting up a current limiting (safe area) protection circuit is straightforward. The 0.4 ohm, 5 watt resistors set the maximum current one can get out of the output. The equation this SOA circuit follows is: for VOUT positive,

$$
\begin{aligned}
V_{b e}=I_{L} R_{3} & -\frac{R_{2}}{R_{1}+R_{2}}\left(V_{\text {OUT }}+I_{L} R_{3}-0.7 V\right) \\
& \approx I_{L} R_{3}-\frac{R_{2}}{R_{1}+R_{2}}\left(V_{\text {OUT }}\right)
\end{aligned}
$$

for $\mathrm{V}_{\text {OUT }}$ negative,

$$
\begin{aligned}
V_{b e}= & I_{L} R_{3}-\frac{R_{2}}{R_{1}+R_{2}+R_{4}}\left(V_{\text {OUT }}+I_{2} R_{3}+0.7\right) \\
& \approx I_{L} R_{3}-\frac{R_{2}}{R_{1}+R_{2}+R_{4}}\left(V_{\text {OUT }}\right)
\end{aligned}
$$

Solving these equations we get the following:

V OUT	\mathbf{I}	$\mathbf{I}_{\text {L }}$ @ $\mathbf{2 5}{ }^{\circ} \mathbf{C}$	$\mathbf{I}_{\text {L }}$ @ $125^{\circ} \mathbf{C}$
24 V	1 mA	3 amps	2.4 amps
20 V	$830 \mu \mathrm{~A}$	2.8 amps	
16 V	$670 \mu \mathrm{~A}$	2.6 amps	
12 V	$500 \mu \mathrm{~A}$	2.4 amps	1.8 amps
8 V	$333 \mu \mathrm{~A}$	2.1 amps	
4 V	$167 \mu \mathrm{~A}$	1.9 amps	
0 V	$0 \mu \mathrm{~A}$	1.7 amps	1.1 amps

As this table indicates, maximum power delivered to a load is obtained when $\mathrm{V}_{\text {OUT }} \geq 24 \mathrm{~V}$.

Often design requirements necessitate an unsymmetrical output current capability. In that case, instead of the 0.4 ohm resistors protecting the npn and pnp output stages, as shown in Figure 11, simply substitute any other value. For example, if up to 3 amps are required when $\mathrm{V}_{\text {OUT }} \geq+24 \mathrm{~V}$ and only 1 amp out when $\mathrm{V}_{\text {OUT }} \geq-24 \mathrm{~V}$, use a 0.4 ohm resistor between pin 8 and pin 9 on the ICL8063 and a 1 ohm, 2 watt resistor between pin 7 and pin 8 . Maximum output current versus $\mathrm{V}_{\text {OUT }}$ for varying values of protection resistors are as follows:

$\mathbf{V}_{\text {OUT }}$	$\mathbf{0 . 4 \Omega}$ @ $25^{\circ} \mathbf{C}$	$\mathbf{0 . 6 8 \Omega}$ @ $\mathbf{2 5}{ }^{\circ} \mathrm{C}$	$\mathbf{1} \Omega$ @ $\mathbf{2 5}{ }^{\circ} \mathbf{C}$
24 V	3 amps	1.7 amps	1.2 amps
12 V	2.4 amps	1.4 amps	0.9 amps
0 V	1.7 amps	1.0 amps	0.7 amps

The biasing resistors located between pin 13 and pin 14 and between pin 2 and pin 4 are typically $1 \mathrm{~m} \Omega$ for $V_{\text {SUPPLY }}= \pm 30 \mathrm{~V}$, which guarantees adequate performance in such applications as DC motor drivers, power DACs, programmable power supplies and line drivers (with ± 30 volt supplies). The table that follows shows the proper value for $\mathrm{R}_{\text {BIAS }}$ for optimum output current capability with supply voltages between $\pm 5 \mathrm{~V}$ and $\pm 30 \mathrm{~V}$.

$\pm \mathbf{V}_{\mathbf{C C}}$	$\mathbf{R}_{\text {BIAS }}$
30 V	$1 \mathrm{M} \Omega$
25 V	$680 \mathrm{k} \Omega$
20 V	$500 \mathrm{k} \Omega$
15 V	$300 \mathrm{k} \Omega$
10 V	$150 \mathrm{k} \Omega$
5 V	$62 \mathrm{k} \Omega$

If 30 V and $1 \mathrm{M} \Omega$ are used, performance curves appear as shown in Figure 13.

Figure 13: Typical Performance Curve of Max. Output Current Vs. VSupp For Fixed RBIAS $=\mathbf{1 M} \Omega$

[^268]NOTE: All typical values have been characterized but are not tested.

Figure 14: Bode Plot of Open Loop Gain of Above Schematic

Figure 15: Typical Performance of Rout vs. Frequency of Power Amplifier System

When buying external power transistors, careful attention should be paid to beta values. For 2N3055 and 2N3789 transistors used in this circuit, beta should be no more than 150 max at $\mathrm{I}_{\mathrm{C}}=20 \mathrm{~mA}$ and $\mathrm{V}_{\mathrm{CE}}=30 \mathrm{~V}$. This beta value sets the quiescent current at less than 30 mA when not delivering power to a load.
The design in Figure 11 will tolerate a short circuit to ground indefinitely, provided adequate heat sinking is used.

However if $\mathrm{V}_{\text {OUT }}$ is shunted to $\pm 30 \mathrm{~V}$ the output transistors (2N3055 and 2N3789) will be destroyed, but since the safe operating area for these devices is 4 amps at 30 volts, the problem does not occur for $V_{\text {SUPP }}= \pm 15 \mathrm{~V}$.

A typical bode plot of the power amplifier system openloop frequency-response is shown in Figure 14. Referring to Figure 8, the schematic for this bode plot is shown in Figure 14.

Designing A Simple Function Generator

Using a variation of the fundamental power amplifier building block described in the previous section, the

ICL8063 can be used in the design of a simple, low cost function generator (Figure 16). It will supply sine waves, triangular waves and square waves from 2 hertz to 20 kilohertz. This complete test instrument can be plugged into a standard 110VAC line for power. Vout will be up to $\pm 25 \mathrm{~V}$ (50 V p-p) across loads as small as 10 ohms (about 2.5 amps maximum output current).

Capacitor working voltages should be greater than 50 V DC and all resistors should be $1 / 2 \mathrm{~W}$, unless otherwise indicated. The interconnecting leads from the 741 pins 2 and 3 to their respective resistors should be kept short, less than 2 inches if possible; longer leads may result in oscillation.

Full output swing is possible to about 5 kHz ; after that the output begins to taper off due to the slew rate of the 741, until at 20 kHz the output swing will be about $20 \mathrm{~V}_{\mathrm{pp}}(\pm 10 \mathrm{~V})$. This problem can be remedied by simply using an op amp with a higher slew rate, such as the LF356.

[^269]

Figure 16: Power Function Generator

Building a Constant Current Motor Drive Circuit

The constant current motor drive configuration shown in Figure 17 is an extremely simple circuit to construct using the ICL8063. This minimum device circuit can be used to drive DC motors where there is some likelihood of stalling or lock up; if the motor locks, the current drive remains constant and the system does not destroy itself. Using this approach two 6 V batteries are sufficient for good performance. A 10 volt input will produce one amp of output current to drive the motor, and if the motor is stalled, lout remains at 1 amp .

For example, suppose it is necessary to drive a 24 V DC motor with 1 amp of drive current. First make VSUPPLY at least 6 volts more than the motor being driven (in this case 30 volts). Next select RBIAS according to $V_{\text {SUPPLY }}$ from the data sheet, which indicates $R_{B I A S}=1 \mathrm{M} \Omega$. Then choose R_{1}, R_{2}, and R_{a} for optimum sensitivity. That means making $R_{a}=1 \Omega$ to minimize the voltage drop across R_{a} (the drop will be $1 \mathrm{amp} \times 1$ ohm or 1 volt). If $1 \mathrm{amp} /$ volt sensitivity is desirable let $R_{2}=R_{1}=10 k \Omega$ to minimize feedback current error. Then a $\pm 1 \mathrm{~V}$ input voltage will produce a ± 1 amp current through the motor.

Capacitors should be at least 50 volts working voltage and all resistors $1 / 2 \mathrm{~W}$, except for those valued at 0.4 ohms. Power across $R_{a}=I \times V=1 \mathrm{amp} \times 1$ volt $=1$ watt, so at least a 2 watt value should be used. Use large heat sinks for the 2N3055 and 2N3791 power transistors. A Delta NC-641 or the equivalent is appropriate. Use a thermal compound when mounting the transistor to the heat sink. (See Intersil ICH8510 data sheet for further information).

Figure 17: Constant Current Motor Drive

Building A Low Cost 50 Watt per Channel Audio Amplifier

For about $\$ 20$ per channel, it is possible to build a high fidelity amplifier using the ICL8063 to drive 8 ohm speakers. A channel is defined here as all amplification between turntable or tape output and power output. (Figure 18)

The input 741 stage is a preamplifier with R.I.A.A. equalization for records. Following the first 741 stage is a $10 \mathrm{k} \Omega$ control pot, whose wiper arm feeds into the power amplifier stage consisting of a second 741, the ICL8063 and the power transistors. To achieve good listening results, selection of proper resistance values in the power amplifier stage is important. Best listening is to be found at a gain value of 6 $[(5 \mathrm{k} \Omega+1 \mathrm{k} \Omega / 1 \mathrm{k} \Omega=6)] .3$ is a practical minimum, since the first stage 741 preamp puts out only ± 10 volt maximum signals, and if maximum power is necessary this value must be multiplied by 3 to get ± 30 volt levels at the output of the power amp stage.

Each channel delivers about 56 volts p-p across an 8 ohm speaker and this converts to 50 watts RMS power. This is derived as follows:

$$
\begin{aligned}
\text { Power } & =\frac{\mathrm{V}_{\mathrm{rms}}{ }^{2}}{80 \mathrm{hms}}, \mathrm{~V}_{\mathrm{rms}}=\frac{56 \mathrm{~V}_{\mathrm{P}-\mathrm{P}}}{2.82}=20 \mathrm{~V},(20 \mathrm{~V})^{2}=400 \mathrm{~V}^{2} \\
\therefore \text { Power } & =\frac{400 \mathrm{~V}^{2}}{80 \mathrm{hms}}=50 \text { watts RMS Power. }
\end{aligned}
$$

Distortion will be $<0.1 \%$ up to about 100 Hz , and then it increases as the frequency increases, reaching about 1% at 20 kHz .
The ganged switch at the input is for either disc playing or FM, either from an FM tuner or a tape amplifier. Assuming DC coupling on the outputs, there is no need for a DC reference to ground (resistor) for FM position. To clear the signal in the FM position, place a $51 \mathrm{k} \Omega$ resistor to ground as shown in Figure 18 (from FM input position to ground).

0314-21
Figure 18: Hi-Fi Amplifier

[^270]

Figure 19: Typical Performance Curve of $\frac{\mathrm{EOUT}^{V_{I N}}}{\mathrm{~V}_{\text {I }}}$ ve. Frequency For Typical Circuit Shown

0314-25
Figure 20: Typical Performance Curve of Input Impedance Versus Frequency for Typical Circult Shown

Note: Intersil offers a hybrid power amplifier similar to that shown in Figure 11. See ICH8510/8520/8530 data sheet for details.

[^271]
LM4250
 Programmable Operational Amplifier

GENERAL DESCRIPTION

The 4250 is an extremely versatile programmable monolithic operational amplifier. A single external master bias current setting resistor programs the input bias current, input offset current, quiescent power consumption, slew rate, input noise, and the gain-bandwidth product.
The 4250 C is guaranteed over a $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ temperature range.

RESISTOR BIASING

Set Current Setting Resistor to \mathbf{V} -

$\mathbf{I}_{\text {SET }}$					
$\mathbf{V}_{\mathbf{S}}$	$\mathbf{0 . 1} \mu \mathbf{A}$	$\mathbf{0 . 5 \mu \mathbf { A }}$	$\mathbf{1 . 0 \mu \mathbf { A }}$	$\mathbf{5 \mu \mathbf { A }}$	$10 \mu \mathbf{A}$
$\pm 1.5 \mathrm{~V}$	$25.6 \mathrm{M} \Omega$	$5.04 \mathrm{M} \Omega$	$2.5 \mathrm{M} \Omega$	$492 \mathrm{k} \Omega$	$244 \mathrm{k} \Omega$
$\pm 3.0 \mathrm{~V}$	$55.6 \mathrm{M} \Omega$	$11.0 \mathrm{M} \Omega$	$5.5 \mathrm{M} \Omega$	$1.09 \mathrm{M} \Omega$	$544 \mathrm{k} \Omega$
$\pm 6.0 \mathrm{~V}$	$116 \mathrm{M} \Omega$	$23.0 \mathrm{M} \Omega$	$11.5 \mathrm{M} \Omega$	$2.29 \mathrm{M} \Omega$	$1.14 \mathrm{M} \Omega$
$\pm 9.0 \mathrm{~V}$	$176 \mathrm{M} \Omega$	$35.0 \mathrm{M} \Omega$	$17.5 \mathrm{M} \Omega$	$3.49 \mathrm{M} \Omega$	$1.74 \mathrm{M} \Omega$
$\pm 12.0 \mathrm{~V}$	$236 \mathrm{M} \Omega$	$47.0 \mathrm{M} \Omega$	$23.5 \mathrm{M} \Omega$	$4.69 \mathrm{M} \Omega$	$2.34 \mathrm{M} \Omega$
$\pm 1.50 \mathrm{~V}$	$296 \mathrm{M} \Omega$	$59.0 \mathrm{M} \Omega$	$29.5 \mathrm{M} \Omega$	$5.89 \mathrm{M} \Omega$	$2.94 \mathrm{M} \Omega$

FEATURES

- $\pm 1 \mathrm{~V}$ to $\pm 18 \mathrm{~V}$ Power Supply Operation
- 3 nA Input Offset Current
- Standby Power Consumption as Low as 500 nW
- No Frequency Compensation Required
- Programmable Electrical Characteristics
- Offset Voltage Nulling Capability
- Can be Powered by Two Flashlight Batteries
- Short Circult Protection

ORDERING INFORMATION

Part Number	Temperature Range	Package
LM4250 CN	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	8 Lead MINIDIP
LM4250 CJ	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	8 Lead CERDIP
LM4250 CH	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	TO-99 CAN
LM4250 J	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	8 Lead CERDIP
LM4250 H	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	TO-99 CAN

Figure 1: Functional Diagram

[^272]ABSOLUTE MAXIMUM RATINGS
Supply Voltage . $\pm 18 \mathrm{~V}$
Power Dissipation (Note 1) . 500 mW
Differential Input Voltage . $\pm 30 \mathrm{~V}$
Input Voltage (Note 2) . $\pm 15 \mathrm{~V}$
ISET Current
$150 \mu \mathrm{~A}$
Operating Temperature Range
LM4250C . $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

Output Short Circuit Duration Indefinite
Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec.) $+300^{\circ} \mathrm{C}$
NOTE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

0108-2

0108-1
Figure 2: Pin Configurations
ELECTRICAL CHARACTERISTICS $10^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}$ unless otherwise specified)

Parameters	Conditions	$\mathbf{V}_{\mathbf{S}}= \pm \mathbf{1 . 5 V}$			
		$\mathrm{I}_{\text {SET }}=1 \mu \mathrm{~A}$		$\mathrm{I}_{\text {SET }}=10 \mu \mathrm{~A}$	
		Min	Max	Min	Max
V OS	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{S}} \leq 100 \mathrm{k} \Omega$		5 mV		6 mV
los	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		6 nA		20 nA
$I_{\text {bias }}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		10 nA		75 nA
Large Signal Voltage Gain	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega \\ & \mathrm{~V}_{\mathrm{O}}= \pm 0.6 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega \end{aligned}$	25k		25k	
Supply Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		$8 \mu \mathrm{~A}$		$90 \mu \mathrm{~A}$
Power Consumption	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		$24 \mu \mathrm{~W}$		$270 \mu \mathrm{~W}$
V_{OS}	$\mathrm{R}_{S} \leq 10 \mathrm{k} \Omega$		6.5 mV		7.5 mV
los			8 nA		25 nA
Ibias			10 nA		80 nA
Input Voltage Range		$\pm 0.6 \mathrm{~V}$		$\pm 0.6 \mathrm{~V}$	
Large Signal Voltage Gain	$\begin{aligned} & \mathrm{V}_{\mathrm{O}}= \pm 0.6 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega \\ & \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega \end{aligned}$	25k		25k	
Output Voltage Swing	$\begin{aligned} & R_{\mathrm{L}}=100 \mathrm{k} \Omega \\ & \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega \end{aligned}$	$\pm 0.6 \mathrm{~V}$		$\pm 0.6 \mathrm{~V}$	
Common Mode Rejection Ratio	$\mathrm{R}_{\mathrm{S}} \leq 10 \mathrm{k} \Omega$	70 dB		70 dB	
Supply Voltage Rejection Ratio	$\mathrm{R}_{\mathrm{S}} \leq 10 \mathrm{k} \Omega$	74 dB		74 dB	
Supply Current			$8 \mu \mathrm{~A}$		$90 \mu \mathrm{~A}$
Power Consumption			$24 \mu \mathrm{~W}$		$270 \mu \mathrm{~W}$

[^273]ELECTRICAL CHARACTERISTICS
$\left(0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}\right.$ unless otherwise specified) (Continued)

Parameters	Conditions	$\mathrm{V}_{\mathbf{S}}= \pm 15 \mathrm{~V}$			
		$\mathrm{ISET}^{\text {S }}$ = $1 \mu \mathrm{~A}$		$\mathrm{I}_{\text {SET }}=10 \mu \mathrm{~A}$	
		Min	Max	Min	Max
Vos	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{S}} \leq 100 \mathrm{k} \Omega$		5 mV		6 mV
los	$T_{A}=25^{\circ} \mathrm{C}$		6 nA		20 nA
Ibias	$T_{A}=25^{\circ} \mathrm{C}$		10 nA		75 nA
Large Signal Voltage Gain	$\begin{aligned} & T_{A}=25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega \\ & V_{O}= \pm 0.6 \mathrm{~V}, R_{L}=10 \mathrm{k} \Omega \end{aligned}$	60k		60k	
Supply Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		$11 \mu \mathrm{~A}$		$100 \mu \mathrm{~A}$
Power Consumption	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		$330 \mu \mathrm{~W}$		3 mW
Vos	$\mathrm{R}_{\mathrm{S}} \leq 10 \mathrm{k} \Omega$		6.5 mV		7.5 mV
los			8 nA		25 nA
Ibias			10 nA		80 nA
Input Voltage Range		$\pm 13.5 \mathrm{~V}$		$\pm 13.5 \mathrm{~V}$	
Large Signal Voltage Gain	$\begin{aligned} & V_{O}= \pm 10 \mathrm{~V}, R_{\mathrm{L}}=100 \mathrm{k} \Omega \\ & R_{\mathrm{L}}=10 \mathrm{k} \Omega \end{aligned}$	50k		50k	
Output Voltage Swing	$\begin{aligned} & R_{L}=100 \mathrm{k} \Omega \\ & R_{\mathrm{L}}=10 \mathrm{k} \Omega \end{aligned}$	$\pm 12 \mathrm{~V}$		$\pm 12 \mathrm{~V}$	
Common Mode Rejection Ratio	$\mathrm{R}_{\mathrm{S}} \leq 10 \mathrm{k} \Omega$	70 dB		70 dB	
Supply Voltage Rejection Ratio	$\mathrm{R}_{\mathrm{S}} \leq 10 \mathrm{k} \Omega$	74 dB		74 dB	
Supply Current			$11 \mu \mathrm{~A}$		$100 \mu \mathrm{~A}$
Power Consumption			$300 \mu \mathrm{~W}$		3 mW

[^274]ELECTRICAL CHARACTERISTICS $\left(-55^{\circ} \mathrm{C} \leq T_{A} \leq+125^{\circ} \mathrm{C}\right.$ unless otherwise specified)

Parameters	Conditions	$\mathbf{V}_{\mathbf{S}}= \pm \mathbf{1 . 5 V}$			
		$\mathrm{I}_{\text {SET }}=1 \mu \mathrm{~A}$		$\mathrm{I}_{\text {SET }}=10 \mu \mathrm{~A}$	
		Min	Max	Min	Max
Vos	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{S}} \leq 100 \mathrm{k} \Omega$		6 mV		6 mV
los	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		6 nA		20 nA
Ibias	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		10 nA		75 nA
Large Signal Voltage Gain	$\begin{aligned} & T_{A}=25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega \\ & V_{\mathrm{O}}= \pm 0.6 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega \end{aligned}$	25k		25k	
Supply Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		$8 \mu \mathrm{~A}$		$90 \mu \mathrm{~A}$
Power Consumption	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		$24 \mu \mathrm{~W}$		270 mW
Vos	$\mathrm{R}_{\mathrm{S}} \leq 10 \mathrm{k} \Omega$		7.5 mV		7.5 mV
los			8 nA		25 nA
Ibias			10 nA		80 nA
Input Voltage Range		$\pm 0.6 \mathrm{~V}$		$\pm 0.6 \mathrm{~V}$	
Large Signal Voltage Gain	$\begin{aligned} & \mathrm{V}_{\mathrm{O}}= \pm 0.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega \\ & \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega \end{aligned}$	25k		25k	
Output Voltage Swing	$\begin{aligned} & R_{\mathrm{L}}=100 \mathrm{k} \Omega \\ & \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega \end{aligned}$	$\pm 0.6 \mathrm{~V}$		$\pm 0.6 \mathrm{~V}$	
Common Mode Rejection Ratio	$\mathrm{R}_{\mathrm{S}} \leq 10 \mathrm{k} \Omega$	70 dB		70 dB	
Supply Voltage Rejection Ratio	$\mathrm{R}_{\mathrm{S}} \leq 10 \mathrm{k} \Omega$	65 dB		65 dB	
Supply Current			$8 \mu \mathrm{~A}$		$90 \mu \mathrm{~A}$
Power Consumption			$24 \mu \mathrm{~W}$		$270 \mu \mathrm{~W}$

ELECTRICAL CHARACTERISTICS $\quad\left(0^{\circ} \mathrm{C} \leq T_{A} \leq+125^{\circ} \mathrm{C}\right.$ unless otherwise specified) (Continued)

Parameters	Condilions	$\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$			
		$\mathrm{I}_{\text {SET }}=1 \mu \mathrm{~A}$		$I_{\text {SET }}=10 \mu \mathrm{~A}$	
		Min	Max	Min	Max
Vos	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{S}} \leq 100 \mathrm{k} \Omega$		6 mV		6 mV
los	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		6 nA		20 nA
Ibias	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		10 nA		75 nA
Large Signal Voltage Gain	$\begin{aligned} & T_{A}=25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega \\ & \mathrm{~V}_{\mathrm{O}}= \pm 0.6 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega \end{aligned}$	60k		60k	
Supply Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		$11 \mu \mathrm{~A}$		$100 \mu \mathrm{~A}$
Power Consumption	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		$330 \mu \mathrm{~W}$		3 mW
V O	$\mathrm{R}_{\mathrm{S}} \leq 10 \mathrm{k} \Omega$		7.5 mV		7.5 mV
los			8 nA		25 nA
Ibias			10 nA		80 nA
Input Voltage Range		$\pm 13.5 \mathrm{~V}$		$\pm 13.5 \mathrm{~V}$	
Large Signal Voltage Gain	$\begin{aligned} & V_{0}= \pm 10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega \\ & \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega \end{aligned}$	50k		50k	
Output Voltage Swing	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega \\ & \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega \\ & \hline \end{aligned}$	$\pm 12 \mathrm{~V}$		$\pm 12 \mathrm{~V}$	
Common Mode Rejection Ratio	$\mathrm{R}_{\mathrm{S}} \leq 10 \mathrm{k} \Omega$	70 dB		70 dB	
Supply Voltage Rejection Ratio	$\mathrm{R}_{\mathrm{S}} \leq 10 \mathrm{k} \Omega$	74 dB		74 dB	
Supply Current			$11 \mu \mathrm{~A}$		$100 \mu \mathrm{~A}$
Power Consumption			$300 \mu \mathrm{~W}$		3 mW

Section 8 - Analog Switches

D123. 8-1
DG191 8-22
IH5024 8-65
DG200 8-28
IH5040 8-72
D125 8-1
D129 8-5
DG123 8-7
DG125 8-7
DG126 8-11
DG129 8-11
DG133 8-11DG1348-11DG1408-11DG1418-11DG1518-11
DG152 8-11
DG153 8-11DG1548-11
DG139 8-17
DG142
DG142 8-17 8-17
DG143 8-17
DG144 8-17
DG145 8-17
DG146
DG146 8-17 8-17
DG161
DG161 8-17 8-17
DG162
DG162 8-17 8-17
DG163 8-17 8-17
DG180 8-22
DG181 8-22
DG182 8-22
DG183 8-22
DG184 8-22
DG185 8-22
DG186 8-22
DG187 8-22
DG188 8-22
DG189 8-22
DG190 8-22
IH5041 8-72
DG201A 8-36 IH5042 8-72
DG202 8-36 IH5043 8-72
DG211 8-41 IH5044 8-72
DG212 8-41 IH5045 8-72
DG300A 8-44 IH5046 8-72
DG301A 8-44 IH5047 8-72
DG302A 8-44 IH5048 8-81
DG303A 8-44 IH5049 8-81
DGM181 8-49 IH5050 8-81
DGM182 8-49 IH5051 8-81
DGM184 8-49 IH5052 8-86
DGM185 8-49 IH5053 8-86
DGM190 8-49
IH5140 8-92
DGM191 8-49
IH5141 8-92
lH311 8-54
IH5142 8-92
IH312 8-54
IH5143 8-92
IH5144 8-92
IH5145 8-92
IH5148 8-103
IH5149 8-103
IH5150 8-103
IH5151 8-103
IH5341 8-111
IH5352 8-117
MM450 8-122
MM451 8-122
MM452 8-122
MM455 8-122
MM550 8-122
MM551 8-122
MM552 8-122
MM555 8-122

D123/D125
 SPST 6-Channel JFET Switch Driver

GENERAL DESCRIPTION

The D123 and D125 monolithic bipolar drivers convert low-level positive logic signals ($0 \&+5 \mathrm{~V}$) to the high level positive and negative voltages necessary to drive FET switches. One lead can be used to provide an enabling capability.
ORDERING INFORMATION
D123

Package
K-14-pin CERDIP
L-14-pin Flat Package
P-14-pin Hermetic DIP
(Special Order Only)

Temperature Range
A-Military ($-55^{\circ} \mathrm{C}$ to $\left.+125^{\circ} \mathrm{C}\right)$
B—Industrial $\left(-20^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$
Device Chip Type

0270-15

0270-1

FEATURES

- Provides DC Level Shifting Between Low-Level Logic and MOSFET or JFET Switches
- External Collector Pull-Ups Required

0270-2
Figure 1: Functional Diagram (Outline Dwgs DD, FD-2, JD)

[^275]NOTE: Dissipation rating assumes device is mounted with all leads welded or soldered to printed circuit board in ambient temperature of $70^{\circ} \mathrm{C}$. Derate $10 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ for higher ambient temperature.
NOTE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
ELECTRICAL CHARACTERISTICS
Test conditions unless otherwise specified are as follows: $\mathrm{V}_{\mathrm{EE}}=-20 \mathrm{~V}, \mathrm{~V}_{\mathrm{L}}=4.5 \mathrm{~V}$, I IOUT $=0, \mathrm{~V}_{\mathrm{R}}=0$. Output and power supply measurements based on specified input conditions.

Device No.	Parameter	Test Conditions	Max Limit			Units
			$-55^{\circ} \mathrm{C}$	$25^{\circ} \mathrm{C}$	$125^{\circ} \mathrm{C}$	
INPUT						
D123	IIN(OFF)	$\mathrm{V}_{1 \mathrm{~N}}=0.4 \mathrm{~V}$	1	1	100	$\mu \mathrm{A}$
	V IN(ON)	$\mathrm{I}_{\mathrm{IN}}=1 \mathrm{~mA}$	1.3	1	0.8	V
D125	InN(OFF)	$\mathrm{V}_{\text {IN }}=4.1 \mathrm{~V}$	1	1	20	$\mu \mathrm{A}$
	IIN(ON)	$\mathrm{V}_{\text {IN }}=0.5 \mathrm{~V}$	-0.7	-0.7	-0.7	mA
OUTPUT						
 D123	lout(off)	$\mathrm{V}_{\text {OUT }}=+10 \mathrm{~V}$	0.1	0.1	10	$\mu \mathrm{A}$
	V OUT(ON)	$\mathrm{l}_{\text {OUT }}=1 \mathrm{~mA}$	-19.7	-19.7	-19.5	V
	V OUT(ON)	$\mathrm{l}_{\text {OUT }}=4 \mathrm{~mA}$	-19.2	-19.2	-19.0	V
POWER SUPPLY						
D123	$\mathrm{I}_{\mathrm{R}(\mathrm{ON}){ }^{(1)}}$	lout $=0$ for ON measurements. $V_{\text {OUT }}=+10 \mathrm{~V}$ for OFF measurements.	0.5	0.5	0.5	mA
	$\mathrm{I}_{\mathrm{R} \text { (OFF) }}{ }^{(2)}$		1	1	150	$\mu \mathrm{A}$
	$l_{\text {EE }(\mathrm{ON})^{(1)}}$		1	1	1	mA
	$\mathrm{IEE}_{\text {(OFF) }}{ }^{(2)}$		2	2	200	$\mu \mathrm{A}$
D125	$\mathrm{L}_{\mathrm{L}(\mathrm{ON})}{ }^{(1)}$		2	2	1.9	mA
	$\mathrm{l}_{\text {(OFF) }}{ }^{(1)}$		1	1	100	$\mu \mathrm{A}$
	$\mathrm{l}_{\mathrm{EE}(\mathrm{ON})^{(1)}}$		2	2	1.9	mA
	$\mathrm{l}_{\mathrm{EE}(\mathrm{OFF})}{ }^{(2)}$		2	2	200	$\mu \mathrm{A}$
SWITCHING TIMES						
$\begin{gathered} \text { D125 \& } \\ \text { D123 } \end{gathered}$	${ }^{\mathrm{t}}$ (ON)	$\begin{gathered} \text { IOUT }=1 \mathrm{~mA}, \mathrm{C}_{\text {OUT }}(3)=10 \mathrm{pF} \\ \text { (See Switching Times) }{ }^{(4)} \end{gathered}$		250		ns
	$\mathrm{t}_{\text {(OFF) }}{ }^{(4)}$			800		ns
	${ }^{\text {(}}$ (${ }_{\text {(}}$)	$\mathrm{I} \mathrm{OUT}=4 \mathrm{~mA}, \mathrm{C}_{\mathrm{OUT}}(3)=10 \mathrm{pF}$ (See Switching Times)		250		ns
	$t_{(\text {(fff) }}(5)$			600		ns

NOTES: 1. One channel ON, 5 channels OFF.
2. All channels OFF.
3. Add 30 ns per pF for 1 mA and add 8 ns per pF for 4 mA for additional capacitive loading.
4. For Dual-In-Line package add 120 ns to $t_{\text {(off) }}$.
5. For Dual-In-Line package add 30 ns to $\mathrm{t}_{\text {(off) }}$.

[^276]

0270－4

0270－5
Circuit Diagrams
Figure 2：Switching Times

TYPICAL PERFORMANCE CHARACTERISTICS

[^277]TYPICAL PERFORMANCE CHARACTERISTICS (Continued)

0270-9

APPLICATION TIPS

Interfacing the D123 and D125

In order to meet all the specifications on this data sheet, certain requirements must be met by the drive circuitry.

The D125 can be turned ON easily, but care must be exercised to insure turn-off. Keeping $\mathrm{V}_{\mathrm{L}}-\mathrm{V}_{\mathrm{IN}} \leq 0.4 \mathrm{~V}$ is a must to insure turn-off. To accomplish this, a shunt resistor must be added to supply the leakage current (lCES) for DTL devices. Since $l_{\text {CES }}=50 \mu A$, a $0.4 \mathrm{~V} / 0.05 \mathrm{~mA}=8 \mathrm{k} \Omega$ or less resistor should be used. For TTL devices using a $2 k \Omega$ resistor will insure turn-off with up to $200 \mu \mathrm{~A}$ of leakage current.

Figure 3: D123 Interface

0270-14
Figure 4: D125 Interface

Using the ENABLE Control

Device pins V_{R} or V_{L}, can be used to enable the D123 or D125 drivers. For the D123, the enabling driver must sink $I_{R(O N)} X$ no. of channels used. For the D125, $\mathrm{I}_{\mathrm{L}(\mathrm{ON})} \mathrm{X}$ no. of channels used must be sourced with a voltage at least +4 V greater than V_{IN}.

[^278]4-Channel Decoded JFET Switch Driver

GENERAL DESCRIPTION

The D129 is a 4-channel driver with binary decode input. It was designed to provide the DC level-shifting required to interface low-level logic outputs (0.7 to 2.2 V) to field-effect transistor inputs (up to 50 V peak-to-peak). For a 5 V input logic supply, the \vee - terminal can be set at any voltage between -5 V and -30 V . The output transistor is capable of sinking 10 mA and will stand-off up to 50 V above V - in the off-state.
The ON state of the driver is controlled by a logic " 1 " (open) on all three input logic lines, while the OFF state of the driver is achieved by pulling any one of the three inputs to a logic " 0 " (ground).
The 4-channel driver is internally connected such that each one can be controlled independently or decoded from a binary counter.

FEATURES

- Quad Three-Input Gates Decode Binary Counter to Four Lines
- Inputs Compatible With Low Power TTL and DTL, $I_{F}=200 \mu A$ Max
- Output Current Sinking Capability 10 mA
- External Pull-Up Elements Required

ORDERING INFORMATION

Figure 1: Functional Diagrams (Outline Dwgs DD, FD-2, JD)

[^279]
ABSOLUTE MAXIMUM RATINGS

Vo-V- .. 50 V
GND - V- .. 33 .
V+ - GND ... 8V
$V_{I N}-$ GND ... $\pm 6 \mathrm{~V}$
Current (any terminal) 30mA

Storage Temperature $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Operating Temperature $. \ldots-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Power Dissipation (note) . 750 mW
Lead Temperature (Soldering, 10sec) 300³

Note: Dissipation rating assumes device mounted with all leads welded or soldered to pc board in ambient temperature of $70^{\circ} \mathrm{C}$. Derate $10 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ for higher ambient temperatures.

NOTE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
ELECTRICAL CHARACTERISTICS
Test conditions unless otherwise specified $\mathrm{V}^{-}=-20 \mathrm{~V}, \mathrm{~V}+=5 \mathrm{~V}$

Symbol	Parameter	Test Conditions		Maximum Limit						Units
				D129M			D1291			
				$-55^{\circ} \mathrm{C}$	$25^{\circ} \mathrm{C}$	$125^{\circ} \mathrm{C}$	$-20^{\circ} \mathrm{C}$	$25^{\circ} \mathrm{C}$	$85^{\circ} \mathrm{C}$	
OUT										
V_{OL}	Output Voltage, Low	$1 \mathrm{O}=10 \mathrm{~mA}$	$\mathrm{V}_{\mathrm{IN}}=2.2 \mathrm{~V}, \mathrm{~V}^{+}=4.5 \mathrm{~V}$	-19.3	-19.3	-19	-19.25	-19.25	-19	V
V_{OL}	Output Voltage, Low	$\mathrm{l}_{\mathrm{O}}=1 \mathrm{~mA}$		-19.8	-19.8	-19.75				
IOH	Output Current, High	$\mathrm{V}_{\mathrm{O}}=10 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=0.7 \mathrm{~V}$		0.1	0.1	20	0.2	0.2	10	$\mu \mathrm{A}$

INPUT

IINH^{*}	Input Current Input Voltage High	$V_{I N}=5 \mathrm{~V}$ Input Under Test, $V_{I N}=0$ All Other Inputs	0.25	0.25	5	1	1	5	$\mu \mathrm{~A}$
$\mathrm{I}_{\mathrm{ILL}}{ }^{*}$	Input Current Input Voltage Low	$\mathrm{V}_{\mathrm{IN}}=0, \mathrm{~V}+=5.5 \mathrm{~V}$	-250	-200	-160	-250	-225	-200	

TIME

$\mathrm{t}_{\text {on }}$	Turn-ON Time	See Switching Time Test Circuit	0.25			0.3	
$\mathrm{t}_{\text {off }}$	Turn-OFF Time		1.0			1.5	

SUPPLY

lee	Negative Supply Current	$\left\lvert\, \begin{aligned} & \mathrm{V}-=-20 \mathrm{~V} \\ & \mathrm{~V}+=5.5 \mathrm{~V} \end{aligned}\right.$	One Channel "ON"	-2			-2.25	mA
lL	Logic Supply Current			3			3.3	
lee	Negative Supply Current		All $\mathrm{V}_{\mathrm{IN}}=0$,	-10			-25	$\mu \mathrm{A}$
LL	Logic Supply Current		All Channels "OFF"	0.75			1	mA

*Per gate Input

0271-4

0271-3
Figure 2: Switching Time and Test Circuit

[^280]
DG123/DG125

4 \& 5-Channel SPST Driver With Switch

GENERAL DESCRIPTION

This series includes devices with four and five channel switching capability. Each channel is composed of a driver and a MOSFET switch. Two driver versions are supplied for inverting and noninverting applications. A MOSFET, used as a current source provides an active pull-up for faster switching.

An external biasing connection is brought out for biasing the current source, for optimization of speed and power.

ORDERING INFORMATION

FEATURES

- Available With and Without Programmable Constant Current Pull-up
- Zener Protection on All Gates
- P-Channel Enhancement-Type MOSFET Switches
- Each Switch Summed to One Common Point

TRUTH TABLE

DG123		DG125		Switch
$\mathbf{V}_{\mathbf{I N}}$	$\mathbf{V}_{\mathbf{R}}$	$\mathbf{V}_{\mathbf{I N}}$	$\mathbf{V}_{\mathbf{L}}$	
L	L	L	L	OFF
H	L	L	H	ON
L	H	H	L	OFF
H	H	H	H	OFF

$\mathrm{L}=\mathrm{OV}, \mathrm{H}=+\mathrm{V}$

DG125

(One Channel)

0272-2

Figure 1: Schematic \& Logic Diagrams (Outline Dwgs DD, FD-2)

[^281]
ABSOLUTE MAXIMUM RATINGS

Collector to Emitter（ $\mathrm{V}^{+}-\mathrm{V}^{-}$）．．．．．．．．．．．．．．．．．．．．33V
Collector to Pull－up（ $\mathrm{V}^{+}-\mathrm{V}_{\mathrm{P}}$ ）．．．．．．．．．．．．．．．．．．．．．．．33V
Drain to Emitter（ $V_{D}-V^{-}$）．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．32V

Drain to Source（ $V_{D}-V_{S}$ ）．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 28 V

Logic to Emitter（ $\mathrm{V}_{\mathrm{L}}-\mathrm{V}^{-}$）．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．33V
Reference to Emitter（ $\mathrm{V}_{\mathrm{R}}-\mathrm{V}^{-}$）．．．．．．．．．．．．．．．．．．．．．．．．．．31V
Reference to Input $\left(\mathrm{V}_{\mathrm{R}}-\mathrm{V}_{\mathrm{IN}}\right)$

NOTE：Stresses above those listed under＂Absolute Maximum Ratings＂may cause permanent damage to the device．These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied．Exposure to absolute maximum rating conditions for extended periods may affect device reliability．

ELECTRICAL CHARACTERISTICS

Test conditions unless specified otherwise are as follows： $\mathrm{V}_{\mathrm{L}}=4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{R}}=0, \mathrm{~V}-=-20 \mathrm{~V}$ ．Input ON and OFF test conditions used for output and power supply specifications．

Device No．	Parameter （Note）	Test Conditions	Max Limits			Units
			$-55^{\circ} \mathrm{C}$	$+25^{\circ} \mathrm{C}$	$+125^{\circ} \mathrm{C}$	
Input						
DG123	IIN（OFF）	$\mathrm{V}_{\text {IN }}=0.4 \mathrm{~V}$	1	1	100	$\mu \mathrm{A}$
	V IN（ON）	$\mathrm{I}_{\mathrm{N}}=1 \mathrm{~mA}$	1.3	1.0	0.8	V
DG125	$\operatorname{IN}(\mathrm{ON})$	$\mathrm{V}_{\mathrm{IN}}=0.5 \mathrm{~V}$	-0.7	－0．7	－0．7	mA
OUTPUT						
All circuits	${ }^{\text {r }}$（ ${ }^{\text {（ON }}$ ）	$V_{D}=10 \mathrm{~V}, \mathrm{I}_{S}=-1 \mathrm{~mA}$	100	100	125	Ω
		$V_{D}=0, I_{S}=-100 \mu \mathrm{~A}$	200	200	250	Ω
		$V_{D}=-10 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=-100 \mu \mathrm{~A}$	450	450	600	Ω
	$l_{\text {d }}(\mathrm{ON})$	$\mathrm{V}_{\mathrm{D}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{S}(\mathrm{all})}=0$		4	4000	nA
	$\mathrm{I}_{\mathrm{D} \text {（OFF）}}$	$V_{S(\text { all }}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=-10 \mathrm{~V}$		－4	－4000	nA
	$\mathrm{I}_{\text {S（OFF）}}$	$\mathrm{V}_{\mathrm{D}}=10 \mathrm{~V}, \mathrm{~V}_{S}=-10 \mathrm{~V}$		－1	－1000	nA
POWER SUPPLY						
All circuits	$\mathrm{ICCON})$	One Channel（ON）		3		mA
	IL（ON）			3		mA
	$\mathrm{I}_{\mathrm{R}(\mathrm{ON})}$			－0．5		mA
	$\mathrm{IEE}(\mathrm{ON})$			－6		mA
All circuits	$\mathrm{lCC}(\mathrm{OFF})$	All Channels（OFF）		10		$\mu \mathrm{A}$
	L（OFF）			10		$\mu \mathrm{A}$
	$\mathrm{I}_{\mathrm{R} \text {（OFF）}}$			－15		$\mu \mathrm{A}$
	$\mathrm{I}_{\text {EE（OFF）}}$			－20		$\mu \mathrm{A}$
SWITCHING TIMES						
All circuits	$\mathrm{t}_{(\mathrm{ON})}$	See Switching Times		0.3		$\mu \mathrm{S}$
	${ }^{\text {t }}$（OFF）			1		$\mu \mathrm{s}$

NOTE：（OFF）and（ON）subscript notation refers to the conduction state of the MOSFET switch for the given test condition．

[^282]

Figure 2：Switching Times
TYPICAL PERFORMANCE CHARACTERISTICS

[^283]
APPLICATION TIPS

The recommended resistor values for interfacing RTL， DTL，and TTL Logic are shown in Figures 3 and 4.

0272－11
Figure 4：DG123 Interface

Enable Control

The V_{R} and V_{L} terminals can be used as either a Strobe or an Enable control．The requirements for sinking current at V_{R} or sourcing current at V_{L} are： $\mathrm{I}_{\mathrm{L}(\mathrm{ON})} \times$ No．of channels used，for the DG125，and $I_{R(O N)} \times$ No．of channels used for the DG123 devices．The voltage at V_{L} must be greater than the voltage at V_{IN} by at least +4 V ．

DG126, DG129, DG133, DG134, DG140, DG141, DG151-154
 DUAL JFET Analog Switch

GENERAL DESCRIPTION

These switching circuits contain two channels in one package, each channel consisting of a driver circuit controlling a SPST or DPST junction FET switch. The driver interfaces DTL, TTL or RTL logic signals for multiplexing, commutating, and D/A converter applications, which permits logic design directly with the switch function. Logic "1" at the input turns the FET switch ON, and logic " 0 " turns it off.

ORDERING INFORMATION

DG129	A	K	
			$\begin{aligned} & \text { —Package } \\ & \text { K - 14-pin CERDIP } \\ & \text { (DG126, 129, 133, } \\ & \text { L }-14 \text {-pin Flat Pack } \\ & \text { P - 14-pin Ceramic DI } \\ & \text { (DG140, 141)* } \\ & \text { Temperature Range } \\ & \text { A - Military }-55^{\circ} \mathrm{C} \text { to } \\ & \text { B - Industrial }\left(-20^{\circ} \mathrm{C}\right. \\ & \text { Device Chip Type } \end{aligned}$
			$\begin{gathered} \text { DUAL SPST } \\ \text { DG133 (rDS(ON) }=30 \Omega) \\ \text { DG134 (rDS(ON) }=80 \Omega) \\ \text { DG141 (rDS(ON) }=10 \Omega) \\ \text { DG151 (rDS(ON) }=15 \Omega) \\ \text { DG152 }\left(\mathrm{r}_{\mathrm{DS}(\mathrm{ON})}=50 \Omega\right) \end{gathered}$

FEATURES

- Each Channel Complete-Interfaces With Most Integrated Logic
- Low OFF Power Dissipation, 1mW
- Switches Analog Signals Up to 20 Volts Peak-to-Peak
- Low rDS(ON), 10 Ohms Max on DG140/A and DG141/A
- Switching Times Improved 100\%-'A' Versions

DUAL DPST
DG126 (rDS(ON) $=80 \Omega$)
DG129 ($\mathrm{r}_{\mathrm{DS}}(\mathrm{ON})=30 \Omega$)
DG140 ($\mathrm{rDS}_{(0 N)}=10 \Omega$)
DG153 (rDS(ON) $=15 \Omega$)
DG154 (rDS(ON) $=50 \Omega$)

[^284]

NOTE: $V_{I N}$ must be a step function with a minimum slew-rate of $1 \mathrm{~V} / \mu \mathrm{s}$.

DG126, DG129, DG133, DG134, DG140, DG141, DG151-154

ELECTRICAL CHARACTERISTICS (Per Channel) (Continued)

| SYMBOL
 (NOTE) | CHARACTERISTIC | TYPE | TEST CONDITIONS | ABSOLUTE MAX LIMIT | | UNIT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | | $25^{\circ} \mathrm{C}$ | $125^{\circ} \mathrm{C}$ | |

POWER SUPPLY

$\mathrm{I}_{1 \text { (ON) }}$	Positive Power Supply Drain Current	All Circuits	One Driver $\mathrm{ON}, \mathrm{V}_{1 \mathrm{~N}}=2.5 \mathrm{~V}$	3	mA
$\mathrm{I}_{2(\mathrm{ON})}$	Negative Power Supply Drain Current			-1.8	mA
$\mathrm{I}_{\mathrm{R}(\mathrm{ON})}$	Reference Power Supply			-1.4	mA
$\mathrm{I}_{1 \text { (OFF) }}$	Drain Current Positive Power Supply Leakage Current		Both Drivers OFF, $\mathrm{V}_{1 \mathrm{~N}}=0.8 \mathrm{~V}$	25	$\mu \mathrm{A}$
$I_{\text {(OFF) }}$	Negative Power Supply Leakage Current			-25	$\mu \mathrm{A}$
$I_{\text {R(OFF })}$	Reference Power Supply Leakage Current			-25	$\mu \mathrm{A}$
SWITCHING					
ton	Turn-On Time	See Below	DG126, DG129, DG133, DG134, DG152, DG154	600	ns
tofF	Turn-Off Time	See Below	DG126, DG129, DG133, DG134, DG152, DG154	1.6	$\mu \mathrm{s}$
ton	Turn-On Time	See Below	DG140, DG141, DG151, DG153	1.0	$\mu \mathrm{s}$
toff	Turn-On Time	See Below	DG140, DG141, DG151, DG153	2.5	$\mu \mathrm{s}$
POWER					
Pon	ON Driver Power	All Circuits	Both Inputs $\mathrm{V}_{\mathrm{IN}}=2.5 \mathrm{~V}$	175	mW
PofF	OFF Driver Power		Both Inputs $\mathrm{V}_{\mathrm{IN}}=1 \mathrm{~V}$	1	mW

NOTE: (OFF) and (ON) subscript notation refers to the conduction state of the FET switch for the given test.

[^285]
ELECTRICAL CHARACTERISTICS (Continued)

0273-10
Figure 2: Switching Times (at $\mathbf{2 5}{ }^{\circ} \mathrm{C}$)

DG151, 152, 153, 154
ON MODEL

Figure 2: Switching Times (at $\mathbf{2 5}^{\circ} \mathrm{C}$) (Continued)

DG126, DG129, DG133, DG134, DG140, DG141, DG151-154

TYPICAL PERFORMANCE CHARACTERISTICS (per channel)

DG126, 129, 133, 134, 140, 141
V_{IN} THRESHOLD vs TEMPERATURE

DG151, 152, 153, 154
$\mathbf{V}_{\mathbf{I N}}$ THRESHOLD vs TEMPERATURE

TEMPERATURE $\left({ }^{\circ} \mathrm{C}\right)$
rDS(ON) vs TEMPERATURE
(Normalized to $25^{\circ} \mathrm{C}$ Value)

0273-13

TEMPERATURE $\left({ }^{\circ} \mathrm{C}\right)$

0273-14

0273-16

ALL CIRCUITS

0273-19

[^286]
DG139, DG142-DG146, DG161-DG164
 DUAL JFET Analog Switch

GENERAL DESCRIPTION

Each package contains a monolithic driver with differential input and 2 or 4 discrete FET switches. The driver may be treated as a special purpose differential amplifier which controls the conduction state of the FET switches. The differential output of the driver sets the switches in opposition, one pair open and the other pair closed. All switches may be opened by applying a positive control signal to the V_{R} terminal.

FEATURES

- Each Channel Complete - Interfaces With Most Integrated Logic
- Low OFF Power Dissipation, 1mW
- Switches Analog Signals Up to 20 Volts Peak-to-Peak
- Low rDs(ON), 10 Ohms Max on DG145 and DG146 ORDERING INFORMATION

0274-21

[^287]
ABSOLUTE MAXIMUM RATINGS

$V+-V$
$V_{S}-V^{-}$ $V+-V_{S}$ $V_{S}-V_{D}$ 36 V 30 V 30V $V_{R^{-}} V^{-}$.. 21 V
$V+-V_{R}$ 17V

$\mathrm{V}_{\mathrm{IN} 1}-\mathrm{V}_{\mathrm{IN} 2}$ \qquad

Power Dissipation (Note) . 750mW
Current (any terminal) . 30mA
Storage Temperature $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Operating Temperature $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec) $300^{\circ} \mathrm{C}$

NOTE: Dissipation rating assumes device is mounted with all leads welded or soldered to printed circuit board in ambient temperature below $70^{\circ} \mathrm{C}$. For higher temperature, derate at rate of $10 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.
NOTE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

Applied voltages for all tests: DG139, DG142, DG143, DG144, DG145, DG146 ($\left.\mathrm{V}+=12 \mathrm{~V}, \mathrm{~V}-=-18 \mathrm{~V}, \mathrm{~V}_{\mathrm{R}}=0, \mathrm{~V}_{\operatorname{IN} 2}=2.5 \mathrm{~V}\right)$ and DG161, DG162, DG163, $D G 164$ ($V+=15 \mathrm{~V}, \mathrm{~V}-=-15 \mathrm{~V}, \mathrm{~V}_{\mathrm{R}}=0, \mathrm{~V}_{\mathrm{IN} 2}=2.5 \mathrm{~V}$). Input test condition that guarantees FET switch ON or OFF as specified is used for output specifications.

Symbol (Note)	Parameter	Type	Test Conditions	Absolute Max Limit			Units
				$-55^{\circ} \mathrm{C}$	$25^{\circ} \mathrm{C}$	$125^{\circ} \mathrm{C}$	
INPUT							
I ${ }^{\text {N1 (ON) }}$	Input Current	All Circuits	$\mathrm{V}_{\mathrm{IN} 1}=3.0 \mathrm{~V}$	120	60	60	$\mu \mathrm{A}$
$1 \mathrm{IN2}(\mathrm{ON})$			$\mathrm{V}_{\mathrm{IN} 2}=2.0 \mathrm{~V}$	120	60	60	$\mu \mathrm{A}$
IIN1(OFF)	Input Leakage Current		$\mathrm{V}_{\mathrm{IN} 1}=2.0 \mathrm{~V}$	0.1	0.1	2	$\mu \mathrm{A}$
1 l 2(OFF)			$\mathrm{V}_{\mathrm{IN} 2}=3.0 \mathrm{~V}$	0.1	0.1	2	$\mu \mathrm{A}$
SWITCH OUTPUT							
${ }^{\text {r DSS }}$ (ON)	Drain-Source On Resistance	$\begin{aligned} & \text { DG142 } \\ & \text { DG143 } \end{aligned}$	$\begin{aligned} & V_{D}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=-10 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{IN}} \text { (See Note) } \end{aligned}$	80	80	150	Ω
		$\begin{aligned} & \text { DG139 } \\ & \text { DG144 } \end{aligned}$		30	30	60	Ω
		$\begin{aligned} & \text { DG145 } \\ & \text { DG146 } \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{D}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=-10 \mathrm{~mA} \\ & \mathrm{~V}_{\text {IN }} \text { (See Note) } \end{aligned}$	10	10	20	Ω
		$\begin{aligned} & \text { DG161 } \\ & \text { DG163 } \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{D}}=7.5 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=-10 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{IN}} \text { (See Note) } \end{aligned}$	15	15	30	Ω
		DG162 DG164		50	50	100	Ω
$\mathrm{ID}_{\mathrm{S}(\mathrm{ON})}+\mathrm{I}_{\text {S(ON) }}$	Drive Leakage Current	$\begin{aligned} & \text { DG139 } \\ & \text { DG142 } \\ & \text { DG143 } \\ & \text { DG144 } \end{aligned}$	$\mathrm{V}_{\mathrm{D}}=\mathrm{V}_{\mathrm{S}},=-10 \mathrm{~V}$		2	100	nA
IS(OFF)	Source Leakage Current		$\mathrm{V}_{S}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=-10 \mathrm{~V}$		1	100	nA
ID(OFF)	Drain Leakage Current		$V_{D}=10 \mathrm{~V}, \mathrm{~V}_{S}=-10 \mathrm{~V}$		1	100	nA
$\mathrm{ID}_{(\mathrm{ON})}+\mathrm{IS}_{\text {S(ON }}$	Drive Leakage Current	DG145 DG146	$\mathrm{V}_{\mathrm{D}}=\mathrm{V}_{\mathrm{S}}=-10 \mathrm{~V}$		2	100	nA
IS(OFF)	Source Leakage Current		$\mathrm{V}_{\mathrm{S}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=-10 \mathrm{~V}$		10	1000	nA
ID(OFF)	Drain Leakage Current		$\mathrm{V}_{\mathrm{D}}=10 \mathrm{~V}, \mathrm{~V}_{S}=-10 \mathrm{~V}$		10	1000	nA
$\mathrm{ID}_{\mathrm{D}(\mathrm{ON})}+\mathrm{I}_{\text {S(ON) }}$	Drive Leakage Current	DG161 DG163	$\mathrm{V}_{\mathrm{D}}=\mathrm{V}_{\mathrm{S}}=-7.5 \mathrm{~V}$		2	500	nA
IS(OFF)	Source Leakage Current		$\mathrm{V}_{\mathrm{S}}=7.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=-7.5 \mathrm{~V}$		10	1000	nA
ID(OFF)	Drain Leakage Current		$\mathrm{V}_{\mathrm{D}}=7.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}=-7.5 \mathrm{~V}$		10	1000	nA
$\mathrm{ID}_{(\mathrm{ON})}+\mathrm{I}_{\mathrm{S}(\mathrm{ON})}$	Drive Leakage Current	DG162 DG164	$\mathrm{V}_{\mathrm{D}}=\mathrm{V}_{\mathrm{S}}=-7.5 \mathrm{~V}$		2	500	nA
IS(OFF)	Source Leakage Current		$\mathrm{V}_{\mathrm{S}}=7.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=-7.5 \mathrm{~V}$		2	200	nA
ID(OFF)	Drain Leakage Current		$\mathrm{V}_{\mathrm{D}}=7.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}=-7.5 \mathrm{~V}$		2	200	nA

NOTE: (OFF) and (ON) subscript notation refers to the conduction state of the FET switch for the given test. VIN must be a step function with a minimum slew-rate of $1 \mathrm{~V} / \mu \mathrm{s}$.

[^288]ELECTRICAL CHARACTERISTICS (Continued)

Symbol (Note)	Parameter	Type	Test Conditions	Absolute Max Limit			Units
				$-55^{\circ} \mathrm{C}$	$25^{\circ} \mathrm{C}$	$125^{\circ} \mathrm{C}$	
POWER SUPPLY							
$\mathrm{I}_{\text {(ON) }}$	Positive Power Supply Drain Current	All Circuits	$\mathrm{V}_{\mathrm{IN} 1}=3 \mathrm{~V}$ or $V_{I N 1}=2 V$		4.2		mA
$\mathrm{I}_{\text {(ON }}$	Negative Power Supply Drain Current				-2.0		mA
$I_{\text {R(ON }}$	Reference Power Supply Drain Current				-2.2		mA
$\mathrm{I}_{1 \text { (OFF) }}$	Positive Power Supply Leakage Current		$\mathrm{V}_{\mathbf{I N} 1}=\mathrm{V}_{\mathbf{I N} 2},=0.8 \mathrm{~V}$		25		$\mu \mathrm{A}$
$\mathrm{l}_{\text {(OFF) }}$	Negative Power Supply Leakage Current				-25		$\mu \mathrm{A}$
$\mathrm{I}_{\mathrm{R} \text { (OFF) }}$	Reference Power Supply Leakage Current				-25		$\mu \mathrm{A}$
SWITCHING		-					
ton	Turn-On Time	$\begin{aligned} & \text { DG139, DG142 } \\ & \text { DG143, DG144 } \\ & \text { DG162, DG164 } \end{aligned}$	See Switching Times		0.8		$\mu \mathrm{S}$
toff	Turn-Off Time	$\begin{aligned} & \text { DG139, DG142 } \\ & \text { DG143, DG144 } \\ & \text { DG162, DG164 } \end{aligned}$	See Switching Times		1.6		$\mu \mathrm{s}$
ton	Turn-On Time	$\begin{aligned} & \text { DG145, DG146 } \\ & \text { DG161, DG163 } \end{aligned}$	See Switching Times		1.0		$\mu \mathrm{S}$
toff	Turn-Off Time	DG145, DG146 DG161, DG163	See Switching Times		2.5		$\mu \mathrm{S}$

[^289][^290]

0274-7
OFF MODEL

0274-9
ON MODEL

0274-8
OFF MODEL

ON MODEL

0274-11
Figure 2: Switching Times Test Circuits

Figure 3

Figure 4

NOTE 1: An example of Absolute Minimum Differential Voltage, $\left|V_{9}-V_{13}\right|$, is when $V_{9}=3 \mathrm{~V}$ and $\mathrm{V}_{13}=2.5 \mathrm{~V}$, the V_{9} side of the switch is ON and the V_{13} side of the switch is OFF at $25^{\circ} \mathrm{C}$. Conversely, when $\mathrm{V}_{9}=2 \mathrm{~V}$ and $\mathrm{V}_{13}=2.5 \mathrm{~V}$, the V_{9} side of the switch is OFF and the V_{13} side of the switch is ON at $25^{\circ} \mathrm{C}$.

TYPICAL PERFORMANCE CHARACTERISTICS (perchannel)

DG139, 142, 144, 145, 146

DG161, 162, 163, 164

0274-16

0274-17

0274-20
Is(OFF) vs TEMPERATURE

0274-14

DG180-191
 High-Speed Driver With JFET Switch

GENERAL DESCRIPTION

The DG180 thru DG191 series of analog gates consist of 2 or 4 N -channel junction-type field-effect transistors (JFET) designed to function as electronic switches. Level-shifting drivers enable low-level inputs (0.8 to 2 V) to control the ON OFF state of each switch. The driver is designed to provide a turn-off speed which is faster than turn-on speed, so that break-before-make action is achieved when switching from one channel to another. In the ON state, each switch conducts current equally well in both directions. In the OFF condition, the switches will block voltages up to 20 V peak-topeak. Switch-OFF input-output isolation is 50 dB at 10 MHz , due to the low output impedance of the FET-gate driving circuit.
ORDERING INFORMATION

Part Number	Type	rDS(on) (Max)
DG180	Dual SPST	10
DG181	Dual SPST	30
DG182	Dual SPST	75
DG183	Dual DPST	10
DG184	Dual DPST	30
DG185	Dual DPST	75
DG186	SPDT	10
DG187	SPDT	30
DG188	SPDT	75
DG189	Dual SPDT	10
DG190	Dual SPDT	30
DG191	Dual SPDT	75

FEATURES

- Constant ON-Resistance for Signals to $\pm 10 \mathrm{~V}$ (DG182, 185, 188, 191), to $\pm 7.5 \mathrm{~V}$ (All Devices)
- $\pm 15 \mathrm{~V}$ Power Supplies
- <2nA Leakage From Signal Channel in Both ON and OFF States
- TTL, DTL, RTL Direct Drive Compatibility
- $\mathbf{t}_{\text {on }}, \mathrm{t}_{\text {off }}<150 \mathrm{~ns}$, Break-Before-Make Action
- Cross-talk and Open Switch Isolation>50dB at 10MHz (75 Ω Load)
- JAN 38510 Approved

A - 10-PIN METAL CAN
L - 14-PIN FLAT PACK
P - CERAMIC DIP
(Special Order Only)
K - CERDIP
TEMPERATURE
A - MILITARY $\left(-55^{\circ} \mathrm{C}\right.$ to $\left.+125^{\circ} \mathrm{C}\right)$
$\mathrm{B}-\operatorname{INDUSTRIAL}\left(-20^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$
DEVICE TYPE
DRIVER

[^291]ABSOLUTE MAXIMUM RATINGS

$\mathrm{V}^{+}-\mathrm{V}-$	36 V
$V^{+}-V_{D}$	33 V
$\mathrm{V}_{\mathrm{D}}-\mathrm{V}^{-}$	33 V
$\mathrm{V}_{\mathrm{D}}-\mathrm{V}_{\text {S }}$	$\pm 22 \mathrm{~V}$
$\mathrm{V}_{\mathrm{L}}-\mathrm{V}^{-}$	36 V
$\mathrm{V}_{\mathrm{L}}-\mathrm{V}_{\text {IN }}$	8 V
V ${ }_{\text {-GND }}$	8 V
$V_{\text {IN }}$-GND	

GND-V- 27 V
GND-VIN .. 20 V
Current (S or D) See Note 3 . 200mA
Storage Temperature $. \ldots$.
Operating Temperature.............$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Power Dissipation* 450 (TW), 750 (FLAT), 825(DIP)mW
Lead Temperature (Soldering, 10sec)
$300^{\circ} \mathrm{C}$
*Device mounted with all leads welded or soldered to PC board. Derate $6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ (TW); $10 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ (FLAT); $11 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ (DIP) above $75^{\circ} \mathrm{C}$.
NOTE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

[^292]

ELECTRICAL CHARACTERISTICS
$\left(\mathrm{V}^{+}=+15 \mathrm{~V}, \mathrm{~V}^{-}=-15 \mathrm{~V}, \mathrm{~V}_{\mathrm{L}}=5 \mathrm{~V}\right.$, Unless Noted) (Continued)

Parameter	Device No.	Test Conditions (Note 1)	A Series			B Series			Units
			$-55^{\circ} \mathrm{C}$	$+25^{\circ} \mathrm{C}$	$+125^{\circ} \mathrm{C}$	$-20^{\circ} \mathrm{C}$	$+25^{\circ} \mathrm{C}$	$+85^{\circ} \mathrm{C}$	

SWITCH (Continued)

$I_{D(0 n)}+I_{\text {S }}(0 n)$	$\begin{aligned} & \text { DG180, 181, 183, } 184 \\ & 186,187,189,190 \\ & \hline \end{aligned}$	$\mathrm{V}_{\mathrm{D}}=\mathrm{V}_{\mathrm{S}}=-7.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=$ "ON"	± 2	-200	-10	-200	nA
	DG182, 185, 188, 191	$\mathrm{V}_{\mathrm{D}}=\mathrm{V}_{\mathrm{S}}=-10 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=$ "ON"	± 2	-200	-10	-200	nA

INPUT

$I_{I N L}$	ALL	$V_{I N}=0 V$	-250	-250	-250	-250	-250	-250	$\mu \mathrm{~A}$
$I_{I N H}$	ALL	$V_{I N}=5 \mathrm{~V}$		10	20		10	20	$\mu \mathrm{~A}$

DYNAMIC

SUPPLY

$1+$	$\begin{aligned} & \text { DG180, 181, 182, } 189 \\ & \text { 190, } 191 \end{aligned}$	$\mathrm{V}_{1 \mathrm{~N}}=5 \mathrm{~V}$	1.5			1.5		mA
	DG183, 184, 185		0.1			0.1		
	DG186, 187, 188		0.8			0.8		
$1-$	$\begin{aligned} & \text { DG180, 181, 182, } 189 \\ & \text { 190, } 191 \end{aligned}$		-5.0			-5.0		
	DG183, 184, 185		-4.0			-4.0		
	DG186, 187, 188		-3.0			-3.0		
IL	$\begin{aligned} & \text { DG180, 181, 182, } 183 \\ & 184,185,189,190,191 \end{aligned}$		4.5			4.5		
	DG186, 187, 188		3.2			3.2		
IGND	ALL		-2.0			-2.0		
$1+$	$\begin{aligned} & \text { DG180, 181, 182, } 189 \\ & \text { 190, 191 } \end{aligned}$	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$	1.5			1.5		
	DG183, 184, 185		3.0			3.0		
	DG186, 187, 188		0.8			0.8		
1^{-}	$\begin{aligned} & \text { DG180, 181, 182, } 189 \\ & \text { 190, } 191 \end{aligned}$		-5.0			-5.0		
	DG183, 184, 185		-5.5			-5.5		
	DG186, 187, 188		-3.0			-3.0		
L L	DG180, 181, 182, 183 $184,185,189,190,191$		4.5			4.5		
	DG186, 187, 188		3.2			3.2		
IGND	ALL		-2.0			-2.0		

NOTES 1. See Switching State Diagrams for V_{IN} "ON" and V_{IN} "OFF" Test Conditions.
2. Off Isolation typically $>55 \mathrm{~dB}$ at 1 MHz for DG180, 183, 186, 189.
3. Saturation Drain Current for DG180, 183, 186, 189 only, typically 300 mA (2 ms Pulse Duration). Maximum Current on all other devices (any terminal) 30 mA .

[^293]
ELECTRICAL CHARACTERISTICS MAXIMUM RESISTANCES (rDS(ON) MAX) (Continued)

Device Number	Conditions (Note 1)$V^{+}=15 \mathrm{~V}, \mathrm{~V}^{-=}=-15 \mathrm{~V}, \mathrm{~V}_{\mathbf{L}}=5 \mathrm{~V}$		Military Temperature			Industrial Temperature			Units
			$-55^{\circ} \mathrm{C}$	$+25^{\circ} \mathrm{C}$	$+125^{\circ} \mathrm{C}$	$-20^{\circ} \mathrm{C}$	$+25^{\circ} \mathrm{C}$	$+85^{\circ} \mathrm{C}$	
DG180	$\mathrm{V}_{\mathrm{D}}=-7.5 \mathrm{~V}$		10	10	20	15	15	25	Ω
DG181	$V_{D}=-7.5 \mathrm{~V}$		30	30	60	50	50	75	Ω
DG182	$\mathrm{V}_{\mathrm{D}}=-10 \mathrm{~V}$		75	75	100	100	100	150	Ω
DG183	$\mathrm{V}_{\mathrm{D}}=-7.5 \mathrm{~V}$		10	10	20	15	15	25	Ω
DG184	$V_{D}=-7.5 \mathrm{~V}$		30	30	60	50	50	75	Ω
DG185	$\mathrm{V}_{\mathrm{D}}=-10 \mathrm{~V}$		75	75	150	100	100	150	Ω
DG186	$V_{D}=-7.5 \mathrm{~V}$		10	10	20	15	15	25	Ω
DG187	$V_{D}=-7.5 \mathrm{~V}$	$\mathrm{V}_{1 N}=$ "ON"	30	30	60	50	50	75	Ω
DG188	$V_{D}=-10 \mathrm{~V}$		75	75	150	100	100	150	Ω
DG189	$\mathrm{V}_{\mathrm{D}}=-7.5 \mathrm{~V}$		10	10	20	15	15	25	Ω
DG190	$\mathrm{V}_{\mathrm{D}}=-7.5 \mathrm{~V}$		30	30	60	50	50	50	Ω
DG191	$V_{D}=-10 \mathrm{~V}$		75	75	150	100	100	150	Ω

APPLICATION HINT (for design only): Normally the minimum signal handling capability of the DG180 through DG191 family is 20 V peak-to-peak for the 75Ω switches and 15 V peak-to-peak for the 10Ω and 30Ω (refer I_{D} and I_{S} tests above). For other Analog Signals, the following guidelines can be used: proper switch turn-off requires that $\mathrm{V}-\leq \mathrm{V}_{\text {ANALOG }}(\mathrm{peak})-\mathrm{V}_{\mathrm{p}}$ where $\mathrm{V}_{\mathrm{p}}=7.5 \mathrm{~V}$ for the 10Ω AND 30Ω switches and $\mathrm{V}_{\mathrm{p}}=5.0 \mathrm{~V}$ for 75Ω switches e.g., -10 V minimum (- peak) analog signal and a 75Ω switch $(V p=5 \mathrm{~V})$, requires that $\mathrm{V}-\leq-10 \mathrm{~V}-5 \mathrm{~V}=-15 \mathrm{~V}$.

Logic Input for "OFF" to "ON" Condition (DG180/181/182 Shown)

0275-13

Figure 3: Switching Time Test Circuits

[^294][^295]DUAL SPST - DG180/181/182

TEST CONDITIONS
DG180/181/182 $\mathrm{V}_{\text {IN }}$ "ON" $=0.8 \mathrm{~V}$ $\mathrm{~V}_{\text {IN }}$ "OFF" $=2.0 \mathrm{~V}$ All Channels

SWITCH STATES ARE
FOR LOGIC "1" INPUT=2.0V

SPDT-DG186/187/188

TEST CONDITIONS

DG186/187/188	
$\mathrm{V}_{\text {IN }}$ "ON" $=2.0 \mathrm{~V}$	Channel 1
$\mathrm{V}_{\text {IN }}$ "ON" $=0.8 \mathrm{~V}$	Channel 2
$\mathrm{V}_{\text {IN }}$ "OFF" $=2.0 \mathrm{~V}$	Channel 2
$\mathrm{V}_{\text {IN }}$ "OFF" $=0.8 \mathrm{~V}$	Channel 1

SWITCH STATES ARE
FOR LOGIC " 1 " INPUT $=2.0 \mathrm{~V}$

DUAL DPST - DG183/184/185

TEST CONDITIONS

DG183/184/185	
$\mathrm{V}_{\text {IN }}$ "ON" $=2.0 \mathrm{~V}$	All Channels
$\mathrm{V}_{\text {IN }}$ "OFF" $=0.8 \mathrm{~V}$	All Channels

SWITCH STATES ARE
FOR LOGIC " 1 " INPUT= 2.0 V

DUAL SPDT - DG189/190/191

TEST CONDITIONS

DG189/190/191	
$\mathrm{V}_{I N}$ "ON" $=2.0 \mathrm{~V}$	Channels 1 \& 2
$\mathrm{V}_{I N}$ "ON" $=0.8 \mathrm{~V}$	Channels 3 \& 4
V_{IN} "OFF" $=2.0 \mathrm{~V}$	Channels 3 \& 4
V_{IN} "OFF" $=0.8 \mathrm{~V}$	Channels 1 \& 2

SWITCH STATES ARE
FOR LOGIC " 1 " INPUT= 2.0 V

DG200
CMOS Dual SPST Analog Switches

GENERAL DESCRIPTION

The DG200 solid state analog gates are designed using an improved, high voltage CMOS monolithic technology. They provide ease-of-use and performance advantages not previously available from solid state switches. Destructive latch-up of solid state analog gates has been eliminated by INTERSIL's CMOS technology.
The DG200 is completely spec and pin-out compatible with the industry standard device.

FEATURES

- Switches Greater Than 28Vpp Signals With \pm 15V Supplies
- Break-Before-Make Switching toff 250ns, ton $\mathbf{7 0 0 n s}$ Typical
- TTL, DTL, CMOS, PMOS Compatible
- Non-Latching With Supply Turn-Off
- Complete Monolithic Construction
- Industry Standard (DG200)

ORDERING INFORMATION

Industry Standard Part	Package	Temperature Range
DG200AA	10-Pin Metal Can	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
DG200AK	14-Pin CERDIP	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
DG200AL	14 -Pin Flat Pak	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
DG200BA	10 -Pin Metal Can	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
DG200BK	14-Pin CERDIP	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
DG200BL	14-Pin Flat Pak	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
DG200CJ	14-Pin Epoxy Dip	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

CERDIP \& EPOXY DUAL-IN-LINE
PACKAGE (outline dwgs JD, PD)

METAL CAN PACKAGE (outline dwg TO-100)

0276-2

FLAT PACKAGE (outline dwg FD-2)

Figure 1: Pin Configurations

ABSOLUTE MAXIMUM RATINGS	
V＋－V－	＜36V
V＋－vo	＜30V
$\mathrm{V}_{\mathrm{D}} \mathrm{V}-$	＜30V
$\mathrm{V}_{\mathrm{D}}-\mathrm{V}_{\mathrm{S}}$	＜28V
$V_{\text {IN－GND }}$	＜20V
Storage Temperature ．．．．．．．．．．．．．．$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	
Lead Temperature（Soldering，10sec）	$300^{\circ} \mathrm{C}$
Power Dissipation	

NOTE：Stresses above those listed under＂Absolute Maximum Ratings＂ may cause permanent damage to the device．These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied．Exposure to absolute maximum rating conditions for extended peri－ ods may affect device reliability．

Figure 2：Functional Diagram（1／2 DG200）

ELECTRICAL CHARACTERISTICS $\left(T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}^{+}=+15 \mathrm{~V}, \mathrm{~V}^{-}=-15 \mathrm{~V}\right)$

Per Channel		Test Conditions	Min／Max Limits						Units
Symbol	Characteristic		Military			Com＇I／Industrial			
			$-55^{\circ} \mathrm{C}$	$+25^{\circ} \mathrm{C}$	$+125^{\circ} \mathrm{C}$	0／－25 ${ }^{\circ} \mathrm{C}$	$+25^{\circ} \mathrm{C}$	$+70^{\circ} \mathrm{C} /+85^{\circ} \mathrm{C}$	
IN（ON）	Input Logic Current	$\mathrm{V}_{\text {IN }}=0.8 \mathrm{~V}$ See Notes 2， 3	± 10	± 1	± 10		± 10	± 10	$\mu \mathrm{A}$
INN（OFF）	Input Logic Current	$\mathrm{V}_{\mathrm{IN}}=2.4 \mathrm{~V}$ See Notes 2， 3	± 10	± 1	± 10		± 10	± 10	$\mu \mathrm{A}$
ros（ON）	Drain－Source On Resistance	$\begin{aligned} & \mathrm{I}=10 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{ANALOG}}= \pm 10 \mathrm{~V} \end{aligned}$	70	70	100	80	80	100	Ω
rdS（ON）	Channel－to－Channel ros（ON）Match			$\begin{gathered} 25 \\ \text { (typ) } \\ \hline \end{gathered}$			$\begin{gathered} 30 \\ \text { (typ) } \\ \hline \end{gathered}$		Ω
$\mathrm{V}_{\text {ANALOG }}$	Min．Analog Signal Handling Capability			± 15			± 15		V
ID（OFF）	Switch OFF Leakage Current	$\mathrm{V}_{\text {ANALOG }}=-14 \mathrm{~V}$ to +14 V		± 2	100		± 5	100	nA
IS（OFF）	Switch OFF Leakage Current	$\mathrm{V}_{\text {ANALOG }}=-14 \mathrm{~V}$ to +14 V		± 2	100		± 5	100	nA

[^296]ELECTRICAL CHARACTERISTICS $\quad\left(T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}^{+}=+15 \mathrm{~V}, \mathrm{~V}^{-}=-15 \mathrm{~V}\right)$ (Continued)

Per Channel		Test Conditions	Min/Max Limits						Units
Symbol	Characteristic		Military			Com'//Industrial			
			$-55^{\circ} \mathrm{C}$	$+25^{\circ} \mathrm{C}$	$+125^{\circ} \mathrm{C}$	0/-25 ${ }^{\circ} \mathrm{C}$	$+25^{\circ} \mathrm{C}$	$+70^{\circ} \mathrm{C} /+85^{\circ} \mathrm{C}$	
$\begin{aligned} & \mathrm{ID}(\mathrm{ON}) \\ & +\mathrm{I}_{\mathrm{S}(\mathrm{ON})} \end{aligned}$	Switch ON Leakage Current	$V_{D}=V_{S}=-14 \mathrm{~V}$ to +14 V		± 2	200		± 10	200	nA
ton	Switch "ON" Time See Note 1	$\begin{aligned} & R_{\mathrm{L}}=1 \mathrm{k} \Omega, \mathrm{~V}_{\text {ANALOG }} \\ & =-10 \mathrm{~V} \text { to }+10 \mathrm{~V} \\ & \text { See Fig. } 3 \end{aligned}$		1.0			1.0		$\mu \mathrm{S}$
toff	Switch "OFF" Time	$\begin{aligned} & R_{\mathrm{L}}=1 \mathrm{k} \Omega, \mathrm{~V}_{\text {ANALOG }} \\ & =-10 \mathrm{~V} \text { to }+10 \mathrm{~V} \\ & \text { See Fig. } 3 \\ & \hline \end{aligned}$		0.5			0.5		$\mu \mathrm{s}$
$Q_{\text {(INJ.) }}$	Charge Injection	See Fig. 4		$\begin{gathered} 15 \\ \text { (typ) } \\ \hline \end{gathered}$			$\begin{gathered} 20 \\ \text { (typ) } \\ \hline \end{gathered}$		mV
OIRR	Min. Off Isolation Rejection Ratio	$\begin{aligned} & \hline \mathrm{f}=1 \mathrm{MHz}, \mathrm{R}_{\mathrm{L}}=100 \Omega, \\ & \mathrm{C}_{\mathrm{L}} \leq 5 \mathrm{pF} \\ & \text { See Fig. } 5 \text { (Note 1) } \\ & \hline \end{aligned}$		$\begin{gathered} 54 \\ \text { (typ) } \end{gathered}$			$\begin{gathered} 50 \\ \text { (typ) } \end{gathered}$		dB
lv1	+ Power Supply Quiescent Current	$\begin{aligned} & V_{\mathcal{I N}^{\prime}}=0 \mathrm{~V} \text { or } \\ & \mathrm{V}_{\mathbf{I N}}=5 \mathrm{~V} \end{aligned}$	1000	1000	2000	1000	1000	2000	$\mu \mathrm{A}$
IV2	- Power Supply Quiescent Current		1000	1000	2000	1000	1000	2000	$\mu \mathrm{A}$
CCRR	Min. Channel to Channel Cross Coupling Rejection Ratio	One Channel Off		$\begin{gathered} 54 \\ \text { (typ) } \end{gathered}$			$\begin{gathered} 50 \\ \text { (typ) } \end{gathered}$		dB

NOTE 1: Pull Down Resistor must be $\leq \mathbf{2 k} \Omega$
2: Typical values are for design aid only, not guaranteed and not subject to production testing.

TEST CIRCUITS

NOTE 3: All channels are turned off by high " 1 " logic inputs and all channels are turned on by low " 0 " inputs; however 0.8 V to 2.4 V describes the min. range for switching properly. Peak input current required for transition is typically $-120 \mu \mathrm{~A}$.

TYPICAL PERFORMANCE CHARACTERISTICS

APPLICATIONS

Using the $\mathrm{V}_{\text {REF }}$ Terminal

The DG200 has an internal voltage divider setting the TTL threshold on the input control lines for $\mathrm{V}+$ equal to +15 V . The schematic shown here with nominal resistor values, gives approximately 2.4 V on the $\mathrm{V}_{\text {REF }}$ pin. As the TTL input signal goes from +0.8 V to $+2.4 \mathrm{~V}, \mathrm{Q} 1$ and Q 2 switch states to turn the switch ON and OFF.
If the power supply voltage is less than +15 V , then a resistor must be added between V^{+}and the $\mathrm{V}_{\text {REF }}$ pin, to restore +2.4 V at $\mathrm{V}_{\text {REF }}$. The table shows the value of this resistor for various supply voltages, to maintain TTL compatibility. If CMOS logic levels on a +5 V supply are being used, the threshold shifts are less critical, but a separate column of suitable values is given in the table. For logic swings of -5 V to +5 V , no resistor is needed.
In general, the "low" logic level should be $<0.8 \mathrm{~V}$ to prevent Q1 and Q2 from both being ON together (this will cause incorrect switch function). With open collector logic, and a low value of pull-up resistor, the logic "low' level can be above 0.8 V . In this case, INTERSIL can supply parts with thresholds $>1.5 \mathrm{~V}$, allowing the user to define the "low" as $<1.5 \mathrm{~V}$ (consult factory). The $\mathrm{V}_{\text {REF }}$ point should be set at least 2.6 V above this "low'" state, or to $>4.1 \mathrm{~V}$. An external resistor of $27 \mathrm{k} \Omega$ between V^{+}and $\mathrm{V}_{\text {REF }}$ is required, for a +15 V supply.

$\mathbf{V}+$ Supply (\mathbf{V})	TTL Resistor $(\mathbf{k} \Omega)$	CMOS Resistor $(\mathbf{k} \Omega)$
+15	-	-
+12	100	-
+10	51	-
+9	(34)	34
+8	(27)	27
+7	18	18

- DG201
 DG2
 Quad SPST CMOS Analog Switch

GENERAL DESCRIPTION

The DG201 solid-state analog switches are designed using an improved, high-voltage CMOS monolithic technology. They provide performance advantages not previously available from solid-state switches. Destructive latch-up of solidstate analog gates has been eliminated by INTERSIL's CMOS technology.
The DG201 is completely specification and pin-out compatible with the industry standard device.

FEATURES

- Switches Greater Than $\mathbf{2 8 V}_{\text {p-p }}$ Signals With $\pm \mathbf{1 5 V}$ Supplies
\bullet Break-Before-Make Switching toff $=\mathbf{2 5 0 n s}$, $t_{\text {on }}=$ Typically 500ns
- TTL, DTL, CMOS, PMOS Compatible
- Non-Latching With Supply Turn-Off
- Complete Monolithic Construction
- Industry Standard (DG201)

ORDERING INFORMATION

Industry Standard Part Number	Temperature Range	Package
DG201AK	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16 -Pin CERDIP
DG201BK	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 -Pin CERDIP
DG201CJ	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	16 -Pin Plastic DIP

ABSOLUTE MAXIMUM RATINGS

$\mathrm{V}+$ to V^{-}	<36V	VIN to GND .. < $20 .^{\text {20V }}$
$V+$ to V_{D}	<30V	Current (Any Terminal) <30mA
V_{D} to V^{-}	<30V	Storage Temperature $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
V_{D} to V_{S}	<28V	Operating Temperature $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
$V_{\text {REF }}$ to V^{-}	<33V	Lead Temperature (Soldering, 10sec) 300 ${ }^{\circ} \mathrm{C}$
$V_{\text {REF }}$ to $V_{\text {IN }}$	<30V	Power Dissipation . 450mW
$V_{\text {REF }}$ to GND	<20V	Derate $6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ Above $70^{\circ} \mathrm{C}$

NOTE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
DG201 ELECTRICAL CHARACTERISTICS $\quad\left(T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}^{+}=+15 \mathrm{~V}, \mathrm{~V}^{-}=-15 \mathrm{~V}\right)$

Per Channel		Test Conditions	Min/Max Limits						Units
Symbol	Characteristic		Military			Commercial			
			$-55^{\circ} \mathrm{C}$	$+25^{\circ} \mathrm{C}$	$+125^{\circ} \mathrm{C}$	$0^{\circ} \mathrm{C}$	$+25^{\circ} \mathrm{C}$	$+70^{\circ} \mathrm{C} /+85^{\circ} \mathrm{C}$	
INN(ON)	Input Logic Current	$\mathrm{V}_{\text {IN }}=0.8 \mathrm{~V}$ See Note 1	10	± 1	10	± 1	± 1	10	$\mu \mathrm{A}$
IN(OFF)	Input Logic Current	$\mathrm{V}_{\mathrm{IN}}=2.4 \mathrm{~V}$ See Note 1	10	± 1	10	± 1	± 1	10	$\mu \mathrm{A}$
$\mathrm{R}_{\text {DS(ON) }}$	Drain-Source On Resistance	$\begin{aligned} & \mathrm{I}=10 \mathrm{~mA} \\ & \mathrm{~V}_{\text {ANALOG }}= \pm 10 \mathrm{~V} \end{aligned}$	80	80	125	100	100	125	Ω
$\mathrm{R}_{\mathrm{DS}(\mathrm{ON})}$	Channel to Channel $\mathrm{R}_{\mathrm{DS}(\mathrm{ON})}$ Match			$\begin{gathered} 25 \\ \text { (typ) } \\ \hline \end{gathered}$			$\begin{gathered} 30 \\ \text { (typ) } \\ \hline \end{gathered}$		Ω
$V_{\text {ANALOG }}$	Analog Signal Handling Capability			± 15 (typ)			± 15 (typ)		V
ID(OFF)	Switch OFF Leakage Current	$\mathrm{V}_{\text {ANALOG }}=-14 \mathrm{~V}$ to +14 V		± 1	100		± 5	100	nA
IS(OFF)	Switch OFF Leakage Current	$\mathrm{V}_{\text {ANALOG }}=-14 \mathrm{~V}$ to +14 V		± 1	100		± 5	100	nA
$\begin{aligned} & \mathrm{ld}(\mathrm{ON}) \\ & +\mathrm{I}_{\mathrm{S}(\mathrm{ON})} \\ & \hline \end{aligned}$	Switch ON Leakage Current	$\mathrm{V}_{\mathrm{D}}=\mathrm{V}_{S}= \pm 14 \mathrm{~V}$		± 2	200		± 5	200	nA
ton	Switch "ON" Time See Note 2	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega, \mathrm{~V}_{\text {ANALOG }} \\ & =-10 \mathrm{~V} \text { to }+10 \mathrm{~V} \end{aligned}$ See Figure 3		1.0			1.0		$\mu \mathrm{s}$
toff	Switch "OFF" Time See Note 2	$\begin{aligned} & R_{\mathrm{L}}=1 \mathrm{k} \Omega, \mathrm{~V}_{\text {ANALOG }} \\ & =-10 \mathrm{~V} \text { to }+10 \mathrm{~V} \end{aligned}$ $\text { See Figure } 3$		0.5			0.5		$\mu \mathrm{S}$
$Q_{\text {(INJ.) }}$	Charge Injection	See Figure 4		15 (typ)			20 (typ)		mV
OIRR	Min. Off Isolation Rejection Ratio	$\begin{aligned} & \mathrm{f}=1 \mathrm{MHz}, \mathrm{R}_{\mathrm{L}}=100 \Omega, \\ & \mathrm{C}_{\mathrm{L}} \leq 5 \mathrm{pF} \\ & \text { See Figure } 5 \\ & \hline \end{aligned}$		$\begin{gathered} 54 \\ \text { (typ) } \end{gathered}$			$\begin{gathered} 50 \\ \text { (typ) } \end{gathered}$		dB
${ }^{+}{ }^{2}$	+ Power Supply Quiescent Current	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$ to 5 V	2000	1000	2000	2000	1000	2000	$\mu \mathrm{A}$
${ }^{-} \mathrm{Q}$	- Power Supply Quiescent Current		2000	1000	2000	2000	1000	2000	$\mu \mathrm{A}$
CCRR	Min. Channel to Channel Cross Coupling Rejection Ratio	One Channel Off		$\begin{gathered} 54 \\ \text { (typ) } \end{gathered}$			$\begin{gathered} 50 \\ \text { (typ) } \end{gathered}$		dB

[^297]NOTE: All typical values have been characterized but are not tested.

TEST CIRCUITS

0277-3
(Note 2)

Figure 3

0277-4
0277-5

Figure 4

Figure 5

NOTE 2: All channels are turned off by high " 1 " logic inputs and all channels are turned on by low " 0 " inputs; however 0.8 V to 2.4 V describes the min. range for switching properly. Peak input current required for transition is typically $-120 \mu \mathrm{~A}$. Pull down resistor, if used, $\leq 2 \mathrm{~K} \Omega$.

TYPICAL PERFORMANCE CHARACTERISTICS

APPLICATIONS

Using the VREF Terminal

The DG201 has an internal voltage divider that sets the TTL threshold on the input control lines for $\mathrm{V}^{+}=15 \mathrm{~V}$. The schematic is shown here, with nominal resistor values, giving approximately 2.4 V on the $\mathrm{V}_{\text {REF }}$ pin. As the TTL input signal goes from +0.8 V to +2.4 V , Q1 and Q2 switch states to turn the switch ON and OFF.

If the power supply voltage is less than +15 V , then a resistor needs to be added between V^{+}and $\mathrm{V}_{\text {REF }}$ pin, to restore +2.4 V at $\mathrm{V}_{\text {REF }}$. The table shows the value of this resistor for various supply voltages, to maintain TTL compatibility. If CMOS logic levels with a +5 V supply are being used, the threshold shifts are less critical, but a separate column of suitable values is given in the table. For logic swings of -5 V to +5 V , no resistor is needed.

In general, the "low" logic level should be $<0.8 \mathrm{~V}$ to prevent Q1 and Q2 from both being ON together (this will cause incorrect switch function). With open collector logic, and a low value of pull-up resistor, the logic 'low' level can be above 0.8 V . In this case, INTERSIL can supply parts with thresholds $>1.5 \mathrm{~V}$ (consult factory). The $\mathrm{V}_{\text {REF }}$ point should be set at least 2.6 V above this "low" state, or to $>4.1 \mathrm{~V}$. An external resistor of $27 \mathrm{k} \Omega$ and $\mathrm{V}_{\text {REF }}$ is required, for a +15 V supply.

$\mathbf{V}+$ Supply (V)	TTL Resistor $(\mathbf{k} \Omega)$	CMOS Resistor $(\mathbf{k} \Omega)$
+15	-	-
+12	100	-
+10	51	-
+9	(34)	34
+8	(27)	27
+7	18	18

DG201A／DG202
 Quad Monolithic SPST CMOS Analog Switches

GENERAL DESCRIPTION

The DG201A（normally open）and DG202（normally closed）quad SPST analog switches are designed using In－ tersil＇s new 44V CMOS process．These bidirectional switches are latch－proof and feature break－before－make switching．Designed to block signals up to 30V peak－to－ peak in the OFF state，the DG201A／DG202 offer the ad－ vantages of low on resistance（ $\leq 175 \Omega$ ），wide input signal range（ $\pm 15 \mathrm{~V}$ ）and provide both TTL and CMOS compatibil－ ity．
The DG201A／DG202 are specification and pin－out com－ patible with the industry standard devices．

FEATURES

－$\pm 15 \mathrm{~V}$ Input Signal Range
－Low RDS（on）$(\leq 175 \Omega)$
－TTL，CMOS Compatible
－Latch Proof
－True Second Source
－44V Maximum Supply Ratings
－Logic Inputs Accept Negative Voltages

ORDERING INFORMATION

Part Number	Temperature Range	Package
DG201AAK	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16 －Pin CERDIP
DG201ABK	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 －Pin CERDIP
DG201ACK	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	16 －Pin CERDIP
DG201ACJ	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	16 －Pin Plastic DIP
DG202AK	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16 －Pin CERDIP
DG202BK	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 －Pin CERDIP
DG202CK	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	16 －Pin CERDIP
DG202C J	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	16 －Pin Plastic DIP

[^298]
ABSOLUTE MAXIMUM RATINGS

V+ to V^{-}.. 44V
V- to Ground 25 V
$\mathrm{V}_{\text {in }}$ to Ground (Note 1) $\ldots \ldots \ldots . .\left(\mathrm{V}^{-}-2 \mathrm{~V}\right),\left(\mathrm{V}^{+}+2 \mathrm{~V}\right)$
V_{S} or V_{D} to V^{+}(Note 1) $\ldots+2,\left(V^{-}-2 V\right)$
V_{S} or V_{D} to V^{-}(Note 1) $\ldots-2,\left(V^{+}+2 V\right)$
Current, Any Terminal Except S or D 30 mA
Continuous Current, S or D 20 mA
Peak Current, S or D
(Pulsed at 1 ms, 10\% duty cycle max) 70 mA
Operating Temperature
C Suffix $.0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
B Suffix $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
A Suffix $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

Storage Temperature
C Suffix $-65^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
A \& B Suffix . $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10s) 300${ }^{\circ} \mathrm{C}$
Power Dissipation*
CERDIP Package** 900 mW
Plastic Package*** 470 mW
Plastic Package***
*Device mounted with all leads soldered or welded to PC board.
**Derate $12 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $75^{\circ} \mathrm{C}$
***Derate $6.5 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $25^{\circ} \mathrm{C}$
NOTE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS $\mathrm{V}^{+}=15 \mathrm{~V}, \mathrm{~V}^{-}=-15 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Symbol	Parameter	Test Conditions		DG201AA/DG202A			DG201AB, C/DG202B, C			Units
				Min	Typ (Note 2)	Max	Min	Typ (Note 2)	Max	
SWITCH										
$V_{\text {ANALOG }}$	Analog Signal Range			-15		15	-15		15	V
R ${ }_{\text {DS }(\text { on })}$	Drain Source On Resistance	$\begin{aligned} & V_{D}= \pm 10 \mathrm{~V}, V_{\text {in }}=0.8 \mathrm{~V}(\mathrm{DG201A}) \\ & \mathrm{I}_{\mathrm{S}}=1 \mathrm{~mA}, \mathrm{~V}_{\text {in }}=2.0 \mathrm{~V}(\mathrm{DG} 202) \end{aligned}$			115	175		115	200	Ω
IS(off)	Source OFF Leakage Current	$\begin{array}{\|l\|} \hline \mathrm{V}_{\text {in }}=2.4 \mathrm{~V} \\ (\mathrm{DG} 201 \mathrm{~A}) \\ \mathrm{V}_{\text {in }}=0.8 \mathrm{~V} \\ \text { (DG202) } \end{array}$	$V_{S}=14 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=-14 \mathrm{~V}$		0.01	1.0		0.01	5.0	A
			$V_{S}=-14 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=14 \mathrm{~V}$	-1.0	-0.02		-5.0	-0.02		
${ }^{\text {l }}$ (off)	Drain OFF Leakage Current		$V_{S}=-14 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=14 \mathrm{~V}$		0.01	1.0		0.01	5.0	nA
			$V_{S}=14 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=-14 \mathrm{~V}$	-1.0	-0.02		-5.0	-0.02		
$\begin{array}{\|l} \text { lD(on) } \\ \text { (Note 4) } \end{array}$	Drain ON Leakage Current	$\begin{aligned} & V_{\text {in }}=0.8 \mathrm{~V} \\ & (\mathrm{DG} 201 \mathrm{~A}) \\ & \mathrm{V}_{\text {in }}=2.4 \mathrm{~V} \\ & (\mathrm{DG} 202) \end{aligned}$	$V_{D}=V_{S}=14 \mathrm{~V}$		0.1	1.0		0.1	5.0	$\mu \mathrm{A}$
			$V_{D}=V_{S}=-14 \mathrm{~V}$	-1.0	-0.15		-5.0	-0.15		
INPUT										
${ }^{\text {INH}}$	Input Current with Voltage High	$\mathrm{V}_{\text {in }}=2.4 \mathrm{~V}$		-1.0	-0.0004		-1.0	-0.0004		$\mu \mathrm{A}$
		$V_{\text {in }}=15 \mathrm{~V}$			0.003	1.0		0.003	1.0	
IINL	Input Current with Voltage Low	$\mathrm{V}_{\text {in }}=0 \mathrm{~V}$		-1.0	-0.0004		-1.0	-0.0004		$\mu \mathrm{A}$

NOTE 1: Signals on V_{S}, V_{D}, or $V_{\text {in }}$ exceeding V^{+}or V^{-}will be clamped by internal diodes. Limit forward diode current to maximum current ratings.
2: Typical values are for design aid only, not guaranteed and not subject to production testing.
3: The algebraic convention whereby the most negative value is a minimum, and the most positive is a maximum, is used in this data sheet.
4: $I_{D(o n)}$ is leakage from driver into $O N$ switch.

[^299]NOTE: All typical values have been characterized but are not tested.

ELECTRICAL CHARACTERISTICS $\mathrm{V}^{+}=15 \mathrm{~V}, \mathrm{~V}^{-}=-15 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (Continued)

Symbol	Parameter	Test Conditions	DG201AA/DG202A			DG201AB, C/DG202B, C			Units
			Min	$\begin{array}{\|c\|} \hline \text { Typ } \\ \text { (Note 2) } \end{array}$	Max	Min	$\begin{array}{\|c\|} \text { Typ } \\ \text { (Note 2) } \end{array}$	Max	
DYNAMIC									
ton	Turn-ON Time	See Figure 3		480	600		480	600	ns
$\mathrm{t}_{\text {off }}$	Turn-OFF Time			370	450		370	450	ns
Q	Charge Injection	$C_{L}=1000 \mathrm{pF}, \mathrm{R}_{\mathrm{S}}=0, \mathrm{~V}_{\mathrm{S}}=0 \mathrm{~V}$		20			20		pC
$\mathrm{C}_{\text {S(off) }}$	Source OFF Capacitance	$\begin{aligned} & \mathrm{f}=140 \mathrm{kHz}, \mathrm{~V}_{\text {in }}=5 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{S}}=0 \mathrm{~V} \end{aligned}$		5.0			5.0		pF
$C_{D(\text { (ff) }}$	Drain OFF Capacitance	$\begin{aligned} & \mathrm{f}=140 \mathrm{kHz}, \mathrm{~V}_{\mathrm{in}}=5 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{D}}=0 \mathrm{~V} \\ & \hline \end{aligned}$		5.0			5.0		pF
$\begin{array}{\|l} \hline C_{D(\text { on })}+ \\ C_{S(0 n)} \\ \hline \end{array}$	Channel ON Capacitance	$\begin{aligned} & \mathrm{f}=140 \mathrm{kHz}, \mathrm{~V}_{\text {in }}=0 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{S}}=\mathrm{V}_{\mathrm{D}}=0 \mathrm{~V} \end{aligned}$		16			16		pF
DIRR	OFF Isolation	$\begin{aligned} & V_{\text {in }}=5 \mathrm{~V}, \mathrm{Z}_{\mathrm{L}}=75 \Omega \\ & \mathrm{~V}_{\mathrm{S}}=2.0 \mathrm{~V}, \mathrm{f}=100 \mathrm{kHz} \end{aligned}$		70			70		dB
CCRR	Crosstalk (Channel to Channel)			90			90		

SUPPLY

I^{+}	Positive Supply Current	All Channels ON or OFF		0.9	2		0.9	2	mA
1^{-}	Negative Supply Current		-1	-0.3		-1	-0.3		mA

$T_{A}=$ over operating temperature range
SWITCH

$\mathrm{V}_{\text {ANALOG }}$	Analog Signal Range			-15	15	-15	15	V
$\mathrm{R}_{\text {DS(on) }}$	Drain-Source ON Resistance	$\begin{aligned} & V_{D}= \pm 10 \mathrm{~V}, \mathrm{~V}_{\text {in }}=0.8 \mathrm{~V}(\mathrm{DG} 201 \mathrm{~A}) \\ & \mathrm{I}_{\mathrm{S}}=1 \mathrm{~mA}, \mathrm{~V}_{\text {in }}=2.4 \mathrm{~V} \text { (DG202) } \end{aligned}$			250		250	$\boldsymbol{\Omega}$
IS(off)	Source OFF Leakage Current	$\begin{aligned} & \mathrm{V}_{\text {in }}=2.4 \mathrm{~V} \\ & \text { (DG201A) } \\ & \mathrm{V}_{\text {in }}=0.8 \mathrm{~V} \\ & \text { (DG202) } \end{aligned}$	$\mathrm{V}_{S}=14 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=-14 \mathrm{~V}$		100		100	nA
			$\mathrm{V}_{S}=-14 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=14 \mathrm{~V}$	-100		-100		
${ }^{\text {D (off }}$)	Drain OFF Leakage Current		$\mathrm{V}_{S}=-14 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=14 \mathrm{~V}$		100		100	nA
			$\mathrm{V}_{S}=14 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=-14 \mathrm{~V}$	-100		-100		
ID(on) (Note 4)	Drain ON Leakage Current	$\begin{aligned} & \mathrm{V}_{\text {in }}=0.8 \mathrm{~V} \\ & (\mathrm{DG} 201 \mathrm{~A}) \\ & \mathrm{V}_{\text {in }}=2.4 \mathrm{~V} \\ & \text { (DG202) } \end{aligned}$	$V_{D}=V_{S}=14 \mathrm{~V}$		200		200	$\mu \mathrm{A}$
			$V_{D}=V_{S}=-14 V$	-200		-200		
INPUT								
1 NH	Input Current with Voltage High	$\mathrm{V}_{\text {in }}=2.4 \mathrm{~V}$		-10		-10		$\mu \mathrm{A}$
		$\mathrm{V}_{\text {in }}=15 \mathrm{~V}$			10		10	
INL	Input Current with Voltage Low	$\mathrm{V}_{\text {in }}=0 \mathrm{~V}$		-10		-10		$\mu \mathrm{A}$

NOTE 1: Signals on V_{S}, V_{D}, or $V_{\text {in }}$ exceeding V^{+}or V^{-}will be clamped by internal diodes. Limit forward diode current to maximum current ratings.
2: Typical values are for design aid only, not guaranteed and not subject to production testing.
3: The algebraic convention whereby the most negative value is a minimum, and the most positive is a maximum, is used in this data sheet.
4: $I_{D(o n)}$ is leakage from driver into $O N$ switch.

[^300]NOTE: All typical values have been characterized but are not tested.

TEST CIRCUITS

$$
v_{O}=v_{S} \frac{R_{L}}{R_{L}+R_{D S \text { (on) }}}
$$

Figure 3: $t_{\text {on }}$ and $t_{\text {off }}$ Switching Test

Figure 4: Charge Injection Test Circuit

[^301]

0096-7

Figure 5: Off Isolation Test Circuit

[^302]
GENERAL DESCRIPTION

The DG211 and DG212 are low cost, CMOS monolithic, QUAD SPST analog switches. These can be used in general purpose switching applications for communications, instrumentation, process control and computer peripheral equipment. Both devices provide true bidirectional performance in the ON condition and will block signals to 30 V peak-to-peak in the OFF condition. The DG211 and DG212 differ only in that the digital control logic is inverted, as shown in the truth table.

DG211 and DG212 are available in 16-pin Dual-In-Line plastic packages or 16-pin small outline packages and are rated for operation over $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$.

FEATURES

- Switches $\pm 15 \mathrm{~V}$ Analog Signals
- TTL Compatibility
- Logic Inputs Accept Negative Voltages
- RON ≤ 175 Ohm

ORDERING INFORMATION

Part Number	Temperature Range	Package
DG211CJ	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	16 -Pin Plastic DIP
$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	16 -Pin Plastic DIP	
DG212CJ	$0^{\circ} \mathrm{C}$ to $+38^{\circ} \mathrm{C}$	16 -Pin S.O.
DG211CY CY	$0^{\circ} \mathrm{C}$ to $+38^{\circ} \mathrm{C}$	16 -Pin S.O.

[^303]
ABSOLUTE MAXIMUM RATINGS

V^{+}to V^{-}	44V
$V_{\text {IN }}$ to Ground	$\mathrm{V}^{-}, \mathrm{V}^{+}$
V_{L} to Ground	-0.3V, 25V
V_{S} or V_{D} to V^{+}	0, -36V
V_{S} or V_{D} to V^{-}	0, 36V
$\mathrm{V}+$ to Ground	25V
V - to Ground	-25V
Current, Any Terminal Except S or D	30 mA
Continuous Current, S or D	20 mA
Peak Current, S or D (Pulsed at $1 \mathrm{msec}, 10 \%$ duty cycle max)	$.70 \mathrm{~mA}$
Storage Temperature	O $+125^{\circ} \mathrm{C}$

16 Pin Plasted with all leads soldered or welded to PC board.
** Derate $6.5 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $25^{\circ} \mathrm{C}$
NOTE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS $\left(T_{A}=25^{\circ} \mathrm{C}\right)$

Symbol	Parameter	$\begin{gathered} \text { Test Conditions } \\ \mathrm{V}_{1}=+15 \mathrm{~V}, \quad \mathrm{~V}_{2}=-15 \mathrm{~V}, \\ \mathrm{~V}_{\mathrm{L}}=+5 \mathrm{~V}, \text { GND } \end{gathered}$		Limits			Units
				MIN 1	TYP2	MAX	
SWITCH							
$\mathrm{V}_{\text {ANALOG }}$	Analog Signal Range	$\mathrm{V}-=-15 \mathrm{~V}, \mathrm{~V}_{\mathrm{L}}=+5 \mathrm{~V}$		-15		15	V
RDS(ON)	Drain-Source On Resistance	$\begin{aligned} & V_{D}= \pm 10 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=2.4 \mathrm{~V}-\mathrm{DG} 212 \\ & \mathrm{I}_{\mathrm{S}}=1 \mathrm{~mA}, \mathrm{~V}_{\mathrm{IN}}=0.8 \mathrm{~V}-\mathrm{DG} 211 \end{aligned}$			150	175	Ω
IS(off)	Source OFF Leakage Current	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=2.4 \mathrm{~V} \\ & \mathrm{DG} 211 \\ & \mathrm{~V}_{\mathrm{IN}}=0.8 \mathrm{~V} \\ & \mathrm{DG} 212 \end{aligned}$	$V_{S}=14 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=-14 \mathrm{~V}$		0.01	5.0	nA
			$\mathrm{V}_{S}=-14 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=14 \mathrm{~V}$	-5.0	-0.02		
$I_{\text {(off) }}$	Drain OFF Leakage Current		$V_{D}=14 \mathrm{~V}, \mathrm{~V}_{S}=-14 \mathrm{~V}$		0.01	5.0	
			$V_{D}=-14 \mathrm{~V}, \mathrm{~V}_{S}=14 \mathrm{~V}$	-5.0	-0.02		
$I_{\text {d }}(\mathrm{ON})$	Drain ON Leakage Current ${ }^{3}$	$\begin{aligned} & V_{S}=V_{D}=-14 \mathrm{~V}, \mathrm{~V}_{I N}=0.8 \mathrm{~V}, \mathrm{DG} 211 \\ & \mathrm{~V}_{\mathrm{IN}}=2.4 \mathrm{~V}, \mathrm{DG} 212 \end{aligned}$			0.1	5.0	
				-5.0	-0.15		
INPUT							
${ }_{\text {I }} \mathrm{NH}$	Input Current With Input Voltage High	$\mathrm{V}_{\text {IN }}=2.4 \mathrm{~V}$		-10	-0.0004		$\mu \mathrm{A}$
		$\mathrm{V}_{\text {IN }}=15 \mathrm{~V}$			0.003	1.0	
IINL	Input Current With Input Voltage Low	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$		-1.0	-0.0004		
DYNAMIC							
$\mathrm{t}_{\text {on }}$	Turn-ON Time	See Switching Time Test Circuit ${ }^{5}$$V_{S}=10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega, C_{L}=35 \mathrm{pF}$			460	1000	ns
$t_{\text {off1 }}$ $\mathrm{t}_{\mathrm{off}}$ 2	Turn-OFF Time				360	500	
					450		
$\mathrm{C}_{\text {S(off) }}$	Source OFF Capacitance				5		pF
$C_{D(\text { (off) }}$	Drain OFF Capacitance				5		
C_{D+S} (on)	Channel ON Capacitance				16		
OIRR	OFF Isolation ${ }^{4}$	$\begin{aligned} & V_{I N}=5 \mathrm{~V}, R_{L}=1 \mathrm{k} \Omega, C_{L}=15 \mathrm{pF}, \\ & V_{S}=1 \mathrm{VRMS}, f=100 \mathrm{kHz}^{2} \end{aligned}$			70		dB
CCRR	Crosstalk (Channel to Channel)				90		
SUPPLY							
$1+$	Positive Supply Current	$\mathrm{V}_{\mathrm{IN}}=0$ and 2.4 V			. 1	10	$\mu \mathrm{A}$
1^{-}	Negative Supply Current				. 1	10	
L	Logic Supply Current				. 1	10	

NOTES: 1. The algebraic convention whereby the most negative value is a minimum, and the most positive is a maximum, is used in this data sheet.
2. For design reference only, not 100% tested.
3. $\mathrm{I}_{\mathrm{D}(o n)}$ is leakage from driver into " ON " switch.
4. $O F F$ Isolation $=20 \log \frac{V_{S}}{V_{D}}, V_{S}=$ input to $O F F$ switch, $V_{D}=$ output.
5. Switching times only sampled.

INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. the warranty shall be exclusive and shall be in lieu of all other warranties, express, implied or statutory, including the implied warranties of MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.
NOTE: All typical values have been characterized but are not tested.

Switch output waveform shown for $\mathrm{V}_{\mathrm{S}}=$ constant with logic input waveform as shown. Note the V_{S} may be + or - as per switching time test circuit. V_{O} is the steady state output with switch on. Feedthrough via gate capacitance may result in spikes at leading and trailing edge of output waveform.

0278-5
Figure 4: Switching Time Test Circult

Figure 5: DG212 Schematic (1/4 as shown)

[^304]
GENERAL DESCRIPTION

The DG300A-303A family of monolithic CMOS switches are a truly compatible second source of the original manufacturer. The switches are latch-proof and are designed to block signals up to 30 volts peak-to-peak when OFF. Featuring low leakage and low power consumption, these switches are ideally suited for precision application in instrumentation, communication, data acquisition and batterypowered applications. Other key features include Break-Before-Make switching, TTL and CMOS compatibility, and low ON resistance. Single supply operation (for positive switch voltages) is possible by connecting V - to 0 volts.
The DG300A-DG303A family is available over commercial, industrial, and military temperature range.

FEATURES

- Low Power Consumption
- Break-Before-Make Switching $\mathrm{t}_{\text {off }} \mathbf{1 3 0} \mathbf{n s}$, $\mathrm{t}_{\text {on }} \mathbf{1 5 0} \mathbf{n s}$ Typical
- TTL, CMOS Compatible
- Low RDS(on) ($\leq 50 \Omega$)
- Single Supply Operation
- True Second Source

ORDERING INFORMATION

Part Number	Temperature Range	Package
DG300A/301A/ $302 A / 303 A A K$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	14 -Pin CERDIP
DG300A/301A/ $302 \mathrm{~A} / 303 A B K$	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	14 -Pin CERDIP
DG300A/301A/ $302 \mathrm{~A} / 303 A C K$	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	14 -Pin CERDIP
DG300A/301A/ $302 A / 303 A C J$	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	14 -Pin Plastic DIP
DG300A/301AAA	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	10 -Pin Metal Can
DG300A/301ABA	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	10 -Pin Metal Can
DG300A/301ACA	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	10 -Pin Metal Can

Truth Table

Logic	Switch
0	OFF
1	ON

Logic " 0 " $\leq 0.8 \mathrm{~V}$
Logic " 1 " $\geq 4.0 \mathrm{~V}$
*Switches Shown for Logic "1" Input
Figure 1: Functional Diagrams

0091-2

Dual-In-Line Package

Figure 2: Pin Configurations

[^305]

Logic	SW1	SW2
0	OFF	ON
1	ON	OFF

[^306]ABSOLUTE MAXIMUM RATINGSV＋to V^{-}．． 44 V
V－to Ground $-25 \mathrm{~V}$
V_{IN} to Ground（Note 1）

\qquad $\left(V^{-}-2 V\right),\left(V^{+}+2 V\right)$
V_{S} or V_{D} to V^{+}（Note 1） $+2,(V--2 V)$
V_{S} or V_{D} to V^{-}（Note 1） $-2,(V++2 V)$Current，Any Terminal Except S or D ．．．．．．．．．．．．．．． 30 mAContinuous Current，S or D ．．．．．．．．．．．．．．．．．．．．．．．． 30 mAPeak Current，S or D（Pulsed at $1 \mathrm{~ms}, 10 \%$ duty cycle max）100 mA
Operating TemperatureC Suffix$.0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
B Suffix $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
A Suffix $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

Storage Temperature

C Suffix A \＆B Suffix．	$\begin{aligned} & -65^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\ & -65^{\circ} \mathrm{C} \text { to }+150^{\circ} \mathrm{C} \end{aligned}$
Lead Temperature（Soldering，10s）	$300^{\circ} \mathrm{C}$
Power Dissipation＊	
CERDIP Package＊＊	． 825 mW
Plastic Package＊＊＊	470 mW
Metal Can＊＊＊＊	450 mW

Metal Can＊＊＊＊ 450 mW
＊Device mounted with all leads soldered or welded to PC board．
${ }^{*}$ Derate $11 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $75^{\circ} \mathrm{C}$
＊＊＊Derate $6.5 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $25^{\circ} \mathrm{C}$
＊＊＊＊Derate $6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $75^{\circ} \mathrm{C}$
NOTE：Stresses above those listed under＂Absolute Maximum Ratings＂ may cause permanent damage to the device．These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied．Exposure to absolute maximum rating conditions for extended peri－ ods may affect device reliability．

ELECTRICAL CHARACTERISTICS $\mathrm{V}^{+}=15 \mathrm{~V}, \mathrm{~V}^{-}=-15 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Symbol	Parameter	Test Conditions	DG300A－DG303AA			DG300A－DG303AB／C			Units
			Min	Typ （Note 2）	Max	Min	$\begin{array}{\|c\|} \hline \text { Typ } \\ \text { (Note 2) } \end{array}$	Max	

SWITCH

$V_{\text {ANALOG }}$	Analog Signal Range	$1 \mathrm{~s}=10 \mathrm{~mA}, \mathrm{~V}_{1 \mathrm{~N}}=0.8 \mathrm{~V}$ or 4 V	－15		15	－15		15	V
$\mathrm{R}_{\text {DS（on）}}$	Drain－Source ON Resistance	$\begin{array}{\|l} \hline \mathrm{I}_{\mathrm{S}}=-10 \mathrm{~mA}, \\ \mathrm{~V}_{\mathrm{D}}=10 \mathrm{~V} \\ \hline \mathrm{IS}=10 \mathrm{~mA}, \\ \mathrm{~V}_{\mathrm{D}}=-10 \mathrm{~V} \\ \hline \end{array}$		30	50		30	50	Ω
				30	50		30	50	Ω
IS（off）	Source OFF Leakage Current	$\begin{aligned} & V_{S}=14 V \\ & V_{D}=-14 V \end{aligned}$		0.1	1		0.1	5	
		$\begin{aligned} & V_{\mathrm{IN}}=0.8 \mathrm{~V} \text { or } \mathrm{V}_{\mathrm{S}}=-14 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{IN}}=4.0 \mathrm{~V} \mathrm{~V}_{\mathrm{D}}=14 \mathrm{~V} \end{aligned}$	－1	－0．1		－5	－0．1		nA
ID（off）	Drain OFF Leakage Current	$\begin{array}{\|l} V_{S}=-14 \mathrm{~V}, \\ V_{D}=14 \mathrm{~V} \\ \hline \end{array}$		0.1	1		0.1	5	
		$\begin{array}{\|l} \hline V_{S}=14 V, \\ V_{D}=-14 V \\ \hline \end{array}$	－1	－0．1		－5	－0．1		
ID（on）	Drain ON Leakage Current	$V_{D}=V_{S}=14 \mathrm{~V}$		0.1	1		0.1	5	
		$\mathrm{V}_{\mathrm{D}}=\mathrm{V}_{\mathrm{S}}=-14 \mathrm{~V}$	－2	－0．1		－5	－0．1		

INPUT

INH	Input Current w／Voltage High	$\mathrm{V}_{\mathrm{IN}}=5.0 \mathrm{~V}$	－1	－0．001		－1	－0．001		$\mu \mathrm{A}$
		$\mathrm{V}_{\mathrm{IN}}=15 \mathrm{~V}$		0.001	1		0.001	1	
INL	Input Current w／Voltage Low	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$	－1	－0．001		－1	－0．001		$\mu \mathrm{A}$

DYNAMIC

ton	Turn－ON Time	See Figure 5	150	300	150	ns
toff	Turn－OFF Time		130	250	130	ns
$t_{\text {on }}-t_{\text {off }}$	Break－Before－Make Interval	See Figure 4 DG301A／303A	50		50	ns
Q	Charge Injection	$\mathrm{C}_{\mathrm{L}}=1 \mu \mathrm{~F}, \mathrm{R}_{\mathrm{S}}=0, \mathrm{~V}_{\mathrm{S}}=0$	3		3	mV
$\mathrm{C}_{\text {S（off）}}$	Source OFF Capacitance	$\mathrm{f}=1 \mathrm{MHz}, \mathrm{V}_{S}=0$	14		14	pF
$\mathrm{C}_{\text {D（off）}}$	Drain OFF Capacitance	$\mathrm{V}_{\text {IN }}=0.8 \mathrm{~V} \mathrm{~V}_{\mathrm{D}}=0$	14		14	pF
$\mathrm{C}_{\mathrm{D} \text {（on）}}+\mathrm{C}_{\text {S（on）}}$	Channel ON Capacitance	$V_{I N}=4.0 \mathrm{~V} / V_{S}=V_{D}=0$	40		40	pF

[^307]ELECTRICAL CHARACTERISTICS $\mathrm{V}^{+}=15 \mathrm{~V}, \mathrm{~V}^{-}=-15 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (Continued)

Symbol	Parameter	Test Conditions		DG300A-DG303AA			DG300A-DG303AB/C			Units
				Min	$\begin{array}{\|c\|} \hline \text { Typ } \\ \text { (Note 2) } \\ \hline \end{array}$	Max	Min	$\begin{array}{\|c\|} \text { Typ } \\ \text { (Note 2) } \\ \hline \end{array}$	Max	
DYNAMIC (Continued)										
$\mathrm{CIIN}^{\text {IN }}$	Input Capacitance	$\mathrm{f}=1 \mathrm{MHz}$	$\mathrm{V}_{\text {IN }}=0$		6			6		pF
			$\mathrm{V}_{\text {IN }}=15 \mathrm{~V}$		7			7		
DIRR (Note 4)	OFF Isolation	$\begin{aligned} & V_{I N}=0, R_{L}=1 k \\ & V_{S}=1 V_{R M S}, f=500 \mathrm{kHz} \end{aligned}$			62			62		dB
CCRR	Crosstalk (Channel to Channel)				74			74		
SUPPLY										
1+	Positive Supply Current	$\begin{aligned} & V_{I N}=4 V(\text { One Input }) \\ & \text { (All Others }=0) \end{aligned}$			0.23	0.5		0.23	0.5	mA
1^{-}	Negative Supply Current			-10	-0.001		-10	-0.001		$\mu \mathrm{A}$
$1+$	Positive Supply Current	$\mathrm{V}_{\mathrm{IN}}=0.8 \mathrm{~V}$ (All inputs)			0.001	10		0.001	10	$\mu \mathrm{A}$
1-	Negative Supply Current			-10	-0.001		-10	-0.001		$\mu \mathrm{A}$

$T_{A}=$ over operating temperature range

			DG300A-DG303AA			DG300A-DG303AB/C			Units
Symbol	Parameter	Test Conditions	Min	Typ (Note 2)	Max	Min	Typ (Note 2)	Max	

SWITCH

$\mathrm{V}_{\text {ANALOG }}$	Analog Signal Range	$\mathrm{I}_{\mathrm{S}}=10 \mathrm{~mA}, \mathrm{~V}_{1 \mathrm{~N}}=0.8 \mathrm{~V}$ or 4 V		-15	15	-15	15	V
$\mathrm{R}_{\text {DS(on) }}$	Drain-Source ON Resistance	$\left\{\begin{array}{l} \mathrm{V}_{\mathrm{IN}}=0.8 \mathrm{~V} \\ \text { or } \\ \mathrm{V}_{\mathrm{IN}}=4.0 \mathrm{~V} \end{array}\right.$	$\mathrm{I}_{\mathrm{S}}=-10 \mathrm{~mA}, \mathrm{~V}_{\mathrm{D}}=10 \mathrm{~V}$		75		75	Ω
			$\mathrm{I}_{\mathrm{S}}=10 \mathrm{~mA}, \mathrm{~V}_{\mathrm{D}}=-10 \mathrm{~V}$		75		75	
S(off)	Source OFF Leakage Current		$\mathrm{V}_{S}=14 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=-14 \mathrm{~V}$		100		100	nA
			$\mathrm{V}_{S}=-14 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=14 \mathrm{~V}$	-100		-100		
D(off)	Drain OFF Leakage Current		$\mathrm{V}_{S}=-14 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=14 \mathrm{~V}$		100		100	nA
			$V_{S}=14 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=-14 \mathrm{~V}$	-100		-100		
D(on)	Drain ON Leakage Current		$V_{D}=V_{S}=14 \mathrm{~V}$		100		100	nA
			$V_{D}=V_{S}=-14 \mathrm{~V}$	-200		-200		
INPUT								
INH	Input Current w/Voltage High	$\mathrm{V}_{\mathrm{IN}}=5.0 \mathrm{~V}$		-1				A
		$\mathrm{V}_{\mathrm{IN}}=15 \mathrm{~V}$			1			
IINL	Input Current w/Voltage Low	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$		-1				$\mu \mathrm{A}$

SUPPLY

$1+$	Positive Supply Current	$\mathrm{V}_{\mathrm{IN}}=4 \mathrm{~V}(\text { One Input })$ (All Others $=0$)		1				mA
$1-$	Negative Supply Current		-100					$\mu \mathrm{A}$
$1+$	Positive Supply Current	$\mathrm{V}_{\mathrm{IN}}=0.8 \mathrm{~V}$ (All Inputs)		100				$\mu \mathrm{A}$
$1-$	Negative Supply Current		-100					$\mu \mathrm{A}$

NOTE 1: Signals on $\mathrm{V}_{\mathrm{S}}, \mathrm{V}_{\mathrm{D}}$, or $\mathrm{V}_{\mathbb{N}}$ exceeding V^{+}or V^{-}will be clamped by internal diodes. Limit diode forward current to maximum current ratings.
2: For design only, not 100% tested.
3: The algebraic convention whereby the most negative value is a minimum, and the most positive value is a maximum, is used in this data sheet
4: OFF isolation $=20 \log V_{S} / V_{D}$, where $V_{S}=$ input to OFF switch, and $V_{D}=$ output.
INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. the warranty shall be exclusive and shall be in lieu of all other warranties, express, implied or statutory, including the implied warranties of MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.
NOTE: All typical values have been characterized but are not tested.

SWITCHING INFORMATION

0091-11

$\Delta \mathrm{V}_{\mathrm{O}} \Delta$ Measured Voltage Error Due to Charge Injection.

The Error Voltage in Coulombs is $\Delta \mathrm{Q}=\mathrm{C}_{\mathrm{L}} \times \Delta \mathrm{V}_{\mathrm{O}}$.
Figure 3: Charge Injection Test Circuit

0091-13
Figure 4: Break-Before-Make Switching Test SPDT (DG301A, DG303A)

INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

NOTE: All typical values have been characterized but are not tested.

DGM181-186, DGM189-191 High-Speed CMOS Analog Switch

GENERAL DESCRIPTION

The DGM181 family of CMOS monolithic switches utilizes Intersil's latch-free junction isolated processing to combine the speed of the hybrid DG181 family with the reliability and low power consumption of a monolithic CMOS construction. These devices, therefore, are a cost effective replacement for the DG181 family.
The DGM181 family has a high state threshold of 2.4 V ; and a low state of +0.8 V .
Very low quiescent power is dissipated in either the ON or OFF state of the switch. Maximum power supply current is $10 \mu \mathrm{~A}$ from any supply, and typical quiescent currents are in the 10 nA range. OFF leakages are typically less than 200pA at $25^{\circ} \mathrm{C}$.

ORDERING INFORMATION

Type	Standard Part Number	rDS(on) Max at $25^{\circ} \mathbf{C}$
Dual SPST	DGM181BX	50
Dual DPST	DGM182AX	50
	DGM182BX	75
	DGM184BX	50
Dual SPDT	DGM185AX	50
	DGM185BX	75
	DGM190BX	50
	DGM191AX	50
	DGM191BX	75

FEATURES

- Pin and Function Replacement for DG181 Family
- Meets or Exceeds All DG181 Family Specifications With Monolithic Reliability
- Low Power Consumption
- 1nA Leakage From Signal Channel in Both ON and OFF States
- TTL, DTL, RTL Direct Drive Capability
- $\mathrm{t}_{\text {on }}, \mathrm{t}_{\text {off }}<150 \mathrm{~ns}$, Break-Before-Make Action
- Crosstalk and Open Load Switch Isolation $>50 \mathrm{~dB}$ at 10 MHz (75Ω Load)

0279-1
NOTE: $1 / 2$ of DGM182
Figure 1: Functional Diagram (Typical Channel)

[^308]
DUAL SPST (DGM 181, 182)

(OUTLINE DWG TO-100)

Dual-In-Line Package

SWITCH STATES ARE FOR LOGIC " 1 " INPUT
DUAL DPST (DGM184, 185)
Dual-In-Line Package

0279-6
(OUTLINE DWGS JE, PE)
SWITCH STATES ARE FOR LOGIC " 1 " INPUT
DUAL SPDT (DGM190, 191)

(OUTLINE DWGS JE, PE)
SWITCH STATES ARE FOR LOGIC " 1 " INPUT
Figure 2: Pin Configuration and Switching State Diagram

DGM189-191

ABSOLUTE MAXIMUM RATINGS

V+-V- 36 V

$V_{D}-V^{-}$ 33V

$\mathrm{V}_{\mathrm{L}} \mathrm{V}^{-}$.. 36 V
$\mathrm{V}_{\mathrm{L}}-\mathrm{V}_{\text {IN }}$... 30V
$\mathrm{V}_{\mathrm{L}}-\mathrm{V}_{\mathrm{GND}}$.. 20 V

GND-V- .. . 27 V

GND-VIN 20 V
Current (Any Terminal) . 30mA
Storage Temperature $\ldots-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ Operating Temperature $. \ldots-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ Lead Temperature (Soldering, 10sec) 300${ }^{\circ} \mathrm{C}$ Power Dissipation* 450 (TW), 750 (FLAT), 825(DIP)mW

* Device mounted with all leads welded or soldered to PC board. Derate $6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ (TW); $10 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ (FLAT); $11 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ (DIP) above $75^{\circ} \mathrm{C}$.

NOTE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
ELECTRICAL CHARACTERISTICS ($\mathrm{V}^{+}=+15 \mathrm{~V}, \mathrm{~V}^{-}=-15 \mathrm{~V}, \mathrm{~V}_{\mathrm{L}}=5 \mathrm{~V}$, unless noted)

Parameter	Device No.	Test Conditions (Note 1)	A Series			B Series			Units
			$-55^{\circ} \mathrm{C}$	$+25^{\circ} \mathrm{C}$	$+125^{\circ} \mathrm{C}$	$-20^{\circ} \mathrm{C}$	$+25^{\circ} \mathrm{C}$	$+85^{\circ} \mathrm{C}$	
SWITCH									
IS(off)	DGM181, 184, 190	$\begin{aligned} & \mathrm{V}_{\mathrm{S}}=7.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=-7.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IN}}=\text { "OFF" } \end{aligned}$		± 1	100		± 2.0	200	nA
	DGM182, 185, 191	$\begin{aligned} & V_{S}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=-10 \mathrm{~V} \\ & \mathrm{~V}_{\text {IN }}=\text { "OFF" } \end{aligned}$		± 1	100		± 2	200	nA
lD(off)	DGM181, 184, 190	$\begin{aligned} & \mathrm{V}_{\mathrm{S}}=7.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=-7.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IN}}=\text { "OFF" } \end{aligned}$		± 1	100		± 2	200	nA
	DGM182, 185, 191	$\begin{aligned} & V_{S}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=-10 \mathrm{~V} \\ & \mathrm{~V}_{\text {IN }}=\text { "OFF" } \end{aligned}$		± 1	100		± 2	200	nA
$\mathrm{ID}_{\mathrm{D}(\text { on) }}+\mathrm{I}_{\text {S(on) }}$	DGM181, 184, 190	$\mathrm{V}_{\mathrm{D}}=\mathrm{V}_{\mathrm{S}}=-7.5 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=$ "ON"		± 2	± 200		± 5	500	nA
	DGM182, 185, 191	$\mathrm{V}_{\mathrm{D}}=\mathrm{V}_{\mathrm{S}}=-10 \mathrm{~V}, \mathrm{~V}_{\mathbf{I N}}=$ ' ON "		± 2	± 200		± 5	500	nA
INPUT									
IINL	ALL	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$		± 1.0	20		10	20	$\mu \mathrm{A}$
INH	ALL	$\mathrm{V}_{1 \mathrm{~N}}=5 \mathrm{~V}$		± 1.0	20		10	20	$\mu \mathrm{A}$
DYNAMIC									
ton	DGM181, 184, 190 DGM182, 185, 191	See switching time test circuit		450			500		ns
$\mathrm{t}_{\text {off }}$	ALL			250			275		
$\mathrm{C}_{S(\text { (off) }}$	$\begin{aligned} & \text { DGM181, 182, 184, 185, } \\ & 190,191 \end{aligned}$	$V_{S}=-5 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=0, f=1 \mathrm{MHz}$	5 pF typical						
$C_{D(\text { fff })}$		$\mathrm{V}_{\mathrm{D}}=+5 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=0, f=1 \mathrm{MHz}$	6 pF typical						pF
$\mathrm{C}_{\mathrm{D} \text { (on) }}+\mathrm{C}_{\text {S(on) }}$		$\mathrm{V}_{\mathrm{D}}=\mathrm{V}_{S}=0, f=1 \mathrm{MHz}$	11 pF typical						
OFF Isolation		$\mathrm{R}_{\mathrm{L}}=75 \Omega, \mathrm{C}_{\mathrm{L}}=3 \mathrm{pF}$	Typically $>50 \mathrm{~dB}$ at 10 MHz						
SUPPLY									
1^{+}	ALL	$\mathrm{V}_{1 \mathrm{~N}}=5 \mathrm{~V}$	10	10	100		100		$\mu \mathrm{A}$
1^{-}	ALL		10	10	100		100		
LL	ALL		10	10	100		100		
IGND	ALL		10	10	100		100		
1^{+}	ALL	$\mathrm{V}_{1 \mathrm{~N}}=0 \mathrm{~V}$	10	10	100		100		
$1-$	ALL		10	10	100		100		
I_{L}	ALL		10	10	100		100		
IGND	ALL		10	10	100		100		

[^309]NOTE: All typical values have been characterized but are not tested.

DGM181－186
次 DGM189－191
ELECTRICAL CHARACTERISTICS MAXIMUM RESISTANCES（DSS（ON）

Device Number	Conditions（Note 1） $\mathbf{V}+=\mathbf{1 5 V}, \mathbf{V}$			Military Temperature			Industrial Temperature		

APPLICATION COMMENT：The charge injection in these switches is of opposite polarity to that of the standard DG180 family，but considerably smaller．

SWITCHING TIME TEST CIRCUIT

Switch output waveform shown for $\mathrm{V}_{\mathrm{S}}=$ constant with logic input waveform as shown．Note that V_{S} may be + or －as per switching time test circuit． V_{O} is the steady state
output with switch on．Feedthrough via gate capacitance may result in spikes at leading and trailing edge of output waveform．

0279－12
Figure 3：Logic Input for＂OFF＂to＂ON＂Condition（DGM181／182 Shown）

0279－13
Figure 4：Switching Time Test Circuit

[^310]
SWITCH STATES

DUAL SPST DGM181/182

Test Conditions
DGM181/182 $\mathrm{V}_{\text {II }}$ "ON" $=0.8 \mathrm{~V}$ $\mathrm{~V}_{\text {IN }}$ "OFF" $=2.4 \mathrm{~V}$ All Channels
All Channels

DUAL DPST DGM184/185
Test Conditions

DGM184/185	
$V_{I N}$ "ON" $=2.4 \mathrm{~V}$	All Channels
$V_{\mathbb{I N}}$ "OFF" $=0.8 \mathrm{~V}$	All Channels

DUAL SPDT DGM190/191
Test Conditions
DGM190/191

$\mathrm{V}_{\text {IN }}$ "ON" $=2.4 \mathrm{~V}$	Channels $1 \& 2$
$\mathrm{~V}_{\text {IN }}$ "ON" $=0.8 \mathrm{~V}$	Channels $3 \& 4$
$\mathrm{~V}_{\text {IN }}$ "OFF" $=2.4 \mathrm{~V}$	Channels $3 \& 4$
$\mathrm{~V}_{\text {IN }}$ "OFF" $=0.8 \mathrm{~V}$	Channels $1 \& 2$

GENERAL DESCRIPTION

The IH311 and IH312 are CMOS, monolithic, QUAD, SPST analog switches for use in high-speed switching applications for communications, instrumentation, process control and computer peripherals. Both devices provide true bidirectional performance in the ON condition and will block signals to 30 V peak-to-peak in the OFF condition. The IH311 and IH312 differ only in that the digital control logic is inverted, as shown in the truth table.

The IH311 and IH312 are available in 16-pin Dual-In-Line packages and are offered in both military and commercial temperature ranges.

FEATURES

- Switches \pm 15V Analog Signals
- TTL Compatibility
- Logic Inputs Accept Negative Voltages
- RONS 175 Ohm

ORDERING INFORMATION

Part Number	Temperature Range	Package
IH 311 MJE	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16 Pin CERDIP
IH 311 CJE	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	16 Pin CERDIP
IH 311 CPE	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	16 Pin Plastic DIP
IH 312 MJE	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16 Pin CERDIP
IH 312 CJE	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	16 Pin CERDIP
IH 312 CPE	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	16 Pin Plastic DIP

ABSOLUTE MAXIMUM RATINGS

V+ to V^{-}
$V_{I N}$ to Ground
V_{L} to Ground . ${ }^{+}, V^{+}$
................................ $-0.3 \mathrm{~V}, 25 \mathrm{~V}$

V_{S} or V_{D} to V^{-} . $0,40 \mathrm{~V}$
$\mathrm{V}+$ to Ground .25 V
V- to Ground . - 25 V
Current, Any Terminal Except S or D 30mA
Continuous Current, S or D . 20mA

Peak Current, S or D (Pulsed at $1 \mathrm{msec}, 10 \%$ duty cycle max) 70mA
Storage Temperature $-65^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Operating Temperature $\ldots \ldots . . \ldots-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Power Dissipation (Package)* 16 Pin Plastic DIP**
.470 mW

* Device mounted with all leads soldered or welded to PC board.
** Derate $6.5 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $25^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS - MILITARY TEMPERATURE RANGE

Symbol	Parameter	$\begin{gathered} \text { Test Conditions } \\ \mathrm{V}_{1}=+15 \mathrm{~V}, \mathrm{~V}_{2}=-15 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{L}}=5 \mathrm{~V}, \mathrm{GND} \end{gathered}$		Limits			Units
				$-55^{\circ} \mathrm{C}$	$+25^{\circ} \mathrm{C}$	$+125^{\circ} \mathrm{C}$	
SWITCH							
$\mathrm{V}_{\text {ANALOG }}$	Analog Signal Range	$\mathrm{V}^{-}=-15 \mathrm{~V}, \mathrm{~V}_{\mathrm{L}}=+5 \mathrm{~V}$			± 15		V
R ${ }_{\text {DS(ON) }}$	Drain-Source On Resistance	$\begin{aligned} & V_{D}= \pm 10 \mathrm{~V}, \mathrm{~V}_{I N}=2.4 \mathrm{~V}-\mathrm{H} 312 \\ & \mathrm{IS}_{\mathrm{S}}=1 \mathrm{~mA}, \mathrm{~V}_{I N}=0.8 \mathrm{~V}-\mathrm{H} 311 \end{aligned}$		$\begin{aligned} & 150 \\ & 175 \\ & \hline \end{aligned}$	$\begin{aligned} & 150 \\ & 175 \end{aligned}$	$\begin{aligned} & 200 \\ & 250 \\ & \hline \end{aligned}$	Ω
$I_{\text {S }}$ (off)	Source OFF Leakage Current		$\mathrm{V}_{\mathrm{S}}=14 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=-14 \mathrm{~V}$		± 1	100	nA
			$\mathrm{V}_{\mathrm{S}}=-14 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=14 \mathrm{~V}$		± 1	100	
ID(off)	Drain OFF Leakage Current		$V_{D}=14 \mathrm{~V}, \mathrm{~V}_{S}=-14 \mathrm{~V}$		± 1	100	
			$\mathrm{V}_{\mathrm{D}}=-14 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}=14 \mathrm{~V}$		± 1	100	
$\mathrm{ID}(\mathrm{ON})$	Drain ON Leakage Current ${ }^{3}$	$\begin{aligned} & V_{S}=V_{D}=-14 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=0.8 \mathrm{~V}, \mathrm{IH} 311 \\ & \mathrm{~V}_{\mathrm{IN}}=2.4 \mathrm{~V}, \mathrm{IH} 312 \end{aligned}$			± 2	200	
					± 2	200	
INPUT							
IINH	Input Current With Input Voltage High	$\mathrm{V}_{1 \mathrm{~N}}=2.4 \mathrm{~V}$		10	± 1	10	$\mu \mathrm{A}$
		$\mathrm{V}_{\text {IN }}=15 \mathrm{~V}$		10	± 1	10	
I ${ }_{\text {ILL }}$	Input Current With Input	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$		10	± 1	10	
DYNAMIC							
$\mathrm{t}_{\text {on }}$	Turn-ON Time	See Switching Time Test Circuit $V_{S}=10 \mathrm{~V}, R_{L}=1 \mathrm{k} \Omega, C_{L}=35 \mathrm{pF}$			300		ns
$t_{0 f f 1}$$t_{\text {off2 }}$	Turn-OFF Time				150		
$\mathrm{C}_{\text {S(off) }}$	Source OFF Capacitance	$\begin{aligned} & V_{S}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=5 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}^{2} \\ & \mathrm{~V}_{\mathrm{D}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=5 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}^{2} \\ & \mathrm{~V}_{\mathrm{D}}=\mathrm{V}_{\mathrm{S}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=0 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}^{2} \end{aligned}$			5		pF
$\mathrm{C}_{\text {(0ff) }}$	Drain OFF Capacitance				5		
$\mathrm{C}_{\mathrm{D}+\mathrm{S} \text { (on) }}$	Channel ON Capacitance				16		
OIRR	OFF Isolation ${ }^{4}$	$\begin{aligned} & V_{I N}=5 \mathrm{~V}, R_{L}=1 \mathrm{k} \Omega, C_{L}=15 \mathrm{pF}, \\ & V_{S}=1 \mathrm{VRMS}, f=100 \mathrm{kHz} 2 \end{aligned}$			70		dB
CCRR	Crosstalk (Channel to Channel)				90		
SUPPLY							
$1+$	Positive Supply Current	$\mathrm{V}_{\text {IN }}=0$ and 2.4 V		10	1	10	$\mu \mathrm{A}$
$1-$	Negative Supply Current			10	1	10	
IL	Logic Supply Current			10	1	10	

NOTES: 1. The algebraic convention whereby the most negative value is a minimum, and the most positive is a maximum, is used in this data sheet.
2. For design reference only, not 100% tested.
3. $I_{D(o n)}$ is leakage from driver into "ON" switch.
4. $O F F$ Isolation $=20 \log \frac{V_{S}}{V_{D}}, V_{S}=$ input to $O F F$ switch, $V_{D}=$ output.

[^311]
ABSOLUTE MAXIMUM RATINGS

V^{+}to V^{-}．．44V
$\mathrm{V}_{\text {IN }}$ to V^{-}．
V_{L} to Ground $-0.3 \mathrm{~V}, 25 \mathrm{~V}$

V_{S} or V_{D} to $\mathrm{V}^{-} \ldots \ldots .0,40 \mathrm{~V}$

Current，Any Terminal Except S or D ．．．．．．．．．．．．．．．．30mA
Continuous Current，S or D ．．．．．．．．．．．．．．．．．．．．．．．．．．20mA

Peak Current，S or D
（Pulsed at 1msec，10\％duty cycle max）
70 mA

Storage Temperature
$65^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Operating Temperature ．．．．．．．．．．．．．．．．．．．． $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Power Dissipation（Package）＊
16 Pin Plastic DIP＊＊
470 mW
＊Device mounted with all leads soldered or welded to PC board．
＊＊Derate $6.5 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $25^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS－COMMERCIAL TEMPERATURE RANGE

Symbol	Parameter	$\begin{gathered} \text { Test Conditions } \\ \mathrm{V}_{1}=+15 \mathrm{~V}, \mathrm{~V}_{2}=-15 \mathrm{~V}, \\ \mathrm{~V}_{\mathrm{L}}=5 \mathrm{~V}, \mathrm{GND} \end{gathered}$		Limits		Units
				$+25^{\circ} \mathrm{C}$	$+70^{\circ} \mathrm{C}$	
SWITCH						
$\mathrm{V}_{\text {ANALOG }}$	Analog Signal Range	$\mathrm{V}^{-}=-15 \mathrm{~V}, \mathrm{~V}_{\mathrm{L}}=+5 \mathrm{~V}$		± 15		V
RDS（ON）	Drain－Source On Resistance	$\begin{aligned} & \mathrm{V}_{\mathrm{D}}= \pm 10 \mathrm{~V}, \mathrm{~V}_{I N}=2.4 \mathrm{~V}-\mathrm{IH} 212 \\ & \mathrm{I}_{\mathrm{S}}=1 \mathrm{~mA}, \mathrm{~V}_{\mathrm{IN}}=0.8 \mathrm{~V}-\mathrm{IH} 211 \end{aligned}$		175	200	Ω
IS（off）	Source OFF Leakage Current	$\begin{aligned} & \mathrm{V}_{1 N}=2.4 \mathrm{~V} \\ & I H 311 \\ & V_{I N}=0.8 \mathrm{~V} \\ & \mathrm{IH} 312 \end{aligned}$	$\mathrm{V}_{S}=14 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=-14 \mathrm{~V}$	± 5	100	nA
			$\mathrm{V}_{S}=-14 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=14 \mathrm{~V}$	± 5	100	
ID（off）	Drain OFF Leakage Current		$\mathrm{V}_{\mathrm{D}}=14 \mathrm{~V}, \mathrm{~V}_{S}=-14 \mathrm{~V}$	± 5	100	
			$\mathrm{V}_{\mathrm{D}}=-14 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}=14 \mathrm{~V}$	± 5	100	
ID（ON）	Drain ON Leakage Current ${ }^{3}$	$\begin{aligned} & V_{S}=V_{D}=-14 \mathrm{~V}, \mathrm{~V}_{I N}=0.8 \mathrm{~V}, \mathrm{IH} 211 \\ & V_{I N}=2.4 \mathrm{~V}, \mathrm{IH} 212 \end{aligned}$		± 5	200	
				± 5	200	
INPUT						
linh	Input Current With Input Voltage High	$\mathrm{V}_{1 \mathrm{~N}}=2.4 \mathrm{~V}$		± 1	－10	$\mu \mathrm{A}$
		$\mathrm{V}_{\text {IN }}=15 \mathrm{~V}$		± 1	10	
$\mathrm{I}_{1} \mathrm{NL}$	Input Current With Input Voltage Low	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$		± 1	－10	
DYNAMIC						
$\mathrm{t}_{\text {on }}$	Turn－ON Time	See Switching Time Test Circuit ${ }^{5}$ $V_{S}=10 \mathrm{~V}, R_{L}=1 \mathrm{k} \Omega, C_{L}=35 \mathrm{pF}$		500		ns
$\begin{aligned} & \mathrm{t}_{\text {off1 }} \\ & \mathrm{t}_{\text {off2 }} \\ & \hline \end{aligned}$	Turn－OFF Time			250		
$\mathrm{C}_{\text {S（off）}}$	Source OFF Capacitance	$\begin{aligned} & V_{S}=0 V, V_{I N}=5 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}^{2} \\ & \mathrm{~V}_{\mathrm{D}}=0 \mathrm{~V}, \mathrm{~V}_{I N}=5 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}^{22} \\ & \mathrm{~V}_{\mathrm{D}}=\mathrm{V}_{\mathrm{S}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=0 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}^{2} \end{aligned}$		5		pF
$C_{D(\text {（ff）}}$	Drain OFF Capacitance			5		
$C_{D+S \text {（on）}}$	Channel ON Capacitance			16		
OIRR	OFF Isolation ${ }^{4}$	$\begin{aligned} & V_{I N}=5 \mathrm{~V}, R_{L}=1 \mathrm{k} \Omega, C_{L}=15 \mathrm{pF}, \\ & V_{S}=1 \mathrm{VRMS}, f=100 \mathrm{kHz}^{2} \end{aligned}$		70		dB
CCRR	Crosstalk （Channel to Channel）			90		
SUPPLY						
1^{+}	Positive Supply Current	$\mathrm{V}_{1 \mathrm{~N}}=0$ and 2.4 V		± 1	10	$\mu \mathrm{A}$
1^{-}	Negative Supply Current			± 1	－10	
IL	Logic Supply Current			± 1	10	

NOTES：1．The algebraic convention whereby the most negative value is a minimum，and the most positive is a maximum，is used in this data sheet．
2．For design reference only，not 100% tested．
3． $\mathrm{I}_{\mathrm{D}(o n)}$ is leakage from driver into＂ON＂switch．
4．OFF Isolation $=20 \log \frac{\mathrm{~V}_{\mathrm{S}}}{\mathrm{V}_{\mathrm{D}}}, \mathrm{V}_{\mathrm{S}}=$ input to OFF switch， $\mathrm{V}_{\mathrm{D}}=$ output．
5．Switching times only sampled．

Switch output waveform shown for $\mathrm{V}_{\mathrm{S}}=$ constant with logic input waveform as shown. Note the V_{S} may be + or - as per switching time test circuit. V_{O} is the steady state output with switch on. Feedthrough via gate capacitance may result in spikes at leading and trailing edge of output waveform.

*LOGIC SHOWN FOR DG211. INVERT FOR DG212
Figure 3: Switching Time Test Circuit Logic shown for IH311. Invert for IH312.

Figure 4: Switching Time Test Circuit

Figure 5: IH311 Schematic ($1 / 4$ as shown)

GENERAL DESCRIPTION

The IH401 is made up of 4 monolithically constructed combinations of a varactor type diode and an N-channel JFET. The JFET itself is very similar to the popular 2N4391, and the driver diode is specially designed, such that its capacitance is a strong function of the voltage across it. The driver diode is electrically in series with the gate of the N channel FET and simulates a back-to-back diode structure. This structure is needed to prevent forward biasing the source-to-gate or drain-to-gate junctions of the JFET when used in switching applications.
Previous applications of JFETs required the addition of diodes, in series with the gate, and then perhaps a gate-tosource referral resistor or a capacitor in parallel with the diode; therefore, at least 3 components were required to perform the switch function. The IH 401 does this same job in one component (with a great deal better performance characteristics).

Like a standard JFET, to practically perform a solid state switch function a translator should be added to drive the diode. This translator takes the TTL levels and converts them to voltages required to drive the diode/FET system (typically a 0 V to -15 V translation and a 3 V to +15 V shift). With $\pm 15 \mathrm{~V}$ power supplies, the IH401 will typically switch $18 \mathrm{~V}_{\text {p-p }}$ at any frequency from DC to 20 MHz , with less than $30 \Omega \mathrm{R}_{\mathrm{DS}(o n)}$. The IH401A will typically switch $22 \mathrm{~V}_{\mathrm{p}-\mathrm{p}}$ with less than $50 \Omega \mathrm{R}_{\mathrm{DS}(\mathrm{on})}$.

FEATURES

- $\mathrm{R}_{\mathrm{DS}(\mathrm{on})}=25 \Omega$ Typical (IH 401)
- ID(off) of 10pA Typical
- Switching Times of $\mathbf{2 5 n s}$ for $t_{o n}$ and $\mathbf{7 5 n s}$ for $t_{o f f}$ ($R_{L}=1 \mathrm{k} \Omega$)
- Built-In Overvoltage Protection ($\pm \mathbf{2 5 V}$)
- Charge Injection Error of 3mV Typical Into $0.01 \mu \mathrm{~F}$ Capacitor
- $\mathrm{C}_{\text {iss }}<1 \mathrm{pF}$ Typical
- Can Be Used for Hybrid Construction

ORDERING INFORMATION

Part Number	Package
IH401	CERDIP
IH401A	CERDIP

0283-1

Figure 1: Pin Configuration (Outline Dwg JE)

[^312]NOTE: All typical values have been characterized but are not tested.

ABSOLUTE MAXIMUM RATINGS

Operating Temperature $\ldots \ldots \ldots \ldots-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Storage Temperature $\ldots-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10sec) $300^{\circ} \mathrm{C}$

NOTE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS AT $\mathbf{2 5}^{\circ} \mathbf{C} / \mathbf{1 2 5}^{\circ} \mathrm{C}$

Symbol	Characteristic	Test Conditions	IH401			Units
			Min	Typ	Max	
R ${ }_{\text {DS(on) }}$	Switch "on" Resistance	$\begin{aligned} & V_{\text {DRIVE }}=15 \mathrm{~V}, \\ & V_{\text {DRAIN }}=-7.5 \mathrm{~V} \mathrm{I}_{\mathrm{D}}=10 \mathrm{~mA} \end{aligned}$		20	30	Ω
V_{P}	Pinch-Off Voltage	$\mathrm{I}_{\mathrm{D}}=1 \mathrm{nA}, \mathrm{V}_{\mathrm{DS}}=10 \mathrm{~V}$	3	6	7.5	V
$l_{\text {(off) }}$	Switch "off" Current or "off" Leakage	$\begin{aligned} & \mathrm{V}_{\text {DRIVE }}=-15 \mathrm{~V}, \\ & \mathrm{~V}_{\text {SOURCE }}=-7.5 \mathrm{~V}, \\ & \mathrm{~V}_{\text {DRAIN }}=+7.5 \mathrm{~V} \end{aligned}$		10	± 500	pA
$l_{\text {d(off }}$	Switch "off" Leakage at $125^{\circ} \mathrm{C}$	$\begin{aligned} & \mathrm{V}_{\text {DRIVE }}=-15 \mathrm{~V} \\ & \mathrm{~V}_{\text {SOURCE }}=-7.5 \mathrm{~V} \\ & \mathrm{~V}_{\text {DRAIN }}=+7.5 \mathrm{~V} \\ & \hline \end{aligned}$		0.25	50	nA
IS(off)	Switch "off" Current	$\begin{aligned} & V_{\text {DRIVE }}=-15 \mathrm{~V}, \\ & \mathrm{~V}_{\text {DRAIN }}=-7.5 \mathrm{~V}, \\ & \mathrm{~V}_{\text {SOURCE }}=+7.5 \mathrm{~V} \end{aligned}$		10	± 500	pA
IS(off)	Switch "off" Leakage at $125^{\circ} \mathrm{C}$	$\begin{aligned} & \mathrm{V}_{\text {DRIVE }}=-15 \mathrm{~V} \\ & \mathrm{~V}_{\text {SOURCE }}=-7.5 \mathrm{~V}, \\ & \mathrm{~V}_{\text {DRAIN }}=+7.5 \mathrm{~V} \\ & \hline \end{aligned}$		0.3	50	nA
$I_{D(0 n)}+I_{\text {S }}(0 n)$	Switch Leakage when Turned "on"	$\begin{aligned} & \mathrm{V}_{\mathrm{D}}=\mathrm{V}_{\mathrm{S}}=-7.5 \mathrm{~V}, \\ & \mathrm{~V}_{\text {DRIVE }}=+15 \mathrm{~V} \end{aligned}$		0.02	± 2	nA
$V_{\text {analog }}$	AC Input Voltage Range without Distortion	See Figure 3	15	18		V_{p-p}
$V_{\text {inject }}$	Charge Injection Error Voltage	See Figure 4		3		mV p-p
$B V_{\text {diode }}$	Diode Reverse Breakdown Voltage. This Correlates to Overvoltage Protection	$\begin{aligned} & V_{D}=V_{S}=-V, \\ & \text { IDRIVE }=1 \mu \mathrm{~A}, \\ & \text { DRIVE }=0 \mathrm{~V} \end{aligned}$	-30	-45		V
$B V_{G S S}$	Gate to Source or Gate to Drain Reverse Breakdown Voltage	$\begin{aligned} & V_{\text {DRIVE }}=-V, \\ & V_{D}=V_{S}=0 V, \\ & \text { DRIVE }=1 \mu \mathrm{~A} \end{aligned}$	30	41		V
Idss	Maximum Current Switch can Deliver (Pulsed)	$\begin{aligned} & V_{\text {DRIVE }}=15 \mathrm{~V} \\ & V_{S}=0 \mathrm{~V}, \\ & D=+10 \mathrm{~V} \end{aligned}$	45	70		mA
$\mathrm{t}_{\text {on }}$	Switch "on' time (Note 1)	See Figure 2		50		ns
$t_{\text {off }}$	Switch "off" time (Note 1)	See Figure 2		150		ns

NOTE: 1. Driving waveform must be $>100 \mathrm{~ns}$ rise and fall time.

Figure 2: Switching Time Test Circult and Waveforms

Test Circuit
ELECTRICAL CHARACTERISTICS AT $\mathbf{2 5}{ }^{\circ} \mathrm{C} / \mathbf{1 2 5}^{\circ} \mathrm{C}$

Symbol	Characteristic	Test Conditions	IH401A			Units
			Min	Typ	Max	
$\mathrm{R}_{\mathrm{DS} \text { (on) }}$	Switch "on" Resistance	$\begin{aligned} & V_{\text {DRIVE }}=15 \mathrm{~V}, \\ & V_{\text {DRAIN }}=-10 \mathrm{~V}, I_{D}=10 \mathrm{~mA} \end{aligned}$		35	50	Ω
V_{P}	Pinch-Off Voltage	$\mathrm{I}_{\mathrm{D}}=1 \mathrm{nA}, \mathrm{V}_{\mathrm{DS}}=10 \mathrm{~V}$	2	4	5	V
$l_{\text {(}}$ (ff)	Switch "off" Current or "off" Leakage	$\begin{aligned} & V_{\text {DRIVE }}=-15 \mathrm{~V}, \\ & V_{\text {SOURCE }}=-10 \mathrm{~V}, \\ & \mathrm{~V}_{\text {DRAIN }}=+10 \mathrm{~V} \\ & \hline \end{aligned}$		10	± 500	pA
$I_{\text {(off }}$	Switch "off" Leakage at $125^{\circ} \mathrm{C}$	$V_{\text {DRIVE }}=-15 \mathrm{~V}$, $V_{\text {SOURCE }}=-10 \mathrm{~V}$, $V_{\text {DRAIN }}=+10 \mathrm{~V}$		0.25	50	$n A$
$I_{\text {S }}$ (off)	Switch "off" Current	$V_{\text {DRIVE }}=-15 \mathrm{~V}$, $V_{\text {DRAIN }}=-10 \mathrm{~V}$, $V_{\text {SOURCE }}=+10 \mathrm{~V}$		10	± 500	pA
$I_{\text {S }}$ (off)	Switch "off" Leakage at $125^{\circ} \mathrm{C}$	$\begin{aligned} & V_{\text {DRIVE }}=-15 \mathrm{~V}, \\ & \mathrm{~V}_{\text {SOURCE }}=-10 \mathrm{~V}, \\ & \mathrm{~V}_{\text {DRAIN }}=+10 \mathrm{~V} \\ & \hline \end{aligned}$		0.3	50	nA
$I_{D(\text { on) }}+I_{S(\text { on })}$	Switch Leakage when Turned "on"	$\begin{aligned} & V_{D}=V_{S}=-10 \mathrm{~V}, \\ & V_{\text {DRIVE }}=+15 \mathrm{~V} \end{aligned}$		0.02	± 2	nA
$V_{\text {analog }}$	AC Input Voltage Range without Distortion	See Figure 3	20	22		V_{p-p}

[^313]ELECTRICAL CHARACTERISTICS AT $\mathbf{2 5}^{\circ} \mathrm{C} / \mathbf{1 2 5}^{\circ} \mathrm{C}$ (Continued)

Symbol	Characteristic	Test Conditions	IH401A			Units
			Min	Typ	Max	
$V_{\text {inject }}$	Charge Injection Amplitude	See Figure 4		3		$m V_{p-p}$
$\mathrm{BV}_{\text {diode }}$	Diode Reverse Breakdown Voltage. This Correlates to Overvoltage Protection	$\begin{aligned} & V_{D}=V_{S}=-V \\ & \text { I DRIVE }=1 \mu \mathrm{~A}, \\ & \text { DRIVE }=0 \mathrm{~V} \\ & \hline \end{aligned}$	-30	-45		V
$\mathrm{BV}_{\mathrm{GSS}}$	Gate to Source or Gate to Drain Reverse Breakdown Voltage	$\begin{aligned} & V_{\text {DRIVE }}=-V \\ & V_{D}=V_{S}=0 V \\ & \text { DRIVE }=1 \mu \mathrm{~A} \end{aligned}$	30	41		V
IDSs	Maximum Current Switch can Deliver (Pulsed)	$\begin{aligned} & V_{\text {DRIVE }}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}=0 \mathrm{~V}, \\ & D=+10 \mathrm{~V} \end{aligned}$	35	55		mA
$\mathrm{t}_{\text {on }}$	Switch "on" time (Note 1)	See Figure 2		50		ns
$t_{\text {off }}$	Switch "off" time (Note 1)	See Figure 2		150		ns

NOTE: Driving waveform must be $>100 \mathrm{~ns}$ rise and fall time.

APPLICATIONS

IH401 Family

In general, the IH401 family can be used in any application formally using a JFET/isolation diode combination (2N4391 or similar). Like standard FET circuits, the IH401 requires a translator for normal analog switch function. The translator is used to boost the TTL input signals to the $\pm 15 \mathrm{~V}$ analog supply levels which allow the IH401 to handle $\pm 7.5 \mathrm{~V}$ analog signals (or IH401A to handle $\pm 10 \mathrm{~V}$ analog signals). A typical simple PNP translator is shown in Figure 5.

Although this simple PNP circuit represents a minimum of components, it requires open collector TTL input and $\mathrm{t}_{\text {(off) }}$ is limited by the collector load resistor (approximately $1.5 \mu \mathrm{~s}$ for $10 \mathrm{k} \Omega$). Improved switching speed can be obtained by increasing the complexity of the translator stage.
A translator which overcomes the problems of the simple PNP stage is the Intersil IH6201.* This translator driving an IH401 varafet produces the following typical features:

- $t_{\text {on }}$ time of approx. 200ns $\}$ break before
- $t_{\text {off }}$ time of approx. 80ns break before
make switch
- TTL compatible strobing levels of

- $I_{D(o n)}+I_{S(o n)}$ typically 20 pA up to $\pm 10 \mathrm{~V}$ analog signals
- $I_{\text {(off) }}$ or $I_{S(\text { off })}$ typically 20 pA
- Quiescent current drain of approx. 100nA in either "on" or "off" case
*The IH6201 is a dual translator (two independent translators per package) constructed from monolithic CMOS technology. The schematic of one-half IH6201, driving onefourth of an IH401, is shown in Figure 6.

[^314]

0283-8
NOTE: Each translator output has a θ and $\bar{\theta}$ output. $\bar{\theta}$ is just the inverse of θ i.e., ($\bar{\theta}$ output is 180° out of phase with respect to θ output).
Figure 6: IH6201 Driving An IH401

Figure 7: Dual SPST Analog Switch

Figure 8: DPDT Analog Switch

Figure 9: Dual SPDT Analog Switch
A very useful feature of this system is that one-half of an IH6201 and one-half of an IH401 can combine to make a SPDT switch, or an IH6201 plus an IH401 can make a dual SPDT analog switch. (See Figure 9)

Figure 10: Dual DPST Analog Switch

Analog Switch

GENERAL DESCRIPTION

The IH5009 series of analog switches were designed to fill the need for an easy-to-use, inexpensive switch for both industrial and military applications. Although low cost is a primary design objective, performance and versatility have not been sacrificed.

Each package contains up to four channels of analog gating and is designed to eliminate the need for an external driver. The odd numbered devices are designed to be driven directly from TTL open collector logic (15 volts) while the even numbered devices are driven directly from low level TTL logic (5 volts). Each channel simulates a SPDT switch. SPST switch action is obtained by leaving the diode cathode unconnected; for SPDT action, the cathode should be grounded (OV). The parts are intended for high performance multiplexing and commutating usage. A logic " 0 " turns the channel ON and a logic " 1 " turns the channel OFF.

ORDERING INFORMATION

Basic Part Number	Channels	Logic Level	Packages
IH5009	4	+15	JD,DD,PD
IH5010	4	+5	JD,DD,PD
IH5011	4	+15	JE,DE,PE
IH5012	4	+5	JE,DE,PE
IH5013	3	+15	JD,DD,PD
IH5014	3	+5	JD,DD,PD
IH5015	3	+15.	JE,DE,PE
IH5016	3	+5	JE,DE,PE
IH5017	2	+15	JD,DD,PA
IH5018	2	+5	JD,DD,PA
IH5019	2	+15	JE,DE,PA
IH5020	2	+5	JE,DE,PA
IH5021	1	+15	JD,DD,PA
IH5022	1	+5	JD,DD,PA
IH5023	1	+15	JE,DE,PA
IH5024	1	+5	JE,DE,PA

NOTE: Mil-Temperature range $\left(-55^{\circ} \mathrm{C}\right.$ to $\left.+125^{\circ} \mathrm{C}\right)$ available in ceramic packages only.

FEATURES

- Switches Analog Signals Up to 20 Volts Peak-to-Peak
- Each Channel Complete - Interfaces With Most Integrated Logic
- Switching Speeds Less Than $0.5 \mu \mathrm{~s}$
- ID(OFF) Less Than 500 pA Typical at $70^{\circ} \mathrm{C}$
- Effective $\mathrm{r}_{\mathrm{ds}(\mathrm{ON})}-\mathbf{5 \Omega}$ to 50Ω
- Commercial and Military Temperature Range Operation

DE - 16-PIN CERAMIC DIP
(Special Order Only)
JD - 14-PIN CERDIP
JE - 16-PIN CERDIP
TEMPERATURE RANGE
$M=\operatorname{MILITARY}\left(-55^{\circ} \mathrm{C}\right.$ to $\left.+125^{\circ} \mathrm{C}\right)$
$\mathrm{C}=$ COMMERCIAL $\left(0^{\circ} \mathrm{C}\right.$ to $\left.+70^{\circ} \mathrm{C}\right)$
BASIC PART NUMBER

ABSOLUTE MAXIMUM RATINGS

Positive Analog Signal Voltage . 30 V
Negative Analog Signal Voltage -15 V
Diode Current 10 mA
Power Dissipation (Note) . 500 mW
Storage Temperature
.
\ldots.
NOTE: Dissipation rating assumes device is mou

NOTE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Figure 1: Pin Connections

[^315]

Figure 2: Device Schematics and Pin Connections

ELECTRICAL CHARACTERISTICS
(per channel)

Symbol (Note 1)	Characteristic	Type (Note 4)	TEST Conditions (Note 2)	Specification Limit				Units
				$\begin{array}{\|l\|} \hline-55^{\circ} \mathrm{C}(\mathrm{M}) \\ 0^{\circ} \mathrm{C}(\mathrm{C}) \\ \mathrm{Min} / \mathrm{Max} \end{array}$	$25^{\circ} \mathrm{C}$		$\begin{gathered} +125^{\circ} \mathrm{C}(\mathrm{M}) \\ +70^{\circ} \mathrm{C}(\mathrm{C}) \\ \mathrm{Min} / \mathrm{Max} \end{gathered}$	
					Typ	Min/Max		
IN(ON)	Input Current-ON	ALL	$\mathrm{V}_{1 \mathrm{~N}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=2 \mathrm{~mA}$		0.01	± 0.5	100	$\mu \mathrm{A}$
IIN(OFF)	Input Current-OFF	5V Logic Ckts	$\mathrm{V}_{1 \mathrm{~N}}=+4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{A}}= \pm 10 \mathrm{~V}$		0.04	± 0.5	20	nA
IN(OFF)	Input Current-OFF	15V Logic Ckts	$\mathrm{V}_{1 \mathrm{~N}}=+11 \mathrm{~V}, \mathrm{~V}_{\mathrm{A}}= \pm 10 \mathrm{~V}$		0.04	± 0.5	20	nA
$\mathrm{V}_{\text {IN(ON }}$)	Channel Control Voltage-ON	5V Logic Ckts	See Figure 7, Note 3	0.5		0.5	0.5	V
$\mathrm{V}_{\text {IN(ON }}$	Channel Control Voltage-ON	15V Logic Ckts	See Figure 8, Note 3	1.5		1.5	1.5	V
V IN(OFF)	Channel Control Voltage-OFF	5V Logic Ckts	See Figure 6, Note 3			4.5	4.5	V
VIN(OFF)	Channel Control Voltage-OFF	15V Logic Ckts	See Figure 8, Note 3			11.0	11.0	V
D(OFF)	Leakage Current-OFF	5V Logic Ckts	$\mathrm{V}_{1 \mathrm{I}}=+4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{A}}= \pm 10 \mathrm{~V}$		0.02	± 0.5	20	nA
ID(OFF)	Leakage Current-OFF	15V Logic Ckts	$\mathrm{V}_{1 \mathrm{~N}}=+11 \mathrm{~V}, \mathrm{~V}_{\mathrm{A}}= \pm 10 \mathrm{~V}$		0.02	± 0.5	20	nA
ID(ON)	Leakage Current-ON	5V Logic Ckts	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=1 \mathrm{~mA}$		0.30	± 1.0	$\begin{gathered} 1000(\mathrm{M}) \\ 200(\mathrm{C}) \\ \hline \end{gathered}$	nA
ID(ON)	Leakage Current-ON	15V Logic Ckts	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=1 \mathrm{~mA}$		0.10	± 0.5	$\begin{aligned} & 500 \text { (M) } \\ & 100 \text { (C) } \end{aligned}$	nA
$\mathrm{l}(\mathrm{ON})$	Leakage Current-ON	5V Logic Ckts	$\mathrm{V}_{1 \mathrm{~N}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=2 \mathrm{~mA}$			1.0	10	$\mu \mathrm{A}$
ID(ON)	Leakage Current-ON	15V Logic Ckts	$\mathrm{V}_{1 \mathrm{~N}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=2 \mathrm{~mA}$			2.0	100	$\mu \mathrm{A}$
rDS(ON)	Drain-Source ON-Resistance	5V Logic Ckts	$\mathrm{I}_{\mathrm{D}}=2 \mathrm{~mA}, \mathrm{~V}_{1 \mathrm{~N}}=0.5 \mathrm{~V}$	150	90	150	$\begin{aligned} & 385 \text { (M) } \\ & 240 \text { (C) } \end{aligned}$	Ω
ros(ON)	Drain-Source ON-Resistance	15V Logic Ckts	$\mathrm{I}_{\mathrm{D}}=2 \mathrm{~mA}, \mathrm{~V}_{1 \mathrm{~N}}=1.5 \mathrm{~V}$	100	80	100	$\begin{aligned} & 250(\mathrm{M}) \\ & 160(\mathrm{C}) \\ & \hline \end{aligned}$	Ω
(on)	Turn-ON Time	All	See Figures 5 \& 6		150	500		ns
${ }^{\text {(off) }}$	Turn-OFF Time	All	See Figures 5 \& 6		300	500		ns
CT	Cross Talk	All	$\mathrm{f}=100 \mathrm{~Hz}$		120			dB

NOTES: 1. (OFF) and (ON) subscript notation refers to the conduction state of the FET switch for the given test.
2. Refer to Figure 2 for definition of terms.
3. $\mathrm{V}_{\text {IN(ON) }}$ and $\mathrm{V}_{\text {IN(OFF) }}$ are test conditions guaranteed by the tests of $\mathrm{r}_{\mathrm{DS}}(\mathrm{ON})$ and $\mathrm{I}_{\mathrm{D}(\mathrm{OFF})}$ respectively.
4. " 5 V Logic CKTS" applies to even-numbered devices. "15V Logic CKTS" applies to odd-numbered devices.

[^316]TYPICAL PERFORMANCE CHARACTERISTICS
(per channel)

0284-17

0284-18

RDS(ON) vs. TEMPERATURE (NORMALIZED TO $25^{\circ} \mathrm{C}$ VALUE)

0284-20

CROSSTALK AS A FUNCTION OF FREQUENCY

CROSSTALK MEASUREMENT CIRCUIT

0284-22

DETAILED DESCRIPTION

The signals seen at the drain of a junction FET type analog switch can be arbitrarily divided into two categories; those which are less than $\pm 200 \mathrm{mV}$, and those which are greater than $\pm 200 \mathrm{mV}$. The former category includes all those circuits where switching is performed at the virtual ground point of an op-amp, and it is primarily towards these applications that the IH 5009 family of circuits is directed.

By limiting the analog signal at the switching point to $\pm 200 \mathrm{mV}$, no external driver is required and the need for additional power supplies is eliminated.

Devices are available with both common drains and with uncommitted drains.

Those devices which feature common drains have another FET in addition to the channel switches. This FET, which has gate and source connected such that $\mathrm{V}_{\mathrm{GS}}=0$, is intended to compensate for the on-resistance of the switch. When placed in series with the feedback resistor (Figure 3) the gain is given by:

$$
\mathrm{GAIN}=\frac{10 \mathrm{k} \Omega+\mathrm{r}_{\mathrm{DS}(\mathrm{ON})}(\text { compensator })}{10 \mathrm{k} \Omega+\mathrm{r}_{\mathrm{DS}(\text { switch })}}
$$

[^317]

0284-23
Figure 3: Use of Compensation FET
Clearly, the gain error caused by the switch is dependent on the match between the FETs rather than the absolute value of the FET on-resistance. For the standard product, all the FETs in a given package are guaranteed to match within 50Ω. Selections down to 5Ω are available however. Contact factory for details. Since the absolute value of $r_{D S(O N)}$ is guaranteed only to be less than 100Ω or 150Ω, a substantial improvement in gain accuracy can be obtained by using the compensating FET.

DEFINITION OF TERMS

0284-24
Figure 4.

NOISE IMMUNITY

The advantage of SPDT switching is high noise immunity when the series elements is OFF. For example, if a $\pm 10 \mathrm{~V}$ analog input is being switched by TTL open collector logic, the series switch is OFF when the logic level is at +15 volts. At this time, the diode conducts and holds the source at approximately +0.7 volts with an AC impedance to ground of 25 ohms. Thus random noise superimposed on the +10 volt analog input will not falsely trigger the FET since the noise voltage will be shunted to ground.
When switching a negative voltage, the input further increases the OFF voltage beyond pinch-off, so there is no danger of the FET turning on.

SWITCHING CHARACTERISTICS

LOGIC INTERFACE CIRCUITS

Figure 7: Interfacing with +5 V Logic

Figure 8: Interfacing with +15 V Open Collector Logic

APPLICATIONS (Note)

0284-30
Figure 9

NOTE: Additional applications information is given in Application Bulletins A003 "Understanding and Applying the Analog Switch" and A004 "The 5009 Series of Low Cost Analog Switches".

GENERAL DESCRIPTION

The IH5040 family of solid state analog switches use an improved, high voltage CMOS monolithic technology. These devices provide ease-of-use and performance advantages not previously available from solid state switches. This improved CMOS technology provides input overvoltage capability to ± 25 volts without damage to the device, and destructive latch-up has been eliminated. Early CMOS switches were destroyed when power supplies were removed with an input signal present. The IH5040 CMOS technology has eliminated this serious problem.

Key performance advantages of the 5040 series are TTL compatibility and ultra low-power operation. The quiescent current requirement is less than $1 \mu \mathrm{~A}$. Also, the 5040 guarantees Break-Before-Make switching, accomplished by extending the $\mathrm{t}_{\text {on }}$ time (300 ns TYP.) so that it exceeds $\mathrm{t}_{\text {off }}$ time (200ns TYP.). This insures that an ON channel will be turned OFF before an OFF channel can turn ON. The need for external logic required to avoid channel to channel shorting during switching is eliminated.

Many of the 5040 series improve upon and are pin-for-pin and electrical replacements for other solid state switches.

FEATURES

- Switches Greater Than 20Vpp Signals With $\pm 15 \mathrm{~V}$ Supplies
- Quiescent Current Less Than $1 \mu \mathrm{~A}$
- Overvoltage Protection to $\pm 25 \mathrm{~V}$
- Break-Before-Make Switching toff 200ns, ton 300ns Typical
- TTL, DTL, CMOS, PMOS Compatible
- Non-Latching With Supply Turn-Off
- New DPDT \& 4PST Configurations
- Complete Monolithic Construction

ORDERING INFORMATION

0286-1
Figure 1: Functional Driver, Typical Driver, Gate - IH5042

FUNCTIONAL DESCRIPTION

INTERSIL Part No.	Type		rDS(on)	Pin for Pin Compatible
IH5040		SPST	75Ω	HI5040/DG5040
IH5041	Dual	SPST	75Ω	HI5041/DG5041
IH5042		SPDT	75Ω	HI5042/DG5042
IH5043	Dual	SPDT	75Ω	HI5043/DG5043
IH5044		DPST	75Ω	HI5044/DG5044
IH5045	Dual	DPST	75Ω	HI5045/DG5045
IH5046		DPDT	75Ω	HI5046
IH5047		4PST	75Ω	HI5047

NOTE 1. See Switching State diagrams for applicable package equivalency.

ABSOLUTE MAXIMUM RATINGS

V+-V-	<36V	Current (Any Terminal) <30mA
$\mathrm{V}+\mathrm{V}_{\mathrm{D}}$	$<30 \mathrm{~V}$	Storage Temperature $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
$V_{D}-V^{-}$. <30V	Operating Temperature
$\mathrm{V}_{\mathrm{D}}-\mathrm{V}_{\mathrm{S}}$	< $\pm 22 \mathrm{~V}$	M $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
$\mathrm{V}_{\mathrm{L}}-\mathrm{V}^{-}$	<33V	
$\mathrm{V}_{\mathrm{L}}-\mathrm{V}_{\text {IN }}$	<30V	Lead Temperature (Soldering, 10sec) 300 ${ }^{\circ} \mathrm{C}$
VL-GND.	. <20V	Power Dissipation 450mW
$\mathrm{V}_{\mathbf{I N}}$-GND	<20V	(All Leads Soldered to a P.C. Board) Derate $6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ Above $70^{\circ} \mathrm{C}$

NOTE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS (@ $25^{\circ} \mathrm{C}, \mathrm{V}^{+}=+15 \mathrm{~V}, \mathrm{~V}^{-}=-15 \mathrm{~V}, \mathrm{~V}_{\mathrm{L}}=+5 \mathrm{~V}$)

Per Channel		Test Conditions	Min/Max Limits						Units
Symbol	Characteristic		Military			Commercial			
			$-55^{\circ} \mathrm{C}$	$+25^{\circ} \mathrm{C}$	$+125^{\circ} \mathrm{C}$	0	$+25^{\circ} \mathrm{C}$	$+70^{\circ} \mathrm{C}$	
$\ln (\mathrm{ON})$	Input Logic Current	$\mathrm{V}_{\text {IN }}=2.4 \mathrm{~V}$	± 1	± 1	10	± 1	± 1	10	$\mu \mathrm{A}$
IIN(OFF)	Input Logic Current	$\mathrm{V}_{1 \mathrm{~N}}=0.8 \mathrm{~V}$	± 1	± 1	10	± 1	± 1	10	$\mu \mathrm{A}$
rDS(on)	Drain-Source On Resistance	$\begin{array}{\|l\|} \hline l_{S}=10 \mathrm{~mA} \\ \mathrm{~V}_{\text {ANALOG }}=-10 \mathrm{~V} \text { to }+10 \mathrm{~V} \\ \hline \end{array}$	75	75	150	80	80	130	Ω
$\Delta \mathrm{r}_{\text {DS }}(\mathrm{ON})$	Channel to Channel rDS(ON) Match			$\begin{gathered} 25 \\ \text { (typ) } \\ \hline \end{gathered}$			$\begin{gathered} 30 \\ \text { (typ) } \\ \hline \end{gathered}$		Ω
$\mathrm{V}_{\text {ANALOG }}$	Min. Analog Signal Handling Capability			$\begin{aligned} & \pm 11 \\ & \text { (typ) } \end{aligned}$			$\begin{aligned} & \pm 10 \\ & \text { (typ) } \end{aligned}$		V
ld(OFF)/ IS(OFF)	Switch OFF Leakage Current	$\mathrm{V}_{\text {ANALOG }}=-10 \mathrm{~V}$ to +10 V		± 1	100		± 5	100	nA
$\begin{array}{\|l\|} \hline \mathrm{ID}(\mathrm{ON}) \\ +\mathrm{I}_{\mathrm{S}(\mathrm{ON})} \\ \hline \end{array}$	Switch On Leakage Current	$V_{D}=V_{S}=-10 \mathrm{~V}$ to +10 V		± 2	200		± 10	100	nA
$\mathrm{t}_{\text {On }}$	Switch "ON" Time	$\begin{aligned} & R_{\mathrm{L}}=1 \mathrm{k} \Omega, \mathrm{~V}_{\text {ANALOG }}=-10 \mathrm{~V} \\ & \text { to }+10 \mathrm{~V} \text { See Fig. } 3 \\ & \hline \end{aligned}$		1000			1000		ns
$\mathrm{t}_{\text {off }}$	Switch "OFF" Time	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega, \mathrm{~V}_{\text {ANALOG }}=-10 \mathrm{~V} \\ & \text { to }+10 \mathrm{~V} \text { See Fig. } 3 \\ & \hline \end{aligned}$		500			500		ns
$Q_{(\text {INJ. })}$	Charge Injection	See Fig. 3		$\begin{gathered} 15 \\ \text { (typ) } \\ \hline \end{gathered}$			$\begin{gathered} 20 \\ \text { (typ) } \\ \hline \end{gathered}$		mV
OIRR	Min. Off Isolation Rejection Ratio	$f=1 \mathrm{MHz}, R_{L}=100 \Omega, C_{L} \leq 5 p F$ See Fig. 5		$\begin{gathered} 54 \\ \text { (typ) } \end{gathered}$			$\begin{gathered} 50 \\ \text { (typ) } \end{gathered}$		dB
${ }^{+}$Q	V+ Power Supply Quiescent Current		± 1	± 1	10	10	10	100	$\mu \mathrm{A}$
${ }^{-} \mathrm{Q}$	V-Power Supply Quiescent Current	$\begin{aligned} & \mathrm{V}^{+}=+15 \mathrm{~V}, \mathrm{~V}^{-}=-15 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{L}}=+5 \mathrm{~V} \end{aligned}$	± 1	± 1	10	10	10	100	$\mu \mathrm{A}$
I^{-}LQ	$\begin{array}{\|l\|} \hline+5 \mathrm{~V} \text { Supply } \\ \text { Quiescent Current } \\ \hline \end{array}$		± 1	± 1	10	10	10	100	$\mu \mathrm{A}$
IGND	Gnd Supply Quiescent Current		± 1	1	10	10	10	100	$\mu \mathrm{A}$
CCRR	Min. Channel to Channel Cross Coupling Rejection Ratio	One Channel Off; Any Other Channel Switches as per Fig. 6		$\begin{gathered} 54 \\ \text { (typ) } \end{gathered}$			$\begin{gathered} 50 \\ \text { (typ) } \end{gathered}$		dB

Note: Typical values are for design aid only, not guaranteed and not subject to production testing.

INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. the warranty shall be exclusive and shall be in lieu of all other warranties, express, implied or statutory, including the implied warranties of MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

NOTE: All typical values have been characterized but are not tested.

Figure 2: Switching State Diagrams

[^318]| SWITCH STATES ARE FOR LOGIC "1" INPUT | (OUTLINE DWG FD-2) | (OUTLINE DWGS DE, JE, PE) |
| :---: | :---: | :---: |
| DPST IH5044
 (r DS(on) $<75 \Omega$) | 0286-12 | 0286-13 |
| $\begin{gathered} \text { DUAL DPST IH5045 } \\ \left(\text { rDS }_{\text {(on) }}<\mathbf{7 5 \Omega}\right) \end{gathered}$ | | (DG185 EQUIVALENT)
 0286-16 |
| $\begin{gathered} \text { DPDT IH5046 } \\ \left(\text { ros }_{\text {D }}(\mathrm{ON})<75 \Omega\right) \end{gathered}$ | | 0286-18 |
| 4PST IH5047 (rDs (ON) $<75 \Omega$) | Switching State Diagrams (Cont.) | 0286-20 |

[^319]

0286-21

RDS(on) vs POWER SUPPLY VOLTAGE

0286-22

0286-23

0286-24

frequency (Hz)

0286-28

TEST CIRCUITS

Figure 3

Figure 4

Figure 5

0286-29

NOTE 1: Some channels are turned on by high " 1 " logic inputs and other channels are turned on by low " 0 " inputs; however 0.8 V to 2.4 V describes the min. range

APPLICATIONS

Figure 6: Improved Sample \& Hold Using IH5043

INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. the warranty shall be exclusive and shall be in lieu of all other warranties, express, implied or statutory, including the implied warranties of MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

NOTE: All typical values have been characterized but are not tested.

APPLICATIONS (Continued)

EXAMPLE: If $-\mathrm{V}_{\text {ANALOG }}=-10 \mathrm{VDC}$ and $+\mathrm{V}_{\text {ANALOG }}=+10 \mathrm{VDC}$ then Ladder Legs are switched between $\pm 10 \mathrm{VDC}$, depending upon state of Logic Strobe.

Constant gain, constant Q, variable frequency filter which provides simultaneous Lowpass, Bandpass, and Highpass outputs. With the component values shown, center frequency will be 235 Hz and 23.5 Hz for high and low logic inputs respectively, $Q=100$, and Gain $=100$.

$$
f_{n}=\text { Center Frequency }=\frac{1}{2 \pi R C}
$$

Figure 8: Digitally Tuned Low Power Active Filter

APPLICATIONS (Continued)

0286-38
Figure 11: TTL Logic Interface

IH5048-IH5051
 Low Charge Injection CMOS Analog Switches

GENERAL DESCRIPTION

The IH5048 family of analog switches is especially made for low charge injection and low leakage. Construction includes our CMOS high level driver circuitry combined with unique "VARAFET" switches.

ORDERING INFORMATION

FEATURES

- Low Charge Injection-1mV (Typ.)
- Quiescent Current Less Than $1 \mu \mathrm{~A}$
- TTL, DTL, CMOS, PMOS Compatible
- Non-Latching With Supply Turn-Off
- Low rDS(on) - 35Ω (Typ.)
- Pin-Out Compatible With IH5040 Family
- Low Leakage 100 pA Typical

ORDERING INFORMATION

Intersil Part No.	Type	rDS(on)
IH5048 Dual	SPST	35Ω
IH5049 Dual	DPST	35Ω
IH5050	SPDT	35Ω
IH5051 Dual	SPDT	35Ω

NOTE 1. See Switching State diagrams for applicable package equivalency.

[^320]| Switch States are for Logic " 1 " Input | Flat Package (FD-2) | DIP (DE) Package |
| :---: | :---: | :---: |
| DUAL DPST IH5049 ($r_{\text {DS }}(\mathrm{ON})<35 \Omega$) | | (DG184 EQUIVALENT) |
| | | |
| | | 0287-5 |

SPDT IH5050
($\mathrm{rDS}(\mathrm{ON})<35 \Omega$)

0287-6

DUAL SPDT IH5051
(${ }^{\text {DS }}(\mathrm{ON})<35 \Omega$)

0287-7
(DG190 EQUIVALENT)

0287-10

Figure 1: Switching State Diagrams (Cont.)

ABSOLUTE MAXIMUM RATINGS
V+_V- .. $<36 \mathrm{~V}$

VL-GND... $<20 \mathrm{~V}$
VIN-GND . $<20 \mathrm{~V}$

> Current (Any Terminal)
> $<30 \mathrm{~mA}$
> Storage Temperature $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
> Operating Temperature $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
> Lead Temperature (Soldering, 10sec) $300^{\circ} \mathrm{C}$
> Power Dissipation
> 450mW
> (All Leads Soldered to a P.C. Board)
> Derate $6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ Above $70^{\circ} \mathrm{C}$

NOTE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS (@ $25^{\circ} \mathrm{C}, \mathrm{V}^{+}=+15 \mathrm{~V}, \mathrm{~V}^{-}=-15 \mathrm{~V}, \mathrm{~V}_{\mathrm{L}}=+5 \mathrm{~V}$)

Per Channel		Test Conditions	Min/Max Limits						Units
Symbol	Characteristic		Military			Commercial			
			$-55^{\circ} \mathrm{C}$	$+25^{\circ} \mathrm{C}$	$+125^{\circ} \mathrm{C}$	0	$+25^{\circ} \mathrm{C}$	$+70^{\circ} \mathrm{C}$	
$\ln (\mathrm{ON})$	Input Logic Current	$\mathrm{V}_{\mathrm{IN}}=2.4 \mathrm{~V}$ Note 1	± 1	± 1	10	± 1	± 1	10	$\mu \mathrm{A}$
IN(OFF)	Input Logic Current	$\mathrm{V}_{\mathrm{IN}}=0.8 \mathrm{~V}$ Note 1	± 1	± 1	10	± 1	± 1	10	$\mu \mathrm{A}$
rDS(on)	Drain-Source On Resistance	$\begin{aligned} & \mathrm{l}_{\mathrm{s}}=-10 \mathrm{~mA} \\ & \mathrm{~V}_{\text {ANALOG }}=-10 \mathrm{~V} \\ & \hline \end{aligned}$		40	60		45	75	Ω
$\Delta{ }^{\text {ros }}$ (ON)	Channel to Channel rDS(ON) Match			$\begin{gathered} 15 \\ \text { (Typ) } \\ \hline \end{gathered}$			$\begin{gathered} 15 \\ \text { (Typ) } \\ \hline \end{gathered}$		Ω
VANALOG	Min. Analog Signal Handling Capability			± 10			± 10		V
D(OFF) $/ \mathrm{I}_{\text {S(OFF }}$	Switch OFF Leakage Current	$\mathrm{V}_{\text {ANALOG }}=-10 \mathrm{~V}$ to +10 V		± 1	100		± 5	100	nA
$\begin{array}{\|l\|} \hline \mathrm{ID}(\mathrm{ON}) \\ +\mathrm{I}_{\mathrm{S}(\mathrm{ON})} \\ \hline \end{array}$	Switch On Leakage Current	$V_{D}=V_{S}=-10 \mathrm{~V}$ to +10 V		± 2	200		± 10	200	nA
ton	Switch "ON" Time	$\begin{aligned} & R_{L}=1 \mathrm{k} \Omega, V_{\text {ANALOG }}=-10 \mathrm{~V} \\ & \text { to }+10 \mathrm{~V} \text { See Fig. } 2 \end{aligned}$		500			1000		ns
toff	Switch "OFF" Time	$\begin{aligned} & R_{\mathrm{L}}=1 \mathrm{k} \Omega, \mathrm{~V}_{\text {ANALOG }}=-10 \mathrm{~V} \\ & \text { to }+10 \mathrm{~V} \text { See Fig. } 2 \end{aligned}$		250			500		ns
$Q_{\text {(INJ. })}$	Charge Injection	See Fig. 3		1 (Typ)			2 (Typ)		mV
OIRR	Min. Off Isolation Rejection Ratio	$\begin{aligned} & f=1 \mathrm{MHz}, R_{\mathrm{L}}=100 \Omega, C_{\mathrm{L}} \leq 5 \mathrm{pF} \\ & \text { See Fig. } 4,(\text { Note } 1) \end{aligned}$		$\begin{gathered} 54 \\ \text { (Typ) } \\ \hline \end{gathered}$			$\begin{gathered} 50 \\ \text { (Typ) } \\ \hline \end{gathered}$		dB
${ }^{1+}$ Q	V+ Power Supply Quiescent Current		± 1	± 1	10	10	10	100	$\mu \mathrm{A}$
${ }^{1-} \mathrm{Q}$	V-Power Supply Quiescent Current	$\mathrm{V}+=+15 \mathrm{~V}, \mathrm{~V}=-15 \mathrm{~V}, \mathrm{~V}_{\mathrm{L}}=+5 \mathrm{~V}$	± 1	± 1	10	10	10	100	$\mu \mathrm{A}$
${ }^{+1}$ LQ	$\begin{aligned} & +5 \mathrm{~V} \text { Supply } \\ & \text { Quiescent Current } \end{aligned}$		± 1	± 1	10	10	10	100	$\mu \mathrm{A}$
GND	Gnd Supply Quiescent Current		± 1	± 1	10	10	10	100	$\mu \mathrm{A}$
CCRR	Min. Channel to Channel Cross Coupling Rejection Ratio	One Channel Off; Any Other Channel Switches as per Performance Characteristics (Note 1)		$\begin{gathered} 54 \\ \text { (Typ) } \end{gathered}$			$\begin{gathered} 50 \\ \text { (Typ) } \end{gathered}$		dB

Note 1: Not tested in production.

[^321]
TEST CIRCUITS

Figure 2
Figure 3
Figure 4
NOTE 1: Some channels are turned on by high " 1 " logic inputs and other channels are turned on by low " 0 " inputs; however 0.8 V to 2.4 V describes the min. range for switching properly. Refer to logic diagrams to see absolute value of logic input required to produce "ON" or "OFF" state.

TYPICAL PERFORMANCE CHARACTERISTICS (PerChannel)

0287-18

0287-19
POWER SUPPLY QUIESCENT CURRENT vs LOGIC FREQUENCY RATE

 OFF STATE
DEPENDS ON PART

0287-20

0287-21

GENERAL DESCRIPTION

The IH5052/3 analog switches use an improved, high voltage CMOS technology, which provides performance advantages not previously available from solid state switches. Early CMOS switches were destroyed when power supplies were removed with an input signal present. The INTERSIL CMOS technology has eliminated this serious systems problem. Key performance advantages are TTL compatibility and ultra low-power operation - the quiescent current requirement is less than $10 \mu \mathrm{~A}$.
The IH5052/3 also guarantees Break-Before-Make switching. This is accomplished by extending the toN time (400ns TYP.) such that it exceeds toff time (200ns TYP.). This insures that an ON channel will be turned OFF before an OFF channel can turn ON, and eliminates the need for external logic required to avoid channel to channel shorting during switching. With a logical " 0 " (0.8 V or less) at its control inputs, the IH5052 switches are closed, while the IH5053 switches are closed with a logical " 1 " (2.4 V or more) at its control inputs.

FEATURES

- Switches Greater Than 20Vpp Signals With \pm 15V Supplies
- Quiescent Current Less Than $10 \mu \mathrm{~A}$
- Overvoltage Protection to $\pm 25 \mathrm{~V}$
- Break-Before-Make Switching $\mathrm{t}_{\text {off }}$ 100ns, $\mathrm{t}_{\text {on }} \mathbf{2 5 0 n s}$ Typical
- TTL, CMOS Compatible
- Non-Latching With Supply Turn-Off
- IH5052 4 Normally Closed Switches
- IH5053 4 Normally Open Switches
- Low RDS(ON) 50Ω Typical

ORDERING INFORMATION

Package

$\mathrm{JE}=16$-Pin CERDIP
$D E=16-P i n$ Ceramic DIP
(Special Order Only)
Temperature Range
M = Military
$C=$ Commercial
Basic Part Number

[^322]ABSOLUTE MAXIMUM RATINGS

Power Dissipation
450 mW
(All Leads Soldered to a P.C. Board)
Derate $6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ Above $70^{\circ} \mathrm{C}$
NOTE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS $\left(T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}^{+}=+15 \mathrm{~V}, \mathrm{~V}^{-}=-15 \mathrm{~V}, \mathrm{~V}_{\mathrm{L}}=+5 \mathrm{~V}\right)$

Per Channel		Test Conditions	Min/Max Limits							
		Military	Commercial			Units				
Symbol	Characteristic		$-55^{\circ} \mathrm{C}$	$+25^{\circ} \mathrm{C}$	$+125^{\circ} \mathrm{C}$		0	$+25^{\circ} \mathrm{C}$	$+70^{\circ} \mathrm{C}$	
IIN(ON)	Input Logic Current		$\mathrm{V}_{\mathrm{IN}}=2.4 \mathrm{~V}(\mathrm{IH} 5053)=0.8 \mathrm{~V}(\mathrm{IH} 5052)$	10	± 1	10		± 10		$\mu \mathrm{A}$
IIN(OFF)	Input Logic Current	$\mathrm{V}_{\mathrm{IN}}=0.8 \mathrm{~V}(\mathrm{IH} 5053)=2.4 \mathrm{~V}(\mathrm{IH} 5052)$	10	± 1	10		± 10		$\mu \mathrm{A}$	
${ }^{\text {r DSS }}$ (ON)	Drain-Source On Resistance	$\mathrm{I}_{\mathrm{S}}=10 \mathrm{~mA}, \mathrm{~V}_{\text {analog }}=-10 \mathrm{~V}$ to +10 V	75	75	100	80	80	100	Ω	
$\Delta \mathrm{r}_{\text {DS }}(\mathrm{ON})$	Channel to Channel rDS(ON) Match			$\begin{gathered} 25 \\ \text { (typ) } \\ \hline \end{gathered}$			$\begin{gathered} 30 \\ \text { (typ) } \\ \hline \end{gathered}$		Ω	
V ${ }_{\text {analog }}$	Min. Analog Signal Handling Capability			$\begin{aligned} & \pm 11 \\ & \text { (typ) } \\ & \hline \end{aligned}$			$\begin{aligned} & \pm 10 \\ & \text { (typ) } \\ & \hline \end{aligned}$		V	
$\begin{array}{\|l} \mathrm{I}_{\mathrm{I}(\mathrm{OFF}} / 2 \\ \mathrm{I} \text { S(OFF) } \\ \hline \end{array}$	Switch OFF Leakage Current	$\mathrm{V}_{\text {ANALOG }}=-10 \mathrm{~V}$ to +10 V		± 1	100		± 5	100	nA	
$\begin{aligned} & \mathrm{ID}(\mathrm{ON}) \\ & +\mathrm{I}_{\mathrm{S}(\mathrm{ON})} \\ & \hline \end{aligned}$	Switch On Leakage Current	$V_{D}=V_{S}=-10 \mathrm{~V}$ to +10 V		± 2	200		± 10	100	nA	
ton	Switch "ON" Time	$R_{L}=1 \mathrm{k} \Omega, V_{\text {analog }}=-10 \mathrm{~V} \text { to }+10 \mathrm{~V}$ See Fig. 3		500			1000		ns	
tofF	Switch "OFF" Time	$R_{L}=1 \mathrm{k} \Omega, V_{\text {analog }}=-10 \mathrm{~V} \text { to }+10 \mathrm{~V}$ See Fig. 3		250			500		ns	
$\mathrm{Q}_{(\text {INJ.) }}$	Charge Injection	See Fig. 4		$\begin{gathered} 15 \\ \text { (typ) } \\ \hline \end{gathered}$			$\begin{gathered} 20 \\ \text { (typ) } \\ \hline \end{gathered}$		mV	
OIRR	Min. Off Isolation Rejection Ratio	$f=1 \mathrm{MHz}, R_{L}=100 \Omega, C_{L} \leq 5 p F$ See Fig. 5		$\begin{gathered} 54 \\ \text { (typ) } \end{gathered}$			$\begin{gathered} 50 \\ \text { (typ) } \\ \hline \end{gathered}$		dB	
$1+$	+ Power Supply Quiescent Current	$\begin{aligned} & \mathrm{V}^{+}=+15 \mathrm{~V}, \mathrm{~V}^{-}=-15 \mathrm{~V}, \mathrm{~V}_{\mathrm{L}}=+5 \mathrm{~V} \\ & \text { with GND } \end{aligned}$	10	10	100	10	10	100	$\mu \mathrm{A}$	
1^{-}	- Power Supply Quiescent Current		10	10	100	10	10	100	$\mu \mathrm{A}$	
IVL	$\begin{aligned} & +5 \mathrm{~V} \text { Supply } \\ & \text { Quiescent Current } \\ & \hline \end{aligned}$		10	10	100	10	10	100	$\mu \mathrm{A}$	
CCRR	Min. Channel to Channel Cross Coupling Rejection Ratio	One Channel Off		$\begin{gathered} 54 \\ \text { (typ) } \end{gathered}$			$\begin{gathered} 50 \\ \text { (typ) } \end{gathered}$		dB	

[^323]
TEST CIRCUITS

Figure 4
Figure 5

NOTE 1: The 5053 is turned on by high " 1 " logic inputs and the 5052 is turned on by low " 0 " inputs; however 0.8 V to 2.4 V describes the min. range for switching properly. Refer to logic diagrams to see absolute value of logic input required to produce "ON" or "OFF" state.
TYPICAL PERFORMANCE CHARACTERISTICS (PerChannel)

0288-6
ros(ON) vs POWER SUPPLY VOLTAGE

CHARGE INJECTION vs V ${ }_{\text {ANALOG }}$
(SEE Figure B) $\mathbf{C}_{\mathrm{L}}=10,000 \mathrm{pF}$

CROSS COUPLING REJECTION vs FREQUENCY

0288-7

Cross Coupling Rejection Test Circuit

TYPICAL PERFORMANCE CHARACTERISTICS

0288-11
POWER SUPPLY QUIESCENT CURRENT vs

OFF STATE DEPENDS ON PART ${ }^{\circ}$

0288-12
Off Isolation Test Circult
ttl level

0288-14
Logic Input Waveform

[^324]
APPLICATIONS

PROGRAMMABLE GAIN NON-INVERTING AMPLIFIER WITH SELECTABLE INPUTS

Figure 7: Active Low Pass Filter with Digitally Selected Break Frequency

INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.
NOTE: All typical values have been characterized but are not tested.

A LATCHING DPDT SWITCH

The latch feature insures positive switching action in response to non-repetitive or erratic commands. The A_{1} and A_{2} inputs are normally low. A HIGH input to A_{2} turns S_{1} and $\mathrm{S}_{2} \mathrm{ON}$, a HIGH to A_{1} turns S_{3} and $\mathrm{S}_{4} \mathrm{ON}$. Desirable for use with limit detectors, peak detectors, or mechanical contact closures.

Figure 9: A Latching DPDT

IH5140-IH5145
 High-Level CMOS Analog Switch

GENERAL DESCRIPTION

The IH5140 Family of CMOS switches utilizes Intersil's latch-free junction isolated processing to build the fastest switches currently available. These switches can be toggled at a rate of greater than 1 MHz with super fast $t_{o n}$ times (80ns typical) and faster toff times (50ns typical), guaranteeing break before make switching. This family of switches combines the speed of the hybrid FET DG180 family with the reliability and low power consumption of a monolithic CMOS construction.

OFF leakages are guaranteed to be less than 200pA at $25^{\circ} \mathrm{C}$. Very low quiescent power is dissipated in either the ON or the OFF state of the switch. Maximum power supply current is $1 \mu \mathrm{~A}$ from any supply and typical quiescent currents are in the $10 n A$ range which makes these devices ideal for portable equipment and military applications.
The IH5140 Family is completely compatible with TTL $(5 \mathrm{~V})$ logic, TTL open collector logic and CMOS logic. It is pin compatible with Intersil's IH5040 family and part of the DG180/190 family as shown in the switching state diagrams.

ORDERING INFORMATION

Order Part Number	Function	Package	Temperature Range
IH5140 MJE	SPST	16 Pin CERDIP	$-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
IH5140 CJE	SPST	16 Pin CERDIP	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
IH5140 CPE	SPST	16 Pin Plastic DIP	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
IH5140 MFD	SPST	14 Pin Flat Pack	$-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
IH5141 MJE	Dual SPST	16 Pin CERDIP	$-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
IH5141 CJE	Dual SPST	16 Pin CERDIP	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
IH5141 CPE	Dual SPST	16 Pin Plastic DIP	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
IH5141 MFD	Dual SPST	14 Pin Flat Pack	$-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
IH5142 MJE	SPDT	16 Pin CERDIP	$-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
IH5142 CJE	SPDT	16 Pin CERDIP	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
IH5142 CPE	SPDT	16 Pin Plastic DIP	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
IH5142 MFD	SPDT	14 Pin Flat Pack	$-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
IH5143 MJE	Dual SPDT	16 Pin CERDIP	$-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
IH5143 CJE	Dual SPDT	16 Pin CERDIP	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
IH5143 CPE	Dual SPDT	16 Pin Plastic DIP	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
IH5143 MFD	dual SPDT	14 Pin Flat Pack	$-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
IH5144 MJE	DPST	16 Pin CERDIP	$-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
IH5144 CJE	DPST	16 Pin CERDIP	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
IH5144 CPE	DPST	16 Pin Plastic DIP	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
IH5144 MFD	DPST	14 Pin Flat Pack	$-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
IH5145 MJE	Dual DPST	16 Pin CERDIP	$-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
IH5145 CJE	Dual DPST	16 Pin CERDIP	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
IH5145 CPE	Dual DPST	16 Pin Plastic DIP	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
IH5145 MFD	Dual DPST	14 Pin Flat Pack	$-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$

Note: 1. Ceramic (side braze) devices also available; consult factory.
2. MIL temp range parts also available with MIL-STD-883 processing.

FEATURES

- Super Fast Break-Before-Make Switching
- $\mathrm{t}_{\text {on }}$ 80ns Typ, $\mathrm{t}_{\text {off }}$ 50ns Typ (SPST Switches)
- Power Supply Currents Less Than $1 \mu \mathrm{~A}$
- OFF Leakages Less Than 100pA @ $25^{\circ} \mathrm{C}$ Typical
- Non-latching With Supply Turn-off
- Single Monolithic CMOS Chip
- Plug-in Replacements for IH5040 Family and Part of the DG180 Family to Upgrade Speed and Leakage
- Greater Than 1 MHz Toggle Rate
- Switches Greater Than 20Vp-p Signals With \pm 15V Supplies
- TTL, CMOS Direct Compatibility
- Internal Diode in Series with \mathbf{V}^{+}for Fault Protection

0291-1
Figure 1: Functional Diagram Typical Driver/ Gate - IH5142

[^325]ABSOLUTE MAXIMUM RATINGS

$\mathrm{V}^{+}-\mathrm{V}^{-}$	<36V
$V^{+}-V_{D}$	$<30 \mathrm{~V}$
$V_{D}-V^{-}$	<30V
$V_{D}-V_{S}$	< $\pm 22 \mathrm{~V}$
$\mathrm{V}_{\mathrm{L}}-\mathrm{V}^{-}$	<33V
$V_{L}-V_{\text {IN }}$	<30V
V_{L}	<20V
$V_{\text {IN }}$	<20V

Current (Any Terminal)	mA
Storage Temperature	$5^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Operating Temperature	$55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Lead Temperature (Soldering 10sec)	$300^{\circ} \mathrm{C}$
Power Dissipation	50
(All Leads Soldered to a P.C. Board)	
Derate $6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ Above $70^{\circ} \mathrm{C}$	

NOTE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
ELECTRICAL CHARACTERISTICS (@ $25^{\circ} \mathrm{C}, \mathrm{V}^{+}=+15 \mathrm{~V}, \mathrm{~V}^{-}=-15 \mathrm{~V}, \mathrm{~V}_{\mathrm{L}}=+5 \mathrm{~V}$)

Per Channel		Test Conditions	Min/Max Limits						Units	
	Characteristic		Military			Commercial				
			$-55^{\circ} \mathrm{C}$	$+25^{\circ} \mathrm{C}$	$+125^{\circ} \mathrm{C}$	0	$+25^{\circ} \mathrm{C}$	$+70^{\circ} \mathrm{C}$		

LOGIC INPUT

$\mathrm{I}_{\mathrm{INH}}$	Input Logic Current	$\mathrm{V}_{\mathrm{IN}}=2.4 \mathrm{~V}$ Note 1	± 1	± 1	10		± 10	10
$\mathrm{I}_{\text {INL }}$	Input Logic Current	$\mathrm{V}_{\mathbb{I N}}=0.8 \mathrm{~V}$ Note 1	± 1	± 1	10		± 10	10

SWITCH

rDS(on)	Drain-Source On Resistance	$\begin{aligned} & \text { IS }=-10 \mathrm{~mA} \\ & \mathrm{~V}_{\text {ANALOG }}=-10 \mathrm{~V} \text { to }+10 \mathrm{~V} \end{aligned}$	50	50	75	75	75	100	Ω
$\Delta \mathrm{r}_{\text {DS }}(\mathrm{on}$)	Channel to Channel rDS(on) Match			$\begin{gathered} 25 \\ \text { (typ) } \end{gathered}$			$\begin{gathered} 30 \\ \text { (typ) } \end{gathered}$		Ω
$V_{\text {ANALOG }}$	Min. Analog Signal Handling Capability			$\begin{aligned} & \pm 11 \\ & \text { (typ) } \end{aligned}$			$\begin{aligned} & \pm 10 \\ & \text { (typ) } \end{aligned}$		V
$\begin{array}{\|l} \hline \mathrm{I}_{\mathrm{D}(\mathrm{off})}+ \\ \mathrm{I}_{\mathrm{S} \text { (off) }} \\ \hline \end{array}$	Switch OFF Leakage Current	$\begin{aligned} & V_{D}=+10 \mathrm{~V}, V_{S}=-10 \mathrm{~V} \\ & V_{D}=-10 \mathrm{~V}, V_{S}=+10 \mathrm{~V} \end{aligned}$		$\begin{aligned} & \pm .5 \\ & \pm .5 \end{aligned}$	$\begin{aligned} & 100 \\ & 100 \end{aligned}$		$\begin{aligned} & \pm 5 \\ & \pm 5 \end{aligned}$	$\begin{aligned} & 100 \\ & 100 \end{aligned}$	nA
$\begin{array}{\|l} \hline \begin{array}{l} \text { ID(on) } \end{array} \\ \text { Is(on) } \end{array}$	Switch On Leakage Current	$\mathrm{V}_{\mathrm{D}}=\mathrm{V}_{S}=-10 \mathrm{~V}$ to +10 V		± 1	200		± 2	200	nA
CCRR	Min. Channel to Channel Cross Coupling Rejection Ratio	One Channel Off; Any Other Channel Switches See Performance Characteristics		$\begin{gathered} 54 \\ \text { (typ) } \end{gathered}$			$\begin{gathered} 50 \\ \text { (typ) } \end{gathered}$		dB
ton $t_{0 f f}$	Switch "ON" Time Switch "OFF" Time	See switching time specifications and timing diagrams.							
$Q_{\text {(INJ.) }}$	Charge Injection	See Performance Characteristics		$\begin{gathered} 10 \\ \text { (typ) } \end{gathered}$			$\begin{gathered} 15 \\ \text { (typ) } \\ \hline \end{gathered}$		pC
OIRR	Min. Off Isolation Rejection Ratio	$\begin{aligned} & \mathrm{f}=1 \mathrm{MHz}, \mathrm{R}_{\mathrm{L}}=100 \Omega, \mathrm{C}_{\mathrm{L}} \leq 5 \mathrm{pF} \\ & \text { See Performance Characteristics } \end{aligned}$		$\begin{gathered} 54 \\ \text { (typ) } \end{gathered}$			$\begin{gathered} 50 \\ \text { (typ) } \end{gathered}$		dB

SUPPLY

1^{+}	+ Power Supply Quiescent Current	$\begin{aligned} & \mathrm{V}+=+15 \mathrm{~V}, \mathrm{~V}-=-15 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{L}}=+5 \mathrm{~V} \end{aligned}$ See Performance Characteristics	1.0	1.0	10.0	10	10	100	$\mu \mathrm{A}$
1 -	- Power Supply Quiescent Current		1.0	1.0	10.0	10	10	100	$\mu \mathrm{A}$
LL	+5 V Supply Quiescent Current		1.0	1.0	10.0	10	10	100	$\mu \mathrm{A}$
IGND	Gnd Supply Quiescent Current		1.0	1.0	10.0	10	10	100	$\mu \mathrm{A}$

NOTES: 1. Some channels are turned on by high (1) logic inputs and other channels are turned on by low (0) inputs; however 0.8 V to 2.4 V describes the min. range for switching properly. Refer to logic diagrams to find logical value of logic input required to produce ON or OFF state.
2. Typical values are for design aid only, not guaranteed and not subject to production testing.

INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. the warranty shall be exclusive and shall be in lieu of all other warranties, express, implied or statutory, including the implied warranties of MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.
NOTE: All typical values have been characterized but are not tested.

TYPICAL PERFORMANCE CHARACTERISTICS

[^326]
SWITCHING TIME SPECIFICATIONS

($t_{o n}, t_{\text {off }}$ are maximum specifications and $t_{o n}-t_{\text {off }}$ is minimum specifications)

Part Number	Symbol	Characteristic	Test Conditions	Military			Commercial			Units
				$-55^{\circ} \mathrm{C}$	$+25^{\circ} \mathrm{C}$	$+125^{\circ} \mathrm{C}$	0	$+25^{\circ} \mathrm{C}$	$+70^{\circ} \mathrm{C}$	
$\begin{array}{\|c} \mid \mathrm{IH} 5140- \\ 5141 \end{array}$	$t_{0 n}$ $t_{\text {off }}$ $t_{0 n-t_{\text {off }}}$	Switch "ON" time Switch "OFF" time Break-before-make	Figure 2*		$\begin{gathered} 100 \\ 75 \\ 10 \\ \hline \end{gathered}$			$\begin{gathered} 150 \\ 125 \\ 5 \\ \hline \end{gathered}$		ns
	$t_{0 n}$ toff $t_{\text {on }}-t_{\text {off }}$	Switch "ON" time Switch "OFF" time Break-before-make	Figure 3		$\begin{array}{\|c\|} \hline 150 \\ 125 \\ * 10 \text { (typ) } \\ \hline \end{array}$			$\begin{gathered} 175 \\ 150 \\ 5 \end{gathered}$		ns
$\begin{array}{\|c} \text { IH5142- } \\ 5143 \end{array}$	ton $\mathrm{t}_{\text {off }}$ $t_{\text {on }} t_{\text {off }}$	Switch "ON" time Switch 'OFF' time Break-before-make	Figure 2*		$\begin{gathered} 175 \\ 125 \\ 10 \\ \hline \end{gathered}$			$\begin{gathered} 250 \\ 150 \\ 5 \\ \hline \end{gathered}$		ns
	ton $\mathrm{t}_{\text {off }}$ $\mathrm{t}_{\text {on }} \mathrm{t}_{\text {off }}$	Switch "ON" time Switch "OFF" time Break-before-make	Figure 3		$\begin{array}{\|c\|} 200 \\ 125 \\ * 10 \text { (typ) } \end{array}$			$\begin{gathered} 300 \\ 150 \\ 5 \end{gathered}$		ns
	t_{0} toff $t_{\text {on }}$-toff	Switch "ON" time Switch "OFF" time Break-before-make	Figure 4*		$\begin{gathered} 175 \\ 125 \\ 10 \\ \hline \end{gathered}$			$\begin{gathered} 250 \\ 150 \\ 5 \\ \hline \end{gathered}$		ns
	ton $t_{\text {off }}$ $t_{\text {on }} \mathrm{t}_{\text {off }}$	Switch "ON" time Switch "OFF" time Break-before-make	Figure 5*		$\begin{gathered} 200 \\ 125 \\ 10 \\ \hline \end{gathered}$			$\begin{gathered} 300 \\ 150 \\ 5 \end{gathered}$		ns
$\begin{array}{\|c} \text { IH5144- } \\ 5145 \end{array}$	ton $t_{\text {off }}$ $t_{\text {on }}$ - $t_{\text {off }}$	Switch "ON" time Switch "OFF" time Break-before-make	Figure 2*		$\begin{gathered} 175 \\ 125 \\ 10 \\ \hline \end{gathered}$			$\begin{gathered} 250 \\ 150 \\ 5 \\ \hline \end{gathered}$		ns
	ton $t_{\text {off }}$ $t_{\text {on }} t_{\text {off }}$	Switch "ON" time Switch "OFF" time Break-before-make	Figure 3		$\begin{aligned} & 200 \\ & 125 \\ & * 10 \\ & \hline \end{aligned}$			$\begin{gathered} 300 \\ 150 \\ 5 \\ \hline \end{gathered}$		ns

NOTE: SWITCHING TIMES ARE MEASURED @ 90% PTS. * Typical values for design aid only, not guaranteed nor subject to production testing.
NOTE: SWITCHING TIMES ARE MEASURED @ 90\% PTS. * Typical values for design aid only, not guaranteed nor subject to production testing.

NOTE: SWITCHING TIMES ARE MEASURED @ 90% PTS.

Figure 2.

[^327]

Figure 3.

Figure 4.

0291-11
Figure 5.

FLATPACK (FD-2)

DIP (JE, PE)

DUAL SPST 1H5141 (rDS(on) $<75 \Omega$)

FLATPACK (FD-2)

DIP (JE, PE)

SPDT
IH5142 (rDS(on) $<75 \Omega$)
Figure 6: Switching State Diagrams

FLATPACK (FD-2) 0291-20 DUAL SPDT $\text { IH5143 (rDS(on) }<75 \Omega \text {) }$ SWITCH STATES ARE FOR LOGIC " "" INPUT	DIP (JE, PE) (DG191 EQUIVALENT) 0291-21
FLATPACK (FD-2) 0291-22 $\begin{gathered} \text { DPST } \\ \text { IH5144 (r } \mathrm{r}_{\text {DS(on) }}<75 \Omega \text {) } \end{gathered}$	DIP (JE, PE) 0291-23
FLATPACK (FD-2) 0291-25 DUAL DPST $\text { IH5145 (r } \left.r_{\text {DS }(o n) ~}<75 \Omega\right)$ Figure 6: Switching State Diagra	DIP (JE, PE) (DG185 EQUIVALENT) 0291-26 Continued)

[^328]

TTL OPEN COLLECTOR LOGIC DRIVE (Corresponds to Figure 9)

$-55^{\circ} \mathrm{C}$

$+25^{\circ} \mathrm{C}$

$+125^{\circ} \mathrm{C}$

$$
0291-31
$$

0291-32

TTL OPEN COLLECTOR LOGIC DRIVE
(Corresponds to Figure 10)

$+25^{\circ} \mathrm{C}$

TTL OPEN COLLECTOR LOGIC DRIVE (Corresponds to Figure 11)

$+25^{\circ} \mathrm{C}$

APPLICATION NOTE

To maximize switching speed on the IH5140 family, TTL open collector logic (15 V with a $1 \mathrm{k} \Omega$ or less collector resistor) should be used. This configuration will result in (SPST) t_{on} and $\mathrm{t}_{\text {off }}$ times of 80 ns and 50 ns , for signals between -10 V and +10 V . The SPDT and DPST switches are approximately 30 ns slower in both $\mathrm{t}_{\text {on }}$ and $\mathrm{t}_{\text {off }}$ with the same drive configuration. 15V CMOS logic levels can be used (0 V to +15 V), but propagation delays in the CMOS logic will slow down the switching (typical $50 \mathrm{~ns} \rightarrow 100 \mathrm{~ns}$ delays).
When driving the IH5140 Family from either +5V TTL or CMOS logic, switching times run 20 ns slower than if they were driven from +15 V logic levels. Thus $t_{\text {on }}$ is about 105 ns , and $\mathrm{t}_{\text {off }} 75 \mathrm{~ns}$ for SPST switches, and 135 ns and 105 ns ($\mathrm{t}_{\mathrm{on}}, \mathrm{t}_{\mathrm{off}}$) for SPDT or DPST switches. The low level drive can be made as fast as the high level drive if $\pm 5 \mathrm{~V}$ strobe levels are used instead of the usual $0 \mathrm{~V} \rightarrow+3.0 \mathrm{~V}$ drive. Pin 13 is taken to -5 V instead of the usual GND and strobe input is taken from +5 V to -5 V levels as shown in Figure 7.
The typical channel of the IH5140 family consists of both P and N -channel MOSFETs. The N-channel MOSFET uses a "Body Puller" FET to drive the body to $-15 \mathrm{~V}(\pm 15 \mathrm{~V}$ supplies) to get good breakdown voltages when the switch is in the off state (See Fig. 8). This "Body Puller" FET also allows the N -channel body to electrically float when the switch is in the on state producing a fairly constant $\mathrm{R}_{\mathrm{DS}}(\mathrm{ON})$ with different signal voltages. While this "Body Puller" FET improves switch performance, it can cause a problem when analog input signals are present (negative signals only) and power supplies are off. This fault condition is shown in Figure 9 .

Current will flow from -10 V analog voltage through the drain to body junction of Q1, then through the drain to body junction of Q3 to GND. This means that there is 10 V across two forward-biased silicon diodes and current will go to whatever value the input signal source is capable of supplying. If the analog input signal is derived from the same supplies as the switch this fault condition cannot occur. Turning off the supplies would turn off the analog signal at the same time.
This fault situation can also be eliminated by placing a diode in series with the negative supply line (pin 14) as shown in Figure 10. Now when the power supplies are off

 and a negative input signal is present this diode is reverse biased and no current can flow.

Figure 10.

INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

NOTE: All typical values have been characterized but are not tested.

APPLICATIONS

EXAMPLE: If $-\mathrm{V}_{\text {ANALOG }}=-10 \mathrm{VDC}$ and $+\mathrm{V}_{\text {ANALOG }}=+10 \mathrm{VDC}$ then Ladder Legs are switched between $\pm 10 \mathrm{VDC}$, depending upon state of Logic Strobe.
Figure 12: Using the CMOS Switch to Drive an R/2R Ladder Network (2 Legs)

[^329]
APPLICATIONS (Continued)

0291-41
CONSTANT GAIN, CONSTANT Q, VARIABLE FREQUENCY FILTER WHICH PROVIDES SIMULTANEOUS LOWPASS, BANDPASS, AND HIGHPASS OUTPUTS. WITH THE COMPONENT VALUES SHOWN, CENTER FREQUENCY WILL BE 235 Hz AND 23.5 Hz FOR HIGH AND LOW LOGIC INPUTS RESPECTIVELY, $Q=100$, AND $G A I N=100$.

$$
f_{n}=\text { CENTER FREQUENCY }=\frac{1}{2 \pi R C}
$$

Figure 13: Digitally Tuned Low Power Active Filter

IH5148 - IH5151 High-Level CMOS Analog Switches

GENERAL DESCRIPTION

The IH5148 family of solid state analog switches are designed using an improved, high voltage CMOS technology. Destructive latchup has been eliminated. Early CMOS switches were destroyed when power supplies were removed with an input signal present; the IH5148 CMOS technology has eliminated this problem.

Key performance advantages of the 5148 series are TTL compatibility and ultra low-power operation. $\mathrm{R}_{\mathrm{DS}(o n)}$ switch resistance is typically in the 14Ω To 18Ω Area, for signals in the -10 V to +10 V range. Quiescent current is less than $10 \mu \mathrm{~A}$. The 5148 also guarantees Break-Before-Make switching which is logically accomplished by extending the ton time (200 nsec typ.) such that it exceeds toff time ($120 n s e c$ typ.). This insures that an ON channel will be turned OFF before an OFF channel can turn ON. The need for external logic required to avoid channel to channel shorting during switching is thus eliminated.

Many of the devices in the 5148 series are pin-for-pin compatible with other analog switches, and offer improved electrical characteristics.

FEATURES

- Low RDS(ON) - 25Ω
- Switches Greater Than 20Vpp Signals With $\pm 15 \mathrm{~V}$ Supplies
- Quiescent Current Less Than $100 \mu \mathrm{~A}$
- Break-Before-Make Switching toff 120nsec Typ., toN 200nsec Typical
- TTL, CMOS Compatible
- Non-Latching With Supply Turn-Off
- Complete Monolithic Construction
- $\pm 5 \mathrm{~V}$ to $\pm 15 \mathrm{~V}$ Supply Range

CMOS ANALOG SWITCH PRODUCT CONDITIONING

- The Following Processes Are Performed 100% in Accordance With MIL-STD-883
- Precap Visual - Method 2010, Cond. B
- Stabilization Bake - Method 1008
- Temperature Cycle - Method 1010
- Centrifuge - Method 2001, Cond. E
- Hermeticity — Method 1014, Cond. A, C
- (Leak Rate $<5 \times 10^{-7} \mathrm{~atm} \mathrm{cc} / \mathrm{s}$)

ORDERING INFORMATION

Order Part Number	Function	Package	Temperature Range	Harris Equivalent
IH5148MJE	Dual SPST	16 Pin CERDIP	$-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$	$\mathrm{HI}-5048$
IH5148CJE	Dual SPST	16 Pin CERDIP	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	$\mathrm{HI}-5048$
IH5148CPE	Dual SPST	16 Pin Plastic DIP	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	$\mathrm{HI}-5048$
IH5148MFD	Dual SPST	14 Pin Flat Pack	$-50^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$	$\mathrm{HI}-5048$
IH5149MJE	Dual DPST	16 Pin CERDIP	$-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$	$\mathrm{HI}-5049$
IH5149CJE	Dual DPST	16 Pin CERDIP	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	$\mathrm{HI}-5049$
IH5149CPE	Dual DPST	16 Pin Plastic DIP	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	$\mathrm{HI}-5049$
IH5149MFD	Dual DPST	14 Pin Flat Pack	$-50^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$	$\mathrm{HI}-5049$
IH5150MJE	SPDT	16 Pin CERDIP	$-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$	$\mathrm{HI}-5050$
IH5150CJE	SPDT	16 Pin CERDIP	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	$\mathrm{HI}-5050$
IH5150CPE	SPDT	16 Pin Plastic DIP	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	$\mathrm{HI}-5050$
IH5150MFD	SPDT	14 Pin Flat Pack	$-50^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$	$\mathrm{HI}-5050$
IH5151MJE	Dual SPDT	16 Pin CERDIP	$-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$	$\mathrm{HI}-5051$
IH5151CJE	Dual SPDT	16 Pin CERDIP	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	$\mathrm{HI}-5051$
IH5151CPE	Dual SPDT	16 Pin Plastic DIP	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	$-50^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
IH5151MFD	Dual SPDT	14 Pin Flat Pack	-5051	

NOTES: 1. Ceramic (side braze) devices also available; consult factory
2. MIL temp range parts also available with MIL-STD-883 processing.

[^330]
ABSOLUTE MAXIMUM RATINGS

V_{L}... <20V

Current (Any Terminal) $<50 \mathrm{~mA}$
Storage Temperature $\ldots \ldots \ldots \ldots \ldots . .-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Power Dissipation
(All Leads Soldered to a P.C. Board)
Derate $6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ Above $70^{\circ} \mathrm{C}$
NOTE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

0292-1
Figure 1: Functional Diagram (Typical Switch Schematic - IH5150 in 16 pin DIP PKG.)

[^331]ELECTRICAL CHARACTERISTICS（ $\mathrm{T}_{\mathrm{A}} @ 25^{\circ} \mathrm{C}, \mathrm{V}+=+15 \mathrm{~V}, \mathrm{~V}^{-}=-15 \mathrm{~V}, \mathrm{~V}_{\mathrm{L}}=+5 \mathrm{~V}$ ）

Per Channel		Test Conditions	Min／Max Limits						Units
Symbol	Characteristic		Military			Commercial			
			$-55^{\circ} \mathrm{C}$	$+25^{\circ} \mathrm{C}$	$+125^{\circ} \mathrm{C}$	0	$+25^{\circ} \mathrm{C}$	$+70^{\circ} \mathrm{C}$	
$\operatorname{IIN(ON)}$	Input Logic Current	$\mathrm{V}_{\text {IN }}=2.4 \mathrm{~V}$（ Note 1）	± 1	± 1	± 10		± 1	± 10	$\mu \mathrm{A}$
InN（OFF）	Input Logic Current	$\mathrm{V}_{\text {IN }}=0.8 \mathrm{~V}$（Note 1）	± 1	± 1	± 10		± 1	± 10	$\mu \mathrm{A}$
$\mathrm{R}_{\mathrm{DS} \text {（ON）}}$	Drain－Source On Resistance	$\mathrm{V}_{\mathrm{D}}= \pm 10 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=-10 \mathrm{~mA}$	25	25	50		30		Ω
$\triangle \mathrm{R}_{\text {DS（ON）}}$	Channel to Channel R ${ }_{\text {DS（ON）}}$ Match			$\begin{gathered} 10 \\ \text { (Typ) } \\ \hline \end{gathered}$			$\begin{gathered} 15 \\ \text { (Тyp) } \end{gathered}$		Ω
$\mathrm{V}_{\text {ANALOG }}$	Min．Analog Signal Handling Capability			$\begin{aligned} & \pm 14 \\ & \text { (Тур) } \\ & \hline \end{aligned}$			$\begin{array}{r} \pm 14 \\ \text { (Тур) } \\ \hline \end{array}$		V
ID（OFF） IS（OFF）	Switch OFF Leakage Current	$\mathrm{V}_{\text {ANALOG }}=-10 \mathrm{~V}$ to +10 V		± 1.0	100		± 2.0	100	nA
$\begin{gathered} \mathrm{ID}_{\mathrm{D}(\mathrm{ON})+}+ \\ \mathrm{IS}(\mathrm{ON}) \\ \hline \end{gathered}$	Switch On Leakage Current	$V_{D}=V_{S}=-10 \mathrm{~V}$ to +10 V		± 1.0	100		± 2.0	100	nA
$Q_{(\text {INJ })}$	Charge Injection	See Figure 4		$\begin{gathered} \hline \text { (10) } \\ \text { (Тyp) } \\ \hline \end{gathered}$			$\begin{gathered} (10) \\ \text { (Тyp) } \\ \hline \end{gathered}$		mV
OIRR	Min．Off Isolation Rejection Ratio	$\begin{aligned} & l_{=1 \mathrm{MHz},} \mathrm{R}_{\mathrm{L}}=100 \Omega, \\ & C_{\mathrm{L}} \leq 5 \mathrm{pF}, \text { See Figure } 5 \end{aligned}$		$\begin{gathered} 54 \\ \text { (Typ) } \\ \hline \end{gathered}$			$\begin{gathered} 50 \\ \text { (Typ) } \\ \hline \end{gathered}$		dB
SUPPLY									
$1+$	＋Power Supply Quiescent Current		10	10	100		10		$\mu \mathrm{A}$
1^{-}	－Power Supply Quiescent Current	$\mathrm{V}_{1}=+15 \mathrm{~V}, \mathrm{~V}_{2}=-15 \mathrm{~V}$.	10	10	100		10		$\mu \mathrm{A}$
IL	+5 V Supply Quiescent Current	$\mathrm{V}_{\mathrm{L}}=+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{R}}=0$	10	10	100		10		$\mu \mathrm{A}$
IGND	Gnd Supply Quiescent Current		10	10	100		10		$\mu \mathrm{A}$
CCRR	Min．Channel to Channel Cross Coupling Rejection Ratio	One Channel Off； Any Other Channel Switches as per Figure 8		$\begin{gathered} 54 \\ \text { (Typ) } \end{gathered}$			$\begin{gathered} 50 \\ \text { (Typ) } \end{gathered}$		dB

NOTE 1．Some channels are turned on by high＂ 1 ＂logic inputs and other channels are turned on by low＂ 0 ＂inputs；however 0.8 V to 2.4 V describes the min．range for switching properly．Refer to logic diagrams to find logical value of logic input required to produce＂ON＂or＂OFF＂state．

SWITCHING TIME SPECIFICATION

IH5148 SPST SWITCH

Symbol	Parameter	Test Conditions	Min	Max	Units
t_{on}	Switch＂on＂time	$\mathrm{R}_{\mathrm{L}}=1 \mathrm{~K} \Omega, \mathrm{~V}_{\mathrm{ANALOG}}=-10 \mathrm{~V}$		250	ns
$\mathrm{t}_{\text {off }}$	Switch＂off＂time	$\mathrm{T}_{\mathrm{O}}+10 \mathrm{~V}$ ；See Figures 3 and 6		200	ns

IH5149 DPST SWITCH

Symbol	Parameter	Test Conditions	Min	Max	Units
$\mathrm{t}_{\text {on }}$	Switch＂on＂time	$\mathrm{R}_{\mathrm{L}}=1 \mathrm{~K} \Omega, \mathrm{~V}_{\text {ANALOG }}=-10 \mathrm{~V}$		350	ns
$\mathrm{t}_{\text {off }}$	Switch＂off＂time	$\mathrm{T}_{\mathrm{O}}+10 \mathrm{~V}$ ；See Figures 3 and 6		250	ns

IH5150 \＆IH5151 SPDT SWITCH

Symbol	Parameter	Test Conditions	Min	Max	Units
$t_{\text {on }}$	Switch＂on＂time	$R_{\mathrm{L}}=1 \mathrm{~K} \Omega, \mathrm{~V}_{\text {ANALOG }}=-10 \mathrm{~V}$		500	ns
$\mathrm{t}_{\text {off }}$	Switch＂off＂time	$\mathrm{T}_{\mathrm{O}}+10 \mathrm{~V}$ ；See Figures 3 and 6		250	ns

NOTE 2．For IH5150 \＆H55151 devices，channels which are off for logic input $\geq 2.4 \mathrm{~V}$（Pins $3 \& 4$ on 5150, \＆Pins $3 \& 4,5 \& 6$ on 5151 ）have slower ton time，than channels on Pins $1,16, \& 8,9$ ．This is done so switch will maintain break－before－make action when connected in DT configuration，i．e．Pin 1 connected in Pin 3.

INTERSIL＇S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE． the warranty shall be exclusive and shall be in lieu of all other warranties，express，implied or statutory，including the implied warranties of MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE．
NOTE：All typical values have been characterized but are not tested．
SWITCH STATES ARE

DUAL DPST IH5149

0292-6
SPDT IH5150

0292-7

0292-8
DUAL SPDT IH5151

Figure 2: Switching State Diagrams

TEST CIRCUITS

TYPICAL PERFORMANCE CHARACTERISTICS (PerChannel)

INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.
NOTE: All typical values have been characterized but are not tested.

TYPICAL PERFORMANCE CHARACTERISTICS (Per Channel) (Continued)
 OFF ISOLATION vs FREQUENCY

FREQUENCY (Hz)
POWER SUPPLY QUIESCENT CURRENT vs LOGIC FREQUENCY RATE

0292-19
OFF ISOLATION TEST CIRCUIT

0292-21
LOGIC INPUT WAVEFORM

0292-20

0292-22
Figure 6: Switching Time Test Circuit

Nulling Out Charge Injection:

Charge injection (Qinj. on spec. sheet) is caused by gate to drain, or gate to source capacitance of the output switch MOSFET. The gates of these MOSFETs typically swing from -15 V to +15 V as a rapidly changing pulse; thus this 30 Vpp pulse is coupled through gate capacitance to output load capacitance, and the output "step" is a voltage divider from this combination. For example:
Qinject (Vpp) $\cong \frac{C_{\text {gate }}}{C_{\text {Load }}} \times 30 \mathrm{~V}$ step.
i.e.
$C_{\text {gate }}=1.5 \mathrm{pF}, \mathrm{C}_{\text {Load }}=1000 \mathrm{pF}$, then
Qinject (Vpp) $=\frac{1.5 \mathrm{pF}}{1000 \mathrm{pF}} \times 30 \mathrm{~V}$ step $=45 \mathrm{mVpp}$
Thus if you are using switch in a Sample \& Hold application with $\mathrm{C}_{\text {sample }}=1000 \mathrm{pF}$, a 45 mVpp "Sample to Hold error step" will occur.

To null this error step out to zero the following circuit can be used:

Figure 7: Adjustable Charge Injection Compensation Circuit

The circuit shown above nulls out charge injection effects on switch pins 1 and 16; a similar circuit would be required on switch pins 8 and 9 .

Simply adjust the pot until $\mathrm{V}_{\text {OUT }}=0 \mathrm{mVpp}$ pulse, with $\mathrm{V}_{\text {ANALOG }}=0 \mathrm{~V}$.

If you do not desire to do any adjusting, but wish the least amount of charge injection possible, then the following circuit should be used:

Figure 8: No-Adjust Charge Injection Compensation Circuit

This configuration will produce a typical charge injection of $\mathrm{V}_{\text {OUT }} \leq 10 \mathrm{mV}$ pp into the 1000 pF S \& H capacitor shown.

Fault Condition Protection

If your system has analog voltage levels which are independent of the $\pm 15 \mathrm{~V}$ (Power Supplies), and these analog levels can be present when supplies are shut off, you should add fault protection diodes as shown below:

0292-25
Figure 9: Adding Diodes Protects Switch
If the analog input levels are below $\pm 15 \mathrm{~V}$, the pn junctions of Q13 \& Q15 are reversed biased. However if the $\pm 15 \mathrm{~V}$ supplies are shut off and analog levels are still present, the configuration becomes:

[^332]The need for these diodes, in this circumstance, is shown below:

If $A N A L O G$ in is greater than 1 V , then the pn junction of Q15 is forward biased and excessive current will be drawn. The addition of IN914 diodes prevents the fault currents from destroying the switch. A similar event would occur if ANALOG in was less than or equal to -1V, wherein Q13 would become forward biased. The IN914 diodes form a "back to back" diode arrangement with Q13 \& Q15 bodies.

This structure provides a degree of overvoltage protection when supplies are on normally, and analog input level exceeds supplies.
This circuit will switch up to about $\pm 18 \mathrm{~V}$ ANALOG overvoltages. Beyond this drain (N) to body (P) breakdown VOLTAGE of Q13 limits overvoltage protection.

FEATURES

- $\mathrm{R}_{\mathrm{DS}(\text { on) }}<75 \Omega$
- Switch Attenuation Varies Less Than 3dB From DC to 100 MHz
- "OFF" Isolation> 70dB Typical @ 10MHz
- Cross Coupling Isolation>60dB @ 10MHz
- Compatible With TTL, CMOS Logic
- Wide Operating Power Supply Range
- Power Supply Current $\leq 1 \mu \mathrm{~A}$
- "Break-Before-Make" Switching
\bullet Fast Switching (80ns/150ns Typ)

GENERAL DESCRIPTION

The IH5341 is a dual SPST, CMOS monolithic switch which uses a "Series/Shunt" (" T " switch) configuration to obtain high "OFF" isolation while maintaining good frequency response in the "ON" condition.

Construction of remote and portable video equipment with extended battery life is facilitated by the extremely low current requirements. Switching speeds are typically $t_{\text {on }}=150 \mathrm{~ns}$ and $t_{\text {off }}=80 \mathrm{~ns}$, and "Break-Before-Make" switching is guaranteed.

Switch "ON" resistance is typically $40 \Omega-50 \Omega$ with $\pm 15 \mathrm{~V}$ power supplies, increasing to typically 175Ω for $\pm 5 \mathrm{~V}$ supplies. The devices are available in TO-100 and 14-pin epoxy DIP packages.

ORDERING INFORMATION

Part Number	Temperature Range	Package
IH5341CPD	0 to $+70^{\circ} \mathrm{C}$	14-pin PLASTIC DIP
IH5341ITW	$-20^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	10 -pin TO-100
IH5341MTW	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	10 -pin TO-100

Figure 1: Functional Diagram
(Switches are open for a logical "0" control input, and closed for a logical " 1 " control input.)

Figure 2: Pin Configurations

[^333]
ABSOLUTE MAXIMUM RATINGS

$V+$ to Ground	
V - to Ground	-18V
V_{L} to Ground V^{+}to V^{-}	
Logic Control Voltage	
Analog Input Voltage V^{+}to V^{-}	
Current (any Terminal) . 50m	
Operating Temperature:	
(M Version) $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	
(I Version) $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	
(C Version)	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

Storage Temperature $\ldots-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ Lead Temperature (Soldering, 10sec) $300^{\circ} \mathrm{C}$
Power Dissipation . 250mW Derate above $25^{\circ} \mathrm{C}$ @ $7.5 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$

NOTE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Figure 3: Equivalent Schematic Diagram IH5341ITW ($1 / 2$ of actual circuit on chip shown)

DC ELECTRICAL CHARACTERISTICS
$\mathrm{V}^{+}=+15 \mathrm{~V}, \mathrm{~V}_{\mathrm{L}}=+5 \mathrm{~V}, \mathrm{~V}^{-}=-15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise specified.

Symbol	Parameter	Test Conditions	Typ	M Grade Device			I/C Grade Device			Units
				$-55^{\circ} \mathrm{C}$	$+25^{\circ} \mathrm{C}$	$+125^{\circ} \mathrm{C}$	$\begin{gathered} -25 / \\ 0^{\circ} \mathrm{C} \end{gathered}$	$+25^{\circ} \mathrm{C}$	$\begin{array}{\|c\|} \hline+85 / \\ +70^{\circ} \mathrm{C} \end{array}$	
$\begin{aligned} & \mathrm{V}+ \\ & \mathrm{V}_{\mathrm{L}} \\ & \mathrm{~V}- \end{aligned}$	Supply Voltage Ranges Positive Supply Logic Supply Negative Supply	(Note 3)	$\begin{gathered} 4.5>16 \\ 4.5>V+ \\ -4>-16 \end{gathered}$							V
	Switch "ON"	$V_{D}= \pm 5 \mathrm{~V}$		75	75	100	75	75	100	
R ${ }_{\text {DS(on) }}$	$\begin{gathered} \text { Resistance } \\ \text { (Note 4) } \\ \hline \end{gathered}$	$\begin{aligned} & I_{S}=10 \mathrm{~mA}, V_{I N} \geq 2.4 \mathrm{~V} \\ & V_{D}= \pm 10 \mathrm{~V} \end{aligned}$		125	125	175	150	150	175	
R ${ }_{\text {DS(on) }}$	Switch "ON" Resistance	$\begin{aligned} & V^{+}=V_{L}=+5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IN}}=3 \mathrm{~V} \\ & \mathrm{~V}^{-}=-5 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}= \pm 3 \mathrm{~V} \\ & \mathrm{IS}_{\mathrm{S}}=10 \mathrm{~mA} \\ & \hline \end{aligned}$		250	250	350	300	300	350	Ω
$\Delta \mathrm{R}_{\mathrm{DS} \text { (on) }}$	On Resistance Match Between Channels	$\begin{aligned} & I_{S}=10 \mathrm{~mA}, \\ & V_{D}= \pm 5 \mathrm{~V} \end{aligned}$	5							
$\begin{array}{\|l} \hline \mathrm{V}_{\mathrm{IH}} \\ \mathrm{~V}_{\mathrm{IL}} \\ \hline \end{array}$	Logical "1" Input Voltage Logical "0"' Input Voltage		$\begin{aligned} & >2.4 \\ & <0.8 \end{aligned}$							V
${ }^{\mathrm{I}} \mathrm{D}$ (off) or IS(off)	Switch "OFF' Leakage (Notes 2 and 4)	$\begin{aligned} & \hline \mathrm{V}_{\mathrm{S} / \mathrm{D}}= \pm 5 \mathrm{~V} \\ & \mathrm{~V}_{I N} \leq 0.8 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{S} / \mathrm{D}}= \pm 14 \mathrm{~V} \\ & \hline \end{aligned}$			$\begin{aligned} & \pm 0.5 \\ & \pm 0.5 \\ & \hline \end{aligned}$	50 50		$\begin{aligned} & \pm 1.0 \\ & \pm 1.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 100 \\ & 100 \\ & \hline \end{aligned}$	nA
$\begin{array}{\|l} \hline \begin{array}{l} \text { ID } \\ + \\ + \\ + \\ \text { IS(on) } \end{array} \\ \hline \end{array}$	Switch "ON" Leakage	$\begin{aligned} & V_{S / D}= \pm 5 \mathrm{~V} \\ & V_{I N} \geq 2.4 \mathrm{~V} \\ & V_{S / D}= \pm 14 \mathrm{~V} \\ & \hline \end{aligned}$			$\begin{array}{r} \pm 1 \\ \pm 1 \\ \hline \end{array}$	$\begin{aligned} & 50 \\ & 100 \\ & \hline \end{aligned}$		$\begin{aligned} & \pm 2 \\ & \pm 2 \end{aligned}$	$\begin{aligned} & 100 \\ & 100 \\ & \hline \end{aligned}$	
IIN	Input Logic Current	$\mathrm{V}_{\text {IN }} \geq 2.4 \mathrm{~V}$ or $<0 \mathrm{~V}$	0.1	± 1	± 1	10	± 1	± 1	10	
1^{+}	Positive Supply Quiescent Current	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$ or +5 V	0.1	1	1	10	1	1	10	$\mu \mathrm{A}$
$1-$	Negative Supply Quiescent Current	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$ or +5 V	0.1	1	1	10	1	1	10	
L	Logic Supply Quiescent Current	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$ or +5 V	0.1	1	1	10	1	1	10	

NOTES: 1. Typical values are not tested in production. They are given as a design aid only.
2. Positive and negative voltages applied to opposite sides of switch, in both directions successively.
3. These are the operating voltages at which the other parameters are tested, and are not directly tested.
4. The logic inputs are either greater than or equal to 2.4 V or less than or equal to 0.8 V , as required, for this test.

AC ELECTRICAL CHARACTERISTICS

$\mathrm{V}+=+15 \mathrm{~V}, \mathrm{~V}_{\mathrm{L}}=+5 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise specified (Note 5).

Symbol	Parameter	Test Conditions	Min	Typ	Max	Units
$t_{\text {on }}$	Switch "ON" Time	See Figure 4		150	300	ns
$\mathrm{t}_{\text {off }}$	Switch "OFF" Time	See Figure 4		80	150	
OIRR	"OFF" Isolation Rejection Ratio	See Figure 5 (Note 6)		70		dB
CCRR	Cross Coupling Rejection Ratio	See Figure 6 (Note 6)		60		
$\mathrm{f}_{3 \mathrm{~dB}}$	Switch Attenuation 3dB Frequency	See Figure 7 (Note 6)		100		

NOTES: 5. All AC parameters are sample tested only.
6. Test circuit should be built on copper clad ground plane board, with correctly terminated coax leads, etc.

0295-5
0295-4
Note: Only one channel shown. Other acts identically.
Figure 4: Switching Time Test Circuit and Waveforms

$\mathrm{V}_{\mathrm{IN}}= \pm 5 \mathrm{~V}\left(10 \mathrm{~V}_{\mathrm{p}-\mathrm{p}}\right) @ \mathrm{f}=10 \mathrm{MHz}$
0295-6

$$
\text { OIRR }=20 \log \frac{V_{I N}}{V_{\text {OUT }}}
$$

Note: Only one channel shown. Other acts identically.
Figure 5: OFF Isolation Test Circuit

0295-7
$V_{\text {IN }}=225 m V r m s @ f=10 \mathrm{MHz}$
$C C R R=20 \log \frac{V_{I N}}{V_{\text {OUT }}}$
Figure 6: Cross-Coupling Rejection Test Circuit

INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

NOTE: All typical values have been characterized but are not tested.

TYPICAL PERFORMANCES CHARACTERISTICS

CCRR (Cross Coupling Rejection) Versus Frequency (See Figure 6)

0295-12

0295-14
Figure 8: Internal Switch Configuration

DETAILED DESCRIPTION

As can be seen in Figure 8, the switch circuitry is of the so-called " T " configuration, where a shunt switch is closed when the switch is open. This provides much better isolation between the input and the output than a single series switch does, especially at high frequencies. The result is excellent performance in the Video and RF region compared to conventional Analog Switches.

The input level shifting circuit is similar to that of the IH5140 Series of Analog Switches, giving very high speed and guaranteed "Break-before-Make" action, with negligible static power consumption and TTL compatibility.

Typical Switch Attenuation Versus Frequency

FREQUENCY (MHz)

Figure 9: Charge Injection Compensation

[^334]

APPLICATIONS

Charge Compensation Techniques

Charge injection results from the signals out of the level translation circuit being coupled through the gate-channel and gate-source/drain capacitances to the switch inputs and outputs. This feedthrough is particularly troublesome in Sample-and-Hold or Track-and-Hold applications, as it causes a Sample (Track) to Hold offset. The IH5341 devices have a typical injected charge of $30 \mathrm{pC}-50 \mathrm{pC}$ (corresponding to $30 \mathrm{mV}-50 \mathrm{mV}$ in a 1000 pF capacitor), at $\mathrm{V}_{\mathrm{S} / \mathrm{D}}$ of about OV.

This Sample (Track) to Hold offset can be compensated by bringing in a signal equal in magnitude but of the opposite polarity. The circuit of Figure 9 accomplishes this charge injection compensation by using one side of the device as a S \& H (T \& H) switch, and the other side as a generator of a compensating signal. The $1 \mathrm{k} \Omega$ potentiometer allows the user to adjust the net injected charge to exactly zero for any analog voltage in the -5 V to +5 V range.

Since individual parts are very consistent in their charge injection, it is possible to replace the potentiometer with a pair of fixed resistors, and achieve less than 5 mV error for all devices without adjustment.

An alternative arrangement, using a standard TTL inverter to generate the required inversion, is shown in Figure 10. The capacitor needs to be increased, and becomes the only method of adjustment. A fixed value of 22 pF is good for analog values referred to ground, while 35 pF is optimum for AC coupled signals referred to -5 V as shown in the figure. The choice of -5 V is based on the virtual disappearance at this analog level of the transient component of switching charge injection. This combination will lead to a virtually "glitch-free" switch.

0295-17
Figure 11: Overvoltage Protection Circuit

Overvoltage Spike Protection

If sustained operation with no supplies but with analog signals applied is possible, it is recommended that diodes (such as 1N914) be inserted in series with the supply lines to the IH5341. Such conditions can occur if these signals come from a separate power supply or another location, for example. The diodes will be reverse biased under this type of operation, preventing heavy currents from flowing from the analog source through the IH 5341.
The same method of protection will provide over $\pm 25 \mathrm{~V}$ overvoltage protection on the analog inputs when the supplies are present. The schematic for this connection is shown in Figure 11.

[^335]QUAD SPST CMOS RF/Video Switch

GENERAL DESCRIPTION

The IH5352 is a QUAD SPST, CMOS monolithic video switch which uses a "Series/Shunt" ("T" switch) configuration to obtain high "OFF" isolation while maintaining good frequency response in the "ON" condition.

Construction of remote and portable video equipment with extended battery life is facilitated by the extremely low current requirements. Switching speeds are typically $t_{\text {on }}=150 \mathrm{~ns}$ and $t_{\text {off }}=80 \mathrm{~ns}$, and "Break-Before-Make" switching is guaranteed.

Switch "ON" resistance is typically $40 \Omega-50 \Omega$ with $\pm 15 \mathrm{~V}$ power supplies, increasing to typically 175Ω for $\pm 5 \mathrm{~V}$ supplies.

ORDERING INFORMATION

Part Number	Temperature Range	Package
IH5352CPE	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	16-PIN PLASTIC DIP
IH5352IJE	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16-PIN CERDIP
IH5352MJE	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16-PIN CERDIP

FEATURES

- $R_{D S(o n)}<75 \Omega$
- Switch Attenuation Varies Less Than 3dB From DC to 100 MHz
- "OFF" Isolation $>70 \mathrm{~dB}$ Typical @ 10MHz
- Cross Coupling Isolation $>60 \mathrm{~dB}$ @ 10 MHz
- Directly Compatible with TTL, CMOS Logic
- Wide Operating Power Supply Range
- Power Supply Current $<1 \mu \mathrm{~A}$
- "Break-Before-Make" Switching
- Fast Switching (80ns/150ns Typ)

APPLICATIONS

- Video Switch
- Communications Equipment
- Disk Drives
- Instrumentation
- CATV

0296-1
Figure 1: Functional Diagram
(Switches are open for a logic " 0 " control input, and closed for a logic " 1 " control input.)

Figure 2: Pin Configurations Package Outline Drawing: PE, JE

[^336]```
ABSOLUTE MAXIMUM RATINGS (TA}=2\mp@subsup{5}{}{\circ}\textrm{C}\mathrm{ Unless Otherwise Noted)
V+ to Ground +18V Storage Temperature
```

(M Version)
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
(I Version)
$-20^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
(C Version) $\qquad$

| Storage Temperature | $-65^{\circ} \mathrm{C}$ to $+160^{\circ} \mathrm{C}$ |
| :---: | :---: |
| Lead Temperature (Soldering, 10sec) | $300^{\circ} \mathrm{C}$ |
| Power Dissipation: |  |

CERDIP

NOTE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

## DC ELECTRICAL CHARACTERISTICS

$\mathrm{V}^{+}=+15 \mathrm{~V}, \mathrm{~V}^{-}=-15 \mathrm{~V}, \mathrm{~V}_{\mathrm{L}}=+5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted.

| Symbol | Parameter | Test Conditions | $\begin{gathered} \text { Typ } \\ \text { @25 } \end{gathered}$ | Maximum Ratings |  |  |  |  |  | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | M Grade Device |  |  | I/C Grade Device |  |  |  |
|  |  |  |  | $-55^{\circ} \mathrm{C}$ | $+25^{\circ} \mathrm{C}$ | $+125^{\circ} \mathrm{C}$ | $-25 / 0^{\circ} \mathrm{C}$ | $+25^{\circ} \mathrm{C}$ | $\begin{array}{\|c\|} \hline+851 \\ +70^{\circ} \mathrm{C} \end{array}$ |  |
| V+ | Supply Voltage Ranges: Positive Supply | (Note 3) | 5 to 15 |  |  |  |  |  |  | V |
| $\mathrm{V}_{\mathrm{L}}$ | Logic Supply |  | 5 to 15 |  |  |  |  |  |  |  |
| V - | Negative Supply |  | -5 to -15 |  |  |  |  |  |  |  |
| RDS(on) | Switch "ON" <br> Resistance (Note 4) | $\mathrm{I}_{\mathrm{S}}=10 \mathrm{~mA} \mathrm{~V}_{\mathrm{D}}= \pm 5 \mathrm{~V}$ | 50 | 75 | 75 | 100 | 75 | 75 | 100 | $\Omega$ |
|  |  | $\mathrm{V}_{\text {IN }} \geq 2.4 \mathrm{~V} \mathrm{~V}_{\mathrm{D}}= \pm 10 \mathrm{~V}$ | 100 | 125 | 125 | 175 | 150 | 150 | 175 |  |
| RDS(on) | Switch "ON" Resistance | $\begin{aligned} & I_{S}=10 \mathrm{~mA}, V+= \\ & V_{L}=+5 V V^{-}=-5 V \\ & V_{D}= \pm 3 V, V_{I N}=3 V \end{aligned}$ | 175 | 250 | 250 | 350 | 300 | 300 | 350 |  |
| $\Delta \mathrm{R}_{\mathrm{DS} \text { (on) }}$ | On Resistance Match Between Channels | $\mathrm{I}_{\mathrm{S}}=10 \mathrm{~mA}, \mathrm{~V}_{\mathrm{D}}= \pm 5 \mathrm{~V}$ | 5 |  |  |  |  |  |  |  |
| $\mathrm{V}_{\mathrm{IH}}$ | Logical "1" Input Voltage |  | >2.4 |  |  |  |  |  |  | V |
| $\mathrm{V}_{\mathrm{IL}}$ | Logical "0" Input Voltage |  | <0.8 |  |  |  |  |  |  |  |
| ID(off) or IS(off) | Switch 'OFF' Leakage (Note 2 and 4) | $\begin{aligned} & V_{S / D}= \pm 5 \mathrm{~V} \\ & V_{S / D}= \pm 14 \mathrm{~V} \\ & \mathrm{~V}_{\text {IN }} \leq 0.8 \mathrm{~V} \end{aligned}$ |  |  | $\begin{aligned} & \pm 1.0 \\ & \pm 1.0 \\ & \hline \end{aligned}$ | $50$ $50$ |  | $\begin{aligned} & \pm 2.0 \\ & \pm 2.0 \\ & \hline \end{aligned}$ | $\begin{aligned} & 100 \\ & 100 \\ & \hline \end{aligned}$ | nA |
| $\begin{aligned} & \mathrm{ID}(\mathrm{on}) \\ & + \\ & \mathrm{I} \\ & \mathrm{I} \text { (on) } \end{aligned}$ | Switch 'ON' Leakage | $\begin{aligned} & V_{S / D}= \pm 5 \mathrm{~V} \\ & V_{S / D}= \pm 14 \mathrm{~V} \\ & \mathrm{~V}_{\text {IN }} \geq 2.4 \mathrm{~V} \end{aligned}$ |  |  | $\begin{aligned} & \pm 1.0 \\ & \pm 1.0 \end{aligned}$ | $\begin{aligned} & 100 \\ & 100 \end{aligned}$ |  | $\begin{array}{r}  \pm 2.0 \\ \pm 2.0 \\ \hline \end{array}$ | $\begin{aligned} & 100 \\ & 100 \\ & \hline \end{aligned}$ |  |
| $\mathrm{IIN}^{\text {N }}$ | Logic Control Input Current | $\mathrm{V}_{\text {IN }} \geq 2.4 \mathrm{~V}$ or $<0 \mathrm{~V}$ | 0.1 | $\pm 1$ | $\pm 1$ | 10 | $\pm 1$ | $\pm 1$ | 10 |  |
| $1+$ | Positive Supply Quiescent Current | $\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$ or +5 V | 0.1 | 1 | 1 | 10 | 1 | 1 | 10 | $\mu \mathrm{A}$ |
| $1^{-}$ | Negative Supply Quiescent Current | $\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$ or +5 V | 0.1 | 1 | 1 | 10 | 1 | 1 | 10 |  |
| L | Logic Supply Quiescent Current | $\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$ or +5 V | 0.1 | 1 | 1 | 10 | 1 | 1 | 10 |  |

[^337]AC ELECTRICAL CHARACTERISTICS
$\mathrm{V}^{+}=+15 \mathrm{~V}, \mathrm{~V}_{\mathrm{L}}=+15 \mathrm{~V}, \mathrm{~V}^{-}=-15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise specified (Note 5).

| Symbol | Parameter | Min | Typ | Max | Unit |
| :--- | :--- | :---: | :---: | :---: | :---: |
| $\mathrm{t}_{\text {on }}$ | Switch "ON" Time |  | 150 | 300 | ns |
| $\mathrm{t}_{\text {off }}$ | Switch "OFF" Time |  | 80 | 150 |  |
| OIRR | "OFF" Isolation Rejection Ratio |  | 70 |  | dB |
| CCRR | Cross Coupling Rejection Ratio |  | 60 |  |  |
| $\mathrm{f}_{3 \mathrm{~dB}}$ | Switch Attenuation 3dB Frequency |  | 100 |  | MHz |

Notes: 1. Typical values are not tested in production. They are given as a design aid only.
2. Positive and negative voltages applied to opposite sides of switch, in both directions successively.
3. These are the operating voltages at which the other parameters are tested, and are not directly tested.
4. The logic inputs are either greater than or equal to 2.4 V or less than or equal to 0.8 V , as required, for this test.
5. All AC parameters are sample tested only.


Figure 3: Internal Switch Configuration

## DETAILED DESCRIPTION

Figure 3 shows the internal circuit of one channel of the IH5352. This is identical to the IH5341 "T-Switch" configuration. Here, a shunt switch is closed, and the two series switches are open when the video switch channel is open or off. This provides much better isolation between the input and output terminals than a simple series switch does, especially at high frequencies. The result is excellent off-isolation in the Video and RF frequency ranges when compared to conventional analog switches.
The control input level shifting circuitry is very similar to that of the IH5140 series of Analog Switches, and gives very high speed, guaranteed "Break-Before-Make" action, low static power consumption and TTL compatibility.


Figure 4: Switching Time Test Circuit and Waveforms

[^338]NOTE: All typical values have been characterized but are not tested.


0296-6 OIRR $=20$ LOG $\frac{V_{\text {IN }}}{V_{\text {OUT }}}$
$\mathrm{V}_{\mathrm{IN}}=5 \mathrm{~V}$ pn SINEWAVE © 10 MHz
Figure 5: Off Isolation Test Circuit


0296-7
$C C R R=20$ LOG $\frac{V_{I N}}{V_{\text {OUT }}}$

Figure 6: Cross-Coupling Rejection Test Circuit

INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL. BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

NOTE: All typical values have been characterized but are not tested.


0296-8
$\mathrm{f}-3 \mathrm{~dB}=$ FREQUENCY WHERE DC SWITCH
ATTENUATION IS DOWN 3dB
$\mathrm{V}_{\mathrm{i}} \mathrm{N}=225 \mathrm{mV}$ RMS @ $\mathbf{1 0}-100 \mathrm{MHz}$
Figure 7: Switch Attenuation - 3dB Frequency Test Circuit

## GENERAL DESCRIPTION

The MM450, and MM550 series each contain p channel MOS enhancement mode transistors. These devices are useful in airborne and ground support systems requiring multiplexing, analog transmission, and numerous signal routing applications. The use of low threshold transistors ( $\mathrm{V}_{\mathrm{TH}}=2$ volts) permits operations with large analog input swings ( $\pm 10$ volts) at low gate voltages ( -20 volts).
Each gate input is protected from static charge build-up by the incorporation of zener diode protective devices connected between the gate input and device bulk.

## FEATURES

- Large Analog Input $- \pm 10 \mathrm{~V}$
- Low Supply Voltage - $\mathrm{V}_{\text {BULK }}=+10 \mathrm{~V}$
$\mathbf{V}_{\mathbf{G G}}=-20 \mathrm{~V}$
- Typical ON Resistance - $\begin{aligned} V_{I N} & =-10 \mathrm{~V}, 150 \Omega \\ \mathrm{~V}_{\mathbb{I N}} & =+10 \mathrm{~V}, 75 \Omega\end{aligned}$
$\begin{aligned} \text { Typical ON Resistance }-V_{1 N} & =-10 \mathrm{~V}, 150 \Omega \\ \mathrm{~V}_{\mathbf{I N}} & =+10 \mathrm{~V}, 75 \Omega\end{aligned}$
- Low Leakage Current - 200pA Typical @ $25^{\circ} \mathrm{C}$
- Input Gate Protection


## ORDERING INFORMATION




INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

ABSOLUTE MAXIMUM RATINGS (Note 1)
Gate Voltage ( $\mathrm{V}_{\mathrm{GG}}$ ) . . . . . . . . . . . . . . . . . . . . +14.5 V to -30 V Bulk Voltage (VBULK) ..................................... +14 V
Analog Input (VIN) +14 V to -20 V
Power Dissipation 200 mW

Operating Temperature
MM450, MM451, MM452, MM455 ... $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
MM550, MM551, MM552, MM555 ......... $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
Storage Temperature. .................. $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10sec) ............... 300${ }^{\circ} \mathrm{C}$
NOTE 1: Dissipation rating assumes device is mounted with all leads welded or soldered to printed circuit board in ambient temperature below $70^{\circ} \mathrm{C}$. For higher temperature, derate at rate of $10 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ for FD package and $6.5 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ for TW package.
NOTE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
ELECTRICAL CHARACTERISTICS (per channel unless noted)

| Symbol | Characteristic | Type | Test Conditions |  | Limits |  |  |  |  | |
|---|---|---|---|---|---|---|---|---|---|---|
|  |  |  |  |  | $25^{\circ} \mathrm{C}$ | $70^{\circ} \mathrm{C}$ | $125^{\circ} \mathrm{C}$ | Min | Units |
|  |  |  |  |  | Max |  |  |  |
| $\mathrm{V}_{\mathrm{IN}}$ | Analog Input Voltage | All |  |  |  | $\pm 10$ |  |  | Max | V |
| $\mathrm{V}_{\mathrm{GS}(\mathrm{Th})}$ | Threshold Voltage | All | $\begin{aligned} & V_{D G}=0 \\ & I_{D}=-10 \mu \mathrm{~A} \end{aligned}$ |  | -3.0 |  |  | Min | V |
|  |  |  |  |  | -1.0 |  |  | Max |  |
| $\mathrm{R}_{\mathrm{DS} \text { (ON) }}$ | Drain-Source On Resistance | All | $\mathrm{V}_{\mathrm{IN}}=-10 \mathrm{~V}$ | $\begin{aligned} & I_{D}=10 \mathrm{~mA} \\ & V_{B}=10 \mathrm{~V} \end{aligned}$ | 600 |  | 700 | Max | $\Omega$ |
|  |  |  | $\mathrm{V}_{\text {IN }}=+10 \mathrm{~V}$ | $\mathrm{V}_{\mathrm{GS}}=-20 \mathrm{~V}$ | 200 |  | 250 | Max | $\Omega$ |
| IGBS | Gate Leakage Current | All | $\mathrm{V}_{\mathrm{GS}}=-25 \mathrm{~V}$ | SS $=\mathrm{V}_{\text {DS }}=0$ | $\pm 5$ |  | 100 | Max | nA |
| ID(OFF) | Drain Leakage Current | MM450, MM451 MM452, MM455 | $\begin{aligned} & \mathrm{V}_{\mathrm{DB}}=-25 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{GB}}=\mathrm{V}_{\mathrm{SB}}=0 \end{aligned}$ |  | $\pm 0.5$ |  | 200 | Max | nA |
|  |  | MM550, MM551 MM552, MM555 |  |  | 20 | 100 |  | Max | nA |
| IS(OFF) | Source Leakage Current | MM450, MM451 MM452, MM455 | $\begin{aligned} & \mathrm{V}_{\mathrm{SB}}=-25 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DB}}=\mathrm{V}_{\mathrm{GB}}=0 \end{aligned}$ |  | $\pm 0.5$ |  | 400 | Max | nA |
|  |  | MM550, MM551 MM552, MM555 |  |  |  | 100 |  | Max | nA |
| $\mathrm{C}_{\mathrm{DB}}$ | Drain-Body Capacitance | All | $\begin{gathered} V_{D B}=V_{G B}=V_{S B}=0 \\ f=1 M H z \end{gathered}$ |  | 10 |  |  | Typ | pF |
| $\mathrm{C}_{S B}$ | Source-Body Capacitance | MM450, MM550 |  |  | 14 |  |  | Typ | pF |
|  |  | MM451, MM551 |  |  | 24 |  |  | Typ | pF |
|  |  | MM452, MM552 |  |  | 11 |  |  | Typ | pF |
|  |  | MM455, MM555 |  |  | 11 |  |  | Typ | pF |
| $\mathrm{C}_{G B}$ | Gate-Body Capacitance | MM450, MM550 |  |  | 13 |  |  | Typ | pF |
|  |  | MM451, MM551 | (Note 1) |  | 8 |  |  | Typ | pF |
|  |  | MM452, MM552 |  |  | 9 |  |  | Typ | pF |
|  |  | MM455, MM555 |  |  | 9 |  |  | Typ | pF |
| $\mathrm{C}_{\mathrm{GS}}$ | Gate-Source Capacitance | All |  |  | 5 |  |  | Typ | pF |

NOTE 1: Typical characteristics not tested in production

[^339]

## TYPICAL PERFORMANCE CHARACTERISTICS



0302-5


0302-7

DRAIN CURRENT vs GATE TO SOURCE VOLTAGE


0302-8

## Section 9 - Multiplexers

IH5108 ..... 9-1
IH5116 ..... 9-10
IH5208 ..... 9-14
IH5216 ..... 9-23
IH6108 ..... 9-27
IH6116 ..... 9-33
IH6201 ..... 9-40
IH6208 ..... 9-44
IH6216 ..... 9-50IH91089-56

## IH5108

8-Channel Fault Protected CMOS Analog Multiplexer

## GENERAL DESCRIPTION

The IH5108 is a dielectrically isolated CMOS monolithic analog multiplexer, designed as a plug-in replacement for the HI508A and similar devices, but adds fault protection to the standard performance. A unique serial MOSFET switch ensures that an OFF channel will remain OFF when the input exceeds the supply rails by up to $\pm 25 \mathrm{~V}$, even with the supply voltage at zero. Further, an ON channel will be limited to a throughput of about 1.5 V less than the supply rails, thus affording protection to any following circuitry such as op amps, D/A converters, etc.

A binary 3-bit address code together with the ENable input allows selection of any one channel, or none at all. These 4 inputs are all TTL compatible for easy logic interface; the ENable input also facilitates MUX expansion and cascading.

## FEATURES

- All Channels OFF When Power OFF, for Analog Signals up to $\pm 25 \mathrm{~V}$
- Power Supply Quiescent Current Less Than ImA
- $\pm 13 \mathrm{~V}$ Analog Signal Range
- No SCR Latchup
- Break-Before-Make Switching
- Pin Compatible With HI-508A
- Any Channel Turns OFF if Input Exceeds Supply Rails by Up to $\pm 25 \mathrm{~V}$
- TTL and CMOS Compatible Binary Address and ENable inputs


## ORDERING INFORMATION

| Part <br> Number | Temperature <br> Range | Package |
| :---: | :---: | :---: |
| IH 5108 MJE | $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ | 16 pin CERDIP |
| IH 5108 IJE | $-20^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ | 16 pin CERDIP |
| IH 5108 CPE | $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ | 16 pin plastic DIP |



[^340]
## ABSOLUTE MAXIMUM RATINGS

| $\mathrm{V}_{\mathbf{I}}(\mathrm{A}, \mathrm{EN})$ | $\mathrm{V}+$-0.05) |
| :---: | :---: |
| $\mathrm{V}_{1 \times}(\mathrm{A}, \mathrm{EN})$ to Ground | .... -15V to 15 V |
| $V_{S}$ or $V_{D}$ to $V^{+}$ | +25V, -40 V |
| $V_{S}$ or $V_{D}$ to $\mathrm{V}^{-}$ | -25V, +40V |
| $V+$ to Ground | 20 V |
| $V^{-}$to Ground | -20V |
| Current (Any Terminal) | 20 mA |
| Operating Temperature | -55 to $125^{\circ} \mathrm{C}$ |
| Storage Temperature | -65 to $150^{\circ} \mathrm{C}$ |


${ }^{*}$ All leads soldered or welded to PC board. Derate $10 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $70^{\circ} \mathrm{C}$.
NOTE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS $\quad\left(\mathrm{V}^{+}=15 \mathrm{~V}, \mathrm{~V}^{-}=-15 \mathrm{~V}, \mathrm{~V}_{\mathrm{EN}}=2.4 \mathrm{~V}\right.$, unless otherwise specified.)

| Characteristic | Measured Terminal | NoTestsPerTemp | Test Conditions | $\begin{gathered} \text { Typ } \\ 25^{\circ} \mathrm{C} \end{gathered}$ | Max Limits |  |  |  |  |  | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  | M Suffix |  |  | C Suffix |  |  |  |
|  |  |  |  |  | $-55^{\circ} \mathrm{C}$ | $25^{\circ} \mathrm{C}$ | $125^{\circ} \mathrm{C}$ | $\left\lvert\, \begin{gathered} -20^{\circ} \mathrm{C} / \\ 0^{\circ} \mathrm{C} \end{gathered}\right.$ | $25^{\circ} \mathrm{C}$ | $\begin{aligned} & 85^{\circ} \mathrm{C} / \\ & 70^{\circ} \mathrm{C} \end{aligned}$ |  |

## SWITCH

| rDS(on) | $S$ to D |  | $\begin{aligned} & V_{D}=10 V, \\ & I_{S}=-100 \mu \mathrm{~A} \end{aligned}$ | Sequence each switch on$\begin{aligned} & \mathrm{V}_{\mathrm{AL}}=0.8 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{AH}}=2.4 \mathrm{~V} \end{aligned}$ | 900 | 1200 | 1200 | 1800 | 1500 | 1500 | 2000 | $\Omega$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 8 | $\begin{array}{\|l\|} \hline V_{D}=-10 V \\ I_{S}=-100 \mu \mathrm{~A} \end{array}$ |  | 900 | 1200 | 1200 | 1800 | 1500 | 1500 | 2000 |  |
| $\Delta r_{\text {DS }}(\mathrm{on})$ |  |  | $\begin{aligned} \Delta r_{\text {DS(on }}=\frac{r_{\mathrm{DS}}(\text { on }) \mathrm{me}}{r_{\mathrm{DS}}} \\ V_{\mathrm{S}}= \pm 10 \end{aligned}$ | $\begin{aligned} & \text { nax-rDS(on)min } \\ & \text { S(on)avg. } \\ & \text { OV } \end{aligned}$ | 5 |  |  |  |  |  |  | \% |
| IS(off) | S | 8 | $\mathrm{V}_{\mathrm{S}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=-10 \mathrm{~V}$ | $\mathrm{V}_{\mathrm{EN}}=0.8 \mathrm{~V}$ | 0.02 |  | $\pm 0.5$ | 50 |  | $\pm 1.0$ | 50 | mA |
|  |  | 8 | $\mathrm{V}_{S}=-10 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=10 \mathrm{~V}$ |  | 0.02 |  | $\pm 0.5$ | 50 |  | $\pm 1.0$ | 50 |  |
| ld(off) | D | 1 | $\mathrm{V}_{\mathrm{D}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}=-10 \mathrm{~V}$ |  | 0.02 |  | $\pm 1.0$ | 100 |  | $\pm 2.0$ | 100 |  |
|  |  | 1 | $\mathrm{V}_{\mathrm{D}}=-10 \mathrm{~V}, \mathrm{~V}_{S}=10 \mathrm{~V}$ |  | 0.05 |  | $\pm 1.0$ | 100 |  | $\pm 2.0$ | 100 |  |
| ldon) | D | 8 | $\mathrm{V}_{\mathrm{S}(\mathrm{AlI})}=\mathrm{V}_{\mathrm{D}}=10 \mathrm{~V}$ | Sequence each switch on$\begin{aligned} & \mathrm{V}_{\mathrm{AL}}=0.8 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{AH}}=2.4 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{EN}}=2.4 \mathrm{~V} \end{aligned}$ | 0.1 |  | $\pm 2.0$ | 100 |  | $\pm 5$ | 100 |  |
|  |  | 8 | $\mathrm{V}_{\mathrm{S} \text { (AII) }}=\mathrm{V}_{\mathrm{D}}=-10 \mathrm{~V}$ |  | 0.1 |  | $\pm 2.0$ | 100 |  | $\pm 5$ | 100 |  |

FAULT

| IS with <br> Power OFF | S | 8 | $\mathrm{V}_{\mathrm{SUPP}}=0 \mathrm{~V}, \mathrm{~V}_{1 \mathrm{~N}}= \pm 25 \mathrm{~V}$, <br> $\mathrm{V}_{\mathrm{EN}}=\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}, \mathrm{~A}_{0}, A_{1}, A_{2}=0 \mathrm{~V}$ | 1.0 |  | 2.0 |  |  | 5.0 |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| IS(off) with <br> Overvoltage | S | 8 | $\mathrm{~V}_{\mathrm{IN}}= \pm 25 \mathrm{~V}, \mathrm{~V}_{0}= \pm 10 \mathrm{~V}$ | 1.0 |  | 5.0 |  |  | 10 |  |  |

[^341]
## ELECTRICAL CHARACTERISTICS

( $\mathrm{V}^{+}=15 \mathrm{~V}, \mathrm{~V}^{-}=-15 \mathrm{~V}, \mathrm{~V}_{\mathrm{EN}}=2.4 \mathrm{~V}$, unless otherwise specified.) (Continued)

| Characteristic | Measured Terminal | No <br> Tests <br> Per <br> Temp | Test Conditions | $\begin{gathered} \text { Typ } \\ 25^{\circ} \mathrm{C} \end{gathered}$ | Max Limits |  |  |  |  |  | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  | M Suffix |  |  | C Suffix |  |  |  |
|  |  |  |  |  | $-55^{\circ} \mathrm{C}$ | $25^{\circ} \mathrm{C}$ | $125^{\circ} \mathrm{C}$ | $\left\lvert\, \begin{gathered} -20^{\circ} \mathrm{C} / \\ 0^{\circ} \mathrm{C} \end{gathered}\right.$ | $25^{\circ} \mathrm{C}$ | $\left\|\begin{array}{c} 85^{\circ} \mathrm{C} / \\ 70^{\circ} \mathrm{C} \end{array}\right\|$ |  |

INPUT

| ${ }^{\operatorname{E} E N(\text { on) }} I_{A(\text { on })}$ or ${ }^{\prime} E N$ (off) $I_{A(o f f)}$ | $\begin{gathered} \mathrm{A}_{0}, \mathrm{~A}_{1}, \mathrm{~A}_{2} \\ \text { or } \mathrm{EN} \end{gathered}$ |  | $\mathrm{V}_{\mathrm{A}}=2.4 \mathrm{~V}$ or 0 V | 0.01 | $\pm 1.0$ | -30 | -10 | -30 | $\mu \mathrm{A}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 4 | $\mathrm{V}_{\mathrm{A}}=15 \mathrm{~V}$ or 0 V | 0.01 | $\pm 1.0$ | 30 | 10 | 30 |  |

## DYNAMIC

| $\mathrm{t}_{\text {transition }}$ | D |  | See Figure 3 |  | 0.3 |  | 1 |  |  |  |  | $\mu \mathrm{s}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| topen | D |  | See Figure 4 |  | 0.2 |  |  |  |  |  |  |  |
| $t \mathrm{On}$ (EN) | D |  | See Figure 5 |  | 0.6 |  | 1.5 |  |  |  |  |  |
| $\mathrm{t}_{\text {off(EN) }}$ | D |  |  |  | 0.4 |  | 1 |  |  |  |  |  |
| $\mathrm{t}_{\text {on }} \mathrm{t}_{\text {off }}$ Break-Before-Make Delay Settling Time | D | 8 | $\begin{gathered} \mathrm{V}_{\mathrm{EN}}=+5 \mathrm{~V}, \mathrm{~A} \\ \mathrm{~V}_{\mathrm{IN}}= \pm 1 \end{gathered}$ | $A_{0}, A_{1}, A_{2}$ Strobed 10V, Figure 6 | 10 |  |  |  |  |  |  |  |
| "OFF" <br> Isolation | D |  | $\begin{array}{r} \mathrm{V}_{\mathrm{EN}}=0, \mathrm{R}_{\mathrm{L}}= \\ \mathrm{V}_{\mathrm{S}}=3 \mathrm{VRN} \end{array}$ | $=200 \Omega, C_{L}=3 p F$ <br> MS, $f=500 \mathrm{kHz}$ | 60 |  |  |  |  |  |  | dB |
| $\mathrm{C}_{\text {S(off) }}$ | S |  | $V_{S}=0$ | $\mathrm{V}_{\mathrm{EN}}=0 \mathrm{~V}$, | 5 |  |  |  |  |  |  |  |
| $C_{D(\text { (ff) }}$ | D |  | $V_{D}=0$ | 140kHz | 25 |  |  |  |  |  |  | pF |
| $\mathrm{C}_{\text {DS(off) }}$ | D to S |  | $\mathrm{V}_{S}=0, \mathrm{~V}_{\mathrm{D}}=0$ |  | 1 |  |  |  |  |  |  |  |

SUPPLY

| Supply Current | $1+$ | 1 | $\begin{gathered} V_{E N}=5 \mathrm{~V} \\ \text { All } V_{A D D}=0 \mathrm{~V} / 5 \mathrm{~V} \end{gathered}$ | 0.5 | 0.7 | 0.6 | 0.5 | 1.0 | mA |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $1-$ | 1 |  | 0.02 | 0.7 | 0.6 | 0.5 | 1.0 |  |

Note 1. Readings taken 400 ms after the overvoltage occurs.
SWITCHING TIME TEST CIRCUITS


[^342]NOTE: All typical values have been characterized but are not tested.

## SWITCHING TIME TEST CIRCUITS (Continued)



0289-6

0289-5
Figure 4: $t_{\text {open }}$ (Break-Before-Make) Switching Test Circuit and Waveforms


Figure 5: $t_{\text {on }}$ and $t_{\text {off }}$ Switching Test Circuit and Waveforms


[^343]
## DETAILED DESCRIPTION

The IH5108, like all Intersil's multiplexers, contains a set of CMOS switches that form the channels, and driver and decoder circuitry to control which channel turns ON, if any. In addition, the IH5108 contains an internal regulator which provides a fully TTL compatible ENable input that is identical in operation to the Address inputs. This does away with the special conditions that many multiplexer enable inputs require for proper logic swings. The identical circuit conditions of the ENable and Address lines also helps ensure the extension of break-before-make switching to wider multiplexer systems (see applications section).

Another, and more important difference lies in the switching channel. Previous devices have used parallel $n$ - and $p$ channel MOSFET switches. While this scheme yields reasonably good ON resistance characteristics and allows the switching of rail-to-rail input signals, it also has a number of drawbacks. The sources and drains of the switch transistors will conduct to the substrate if the input goes outside the supply rails, and even careful use of diodes cannot avoid channel-to-output and channel-to-channel coupling in cases of input overrange. The H 5108 uses a novel series arrangement of the p - and n -channel switches (Figure 7) combined with a dielectrically isolated process to eliminate these problems.


0289-11
Figure 7: Series Connection of Channel Switches
Within the normal analog signal range, the inherent variation of switch ON resistance will balance out almost as well as the customary parallel configuration, but as the analog signal approaches either supply rail, even for an ON channel, either the p - or the n -channel will become a source follower, disconnecting the channel (Figure 8). Thus protection is provided for any input or output channel against overvoltage, even in the absence of multiplexer supply voltages. This applies up to the breakdown voltage of the respective switches. Figure 9 shows a more detailed schematic of the channel switches, including the back-gate driver devices which ensure optimum channel ON resistances and breakdown voltage under the various conditions.

(a) OVERVOLTAGE WITH MUX POWER OFF

(b) OVERVOLTAGE WITH MUX POWER ON

Figure 8: Overvoltage Protection

[^344]
## DETAILED DESCRIPTION <br> (Continued)

Under some circumstances, if the logic inputs are present but the multiplexer supplies are not, the circuit will use the logic inputs as a sort of phantom supply; this could result in an output up to that logic level. To prevent this from occurring, simply ensure that the ENable pin is LOW any time the multiplexer supply voltages are missing (Figure 10).


0289-14
Figure 9: Detailed Channel Switch Schematic


0289-15
Figure 10: Protection Against Logic Input

## MAXIMUM SIGNAL HANDLING CAPABILITY

The IH5108 is designed to handle signals in the $\pm 10 \mathrm{~V}$ range, with a typical rDS(on) of $600 \Omega$; it can successfully handle signals up to $\pm 13 \mathrm{~V}$, however, $\mathrm{r}_{\mathrm{DS}}\left(\frac{n}{}\right.$ ) will increase to about $1.8 \mathrm{k} \Omega$. Beyond $\pm 13 \mathrm{~V}$ the device approaches an open circuit, and thus $\pm 12 \mathrm{~V}$ is about the practical limit, see Figure 11.

Figure 12 shows the input/output characteristics of an ON channel, illustrating the inherent limiting action of the series switch connection (see Detailed Description), while Figure 13 gives the ON resistance variation with temperature.


Figure 11: $\mathrm{r}_{\mathrm{DS}(\mathrm{on})}$ vs Signal Output Voltage @ $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$

[^345]

0289-17
Figure 12: MUX Output Voltage vs Input Voltage (Channel 1 Shown; All Channels Similar)


Figure 13: Typical rDS(on) Variation With Temperature

[^346]USING THE IH5108 WITH SUPPLIES OTHER THAN $\pm 15 \mathrm{~V}$

The IH5108 will operate successfully with supply voltages from $\pm 5 \mathrm{~V}$ to $\pm 15 \mathrm{~V}$, however rDS(on) increases as supply voltage decreases, as shown in Figure 14. Leakage currents, on the other hand, decrease with a lowering of supply voltage, and therefore the error term product of ros(on) and leakage current remains reasonably constant. rDS(on) also decreases as signal levels decrease. For high system accuracy [acceptable levels of rDS(on)] the maximum input signal should be 3V less than the supply voltages. The logic levels remain TTL compatible.

## APPLICATION NOTES

Further information may be found in:
A003 "Understanding and Applying the Analog Switch"
A006 "A New CMOS Analog Gate Technology"
A020 "A Cookbook Approach to High Speed Data Acquisition and Microprocessor Interfacing"


0289-19
Figure 14: Typical ros(on) Variation With Supply Voltages

IH5108 APPLICATIONS INFORMATION


Figure 15: 1 of 16 Channel Multiplexer Using Two IH5108s. Overvoltage Protection Is Maintained Between All Channels, As Is Break-Before-Make Switching.

[^347]IH5108 APPLICATIONS INFORMATION (Continued)


0289-21
DECODE TRUTH TABLE

| $\mathrm{A}_{4}$ | $\mathrm{A}_{3}$ | $\mathrm{A}_{2}$ | $\mathrm{A}_{1}$ | $\mathrm{A}_{0}$ | On Switch | $\mathrm{A}_{4}$ | $\mathrm{A}_{3}$ | $\mathrm{A}_{2}$ | $\mathrm{A}_{1}$ | $\mathrm{A}_{0}$ | On Switch |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 0 | 0 | S1 | 1 | 0 | 0 | 0 | 0 | S17 |
| 0 | 0 | 0 | 0 | 1 | S2 | 1 | 0 | 0 | 0 | 1 | S18 |
| 0 | 0 | 0 | 1 | 0 | S3 | 1 | 0 | 0 | 1 | 0 | S19 |
| 0 | 0 | 0 | 1 | 1 | S4 | 1 | 0 | 0 | 1 | 1 | S20 |
| 0 | 0 | 1 | 0 | 0 | S5 | 1 | 0 | 1 | 0 | 0 | S21 |
| 0 | 0 | 1 | 0 | 1 | S6 | 1 | 0 | 1 | 0 | 1 | S22 |
| 0 | 0 | 1 | 1 | 0 | S7 | 1 | 0 | 1 | 1 | 0 | S23 |
| 0 | 0 | 1 | 1 | 1 | S8 | 1 | 0 | 1 | 1 | 1 | S24 |
| 0 | 1 | 0 | 0 | 0 | S9 | 1 | 1 | 0 | 0 | 0 | S25 |
| 0 | 1 | 0 | 0 | 1 | S10 | 1 | 1 | 0 | 0 | 1 | S26 |
| 0 | 1 | 0 | 1 | 0 | S11 | 1 | 1 | 0 | 1 | 0 | S27 |
| 0 | 1 | 0 | 1 | 1 | S12 | 1 | 1 | 0 | 1 | 1 | S28 |
| 0 | 1 | 1 | 0 | 0 | S13 | 1 | 1 | 1 | 0 | 0 | S29 |
| 0 | 1 | 1 | 0 | 1 | S14 | 1 | 1 | 1 | 0 | 1 | S30 |
| 0 | 1 | 1 | 1 | 0 | S15 | 1 | 1 | 1 | 1 | 0 | S31 |
| 0 | 1 | 1 | 1 | 1 | S16 | 1 | 1 | 1 | 1 | 1 | S32 |

Figure 16: 1 Of 32 Multiplexer Using 4 IH5108s and An IH5053 As A Submultiplexer. Note That The IH5053 Is Protected Against Overvoltages By The IH5108s. Submultiplexing Reduces Output Leakage and Capacitance.

[^348]
## GENERAL DESCRIPTION

The H 5116 is a dielectrically isolated CMOS monolithic analog multiplexer, designed as a plug-in replacement for the HI506A and similar devices, but adding fault protection to the standard performance. A unique serial MOSFET switch ensures that an OFF channel will remain OFF when the input exceeds the supply rails by up to $\pm 25 \mathrm{~V}$, even with the supply voltage at zero. Further, an ON channel will be limited to a throughput of about 1.5 V less than the supply rails, thus affording protection to any following circuitry such as op amps, D/A converters, etc. Cross talk onto "good" channels is also prevented.

A binary 2-bit address code together with the ENable input allows selection of any channel pair or none at all. These 3 inputs are all TTL compatible for easy logic interface. The ENable input also facilitates MUX expansion and cascading.

## ORDERING INFORMATION

| Part <br> Number | Temperature <br> Range | Package |
| :---: | :---: | :---: |
| IH 5116 MJI | $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ | 28 pin CERDIP |
| IH 5116 CJI | $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ | 28 pin CERDIP |
| IH 5116 CPI | $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ | 28 pin Plastic DIP |

Ceramic package available as special order only (IH5116MDI/CDI)


## FEATURES

- All Channels OFF When Power OFF, for Analog Signals Up to $\pm \mathbf{2 5 V}$
- Power Supply Quiescent Current Less Than 1mA
- $\pm 13 \mathrm{~V}$ Analog Signal Range
- No SCR Latchup
- Break-Before-Make Switching
- TTL and CMOS Compatible Strobe Control
- Pin Compatible With HI506A
- Any Channel Turns OFF If Input Exceeds Supply Rails By Up to $\pm \mathbf{2 5 V}$
- TTL and CMOS Compatible Binary Address and ENable Inputs


## DECODE TRUTH TABLE

| $\mathbf{A}_{\mathbf{3}}$ | $\mathbf{A}_{\mathbf{2}}$ | $\mathbf{A}_{\mathbf{1}}$ | $\mathbf{A}_{\mathbf{0}}$ | EN | On Switch |
| :---: | :---: | :---: | :---: | :---: | :---: |
| X | X | X | X | 0 | NONE |
| 0 | 0 | 0 | 0 | 1 | 1 |
| 0 | 0 | 0 | 1 | 1 | 2 |
| 0 | 0 | 1 | 0 | 1 | 3 |
| 0 | 0 | 1 | 1 | 1 | 4 |
| 0 | 1 | 0 | 0 | 1 | 5 |
| 0 | 1 | 0 | 1 | 1 | 6 |
| 0 | 1 | 1 | 0 | 1 | 7 |
| 0 | 1 | 1 | 1 | 1 | 8 |
| 1 | 0 | 0 | 0 | 1 | 9 |
| 1 | 0 | 0 | 1 | 1 | 10 |
| 1 | 0 | 1 | 0 | 1 | 11 |
| 1 | 0 | 1 | 1 | 1 | 12 |
| 1 | 1 | 0 | 0 | 1 | 13 |
| 1 | 1 | 0 | 1 | 1 | 14 |
| 1 | 1 | 1 | 0 | 1 | 15 |
| 1 | 1 | 1 | 1 | 1 | 16 |

Logic " 1 " $=\mathrm{V}_{\mathrm{AH}} \geq 2.4 \mathrm{~V} \mathrm{~V}_{\mathrm{ENH}} \geq 2.4 \mathrm{~V}$
Logic " 0 " $=\mathrm{V}_{\mathrm{AL}} \leq 0.8 \mathrm{~V}$


TO DECODE LOGIC
CONTROLLING BOTH
TIERS OF MUXIMG


4 LIME BINARY ADDRESS IMPUTS
(0001) AMD EM = 5V

ABOVE EXAMPLE SHOWS CHAMNELS 9 TURNED OM.
Figure 2: Functional Diagram


0290-3
Figure 3: $\mathrm{t}_{\text {open }}$ (Break-Before-Make) Switching Test

[^349]
## ABSOLUTE MAXIMUM RATINGS

$\mathrm{V}_{\mathrm{IN}}(\mathrm{A}, \mathrm{EN})$ to Ground
$V_{S}$ or $V_{D}$ to $V$ Ground ...................... +25 V to -40 V
$\mathrm{V}_{\mathrm{S}}$ or $\mathrm{V}_{\mathrm{D}}$ to $\mathrm{V}^{-}$ -25 V to +40 V
$\mathrm{V}+$ to Ground . 20 V
V- to Ground -20V
V- to $\mathrm{V}^{+}$ $+25 \mathrm{~V}$
Current (Any Terminal)
Operating Temperature
Storage Temperature

20 mA
$\ldots . . .20 \mathrm{~mA}$
55 to $+125^{\circ} \mathrm{C}$

Lead Temperature (Soldering, 10sec) ................. . . . . $300^{\circ} \mathrm{C}$
Power Dissipation* . ....................... . . . . 200 mW

* All leads soldered or welded to PC board. Derate $10 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $70^{\circ} \mathrm{C}$.

NOTE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS $\quad\left(\mathrm{V}^{+}=15 \mathrm{~V}, \mathrm{~V}^{-}=-15 \mathrm{~V}, \mathrm{~V}_{\mathrm{EN}}=2.4 \mathrm{~V}\right.$, unless otherwise specified.)

| Characteristic | Measured Terminal | No <br> Tests <br> Per Temp | Test Conditions | $\begin{aligned} & \text { Typ } \\ & 25^{\circ} \mathrm{C} \end{aligned}$ | Max Limits |  |  |  |  |  | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  | M Suffix |  |  | C Suffix |  |  |  |
|  |  |  |  |  | $-55^{\circ} \mathrm{C}$ | $25^{\circ} \mathrm{C}$ | $125^{\circ} \mathrm{C}$ | $0^{\circ} \mathrm{C}$ | $25^{\circ} \mathrm{C}$ | $70^{\circ} \mathrm{C}$ |  |

## SWITCH

| $\mathrm{R}_{\mathrm{DS} \text { (on) }}$ | $S$ to D | 16 | $\begin{aligned} & V_{D}=10 V, \\ & I_{S}=-100 \mu \mathrm{~A} \end{aligned}$ | Sequence each switch on | 900 | 1200 | 1200 | 1800 | 1500 | 1500 | 2000 | $\Omega$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 16 | $\begin{aligned} & V_{D}=-10 V \\ & I_{S}=-100 \mu \mathrm{~A} \end{aligned}$ | $\begin{aligned} & \mathrm{V}_{\mathrm{AL}}=0.8 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{AH}}=2.4 \mathrm{~V} \end{aligned}$ | 900 | 1200 | 1200 | 1800 | 1500 | 1500 | 2000 |  |
| $\Delta \mathrm{R}_{\mathrm{DS} \text { (on) }}$ |  |  | $\begin{array}{r} \Delta R_{\mathrm{DS} \text { (on) }}=\frac{R_{\mathrm{DS}(\mathrm{on})}}{R} \\ V_{\mathrm{S}}= \pm 1 \end{array}$ | $\begin{aligned} & \max ^{-R_{\text {DS(on) min }}} \\ & \text { DS(on)avg. } \\ & 10 \mathrm{~V} \end{aligned}$ | 5 |  |  |  |  |  |  | \% |
| Is(off) | S | 16 | $\begin{aligned} & V_{S}=10 \mathrm{~V} \\ & V_{D}=-10 \mathrm{~V} \end{aligned}$ | $\mathrm{V}_{\mathrm{EN}}=0.8 \mathrm{~V}$ | 0.02 |  | $\pm 0.5$ | 50 |  | $\pm 1.0$ | 50 | nA |
|  |  | 16 | $\begin{aligned} & V_{S}=-10 \mathrm{~V}, \\ & V_{D}=10 \mathrm{~V} \end{aligned}$ |  | 0.02 |  | $\pm 0.5$ | 50 |  | $\pm 1.0$ | 50 |  |
| ld(off) | D | 1 | $\begin{aligned} & V_{D}=10 \mathrm{~V} \\ & V_{S}=-10 \mathrm{~V} \end{aligned}$ |  | 0.05 |  | $\pm 1.0$ | 100 |  | $\pm 2.0$ | 100 |  |
|  |  | 1 | $V_{D}=-10 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}=10 \mathrm{~V}$ |  | 0.05 |  | $\pm 1.0$ | 100 |  | $\pm 2.0$ | 100 |  |
| ${ }^{\text {d (on) }}$ | D | 16 | $\mathrm{V}_{\mathrm{S} \text { (AII) }}=\mathrm{V}_{\mathrm{D}}=10 \mathrm{~V}$ | Sequence each switch on$\begin{aligned} & \mathrm{V}_{\mathrm{AL}}=0.8 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{AH}}=2.4 \mathrm{~V} \end{aligned}$ | 0.1 |  | $\pm 2.0$ | 100 |  | $\pm 4.0$ | 100 |  |
|  |  | 16 | $V_{S(A l l)}=V_{D}=-10 \mathrm{~V}$ |  | 0.1 |  | $\pm 2.0$ | 100 |  | $\pm 4.0$ | 100 |  |

FAULT

| Is with <br> Power OFF | S | 16 | $\mathrm{V}_{\mathrm{SUPP}}=0 \mathrm{~V}, \mathrm{~V}_{I N}= \pm 25 \mathrm{~V}$, <br> $\mathrm{V}_{\mathrm{EN}}=\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}, \mathrm{~A}_{0}, A_{1}, A_{2}=0 \mathrm{~V}$ or 5 V | 1.0 |  | 2.0 |  |  | 5.0 |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| I (off) <br> Overvoltage | S | 16 | $\mathrm{~V}_{\mathrm{IN}}= \pm 25 \mathrm{~V}, \mathrm{~V}_{0}= \pm 10 \mathrm{~V}$ | 1.0 |  | 2.0 |  |  | 5.0 |  | HA |

INPUT

| ${ }^{\operatorname{ENN}(o n)} I_{A(o n)}$ | $A_{0}, A_{1}$, $A_{2}, A_{3}$ | 4 | $\mathrm{V}_{\mathrm{A}}=2.4 \mathrm{~V}$ or 0 V | 0.01 | -10 | -30 | -10 | -30 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| or ${ }^{\operatorname{E} E N(\text { off })} I_{A(\text { off })}$ | or EN | 4 | $\mathrm{V}_{\mathrm{A}}=15 \mathrm{~V}$ | 0.01 | 10 | 30 | 10 | 30 |  |

[^350]
## ELECTRICAL CHARACTERISTICS

( $\mathrm{V}^{+}=15 \mathrm{~V}, \mathrm{~V}^{-}=-15 \mathrm{~V}, \mathrm{~V}_{\mathrm{EN}}=2.4 \mathrm{~V}$, unless otherwise specified.) (Continued)

| Characteristic |  | Measured Terminal | No <br> Tests <br> Per <br> Temp | Test Conditions |  | $\begin{gathered} \text { Typ } \\ 25^{\circ} \mathrm{C} \end{gathered}$ | Max Limits |  |  |  |  |  | Units | | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
|  |  | M Suffix |  |  |  | C Suffix |  |
|  |  | $-55^{\circ} \mathrm{C}$ |  |  |  | $25^{\circ} \mathrm{C}$ | $125^{\circ} \mathrm{C}$ | $0^{\circ} \mathrm{C}$ | $25^{\circ} \mathrm{C}$ | $70^{\circ} \mathrm{C}$ |  |
| DYNAMIC |  |  |  |  |  |  |  |  |  |  |  |  |  |
| transition |  |  | D |  |  |  |  | 0.3 |  | 1 |  |  |  |  | $\mu \mathrm{s}$ |
| $\mathrm{t}_{\text {open }}$ |  |  | D |  |  |  |  | 0.2 |  |  |  |  |  |  |  |
| $t_{\text {an (EN) }}$ |  | D |  |  |  | 0.6 |  | 1.5 |  |  |  |  |  |  |
| $\mathrm{t}_{\text {off }}(\mathrm{EN})$ |  | D |  |  |  | 0.4 |  | 1 |  |  |  |  |  |  |
| $\mathrm{t}_{\text {on }} \mathrm{t}_{\text {off }}$ Break-Before-Make Delay Settling Time |  | D | 16 | $\begin{gathered} V_{E N}=+5 V, A_{0}, A_{1}, A_{2} \text { Strobed } \\ V_{I N}= \pm 10 V . \end{gathered}$ |  | 25 |  |  |  |  |  |  | ns |  |
| "OFF" <br> Isolation |  | D |  | $\begin{gathered} \mathrm{V}_{\mathrm{EN}}=0, \mathrm{R}_{\mathrm{L}}=200 \Omega, \mathrm{C}_{\mathrm{L}}=3 \mathrm{pF}, \\ \mathrm{~V}_{\mathrm{S}}=3 \mathrm{VRMS}, \mathrm{f}=500 \mathrm{kHz} \end{gathered}$ |  | 60 |  |  |  |  |  |  | dB |  |
| $\mathrm{C}_{\mathrm{s} \text { (off) }}$ |  | S |  | $V_{S}=0$ | $\begin{aligned} & V_{\mathrm{EN}}=0 \mathrm{~V}, \\ & \mathrm{f}=140 \mathrm{kHz} \\ & \text { to } 1 \mathrm{MHz} \end{aligned}$ | 5 |  |  |  |  |  |  | pF |  |
| $C_{D(\text { fff) }}$ |  | D |  | $V_{D}=0$ |  | 25 |  |  |  |  |  |  |  |  |
| $\mathrm{C}_{\text {DS(off) }}$ |  | D to S |  | $V_{S}=0, V_{D}=0$ |  | 1 |  |  |  |  |  |  |  |  |
| SUPPLY |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Supply | $+$ | $1+$ | 1 |  | /5V | 0.5 |  | 0.6 |  |  | 1.0 |  |  |  |
| Current | - | $1^{-}$ | 1 |  |  | 0.02 |  | 0.6 |  |  | 1.0 |  |  |  |

[^351]
## IH5208

4-Channel Differential Fault Protected CMOS Analog Multiplexer

## GENERAL DESCRIPTION

The IH5208 is a dielectrically isolated CMOS monolithic analog multiplexer, designed as a plug-in replacement for the HI509A and similar devices, but adds fault protection to the standard performance. A unique serial MOSFET switch ensures that an OFF channel will remain OFF when the input exceeds the supply rails by up to $\pm 25 \mathrm{~V}$, even with the supply voltage at zero. Further, an ON channel will be limited to a throughput of about 1.5 V less than the supply rails, thus affording protection to any following circuitry such as op amps, D/A converters, etc.
A binary 2-bit address code together with the ENable input allows selection of any channel pair or none at all. These 3 inputs are all TTL compatible for easy logic interface; the ENable input also facilitates MUX expansion and cascading.

FEATURES

- All Channels OFF When Power OFF, for Analog Signals Up to $\pm 25 \mathrm{~V}$
- Power Supply Quiescent Current Less Than $1 \mu \mathrm{~A}$
- $\pm 13 \mathrm{~V}$ Analog Signal Range
- No SCR Latchup
- Break-Before-Make Switching
- TTL and CMOS Compatible Strobe Control
- Pin Compatible With HI-509A
- Any Channel Turns OFF If Input Exceeds Supply Rails by Up to $\pm 25 \mathrm{~V}$
- TTL and CMOS Compatible Binary Address and ENable Inputs

ORDERING INFORMATION

| Part Number | Temperature <br> Range | Package |
| :---: | :---: | :---: |
| IH5208MJE | $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ | 16 pin CERDIP |
| IH5208IJE | $-20^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ | 16 pin CERDIP |
| IH5208CPE | $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ | 16 pin plastic DIP |



2 LINE BINARY ADDRESS INPUTS
(0 0) AND EN = 1
ABOVE EXAMPLE SHOWS CHANNELS ta AND ib ON
0293-1

Figure 1. Functional Diagram

DECODE TRUTH TABLE

| $\mathbf{A}_{1}$ | $\mathbf{A}_{0}$ | EN | On Switch <br> Pair |
| :---: | :---: | :---: | :---: |
| $X$ | $X$ | 0 | NONE |
| 0 | 0 | 1 | $1 \mathrm{a}, 1 \mathrm{~b}$ |
| 0 | 1 | 1 | $2 \mathrm{a}, 2 \mathrm{~b}$ |
| 1 | 0 | 1 | $3 \mathrm{a}, 3 \mathrm{~b}$ |
| 1 | 1 | 1 | $4 \mathrm{a}, 4 \mathrm{~b}$ |

$A_{0}, A_{1}, E N$
Logic "1" $=V_{\text {AH }} \geq 2.4 \mathrm{~V}$
Logic " 0 " $=V_{A L} \leq 0.8 \mathrm{~V}$


0293-2

Figure 2: Pin Configuration (Outline dwg JE, PE)

[^352]ABSOLUTE MAXIMUM RATINGS

| $\mathrm{V}_{\text {IN }}(\mathrm{A}, \mathrm{EN})$ to Ground | $5 \mathrm{~V},+15 \mathrm{~V}$ |
| :---: | :---: |
| $V_{S}$ or $V_{D}$ to $V^{+}$ | +25V, -40V |
| $V_{S}$ or $V_{D}$ to $V^{-}$ | $-25 \mathrm{~V},+40 \mathrm{~V}$ |
| $\mathrm{V}+$ to Ground | 20 V |
| V - to Ground | -20V |
| Current (Any Terminal) | 20 mA |
| Operating Temperature | -55 to $125^{\circ} \mathrm{C}$ |
| Storage Temperature | -65 to $150^{\circ} \mathrm{C}$ |

Lead Temperature (Soldering, 10sec) ............... 300º Power Dissipation (Package)* . . . . . . . . . . . . . . . . . . 1200mW
*All leads soldered or welded to PC board. Derate $10 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $70^{\circ} \mathrm{C}$.
NOTE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS
$\mathrm{V}^{+}=15 \mathrm{~V}, \mathrm{~V}^{-}=-15 \mathrm{~V}, \mathrm{~V}_{\mathrm{EN}}=2.4 \mathrm{~V}$, unless otherwise specified.

| Characteristic | Measured Terminal | No <br> Tests <br> Per <br> Temp | Test Conditions | $\begin{gathered} \text { Typ } \\ 25^{\circ} \mathrm{C} \end{gathered}$ | Max Limits |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  | M Suffix |  |  | C Suffix |  |  |  |
|  |  |  |  |  | $-55^{\circ} \mathrm{C}$ | $25^{\circ} \mathrm{C}$ | $125^{\circ} \mathrm{C}$ | $\begin{array}{\|c\|} \hline-20^{\circ} \mathrm{C} \\ 0^{\circ} \mathrm{C} \\ \hline \end{array}$ | $25^{\circ} \mathrm{C}$ | $\begin{aligned} & 85^{\circ} \mathrm{C} / \\ & 70^{\circ} \mathrm{C} \end{aligned}$ |  |

## SWITCH

| rDS(on) | $S$ to D | 8 | $\begin{aligned} & V_{D}=10 \mathrm{~V}, \\ & I_{S}=-100 \mu \mathrm{~A} \end{aligned}$ | Sequence each switch on$\begin{aligned} & \mathrm{V}_{\mathrm{AL}}=0.8 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{AH}}=2.4 \mathrm{~V} \end{aligned}$ | 900 | 1200 | 1200 | 1800 | 1500 | 1500 | 2000 | $\Omega$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 8 | $\begin{aligned} & V_{D}=-10 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{S}}=-100 \mu \mathrm{~A} \end{aligned}$ |  | 900 | 1200 | 1200 | 1800 | 1500 | 1500 | 2000 |  |
| $\Delta_{\text {raS }}$ (on) |  |  | $\begin{gathered} \Delta r_{\mathrm{DS}(\mathrm{on})}=\frac{r_{\mathrm{DS}(o n) \max -\mathrm{rDS}_{(0 n) \min }}^{r_{\mathrm{DS}}(o n) \mathrm{avg} .}}{} \\ V_{S}= \pm 10 \mathrm{~V} \end{gathered}$ |  | 5 |  |  |  |  |  |  | \% |
| IS(off) | S | 8 | $\begin{aligned} & V_{S}=10 \mathrm{~V}, \\ & V_{D}=-10 \mathrm{~V} \end{aligned}$ | $\mathrm{V}_{\mathrm{EN}}=0.8 \mathrm{~V}$ | 0.02 |  | $\pm 0.5$ | 50 |  | $\pm 1.0$ | 50 | nA |
|  |  | 8 | $\begin{aligned} & V_{S}=-10 \mathrm{~V}, \\ & V_{D}=10 \mathrm{~V} \end{aligned}$ |  | 0.02 |  | $\pm 0.5$ | 50 |  | $\pm 1.0$ | 50 |  |
| D(off) | D | 1 | $\begin{aligned} & V_{D}=10 \mathrm{~V} \\ & V_{S}=-10 \mathrm{~V} \end{aligned}$ |  | 0.02 |  | $\pm 1.0$ | 100 |  | $\pm 2.0$ | 100 |  |
|  |  | 1 | $V_{D}=-10 \mathrm{~V}, \mathrm{~V}_{S}=10 \mathrm{~V}$ |  | 0.05 |  | $\pm 1.0$ | 100 |  | $\pm 2.0$ | 100 |  |
| ID(on) | D | 8 | $\mathrm{V}_{\mathrm{S} \text { (All) }}=\mathrm{V}_{\mathrm{D}}=10 \mathrm{~V}$ | Sequence each switch on | 0.1 |  | $\pm 2.0$ | 100 |  | $\pm 5.0$ | 100 |  |
|  |  | 8 | $\mathrm{V}_{\mathrm{S}(\mathrm{AlI})}=\mathrm{V}_{\mathrm{D}}=-10 \mathrm{~V}$ | $\begin{aligned} & \mathrm{V}_{\mathrm{AL}}=0.8 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{AH}}=2.4 \mathrm{~V} \end{aligned}$ | 0.1 |  | $\pm 2.0$ | 100 |  | $\pm 5.0$ | 100 |  |

FAULT

| Is with Power OFF | S | 8 | $\begin{aligned} V_{\text {SUPP }} & =0 \mathrm{~V}, \mathrm{~V}_{1 \mathrm{~N}}= \pm 25 \mathrm{~V}, \\ \mathrm{~V}_{\mathrm{EN}}=\mathrm{V}_{\mathrm{O}} & =0 \mathrm{~V}, \mathrm{~A}_{0}, \mathrm{~A}_{1}, A_{2}=0 \mathrm{~V} \end{aligned}$ | 1.0 | 2 |  | 5 |  | $\mu \mathrm{A}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ${ }^{s}$ (off) with Overvoltage | S | 8 | $\mathrm{V}_{\mathrm{IN}}= \pm 25 \mathrm{~V}, \mathrm{~V}_{0}= \pm 10 \mathrm{~V}$ | 1.0 | 5 |  | 10 |  |  |
| INPUT |  |  |  |  |  |  |  |  |  |
| ${ }^{I} E N(o n)^{l} A(o n)$ or ${ }^{I} E N$ (off) ${ }^{\prime} A$ (off) | $\begin{gathered} A_{0}, A_{1}, A_{A 2} \\ \text { or } E N \end{gathered}$ | 4 | $\mathrm{V}_{\mathrm{A}}=2.4 \mathrm{~V}$ or 0 V | 0.01 | -10 | -30 | -10 | -30 | $\mu \mathrm{A}$ |
|  |  | 4 | $\mathrm{V}_{\mathrm{A}}=15 \mathrm{~V}$ or 0 V | 0.01 | 10 | 30 | 10 | 30 |  |

[^353]ELECTRICAL CHARACTERISTICS
$\mathrm{V}^{+}=15 \mathrm{~V}, \mathrm{~V}^{-}=-15 \mathrm{~V}, \mathrm{~V}_{\mathrm{EN}}=2.4 \mathrm{~V}$, unless otherwise specified. (Continued)


DYNAMIC


SUPPLY

| Supply | $+$ | $1+$ | 1 | $\begin{gathered} \text { All } V_{A}, V_{E N}=5 \mathrm{~V} \\ \text { All } V_{A D D}=0 \mathrm{~V} / 5 \mathrm{~V} \end{gathered}$ | 0.5 | 0.7 | 0.6 | 0.5 | 1.0 | mA |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Current | - | $1-$ | 1 |  | 0.02 | 0.7 | 0.6 | 0.5 | 1.0 |  |

Note 1. Readings taken 400 ms after the overvoltage occurs.

## SWITCHING INFORMATION



[^354]SWITCHING INFORMATION (Continued)


0293-6
0293-5
Figure 4: topen (Break-Before-Make) Switching Test


Figure 5: $\mathrm{t}_{\text {on }}$ and $\mathrm{t}_{\text {off }}$ Switching Test


[^355]
## DETAILED DESCRIPTION

The IH5208, like all Intersil's multiplexers, contains a set of CMOS switches that form the channels, and driver and decoder circuitry to control which channel turns ON , if any. In addition, the IH5208 contains an internal regulator which provides a fully TTL compatible ENable input that is identical in operation to the Address inputs. This does away with the special conditions that many multiplexer enable inputs require for proper logic swings. The identical circuit conditions of the ENable and Address lines also helps ensure the extension of break-before-make switching to wider multiplexer systems (see applications section).

Another, and more important difference lies in the switching channel. Previous devices have used parallel $n$ - and $p$ channel MOSFET switches. While this scheme yields reasonably good ON resistance characteristics and allows the switching of rail-to-rail input signals, it also has a number of drawbacks. The sources and drains of the switch transistors will conduct to the substrate if the input goes outside the supply rails, and even careful use of diodes cannot avoid channel-to-output and channel-to-channel coupling in cases of input overrange. The IH5208 uses a novel series arrangement of the p-and n-channel switches (Figure 7) combined with the dielectrically isolated process to eliminate these problems.


0293-11
Figure 7: Series Connection of Channel Switches
Within the normal analog signal range, the inherent variation of switch ON resistance will balance out almost as well as the customary parallel configuration, but as the analog signal approaches either supply rail, even for an ON channel, either the p - or the n -channel will become a source follower, disconnecting the channel (Figure 8). Thus protection is provided for any input or output channel against overvoltage, even in the absence of multiplexer supply voltages. This applies up to the breakdown voltage of the respective switches. Figure 9 shows a more detailed schematic of the channel switches, including the back-gate driver devices which ensure optimum channel ON resistances and breakdown voltage under the various conditions.


0293-12
(a) OVERVOLTAGE WITH MUX POWER OFF


0293-13
(b) OVERVOLTAGE WITH MUX POWER ON

Figure 8: Overvoltage Protection
Under some circumstances, if the logic inputs are present but the multiplexer supplies are not, the circuit will use the logic inputs as a sort of phantom supply; this could result in an output up to that logic level. To prevent this from occurring, simply ensure that the ENable pin is LOW any time the multiplexer supply voltages are missing (Figure 10).

[^356]

Figure 9: Detailed Channel Switch Schematic


0293-15
Figure 10: Protection Against Logic Input

## MAXIMUM SIGNAL HANDLING CAPABILITY

The IH5208 is designed to handle signals in the $\pm 10 \mathrm{~V}$ range, with a typical $\mathrm{r}_{\mathrm{DS}(\mathrm{on})}$ of $600 \Omega$; it can successfully handle signals up to $\pm 13 \mathrm{~V}$, however, rDS(on) will increase to about $1.8 \mathrm{k} \Omega$. Beyond $\pm 13 \mathrm{~V}$ the device approaches an open circuit, and thus $\pm 12 \mathrm{~V}$ is about the practical limit, see Figure 11.
Figure 12 shows the input/output characteristics of an ON channel, illustrating the inherent limiting action of the series switch connection (see Detailed Description), while Figure 13 gives the ON resistance variation with temperature.



Figure 12: MUX Output Voltage vs Input Voltage Channel 1 Shown; All Channels Similar


0293-17

0293-18
Figure 13: Typical rDS(on) Variation vs Temperature

[^357]
## USING THE IH5208 WITH SUPPLIES OTHER THAN $\pm 15 \mathrm{~V}$

The IH5208 will operate successfully with supply voltages from $\pm 5 \mathrm{~V}$ to $\pm 15 \mathrm{~V}$, however $\mathrm{r}_{\mathrm{DS}}(\mathrm{on})$ increases as supply voltage decreases, as shown in Figure 14. Leakage currents, on the other hand, decrease with a lowering of supply voltage, and therefore the error term product of rDS(on) and leakage current remains reasonably constant. rDS(on) also decreases as signal levels decrease. For high system accuracy [acceptable levels of rDS(on)] the maximum input signal should be 3 V less than the supply voltages. The logic thresholds remain TTL compatible.

## APPLICATION NOTES

Further information may be found in:
A003 "Understanding and Applying the Analog Switch"
A006 "A New CMOS Analog Gate Technology"
A020 "A Cookbook Approach to High Speed Data Acquisition and Microprocessor Interfacing"

## IH5208 APPLICATIONS INFORMATION



[^358]IH5208 APPLICATIONS INFORMATION (Continued)


[^359]
## GENERAL DESCRIPTION

The IH5216 is a dielectrically isolated CMOS monolithic analog multiplexer, designed as a plug-in replacement for the HI507A and similar devices, but adding fault protection to the standard performance. A unique serial MOSFET switch ensures that an OFF channel will remain OFF when the input exceeds the supply rails by up to $\pm 25 \mathrm{~V}$, even with the supply voltage at zero. Further, an ON channel will be limited to a throughput of about 1.5 V less than the supply rails, thus affording protection to any following circuitry such as op amps, D/A converters, etc. Cross talk onto "good" channels is also prevented.

A binary 2-bit address code together with the ENable input allows selection of any channel pair or none at all. These 3 inputs are all TTL compatible for easy logic interface. The ENable input also facilitates MUX expansion and cascading.

## ORDERING INFORMATION

| Part <br> Number | Temperature <br> Range | Package |
| :---: | :---: | :---: |
| IH5216MJI | $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ | 28 pin CERDIP |
| IH 5216 CJI | $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ | 28 pin CERDIP |
| IH 5216 CPI | $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ | 28 pin Plastic DIP |

Ceramic package available as special order only (iH5216MDI/CDI)


0294-1
Figure 1: Pin Configuration
(Outline dwgs JI, PI)

## FEATURES

- All Channels OFF When Power OFF, for Analog Signals Up to $\pm \mathbf{2 5 V}$
- Power Supply Quiescent Current Less Than 1mA
- $\pm 13 \mathrm{~V}$ Analog Signal Range
- No SCR Latchup
- Break-Before-Make Switching
- TTL and CMOS Compatible Strobe Control
- Pin Compatible With HI507A
- Any Channel Turns OFF If Input Exceeds Supply Rails By Up to $\pm \mathbf{2 5 V}$
- TTL and CMOS Compatible Binary Address and ENable Inputs

DECODE TRUTH TABLE

| $\mathbf{A}_{\mathbf{2}}$ | $\mathbf{A}_{\mathbf{1}}$ | $\mathbf{A}_{\mathbf{0}}$ | EN | On Switch <br> Pair |
| :---: | :---: | :---: | :---: | :---: |
| X | X | X | 0 | NONE |
| 0 | 0 | 0 | 1 | 1 |
| 0 | 0 | 1 | 1 | 2 |
| 0 | 1 | 0 | 1 | 3 |
| 0 | 1 | 1 | 1 | 4 |
| 1 | 0 | 0 | 1 | 5 |
| 1 | 0 | 1 | 1 | 6 |
| 1 | 1 | 0 | 1 | 7 |
| 1 | 1 | 1 | 1 | 8 |

[^360][^361]

TO DECODE LOGIC
CONTROLLIVG BOTH
tiers of muxing


3 LIME BIMARY ADDRESS INPUTS
100 O) AND EN $=5 \mathrm{~V}$
ABOVE EXAMPLE SHOWS CHANWELS ta ANO 16 ON.
Figure 2: Functional Diagram


Figure 3: topen (Break-Before-Make) Switching Test

ABSOLUTE MAXIMUM RATINGS

| $\mathrm{V}_{\text {IN }}(\mathrm{A}, \mathrm{EN})$ to Ground | 15 V to +15 V |
| :---: | :---: |
| $V_{S}$ or $V_{D}$ to $V^{+}$ | +25 V to -40 V |
| $V_{S}$ or $V_{D}$ to $\mathrm{V}^{-}$ | -25 V to +40 V |
| $\mathrm{V}+$ to Ground | 20 V |
| V - to Ground | -20V |
| Current (Any Terminal) | 20 mA |
| Operating Temperature | -55 to $+125^{\circ} \mathrm{C}$ |
| Storage Temperature | -65 to $+150^{\circ} \mathrm{C}$ |

Lead Temperature (Soldering, 10sec) ............... 300${ }^{\circ} \mathrm{C}$
Power Dissipation* . . . . . . . . . . . . . . . . . . . . . . . . . . . 1200mW
*All leads soldered or welded to PC board. Derate $10 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $70^{\circ} \mathrm{C}$.
NOTE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS $\quad \mathrm{V}^{+}=15 \mathrm{~V}, \mathrm{~V}^{-}=-15 \mathrm{~V}, \mathrm{~V}_{\mathrm{EN}}=2.4 \mathrm{~V}$, unless otherwise specified.)

| Characteristic | Measured Terminal | No <br> Tests <br> Per <br> Temp | Test Conditions | $\begin{aligned} & \text { Typ } \\ & 25^{\circ} \mathrm{C} \end{aligned}$ | Max Limits |  |  |  |  |  | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  | M Suffix |  |  | C Suffix |  |  |  |
|  |  |  |  |  | $-55^{\circ} \mathrm{C}$ | $25^{\circ} \mathrm{C}$ | $125^{\circ} \mathrm{C}$ | $0^{\circ} \mathrm{C}$ | $25^{\circ} \mathrm{C}$ | $70^{\circ} \mathrm{C}$ |  |

SWITCH

| R ${ }_{\text {DS(on) }}$ | $S$ to D | 16 | $\begin{aligned} & V_{D}=10 V \\ & I_{S}=-100 \mu \mathrm{~A} \end{aligned}$ | Sequence each switch on | 1000 | 1200 | 1200 | 1800 | 1500 | 1500 | 2000 | $\Omega$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 16 | $\begin{aligned} & V_{D}=-10 V \\ & I_{S}=-100 \mu \mathrm{~A} \end{aligned}$ | $\begin{aligned} & \mathrm{V}_{\mathrm{AL}}=0.8 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{AH}}=2.4 \mathrm{~V} \end{aligned}$ | 1000 | 1200 | 1200 | 1800 | 1500 | 1500 | 2000 |  |
| $\Delta \mathrm{R}_{\text {DS(on) }}$ |  |  | $\begin{gathered} \Delta R_{\mathrm{DS} \text { (on) }}=\frac{R_{\mathrm{DS} \text { (on) max }}-R_{\mathrm{DS} \text { (on) min }}}{R_{\mathrm{DS} \text { (on)avg. }}} \\ V_{S}= \pm 10 \mathrm{~V} \end{gathered}$ |  | 5 |  |  |  |  |  |  | \% |
| IS(off) | S | 16 | $\begin{aligned} & V_{S}=10 \mathrm{~V} \\ & V_{D}=-10 \mathrm{~V} \end{aligned}$ | $\mathrm{V}_{\mathrm{EN}}=0.8 \mathrm{~V}$ | 0.02 |  | $\pm 0.5$ | 50 |  | $\pm 1.0$ | 50 | $n A$ |
|  |  | 16 | $\begin{aligned} & V_{S}=-10 \mathrm{~V}, \\ & V_{D}=10 \mathrm{~V} \end{aligned}$ |  | 0.02 |  | $\pm 0.5$ | 50 |  | $\pm 1.0$ | 50 |  |
| $l \mathrm{D}$ (off) | D | 1 | $\begin{aligned} & V_{D}=10 \mathrm{~V} \\ & V_{S}=-10 \mathrm{~V} \\ & \hline \end{aligned}$ |  | 0.05 |  | $\pm 1.0$ | 100 |  | $\pm 2.0$ | 100 |  |
|  |  | 1 | $V_{D}=-10 \mathrm{~V}, \mathrm{~V}_{S}=10 \mathrm{~V}$ |  | 0.05 |  | $\pm 1.0$ | 100 |  | $\pm 2.0$ | 100 |  |
| ID(on) | D | 16 | $\mathrm{V}_{\mathrm{S} \text { (All }}=\mathrm{V}_{\mathrm{D}}=10 \mathrm{~V}$ | Sequence each switch on | 0.1 |  | $\pm 2.0$ | 100 |  | $\pm 4.0$ | 100 |  |
|  |  | 16 | $\mathrm{V}_{\mathrm{S} \text { (All) }}=\mathrm{V}_{\mathrm{D}}=-10 \mathrm{~V}$ | $\begin{aligned} & \mathrm{V}_{\mathrm{AL}}=0.8 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{AH}}=2.4 \mathrm{~V} \end{aligned}$ | 0.1 |  | $\pm 2.0$ | 100 |  | $\pm 4.0$ | 100 |  |

## FAULT

| IS with <br> Power OFF | S | 16 | $V_{S U P P}=0 \mathrm{~V}, \mathrm{~V}_{I N}= \pm 25 \mathrm{~V}$, <br> $\mathrm{V}_{\mathrm{EN}}=\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}, \mathrm{~A}_{0}, A_{1}, A_{2}=0 \mathrm{~V}$ or 5 V | 1.0 |  | 2.0 |  |  | 5.0 |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| IS(off) with <br> Overvoltage | S | 16 | $\mathrm{~V}_{\mathbb{I N}}= \pm 25 \mathrm{~V}, \mathrm{~V}_{0}= \pm 10 \mathrm{~V}$ | 1.0 |  | 2.0 |  |  | 5.0 |  | MA |

[^362]
## ELECTRICAL CHARACTERISTICS

( $\mathrm{V}^{+}=15 \mathrm{~V}, \mathrm{~V}^{-}=-15 \mathrm{~V}, \mathrm{~V}_{\mathrm{EN}}=2.4 \mathrm{~V}$, unless otherwise specified.) (Continued)

| Characteristic |  | Measured Terminal | No <br> Tests <br> Per <br> Temp | Test Conditions |  | $\begin{aligned} & \text { Typ } \\ & 25^{\circ} \mathrm{C} \end{aligned}$ | Max Limits |  |  |  |  |  | Units | | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
|  |  | M Suffix |  |  |  | C Suffix |  |
|  |  | $-55^{\circ} \mathrm{C}$ |  |  |  | $25^{\circ} \mathrm{C}$ | $125^{\circ} \mathrm{C}$ | $0^{\circ} \mathrm{C}$ | $25^{\circ} \mathrm{C}$ | $70^{\circ} \mathrm{C}$ |  |
| INPUT |  |  |  |  |  |  |  |  |  |  |  |  |  |
| $\begin{aligned} & I_{E N(\text { on })} I_{A(\text { on })} \\ & \text { or } \\ & I_{E N(\text { off })} I_{A(\text { off })} \end{aligned}$ |  |  | $A_{0}, A_{1}$ $A_{2}, A_{3}$ or EN | 4 | $\mathrm{V}_{\mathrm{A}}=2.4 \mathrm{~V}$ or 0 V |  | 0.01 |  | -10 | -30 |  | -10 | $-30$ |  |
|  |  | 4 |  |  |  |  | 0.01 |  | 10 | 30 |  | 10 | 30 |  |
| DYNAMIC |  |  |  |  |  |  |  |  |  |  |  |  |  |
| transition |  |  | D |  |  |  |  | 0.3 |  | 1 |  |  |  |  | $\mu \mathrm{s}$ |
| $\mathrm{t}_{\text {open }}$ |  | D |  |  |  | 0.2 |  |  |  |  |  |  |  |  |
| $\mathrm{t}_{\text {On(EN }}$ |  | D |  |  |  | 0.6 |  | 1.5 |  |  |  |  |  |  |
| $\mathrm{t}_{\text {off(EN) }}$ |  | D |  |  |  | 0.4 |  | 1 |  |  |  |  |  |  |
| $\mathrm{t}_{\mathrm{on}}$ - $\mathrm{t}_{\text {off }}$ Break-Before-Make Delay Settling Time |  | D | 16 | $\begin{gathered} V_{E N}=+5 V, A_{0}, A_{1}, A_{2} \text { Strobed } \\ V_{I N}= \pm 10 V . \end{gathered}$ |  | 25 |  |  |  |  |  |  | ns |  |
| "OFF" <br> Isolation |  | D |  | $\begin{gathered} V_{E N}=0, R_{L}=200 \Omega, C_{L}=3 p F \\ V_{S}=3 V R M S, f=500 \mathrm{kHz} \\ \hline \end{gathered}$ |  | 60 |  |  |  |  |  |  | dB |  |
| $\mathrm{C}_{\text {s(off) }}$ |  | S |  | $\mathrm{V}_{\mathrm{S}}=0$ | $\begin{aligned} & \mathrm{V}_{\mathrm{EN}}=0 \mathrm{~V}, \\ & \mathrm{f}=140 \mathrm{kHz} \\ & \text { to } 1 \mathrm{MHz} \end{aligned}$ | 5 |  |  |  |  |  |  | pF |  |
| $C_{D(\text { off })}$ |  | D |  | $V_{D}=0$ |  | 25 |  |  |  |  |  |  |  |  |
| $\mathrm{C}_{\text {DS }}$ (off) |  | $D$ to $S$ |  | $\mathrm{V}_{\mathrm{S}}=0, \mathrm{~V}_{\mathrm{D}}=0$ |  | 1 |  |  |  |  |  |  |  |  |
| SUPPLY |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Supply | $+$ | $1+$ | 1 |  | /5V | 0.5 |  | 0.6 |  |  | 1.0 |  | mA |  |
| Current | - | $1^{-}$ | 1 |  |  | 0.02 |  | 0.6 |  |  | 1.0 |  |  |  |

[^363]
## IH6108 <br> 8-Channel CMOS Analog Multiplexer

## GENERAL DESCRIPTION

The IH6108 is a CMOS one of 8 multiplexer. The part is a plug-in replacement for the DG508. Three line decoding is used so that the 8 channels can be controlled by 3 Address inputs; additionally a fourth input is provided for use as a system enable. When the ENable input is high ( 5 V ), a channel is selected by the three Address inputs, and when low (OV) all channels are off. The 3 Address inputs are TTL and CMOS logic compatible, with a "1" corresponding to any voltage greater than 2.4 V .

## ORDERING INFORMATION

| Part <br> Number | Temperature <br> Range | Package |
| :---: | :---: | :---: |
| IH6108MJE | $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ | 16 pin CERDIP |
| IH6108CJE | $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ | 16 pin CERDIP |
| IH6108CPE | $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ | 16 pin plastic DIP |

Ceramic package available as special order only (IH6108MDE/CDE)

## FEATURES

- Ultra Low Leakage - $I_{D(o f f)} \leq 100 p A$ Typical
- $r_{\text {DS(on) }}<\mathbf{4 0 0}$ Ohms Over Full Signal and Temperature Range
- Power Supply Quiescent Current Less Than $100 \mu \mathrm{~A}$
- $\pm 14 \mathrm{~V}$ Analog Signal Range
- No SCR Latchup
- Break-Before-Make Switching
- Binary Address Control (3 Address Inputs Control 8 Channels)
- TTL and CMOS Compatible Strobe Control
- Pin Compatible With DG508, HI-508 \& AD7508
- Internal Diode In Series With V+ for Fault Protection


3 LINE BINARY ADDRESS INPUTS
(101) AND EN © 5V

ABOVE EXAMPLE SHOWS CHANNEL 6 TURNED ON

DECODE TRUTH TABLE

| $\mathbf{A}_{\mathbf{2}}$ | $\mathbf{A}_{1}$ | $\mathbf{A}_{\mathbf{0}}$ | EN | On Switch |
| :---: | :---: | :---: | :---: | :---: |
| $\mathbf{x}$ | $\mathbf{x}$ | $\mathbf{x}$ | 0 | NONE |
| 0 | 0 | 0 | 1 | 1 |
| 0 | 0 | 1 | 1 | 2 |
| 0 | 1 | 0 | 1 | 3 |
| 0 | 1 | 1 | 1 | 4 |
| 1 | 0 | 0 | 1 | 5 |
| 1 | 0 | 1 | 1 | 6 |
| 1 | 1 | 0 | 1 | 7 |
| 1 | 1 | 1 | 1 | 8 |

$A_{0}, A_{1}, A_{2}$
Logic " 1 " $=\mathrm{V}_{\mathrm{AH}} \geq 2.4 \mathrm{~V} \mathrm{~V}_{\mathrm{ENH}} \geq 4.5 \mathrm{~V}$
Logic " 0 " $=\mathrm{V}_{\mathrm{AL}} \leq 0.8 \mathrm{~V}$

0297-1
Figure 1: Functional Diagram

0297-2
Figure 2: Pin Configuration

[^364]
## ABSOLUTE MAXIMUM RATINGS

$V_{\text {IN }}(A, E N)$ to Ground . . . . . . . . . . . . . . . . . . . . . -15 V to 15 V
$V_{S}$ or $V_{D}$ to $V+$ $0,-36 \mathrm{~V}$
$V_{S}$ or $V_{D}$ to $V$ 0, 36V
$V+$ to Ground . 16V
V - to Ground $-16 \mathrm{~V}$
Current (Any Terminal)

Current (Analog Source or Drain)
20 mA
Operating Temperature ....................... -55 to $125^{\circ} \mathrm{C}$
Storage Temperature ....................... . 65 to $150^{\circ} \mathrm{C}$
Lead Temp (Soldering, 10sec) . . . . . . . . . . . . . . . . . . $300^{\circ} \mathrm{C}$
Power Dissipation (Package)* .................... 1200mW

* All leads soldered or welded to PC board. Derate $10 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $70^{\circ} \mathrm{C}$.

NOTE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

## ELECTRICAL CHARACTERISTICS

$\mathrm{V}^{+}=15 \mathrm{~V}, \mathrm{~V}^{-}=-15 \mathrm{~V}, \mathrm{~V}_{\mathrm{EN}}=+5 \mathrm{~V}$ (Note 1), Ground $=0 \mathrm{~V}$, unless otherwise specified.

| Characteristic |  | Measured Terminal | No <br> Tests <br> Per <br> Temp | $\begin{aligned} & \text { Typ } \\ & 25^{\circ} \mathrm{C} \end{aligned}$ | Test Conditions |  | Max Limits |  |  |  |  |  | Units | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
|  |  | M Sufflx |  |  |  |  | C Suffix |  |  |  |
|  |  | $-55^{\circ} \mathrm{C}$ |  |  |  |  | $25^{\circ} \mathrm{C}$ | $125^{\circ} \mathrm{C}$ | $0^{\circ} \mathrm{C}$ | $25^{\circ} \mathrm{C}$ | $70^{\circ} \mathrm{C}$ |  |
| SWITCH |  |  |  |  |  |  |  |  |  |  |  |  |  |
| ros(ON) |  |  | $S$ to D | 8 | 150 | $V_{D}=-10 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=-1.0 \mathrm{~mA}$ | Sequence each switch on $V_{A L}=0.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{AH}}=2.4 \mathrm{~V}$ | 300 | 300 | 400 | 350 | 350 | 450 | $\Omega$ |
|  |  | 8 |  | 150 | $\mathrm{V}_{\mathrm{D}}=-10 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=-1.0 \mathrm{~mA}$ | 300 |  | 300 | 400 | 350 | 350 | 450 |  |  |
| $\Delta^{\text {r }}$ ( ${ }^{\text {( }}$ (ON) |  |  |  |  | 20 | $\Delta \mathrm{R}_{\mathrm{DS} \text { (on) }}=\frac{\Delta \mathrm{r}_{\mathrm{DSS}}(\mathrm{o}}{\text { r }}$ | (on)min ${ }_{\text {n) avg. }} V_{S}= \pm 10 \mathrm{~V}$ |  |  |  |  |  |  | \% |
| IS(OFF) |  | S | 8 | 0.002 | $V_{S}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=-10 \mathrm{~V}$ |  |  | $\pm .5$ | 50 |  | $\pm 1$ | 50 | nA |  |
|  |  | 8 | 0.002 | $\mathrm{V}_{S}=-10 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=10 \mathrm{~V}$ | $V_{E N}=0.8 \mathrm{~V}$ |  | $\pm .5$ | 50 |  | $\pm 1$ | 50 |  |  |
| ID(OFF) |  |  | D | 1 |  | 0.03 | $V_{D}=10 \mathrm{~V}, \mathrm{~V}_{S}=-10 \mathrm{~V}$ |  | $\pm 2$ | 100 |  | $\pm 5$ |  | 100 |
|  |  | 1 |  | 0.03 |  | $V_{D}=-10 \mathrm{~V}, \mathrm{~V}_{S}=10 \mathrm{~V}$ |  | $\pm 2$ | 100 |  | $\pm 5$ | 100 |  |  |
| ID(ON) |  | D | 8 | 0.1 | $V_{S(A L L)}=V_{D}=10 \mathrm{~V}$ | Sequence each switch on$V_{A L}=0.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{AH}}=2.4 \mathrm{~V}$ |  | $\pm 2$ | 100 |  | $\pm 5$ | 100 |  |  |
|  |  | 8 | 0.1 | $V_{S(A L L)}=V_{D}=-10 \mathrm{~V}$ |  |  | $\pm 2$ | 100 |  | $\pm 5$ | 100 |  |  |
| INPUT |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| $\begin{aligned} & I_{\mathrm{AN}(\mathrm{ON})} \text { or } I_{\mathrm{A}(\mathrm{on})} \\ & I_{\mathrm{AN}(\mathrm{OFF})} I_{\mathrm{A}(\mathrm{off})} \\ & \hline \end{aligned}$ |  |  | $\begin{gathered} A_{0}, A_{1} \text { or } A_{2} \\ \text { inputs } \\ A_{0}, A_{1}, A_{2} \\ \hline \end{gathered}$ | 3 | 0.01 | $\mathrm{V}_{\mathrm{A}}=2.4 \mathrm{~V}$ or 0 V |  |  | -10 | -30 |  | -10 | -30 | $\mu \mathrm{A}$ |
|  |  | 3 |  | 0.01 | $\mathrm{V}_{\mathrm{A}}=14 \mathrm{~V}$ or OV |  |  | 10 | 30 |  | 10 | 30 |  |  |
| $I_{A}$ |  | 3 |  |  | $\mathrm{V}_{\mathrm{EN}}=5 \mathrm{~V}$ | All $\mathrm{V}_{\mathrm{A}}=0$ (Address pins) |  | -10 | $-30$ |  | -10 | $-30$ |  |  |
|  |  | EN | 1 |  | $\mathrm{V}_{\mathrm{EN}}=0$ |  |  | -10 | $-30$ |  | -10 | -30 |  |  |
| DYNAMIC |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| $t_{\text {transition }}$ |  | D |  | 0.3 | See Fig. 1 |  |  | 1 |  |  |  |  | $\mu \mathrm{s}$ |  |
| $t_{\text {open }}$ |  | D |  | 0.2 | See Fig. 2 |  |  |  |  |  |  |  |  |  |
| $t_{\text {on(EN }}$ ) |  | D |  | 0.6 | See Fig. 3 |  |  | 1.5 |  |  |  |  |  |  |
| $t_{\text {off }}$ (EN) |  | D |  | 0.4 |  |  |  | 1 |  |  |  |  |  |  |
| "OFF"' Isolation |  | D |  | 60 | $\begin{aligned} & V_{E N}=0, R_{L}=200 \Omega, C_{L}=3 p F, V_{S}=3 V R M S, \\ & f=500 \mathrm{kHz} \end{aligned}$ |  |  |  |  |  |  |  | dB |  |
| $\mathrm{C}_{\mathrm{s} \text { (off) }}$ |  | S |  | 5 | $\mathrm{V}_{\mathrm{S}}=0$ | $V_{E N}=0 V, f=140 \mathrm{kHz} \text { to }$ 1 MHz |  |  |  |  |  |  | pF |  |
| $\mathrm{C}_{\text {(0ff) }}$ |  | D |  | 25 | $V_{D}=0$ |  |  |  |  |  |  |  |  |  |
| $\mathrm{C}_{\text {DS (off) }}$ |  | D to S |  | 1 | $V_{S}=0, V_{D}=0$ |  |  |  |  |  |  |  |  |  |
| SUPPLY |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Supply <br> Current + <br>  - | + | V+ | 1 | 40 | $V_{E N}=5 \mathrm{~V}$ | All $\mathrm{V}_{\mathrm{A}}=0$ or 5 V |  | 200 |  |  | 1000 |  | $\mu \mathrm{A}$ |  |
|  | - | $\mathrm{V}-$ | 1 | 2 |  |  |  | 100 |  |  | 1000 |  |  |  |
| Standby + <br>   <br> Current  | + | V+ | 1 | 1 | $\mathrm{V}_{\mathrm{EN}}=0$ |  |  | 100 |  |  | 1000 |  |  |  |
|  | - | V- | 1 | 1 |  |  |  | 100 |  |  | 1000 |  |  |  |

NOTE 1: See Enable Input Strobing Levels, in Application Section.

[^365]

Figure 3: transition Switching Test


Figure 4: topen (Break-Before-Make) Switching Test


0297-8
Figure 5: $\mathrm{t}_{\text {on }}$ and $\mathrm{t}_{\text {off }}$ Switching Test

## IH6108 APPLICATION INFORMATION

## ENable Input Strobing Levels

The ENable input on the IH 6108 requires a minimum of
+4.5 V to trigger to the " 1 " state and a maximum of +0.8 V to trigger to the " 0 " state. If the ENable input is being driven from TTL logic, a pull-up resistor of 1 k to $3 \mathrm{k} \Omega$ is required from the gate output to +5 V supply. (See Figure 6)


When the EN input is driven from CMOS logic, no pullup is necessary, see Fig. 7.

[^366]

The supply voltage of the CD4009 affects the switching speed of the IH6108; the same is true for TTL supply voltage levels. The following chart shows the effect, on trans for a supply varying from +4.5 V to +5.5 V .

| CMOS or TTL | Typical t trans |
| :---: | :---: |
| Supply Voltage | $@ 25^{\circ} \mathbf{C}$ |
| +4.5 V | 400 ns |
| +4.75 V | 300 ns |
| +5.00 V | 250 ns |
| +5.25 V | 200 ns |
| +5.50 V | 175 ns |

The throughput rate can therefore be maximized by using $a+5 \mathrm{~V}$ to +5.5 V supply for the ENable Strobe Logic.

The examples shown in Figures 6 and 7 deal with ENable strobing when expansion to more than eight channels is required. In these cases the EN terminal acts as a fourth address input. If eight channels or less are being multiplexed, the EN terminal can be directly connected to +5 V logic supply to enable the 1 H 6108 at all times.

## Using the IH6108 with supplies other than $\pm 15 \mathrm{~V}$

The IH6108 can be used with power supplies ranging from $\pm 6 \mathrm{~V}$ to $\pm 16 \mathrm{~V}$. The switch rDS(on) will increase as the
supply voltages decrease, however, the multiplexer error term (the product of leakage times rDS(on)) will remain approximately constant since leakage decreases as the supply voltages are reduced.
Caution must be taken to ensure that the enable (EN) voltage is at least 0.7 V below $\mathrm{V}^{+}$at all times. If this is not done, the Address input strobing levels will not function properly. This may be achieved quite simply by connecting EN (pin 2) to $\mathrm{V}^{+}$(pin 13) via a silicon diode as shown in Figure 8. When using this type of configuration, a further requirement must be met: the strobe levels of AO and A1 must be within 2.5 V of the EN voltage in order to define a binary "1" state. For the case shown in Figure 8 the EN voltage is 11.3 V which means that logic high at AO and A1 is $=+8.8 \mathrm{~V}$ (logic low continues to be $=0.8 \mathrm{~V}$ ). In this configuration the IH6108 cannot be driven by TTL $(+5 \mathrm{~V})$ or CMOS ( +5 V ) logic. It can be driven by TTL open collector logic or CMOS logic with +12 V supplies.
If the logic and the IH6108 have common supplies, the EN pin should again be connected to the supply through a silicon diode. In this case, tying EN to the logic supply directly will not work since it violates the 0.7 V differential voltage required between $V^{+}$and EN, (See Figure 9). A $1 \mu \mathrm{~F}$ capacitor can be placed across the diode to minimize switching glitches.

[^367]NOTE: All typical values have been characterized but are not tested.


0297-11
Figure 8: IH6108 Connection Diagram for less than $\pm 15 \mathrm{~V}$ Supply Operation


0297-12
Figure 9: IH6108 Connection Diagram with ENable Input Strobing for less than $\pm$ 15V Supply Operation

## Peak-to-Peak Signal Handling Capability

The IH6108 can handle input signals up to $\pm 14 \mathrm{~V}$ (actually -15 V to +14.3 V because of the input protection diode) when using $\pm 15 \mathrm{~V}$ supplies.

The electrical specifications of the IH6108 are guaranteed for $\pm 10 \mathrm{~V}$ signals, but the specifications have very minor changes for $\pm 14 \mathrm{~V}$ signals. The notable changes are slightly lower $\mathrm{r}_{\mathrm{DS}}(\mathrm{on})$ and slightly higher leakages.

## GENERAL DESCRIPTION

The IH6116 is a CMOS one of 16 multiplexer. The part is a plug-in replacement for the DG506. Four line binary decoding is used so that the 16 channels can be controlled by 4 Address inputs; additionally a fifth input is provided to be used as a system enable. When the ENable input is high $(5 \mathrm{~V})$ the channels are sequenced by the 4 line Address inputs, and when low (OV), all channels are off. The 4 Address inputs are controlled by TTL logic or CMOS logic elements with a " 0 " corresponding to any voltage less than 0.8 V and a " 1 " corresponding to any voltage greater than 2.4V. Note that the ENable input must be taken to 5 V to enable the system and less than 0.8 V to disable the system.
ORDERING INFORMATION

| Part Number | Temperature Range | Package | |
|---|---|---|---|
| $I H 6116 \mathrm{MJI}$ | $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ | 28 pin CERDIP |
| $\mathrm{IH} 6116 \mathrm{C} \\|$ | $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ | 28 pin CERDIP |
| $I H 6116 \mathrm{CPI}$ | $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ | 28 pin Plastic DIP |

## FEATURES

- Pin Compatible WIth DG506A, HI-506 \& AD7506
- Ultra Low Leakage - $I_{D(o f f)} \leq 100 p A$ Typical
- $\pm 11$ Analog Signal Range
- rDS(on) < 700 Ohms Over Full Signal and Temperature Range
- Break-Before-Make Switching
- TTL and CMOS Compatible Address Control
- Binary Address Control (4 Address Inputs Control 16 Channels)
- Two Tier Submultiplexing to Facilitate Expandability
- Power Supply Qulescent Current Less Than $100 \mu \mathrm{~A}$
- No SCR Latchup
- Internal Diode In Series With V+ For Fault Protection

Ceramic package available as special order only (IH6116MDI/CDI)


[^368]ABSOLUTE MAXIMUM RATINGS


#### Abstract

$\mathrm{V}_{\mathbb{N}}(\mathrm{A}, \mathrm{EN})$ to Ground -15 V to 15 V $V_{S}$ or $V_{D}$ to $V_{+}$ . $0,-36 \mathrm{~V}$ $V_{S}$ or $V_{D}$ to $V-$ $0,36 \mathrm{~V}$ $V+$ to Ground . 16V V - to Ground ......................................................... -16 V Current (Any Terminal) 30 mA NOTE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.


## ELECTRICAL CHARACTERISTICS

$\mathrm{V}^{+}=15 \mathrm{~V}, \mathrm{~V}-=-15 \mathrm{~V}, \mathrm{~V}_{\mathrm{EN}}=+5 \mathrm{~V}$ (Note 1), Ground $=0 \mathrm{~V}$, unless otherwise specified.

| Characteristic | Measured Terminal | No <br> Tests <br> Per <br> Temp | $\begin{gathered} \text { Typ } \\ 25^{\circ} \mathrm{C} \end{gathered}$ | Test Conditions | Max Limits |  |  |  |  |  | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  | M Suffix |  |  | C Suffix |  |  |  |
|  |  |  |  |  | $-55^{\circ} \mathrm{C}$ | $25^{\circ} \mathrm{C}$ | $125^{\circ} \mathrm{C}$ | $0^{\circ} \mathrm{C}$ | $25^{\circ} \mathrm{C}$ | $70^{\circ} \mathrm{C}$ |  |

## SWITCH

| ${ }^{\text {ras }}$ (ON) | $S$ to D | 16 | 480 | $\mathrm{V}_{\mathrm{D}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=-1 \mathrm{~mA}$ | Sequence each switch on$\mathrm{V}_{\mathrm{AL}}=0.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{AH}}=3 \mathrm{~V}$ | 600 | 600 | 700 | 650 | 650 | 750 | $\Omega$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 16 | 300 | $\mathrm{V}_{\mathrm{D}}=-10 \mathrm{~V}, \mathrm{I}_{S}=1 \mathrm{~mA}$ |  | 600 | 600 | 700 | 650 | 650 | 750 |  |
| $\Delta^{\prime} \mathrm{r}_{\text {d }}(\mathrm{ON})$ |  |  | 20 | $\Delta \mathrm{r}_{\mathrm{DS}(\mathrm{on})}=\frac{\mathrm{r}_{\mathrm{DS}(\mathrm{on}) \mathrm{max}}}{r_{\mathrm{DS}(\mathrm{c}}}$ | $\mathrm{ax}^{-r_{\text {DS }}(\text { on })^{m i n}} \mathrm{~V}_{\mathrm{S}}= \pm 10 \mathrm{~V}$ |  |  |  |  |  |  | \% |
| IS(OFF) | S | 16 | 0.01 | $\mathrm{V}_{S}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=-10 \mathrm{~V}$ |  |  | $\pm .5$ | 50 |  | $\pm 1$ | 50 | $n A$ |
|  |  | 16 | 0.01 | $\mathrm{V}_{S}=-10 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=10 \mathrm{~V}$ | $\mathrm{V}_{\mathrm{EN}}=0.8 \mathrm{~V}$ |  | $\pm .5$ | 50 |  | $\pm 1$ | 50 |  |
| ID(OFF) | D | 1 | 0.1 | $V_{D}=10 \mathrm{~V}, \mathrm{~V}_{S}=-10 \mathrm{~V}$ |  |  | $\pm 1$ | 100 |  | $\pm 5$ | 100 |  |
|  |  | 1 | 0.1 | $\mathrm{V}_{\mathrm{D}}=-10 \mathrm{~V}, \mathrm{~V}_{S}=10 \mathrm{~V}$ |  |  | $\pm 2$ | 100 |  | $\pm 5$ | 100 |  |
|  | D | 16 | 0.1 | $\mathrm{V}_{S(A L L)}=\mathrm{V}_{\mathrm{D}}=10 \mathrm{~V}$ | Sequence each switch on $\mathrm{V}_{\mathrm{AL}}=0.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{AH}}=3 \mathrm{~V}$ |  | $\pm 2$ | 100 |  | $\pm 5$ | 100 |  |
| ID(ON) |  | 16 | 0.1 | $\mathrm{V}_{\mathrm{S}(\mathrm{ALL})}=\mathrm{V}_{\mathrm{D}}=-10 \mathrm{~V}$ |  |  | $\pm 2$ | 100 |  | $\pm 5$ | 100 |  |

INPUT

| $\mathrm{I}_{\mathrm{A}(\mathrm{on})} \text { or }$$I_{A} \text { (off) }$ |  | 4 | 0.01 | $\mathrm{V}_{\mathrm{A}}=2.4 \mathrm{~V}$ |  | -10 | -30 | -10 | -30 | $\mu \mathrm{A}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 4 | 0.01 | $V_{A}=14 \mathrm{~V}$ |  | 10 | 30 | 10 | 30 |  |
| ${ }_{\text {A }}$ | $A_{0} A_{1}$ $A_{2} A_{3}$ | 4 |  | $\mathrm{V}_{\mathrm{EN}}=5 \mathrm{~V}$ | All $\mathrm{V}_{\mathrm{A}}=0$ | -10 | -30 | -10 | -30 |  |
|  | EN | 1 |  | $\mathrm{V}_{\mathrm{EN}}=0$ |  | -10 | -30 | -10 | -30 |  |

DYNAMIC

| $t_{\text {trans }}$ | D | 0.6 | See Fig. 3 |  |  |  |  |  |  | $\mu \mathrm{S}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| topen | D | 0.2 | See Fig. 4 |  |  |  |  |  |  |  |
| tEN(on) | D | 0.8 | See Fig. 5 |  | 1.5 |  |  |  |  |  |
| tEN(off) | D | 0.3 |  |  | 1 |  |  |  |  |  |
| "OFF" Isolation | D | 60 | $\begin{aligned} & V_{E N}=0, R_{L}= \\ & f=500 \mathrm{kHz} \end{aligned}$ | $\mathrm{C}_{\mathrm{L}}=3 \mathrm{pF}, \mathrm{~V}_{\mathrm{S}}=3 \mathrm{VRMS},$ |  |  |  |  |  | dB |
| $\mathrm{C}_{\text {S(OFF) }}$ | S | 5 | $\mathrm{V}_{\mathrm{S}}=0$ | $\begin{aligned} & V_{E N}=0, f=140 \mathrm{kHz} \text { to } \\ & 1 \mathrm{MHz} \end{aligned}$ |  |  |  |  |  | pF |
| $\mathrm{C}_{\mathrm{d}}$ (OFF) | D | 40 | $V_{D}=0$ |  |  |  |  |  |  |  |
| $\mathrm{C}_{\text {ds }}$ (OFF) | D to S | 1 | $V_{S}=0, V_{D}=0$ |  |  |  |  |  |  |  |

SUPPLY


NOTE 1: See Section V. Enable Input Strobing Levels.
INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.
NOTE: All typical values have been characterized but are not tested.


[^369]IH6116 APPLICATIONS


0298-9

DECODE TRUTH TABLE

| $\mathbf{A}_{\mathbf{4}}$ | $\mathbf{A}_{\mathbf{3}}$ | $\mathbf{A}_{\mathbf{2}}$ | $\mathbf{A}_{\mathbf{1}}$ | $\mathbf{A}_{\mathbf{0}}$ | On Switch |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 0 | 0 | S 1 |
| 0 | 0 | 0 | 0 | 1 | S 2 |
| 0 | 0 | 0 | 1 | 0 | S 3 |
| 0 | 0 | 0 | 1 | 1 | S 4 |
| 0 | 0 | 1 | 0 | 0 | S 5 |
| 0 | 0 | 1 | 0 | 1 | S 6 |
| 0 | 0 | 1 | 1 | 0 | S 7 |
| 0 | 0 | 1 | 1 | 1 | S 8 |
| 0 | 1 | 0 | 0 | 0 | S 9 |
| 0 | 1 | 0 | 0 | 1 | S 10 |
| 0 | 1 | 0 | 1 | 0 | S 11 |
| 0 | 1 | 0 | 1 | 1 | S 12 |
| 0 | 1 | 1 | 0 | 0 | S 13 |
| 0 | 1 | 1 | 0 | 1 | S 14 |
| 0 | 1 | 1 | 1 | 0 | S 15 |
| 0 | 1 | 1 | 1 | 1 | S 16 |

DECODE TRUTH TABLE

| $\mathbf{A}_{\mathbf{4}}$ | $\mathbf{A}_{\mathbf{3}}$ | $\mathbf{A}_{\mathbf{2}}$ | $\mathbf{A}_{\mathbf{1}}$ | $\mathbf{A}_{\mathbf{0}}$ | On Switch |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 0 | 0 | 0 | 0 | S 17 |
| 1 | 0 | 0 | 0 | 1 | S 18 |
| 1 | 0 | 0 | 1 | 0 | S 19 |
| 1 | 0 | 0 | 1 | 1 | S 20 |
| 1 | 0 | 1 | 0 | 0 | S 21 |
| 1 | 0 | 1 | 0 | 1 | S 22 |
| 1 | 0 | 1 | 1 | 0 | S 23 |
| 1 | 0 | 1 | 1 | 1 | S 24 |
| 1 | 1 | 0 | 0 | 0 | S 25 |
| 1 | 1 | 0 | 0 | 1 | S 26 |
| 1 | 1 | 0 | 1 | 0 | S 27 |
| 1 | 1 | 0 | 1 | 1 | S 28 |
| 1 | 1 | 1 | 0 | 0 | S 29 |
| 1 | 1 | 1 | 0 | 1 | S 30 |
| 1 | 1 | 1 | 1 | 0 | S 31 |
| 1 | 1 | 1 | 1 | 1 | S 32 |

Figure 6: 1 Out of 32 Channel Multiplexer Using 2 IH6116s

IH6116 APPLICATIONS (Continued)

A4
*TTL gate must have
pullup resistor to $\mathbf{+ 5 V}$ to drive EN inputs
0298-10

DECODE TRUTH TABLE

| $\mathbf{A}_{\mathbf{4}}$ | $\mathbf{A}_{\mathbf{3}}$ | $\mathbf{A}_{\mathbf{2}}$ | $\mathbf{A}_{\mathbf{1}}$ | $\mathbf{A}_{\mathbf{0}}$ | $\mathbf{O N}$ SWITCH |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 0 | 0 | S 1 |
| 0 | 0 | 0 | 0 | 1 | S 2 |
| 0 | 0 | 0 | 1 | 0 | S 3 |
| 0 | 0 | 0 | 1 | 1 | S 4 |
| 0 | 0 | 1 | 0 | 0 | S 5 |
| 0 | 0 | 1 | 0 | 1 | S 6 |
| 0 | 0 | 1 | 1 | 0 | S 7 |
| 0 | 0 | 1 | 1 | 1 | S 8 |
| 0 | 1 | 0 | 0 | 0 | S 9 |
| 0 | 1 | 0 | 0 | 1 | S 10 |
| 0 | 1 | 0 | 1 | 0 | S 11 |
| 0 | 1 | 0 | 1 | 1 | S 12 |
| 0 | 1 | 1 | 0 | 0 | S 13 |
| 0 | 1 | 1 | 0 | 1 | S 14 |
| 0 | 1 | 1 | 1 | 0 | S 15 |
| 0 | 1 | 1 | 1 | 1 | S 16 |

DECODE TRUTH TABLE

| $\mathbf{A}_{\mathbf{4}}$ | $\mathbf{A}_{\mathbf{3}}$ | $\mathbf{A}_{\mathbf{2}}$ | $\mathbf{A}_{\mathbf{1}}$ | $\mathbf{A}_{\mathbf{0}}$ | ON SWITCH |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 0 | 0 | 0 | 0 | S 17 |
| 1 | 0 | 0 | 0 | 1 | S 18 |
| 1 | 0 | 0 | 1 | 0 | S 19 |
| 1 | 0 | 0 | 1 | 1 | S 20 |
| 1 | 0 | 1 | 0 | 0 | S 21 |
| 1 | 0 | 1 | 0 | 1 | S 22 |
| 1 | 0 | 1 | 1 | 0 | S 23 |
| 1 | 0 | 1 | 1 | 1 | S 24 |
| 1 | 1 | 0 | 0 | 0 | S 25 |
| 1 | 1 | 0 | 0 | 1 | S 26 |
| 1 | 1 | 0 | 1 | 0 | S 27 |
| 1 | 1 | 0 | 1 | 1 | S 28 |
| 1 | 1 | 1 | 0 | 0 | S 29 |
| 1 | 1 | 1 | 0 | 1 | S 30 |
| 1 | 1 | 1 | 1 | 0 | S 31 |
| 1 | 1 | 1 | 1 | 1 | S 32 |

Figure 7: 1 Out of $\mathbf{3 2}$ Channel Multiplexer Using 2 IH6116s; Using An IH5041 for Submultiplexing


IH6116 APPLICATIONS (Continued)


0298-11
Figure 8: 1 Out of 64 Multiplexer Using 4 1/16s and IH5053 As Submultiplexer

## General note on expandability of IH6116

The IH6116 is a two tier multiplexer, where sixteen input channels are routed to a common output in blocks of 4. Each block of 4 input channels is routed to one common output channel, and thus the submultiplexed system looks like 4 blocks of 4 inputs routed to 4 different outputs with the 4 outputs tied together. Thus 20 switches are needed to handle the 16 channels of information. The advantage of this is lower output capacitance and leakage than would be possible with a system using all 16 channels tied to one common output. Also the expandability into 32, 64, 128, channels etc. is facilitated. Figures 6,7 , and 8 show how the IH6116 can be expanded.

Figure 6 shows a 1 of 32 multiplexer, using 2 IH6116s. Since the 6116 is itself a 2 tier MUX, the system as shown is basically a 2 tier system. The four output channels of each

6116 are tied together so that 8 channels are tied to the $V_{\text {OUT }}$ common point. Since only one channel of information is on at a time, the common output will consist of 7 OFF channels and 1 ON channel. Thus the output leakage will correspond to $7 \mathrm{I}_{\mathrm{D}(\text { offs })}$ and $1^{\mathrm{I}} \mathrm{D}_{\mathrm{on} \text { (on), or about } 1.0 \mathrm{nA} \text { of typi- }}$ cal leakage at room temperature. Throughput speed will be typically $0.8 \mu \mathrm{~s}$ for $\mathrm{t}_{\mathrm{on}}$ and $0.3 \mu \mathrm{~s}$ for $\mathrm{t}_{\text {off. }}$. Throughput channel resistance will be in the $500 \Omega$ area.

Figure 7 shows the 1 of 32 MUX of Figure 6, with a third tier of submultiplexing added to further reduce leakage and output capacitance. The IH5041 has typical ON resistances of $50 \Omega$ (max. is $75 \Omega$ ) so it only increases thruput channel resistance from the 500 ohms of Figure 6 to about 550 ohms for Figure 7. Throughput channel speed is a little slower by about $0.5 \mu$ s for both ON and OFF time, and output leakage is about $0.2 n A$.

[^370]
## IH6116

Figure 8 shows a 1 of 64 MUX using 3 tier MUXing (similar to Figure 7). The Intersil IH5053 is used to get the third tier of MUXing. The VOUT point will see 3 OFF channels and 1 ON channel at any one time, so that the typical leakages will be about 0.4 nA . Throughput channel resistance will be in the 550 ohm area with throughput switching speeds about $1.3 \mu \mathrm{~s}$ for ON time and $0.8 \mu \mathrm{~s}$ for OFF time.

The IH5053 was chosen as the third tier of the MUX because it will switch the same AC signals as the IH6116 (typically plus and minus 15V) and uses break before make switching. Also power supply quiescent currents are on the order of $1-2 \mu \mathrm{~A}$, so that no excessive system power is dissipated. Note that the logic of the 5053 is such that it can be tied directly to the ENable input (as shown in the figures) with no extra circuitry being required.

## Enable input strobing levels

The enable input (EN) acts as an enabling or disabling pin for the IH6116 when used as a 16 channel MUX. However, when expanding the MUX to more than 16 channels, the EN pin acts as another address input. Figures 6 and 7 show the EN pin used as the A4 input.

For the system to function properly the EN input (pin 18) must go to $5 \mathrm{~V} \pm 5 \%$ for the high state and less than 0.8 V
for the low state. When using TTL logic, a pull-up resistor of $1 \mathrm{k} \Omega$ or less should be used to pull the output voltage up to 5 V . When using CMOS logic, the high state goes to the power supply so no pull-up is required.
If used on high voltage logic supplies, EN should be at least 0.7 V below $\mathrm{V}+$ at all times. See IH6108 data sheet for details.

## APPLICATION NOTES

Further information may be found in:
A003 "Understanding and Applying the Analog Switch"
A006 "A New CMOS Analog Gate Technology"
A020 "A Cookbook Approach to High Speed Data Acquisition and Microprocessor Interfacing"
R009 "Reduce CMOS Multiplexer Troubles Through Proper Device Selection"
NOTE: This multiplexer does not require external resistors and/or diodes to eliminate what is commonly known as a latch up or SCR action. Because of this fact, the rDS(ON) of the switch is maintained at specified values.

## GENERAL DESCRIPTION

The IH6201 is a CMOS, Monolithic, Dual Voltage Translator; it takes low level TTL or CMOS logic signals and converts them to higher levels (i.e. to $\pm 15 \mathrm{~V}$ swings). This translator is typically used in making solid state switches, or analog gates.

When used in conjunction with the Intersil IH401 family of Varafets, the combination makes a complete solid state switch capable of switching signals up to 22Vpp and up to 20 MHz in frequency. This switch is a "break-before-make" type (i.e. $\mathrm{t}_{\text {off }}$ time $<\mathrm{t}_{\mathrm{on}}$ time). The combination has typical $\mathrm{t}_{\text {off }} \approx 80 \mathrm{~ns}$ and typ. $\mathrm{t}_{\mathrm{on}} \approx 200 \mathrm{~ns}$ for signals up to 20 Vpp in amplitude.

A TTL " 1 " input strobe will force the $\theta$ driver output up to $\mathrm{V}^{+}$level; the $\bar{\theta}$ output will be driven down to the V - level. When the TTL input goes to " 0 ", the $\theta$ output goes to $V$ and $\bar{\theta}$ goes to $\mathrm{V}^{+}$; thus $\theta$ and $\bar{\theta}$ are $180^{\circ}$ out of phase with each other. These complementary outputs can be used to create a wide variety of functions such as SPDT and DPDT switches, etc.; alternatively the complementary outputs can be used to drive $N$ and $P$ channel MOSFETs, to make a complete CMOS analog gate.

The driver typically uses +5 V and $\pm 15 \mathrm{~V}$ power supplies, however a wide range of $\mathrm{V}^{+}$and $\mathrm{V}^{-}$is also possible. It is necessary that $\mathrm{V}+>5 \mathrm{~V}$ for the driver to work properly, however.

## FEATURES

- Driven Direct From TTL or CMOS Logic
- Translates Logic Levels Up to 30V Levels
- Switches $\mathbf{2 0 V}_{\text {ACPP }}$ Signals When Used in Conjunction With Intersil IH401A Varafet (As An Analog Gate)
- $\mathbf{t}_{\text {ON }} \leq \mathbf{3 0 0 n s}$ \& $\mathbf{t}_{\text {OFF }} \leq \mathbf{2 0 0 n s}$ for 30V Level Shifts
- Quiescent Supply Current $\leq 100 \mu A$ for Any State (D.C.)
- Provides Both Normal \& Inverted Outputs


## ORDERING INFORMATION

| Part Number | Temperature Range |
| :---: | :---: |
| ${ }^{*}$ IH6201CDE | $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ |
| ${ }^{*} \mathrm{IH} 6201 \mathrm{MDE}$ | $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ |
| IH6201CJE | $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ |
| IH6201MJE | $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$ |
| IH6201CPE | $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ |

*Special Order Only


Figure 1: Functional Diagram

(Outline dwgs DE,JE,PE)
Figure 2: Pin Configuration


0299-3

Figure 3: Schematic Diagram (One Channel)

ABSOLUTE MAXIMUM RATINGS

V+ to $V^{-}$.................................................... . . 35V
V+ 35V
V- ............................................................. 35V
V+ to $V_{I N}$................................................. . . 40 V
Operating Temperature ................ $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Storage Temperature ................... $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10sec) ............... $300^{\circ} \mathrm{C}$

NOTE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL SPECIFICATIONS $\quad \mathrm{v}+=+15 \mathrm{~V}, \mathrm{v}-=-15 \mathrm{~V}, \mathrm{v}_{\mathrm{L}}=+5 \mathrm{~V}$

| Item | Test Conditions | IH6201CDE |  |  | IH6201MDE |  |  | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $-25^{\circ} \mathrm{C}$ | $+25^{\circ} \mathrm{C}$ | $+85^{\circ} \mathrm{C}$ | $-55^{\circ} \mathrm{C}$ | $+25^{\circ} \mathrm{C}$ | $+125^{\circ} \mathrm{C}$ |  |
| $\theta$ or $\bar{\theta}$ driver output swing |  |  | 28 |  |  | 28 |  | $\mathrm{V}_{\mathrm{pp}}$ |
| $V_{\text {IN }}$ strobe level (" 1 ") for proper translation | $\begin{aligned} & \theta \geq 14 \mathrm{~V} \\ & \bar{\theta} \geq-14 \mathrm{~V} \end{aligned}$ | 3.0 | 3.0 | 3.0 |  | 2.4 |  | $V_{\text {D.C. }}$ |
| $V_{\text {IN }}$ strobe level (" 0 ")for proper translation | $\begin{aligned} & \theta \geq-14 \mathrm{~V} \\ & \bar{\theta} \geq 14 \mathrm{~V} \end{aligned}$ | 0.4 | 0.4 | 0.4 |  | 0.8 |  | V.C. |
| IN input strobe current draw (for $\mathrm{OV}-5 \mathrm{~V}$ range) | $\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$ or +5 V | $\pm 1$ | $\pm 1$ | 10 | $\pm 1$ | $\pm 1$ | 10 | $\mu \mathrm{A}$ |
| $\mathrm{t}_{\text {on }}$ time | $\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V} \Omega \mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$ <br> switching turn-on time fig. 5B |  | 400 |  |  | 300 |  | ns |
| $\mathrm{t}_{\text {off }}$ time | $\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V} \Omega \mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$ <br> switching turn-off time fig. 5B |  | 300 |  |  | 200 |  | ns |
| $I^{+}\left(\mathrm{V}^{+}\right)$power supply quiescent current | $\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$ or +5 V | 100 | 100 | 100 | 100 | 100 | 100 | $\mu \mathrm{A}$ |
| $1^{-}\left(V^{-}\right)$power supply quiescent current | $\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$ or +5 V | 100 | 100 | 100 | 100 | 100 | 100 | $\mu \mathrm{A}$ |
| $L_{L}\left(V_{L}\right)$ power supply quiescent current | $\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$ or +5 V | 100 | 100 | 100 | 100 | 100 | 100 | $\mu \mathrm{A}$ |

## APPLICATIONS

## Input Drive Capability

The strobe input lines are designed to be driven from TTL logic levels; this means 0.8 V to 2.4 V levels max. and min. respectively. For those users who require 0.8 V to 2.0 V operation, a pull-up resistor is recommended from the TTL output to +5 V line. This resistor is not critical and can be in the $1 \mathrm{k} \Omega$ to $10 \mathrm{k} \Omega$ range.

When using 4000 series CMOS logic, the input strobe is connected direct to the 4000 series gate output and no pull up resistors, or any other interface, is necessary.
When the input strobe voltage level goes below Gnd (i.e. to -15 V ) the circuit is unaffected as long as $\mathrm{V}^{+}$to $\mathrm{V}_{\mathbb{I N}}$ does not exceed absolute maximum rating.

## Output Drive Capability

The translator output is designed to drive the Intersil IH401 family of Varafets; these are N-channel JFETS with built-in driver diodes. Driver diodes are necessary to isolate the signal source from the driver/translator output; this prevents a forward bias condition between the signal input and the $+V_{C C}$ supply. The IH6201 will drive any JFET provided some sort of isolation is added.

You will notice in Figure 4 that a "referral" resistor has been added from 2N4391 gate to its source. This resistor is needed to compensate for the inadequate charge area curve for isolation diode i.e. if $C$ vs. $V$ plot for diode $\leq 2$ [C vs. V plot for output JFET] switch won't function; then adding this resistor overcomes this condition. The "referral" resistor is normally in the $100 \mathrm{k} \Omega$ to $1 \mathrm{M} \Omega$ range and is not too critical.


[^371]
## Making a Complete Solid State Switch That Can Handle 20Vpp Signals

The limitation on signal handling capability comes from the output gating device. When a JFET is used, the pinchoff of the JFET acting with the V - supply does the limiting. In fact max. signal handling capability $=2\left(\mathrm{Vp}+\left(\mathrm{V}^{-}\right)\right.$) Vpp where $\mathrm{Vp}=$ pinch-off voltage of JFET chosen. i.e. $\mathrm{Vp}=7 \mathrm{~V}$, $\mathrm{V}^{-}=-15 \mathrm{~V} \therefore$ max. signal handling $=2(7 \mathrm{~V}+(-15 \mathrm{~V}))$ $\mathrm{Vpp}=2(7 \mathrm{~V}-15) \mathrm{Vpp}=2(-8 \mathrm{Vpp})=16 \mathrm{Vpp} . \quad$ Obviously to get $\geq 20 \mathrm{Vpp}, \mathrm{Vp} \geq 5 \mathrm{~V}$ with $\mathrm{V}-=-15 \mathrm{~V}$. Another simple way to get 20Vpp with $V p=7 \mathrm{~V}$, is to increase V - to -17 V . In fact using $\mathrm{V}^{+}=+12 \mathrm{~V}$ or +15 V and setting $\mathrm{V}^{-}=-18 \mathrm{~V}$ allows one to switch 20 Vpp with any member of IH401 family. The advantage of using the $\mathrm{Vp}=7 \mathrm{~V}$ pinch-off (along with unsymmetrical supplies), over the $\mathrm{Vp}=5 \mathrm{~V}$ pinch-off (and $\pm 15 \mathrm{~V}$ supplies), is that you will have a much lower $\mathrm{R}_{\mathrm{DS}}(\mathrm{ON})$ for the $\mathrm{Vp}=7 \mathrm{JFET}$ (i.e. for the 2N4391).

The IH6201 is a dual translator, each containing 4 CMOS FET pairs. The schematic of one-half of an IH6201, driving one-quarter of an IH401, is shown in Figure 5A.



NOTE: Each translator output has a $\theta$ and $\bar{\theta}$ output. $\theta$ is just the inverse of $\bar{\theta}$.

A very useful feature of this system is that one-half of an IH6201 and one-half of an IH401 can combine to make a SPDT switch, or an IH6201 plus an IH401 can make a dual SPDT analog switch. (See Figure 8)


[^372]

NOTE: Either switch is turned on when strobe input goes high.


## GENERAL DESCRIPTION

The IH6208 is a 2 of 8 CMOS multiplexer. The part is a plug-in replacement for the DG509. Two line binary decoding is used so that the 8 channels can be controlled in pairs by the binary inputs; additionally a third input is provided to use as a system enable. When the ENable input is high (5V) the channels are sequenced by the 2 line binary inputs, and when low ( 0 V ) all channels are off. The 2 Address inputs are controlled by TTL logic or CMOS logic elements with a " 0 " corresponding to any voltage less than 0.8 V and a " 1 " corresponding to any voltage greater than 2.4 V . Note that the ENable input must be taken to 5 V to enable the system, and less than 0.8 V to disable the system.

## ORDERING INFORMATION

| Part Number | Temperature Range | Package |
| :---: | :---: | :---: |
| IH6208MJE | $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ | 16 pin CERDIP |
| IH6208CJE | $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ | 16 pin CERDIP |
| IH6208CPE | $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ | 16 pin Plastic DIP |

Ceramic package available as special order only (IH6208MDE/CDE)


2 LINE BINARY ADDRESS INPUTS
(0 0) AND EN = 5V (EN = "1" FOR + 5V, "0" FOR OV,
ABOVE EXAMPLE SHOWS CHANNELS 1 a \& 1 b ON.
0300-1

## FEATURES

- Ultra Low Leakage - $I_{D(o f f)} \leq 100 p A$ Typical
- rDS(on) $<400$ Ohms Over Full Signal and Temperature Range
- Power Supply Quiescent Current Less Than $100 \mu \mathrm{~A}$
- $\pm 14 \mathrm{~V}$ Analog Signal Range
- No SCR Latchup
- Break-Before-Make Switching
- Binary Address Control (2 Address Inputs Control 2 Out of 8 Channels)
- TTL and CMOS Compatible Address Control
- Pin Compatible With HI509, DG509A \& AD7509
- Internal Diode In Series With V+ For Fault Protection


## DECODE TRUTH TABLE

| $\mathbf{A}_{1}$ | $\mathbf{A}_{\mathbf{0}}$ | EN | On <br> Switch <br> Pair |
| :---: | :---: | :---: | :---: |
| $X$ | $X$ | 0 | NONE |
| 0 | 0 | 1 | $1 \mathrm{a}, 1 \mathrm{~b}$ |
| 0 | 1 | 1 | $2 a, 2 b$ |
| 1 | 0 | 1 | $3 \mathrm{a}, 3 \mathrm{~b}$ |
| 1 | 1 | 1 | $4 \mathrm{a}, 4 \mathrm{~b}$ |

$A_{0}, A_{1}$
LOGIC " 1 " $=\mathrm{V}_{\text {AH }} \geq 2.4 \mathrm{~V} \mathrm{~V}_{\text {ENH }} \geq 4.5 \mathrm{~V}$
LOGIC " 0 " $=V_{\text {AL }} \leq 0.8 \mathrm{~V}$


0300-2

Figure 2: Pin Configuration

Figure 1: Functional Diagram

[^373]ABSOLUTE MAXIMUM RATINGS

$V_{S}$ or $V_{D}$ to $V^{+}$....................................... $0,-36 \mathrm{~V}$
$V_{S}$ or $V_{D}$ to $V^{-}$ 0, 36V
V+ to Ground
. 16V
V- to Ground . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -16 V
Current (Any Terminal) ............................... 30mA
Current (Analog Source or Drain) . .................... 20mA
Operating Temperature ....................... -55 to $125^{\circ} \mathrm{C}$
Storage Temperature ....................... -65 to $150^{\circ} \mathrm{C}$
Lead Temp (Soldering, 10sec) . . . . . . . . . . . . . . . . . . 300º C
Power Dissipation (Package)* . . . . . . . . . . . . . . . . . 1200mW

* All leads soldered or welded to PC board. Derate $10 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $70^{\circ} \mathrm{C}$.

NOTE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

## ELECTRICAL CHARACTERISTICS

$\mathrm{V}^{+}=15 \mathrm{~V}, \mathrm{~V}^{-}=-15 \mathrm{~V}, \mathrm{~V}_{\mathrm{EN}}=+5 \mathrm{~V}$ (Note 1), Ground $=0 \mathrm{~V}$, unless otherwise specified.

| Characteristic | Measured Terminal | No <br> Tests <br> Per <br> Temp | $\begin{aligned} & \text { Typ } \\ & 25^{\circ} \mathrm{C} \end{aligned}$ | Test Conditions |  | Max Limits |  |  |  |  |  | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  | M Suffix |  |  | C Suffix |  |  |  |
|  |  |  |  |  |  | $-55^{\circ} \mathrm{C}$ | $25^{\circ} \mathrm{C}$ | $125^{\circ} \mathrm{C}$ | $0^{\circ} \mathrm{C}$ | $25^{\circ} \mathrm{C}$ | $70^{\circ} \mathrm{C}$ |  |
| SWITCH |  |  |  |  |  |  |  |  |  |  |  |  |
| rDS(ON) | S to D | 8 | 180 | $\mathrm{V}_{\mathrm{D}}=-10 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=-1.0 \mathrm{~mA}$ | Sequence each switch on $\mathrm{V}_{\mathrm{AL}}=0.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{AH}}=2.4 \mathrm{~V}$ | 300 | 300 | 400 | 350 | 350 | 450 | $\Omega$ |
|  |  | 8 | 150 | $\mathrm{V}_{\mathrm{D}}=-10 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=-1.0 \mathrm{~mA}$ |  | 300 | 300 | 400 | 350 | 350 | 450 |  |
| $\Delta^{\text {r }}$ SS(ON) |  |  | 20 |  |  |  |  |  |  |  |  | \% |
| IS(OFF) | S | 8 | 0.002 | $\mathrm{V}_{\mathrm{S}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=-10 \mathrm{~V}$ |  |  | $\pm .5$ | 50 |  | $\pm 1$ | 50 | nA |
|  |  | 8 | 0.002 | $\mathrm{V}_{S}=-10 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=10 \mathrm{~V}$ | $V_{E N}=0.8 \mathrm{~V}$ |  | $\pm .5$ | 50 |  | $\pm 1$ | 50 |  |
| ID(OFF) | D | 2 | 0.03 | $V_{D}=10 \mathrm{~V}, \mathrm{~V}_{S}=-10 \mathrm{~V}$ |  |  | $\pm 2$ | 50 |  | $\pm 5$ | 100 |  |
|  |  | 2 | 0.03 | $V_{D}=-10 \mathrm{~V}, \mathrm{~V}_{S}=10 \mathrm{~V}$ |  |  | $\pm 2$ | 50 |  | $\pm 5$ | 100 |  |
| ID(ON) | D | 8 | 0.1 | $\mathrm{V}_{\mathrm{S}(\mathrm{ALL})}=\mathrm{V}_{\mathrm{D}}=10 \mathrm{~V}$ | Sequence each switch on$\mathrm{V}_{\mathrm{AL}}=0.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{AH}}=2.4 \mathrm{~V}$ |  | $\pm 2$ | 50 |  | $\pm 5$ | 100 |  |
|  |  | 8 | 0.1 | $\mathrm{V}_{\mathrm{S}(\mathrm{ALL})}=-10 \mathrm{~V}$ |  |  | $\pm 2$ | 50 |  | $\pm 5$ | 100 |  |

INPUT

| ${ }^{1} \mathrm{~A}$ (on) |  | 2 | 0.01 | $\mathrm{V}_{\mathrm{A}}=2.4 \mathrm{~V}$ or 0V |  | -10 | -30 | -10 | -30 | $\mu \mathrm{A}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 A (off) |  | 2 | 0.01 | $\mathrm{V}_{\mathrm{A}}=14 \mathrm{~V}$ or 0V |  | 10 | 30 | 10 | 30 |  |
| $\mathrm{I}_{\mathrm{A}}$ | $A_{0}, A_{1}$ | 2 |  | $\mathrm{V}_{\mathrm{EN}}=5 \mathrm{~V}$ | All $\mathrm{V}_{\mathrm{A}}=0$ (Address Pins) | -10 | -30 | -10 | -30 |  |
|  | EN | 1 |  | $\mathrm{V}_{\mathrm{EN}}=0$ |  | -10 | -30 | -10 | -30 |  |

## DYNAMIC



NOTE 1: See Section 1 Enable Input Strobing Levels.

## SWITCHING INFORMATION



Figure 3: trans Switching Test


Figure 4: $t_{\text {open }}$ (Break-Before-Make) Switching Test


INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

NOTE: All typical values have been characterized but are not tested.

IH6208 APPLICATION INFORMATION

## ENable Input Strobing Levels

The ENable input on the IH6208 requires a minimum of +4.5 V to trigger it into the " 1 " state and a maximum of +0.8 V to trigger it into the " 0 " state. If the ENable input is being driven from TTL logic, a pull-up resistor of 1 k to $3 \mathrm{k} \Omega$ is required from the gate output to +5 V supply. (See Figure $6)$.


When the EN input is driven from CMOS logic, no pullup is necessary. (See Fig. 7)


Figure 7: CMOS Logic Driving ENable Pin

[^374]
## IH6208 APPLICATION INFORMATION (Continued)

The supply voltage of the CD4009 affects the switching speed of the IH6208; the same is true for TTL supply voltage levels. The chart below shows the effect on trans for a supply varying from +4.5 V to +5.5 V .

| CMOS OR | TYPICAL t trans |
| :---: | :---: |
| TTL SUPPLY | @ $25^{\circ} \mathrm{C}$ |
| +4.5 V | 400 ns |
| +4.75 V | 300 ns |
| +5.0 V | 250 ns |
| +5.25 V | 200 ns |
| +5.50 V | 175 ns |

The throughput rate can therefore be maximized by using $a+5 \mathrm{~V}$ to +5.5 V supply for the ENable Strobe Logic.
The examples shown in Figures 6 and 7 deal with ENable strobing when expansion to more than four differential channels is required; in these cases the EN terminal acts as a third address input. If four channel pairs or less are being multiplexed, the EN terminal can be directly connected to +5 V to enable the IH6208 at all times.

## Using the IH6208 with supplies other than $\pm 15 \mathrm{~V}$

The IH6208 can be used with power supplies ranging from $\pm 6 \mathrm{~V}$ to $\pm 16 \mathrm{~V}$. The switch $\mathrm{r}_{\mathrm{DS}}(\mathrm{on})$ will increase as the
supply voltages decrease, however, the multiplexer error term (the product of leakage times ros(on)) will remain approximately constant since leakage decreases as the supply voltages are reduced.

Caution must be taken to ensure that the enable (EN) voltage is at least 0.7 V below $\mathrm{V}^{+}$at all times. If this is not done the Address Input strobing levels will not function properly. This may be achieved quite simply by connecting EN (pin 2) to $\mathrm{V}^{+}$(pin 14) via a silicon diode as shown in Figure 8. A further requirement must be met when using this type of configuration; the strobe levels at A0 and A1 must be within 2.5 V of the EN voltage in order to define a binary " 1 " state. For the case shown in Figure 8 the EN voltage is 11.3 V , which means that logic high at A 0 and A 1 is $=+8.8 \mathrm{~V}$ (logic low continues to be $=0.8 \mathrm{~V}$ ). In this configuration the IH6208 cannot be driven by TTL ( +5 V ) or CMOS ( +5 V ) logic. It can be driven by TTL open collector logic or CMOS logic with +12 V supplies.

If the logic and the IH6208 have common supplies, the EN pin should again be connected to the supply through a silicon diode. In this case, tying EN to the logic supply directly will not work since it violates the 0.7 V differential voltage required between $\mathrm{V}^{+}$and EN (See Figure 9). A $1 \mu \mathrm{~F}$ capacitor can be placed across the diode to minimize switching glitches.


0300-11
Figure 8: IH6208 Connection Diagram for Less Than $\pm$ 15V Supply Operation

[^375]IH6208 APPLICATION INFORMATION (Continued)


0300-12
Figure 9: IH6208 Connection Diagram With ENable Input Strobing for Less Than $\pm 15 \mathrm{~V}$ Supply Operation

## Peak-to-Peak Signal Handling Capability

The IH6208 can handle input signals up to $\pm 14 \mathrm{~V}$ (actually -15 V to +14.3 V because of the input protection diode) when using $\pm 15 \mathrm{~V}$ supplies.

The electrical specifications of the IH6208 are guaranteed for $\pm 10 \mathrm{~V}$ signals, but the specifications have very minor changes for $\pm 14 \mathrm{~V}$ signals. The notable changes are slightly lower $\mathrm{r}_{\mathrm{DS}(\mathrm{on})}$ and slightly higher leakages.

[^376]
## GENERAL DESCRIPTION

The IH6216 is a CMOS 2 of 16 multiplexer. The part is a plug-in replacement for the DG507. Three line binary decoding is used so that the 16 channels can be controlled in pairs by the binary inputs; additionally a fourth input is provided to use as a system enable. When the ENable input is high (5V) the channels are sequenced by the 3 line binary inputs, and when low (OV), all channels are off. The 3 Address inputs are controlled by TTL logic or CMOS logic elements with a " 0 " corresponding to any voltage less than 0.8 V and a " 1 " corresponding to any voltage greater than 3.0V. Note that the ENable input must be taken to 5 V to enable the system and less than 0.8 V to disable the system.

## ORDERING INFORMATION

| Part Number | Temperature Range | Package |
| :---: | :---: | :---: |
| IH 6216 MJI | $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ | 28 pin CERDIP |
| IH 6216 CJ | $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ | 28 pin CERDIP |
| IH 6216 CPI | $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ | 28 pin Plastic DIP |

Ceramic package available as special order only (IH6216MDI/CDI)

## FEATURES

- Pin Compatible With HI507, DG507A \& AD7507
$- \pm 11 \mathrm{~V}$ Analog Signal Range
- rDS(on) $<\mathbf{7 0 0}$ Ohms Over Full Signal and Temperature Range
- Break-Before-Make Switching
- TTL and CMOS Compatible Address Control
- Binary Address Control (3 Address Inputs Control 2 Out of 16 Channels)
- Two Tier Submultiplexing to Facilitate Expandability
- Power Supply Quiescent Current Less Than $100 \mu \mathrm{~A}$
- No SCR Latchup
- Very Low Leakage $I_{D(O F F)} \leq 100 p A$
- Internal Diode In Series With V+ for Fault Protection


TO DECODE LOGIC
CONTROLLING BOTH
TIERS OF MUXING


3 LINE BINARY ADDRESS INPUTS
$(000)$ AND EN = 5 V
ABOVE EXAMPLE SHOWS CHANNELS 1 a \& 1 ib ON.
Figure 1: Functional Diagram

## DECODE TRUTH TABLE

| $\mathbf{A}_{\mathbf{2}}$ | $\mathbf{A}_{\mathbf{1}}$ | $\mathbf{A}_{\mathbf{0}}$ | EN | On <br> Switch <br> Pair |
| :---: | :---: | :---: | :---: | :---: |
| $\mathbf{X}$ | X | X | 0 | NONE |
| 0 | 0 | 0 | 1 | 1 |
| 0 | 0 | 1 | 1 | 2 |
| 0 | 1 | 0 | 1 | 3 |
| 0 | 1 | 1 | 1 | 4 |
| 1 | 0 | 0 | 1 | 5 |
| 1 | 0 | 1 | 1 | 6 |
| 1 | 1 | 0 | 1 | 7 |
| 1 | 1 | 1 | 1 | 8 |

LOGIC " 1 " $=\mathrm{V}_{\text {AH }}>3 \mathrm{~V} \mathrm{~V}_{\text {ENH }}>4.5 \mathrm{~V}$
LOGIC " 0 " $=V_{A L}<0.8 V$


0301-2
Figure 2: Pin Configuration

## ABSOLUTE MAXIMUM RATINGS


$V_{S}$ or $V_{D}$ to $V$ $0,36 \mathrm{~V}$
$\mathrm{V}+$ to Ground
V- to Ground .................................................... 16 V
Current (Any Terminal) . ............................... 30mA

Current (Analog Source or Drain) . ................... . 20mA
Operating Temperature . ...................... . -55 to $125^{\circ} \mathrm{C}$
Storage Temperature ...................... . 65 to $150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10sec) ............... $300^{\circ} \mathrm{C}$
Power Dissipation (Package)* . . . . . . . . . . . . . . . . . 1200mW

* All leads soldered or welded to PC board. Derate $10 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $70^{\circ} \mathrm{C}$.

NOTE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
ELECTRICAL CHARACTERISTICS
$\mathrm{V}^{+}=15 \mathrm{~V}, \mathrm{~V}-=-15 \mathrm{~V}, \mathrm{~V}_{\mathrm{EN}}=+5 \mathrm{~V}$ (Note 1), Ground $=0 \mathrm{~V}$, unless otherwise specified.

| Characteristic | Measured Terminal | No <br> Tests <br> Per <br> Temp | $\begin{aligned} & \text { Typ } \\ & 25^{\circ} \mathrm{C} \end{aligned}$ | Test Conditions |  | Max Limits |  |  |  |  |  | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  | M Suffix |  |  | C Suffix |  |  |  |
|  |  |  |  |  |  | $-55^{\circ} \mathrm{C}$ | $25^{\circ} \mathrm{C}$ | $125^{\circ} \mathrm{C}$ | $0^{\circ} \mathrm{C}$ | $25^{\circ} \mathrm{C}$ | $70^{\circ} \mathrm{C}$ |  |
| SWITCH |  |  |  |  |  |  |  |  |  |  |  |  |
| ${ }^{\text {r DS }}$ (ON) | $S$ to D | 16 | 480 | $\mathrm{V}_{\mathrm{D}}=-10 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=-1 \mathrm{~mA}$ | Sequence each switch on $\mathrm{V}_{\mathrm{AL}}=0.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{AH}}=3 \mathrm{~V}$ | 600 | 600 | 700 | 650 | 650 | 750 | $\Omega$ |
|  |  | 16 | 300 | $\mathrm{V}_{\mathrm{D}}=-10 \mathrm{~V}, \mathrm{I}_{S}=-1 \mathrm{~mA}$ |  | 600 | 600 | 700 | 650 | 650 | 750 |  |
| $\Delta r_{\text {DS }}(\mathrm{ON})$ |  |  | 20 | $\Delta_{\mathrm{DSS}}(\mathrm{on})=\frac{\mathrm{r}_{\mathrm{DS}}(\mathrm{on})_{\max }-r_{\mathrm{DS}(\mathrm{on})^{\mathrm{min}}}^{r_{\mathrm{DS}(o n)^{a v g}}} \mathrm{v}_{\mathrm{S}}= \pm 10 \mathrm{~V} .}{}$ |  |  |  |  |  |  |  | \% |
| IS(OFF) | S | 16 | 0.01 | $\mathrm{V}_{S}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=-10 \mathrm{~V}$ |  |  | $\pm .5$ | 50 |  | $\pm 1$ | 50 | $n A$ |
|  |  | 16 | 0.01 | $\mathrm{V}_{S}=-10 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=10 \mathrm{~V}$ | $\mathrm{V}_{\mathrm{EN}}=0.8 \mathrm{~V}$ |  | $\pm .5$ | 50 |  | $\pm 1$ | 50 |  |
|  |  | 2 | 0.1 | $V_{D}=10 \mathrm{~V}, \mathrm{~V}_{S}=-10 \mathrm{~V}$ |  |  | $\pm 2$ | 100 |  | $\pm 5$ | 100 |  |
| ID(OFF) | D | 2 | 0.1 | $\mathrm{V}_{\mathrm{D}}=-10 \mathrm{~V}, \mathrm{~V}_{S}=10 \mathrm{~V}$ |  |  | $\pm 2$ | 100 |  | $\pm 5$ | 100 |  |
|  |  | 16 | 0.1 | $\mathrm{V}_{\mathrm{S}(\mathrm{ALL})}=\mathrm{V}_{\mathrm{D}}=10 \mathrm{~V}$ | Sequence each switch on |  | $\pm 2$ | 100 |  | $\pm 5$ | 100 |  |
| ID(ON) | D | 16 | 0.1 | $\mathrm{V}_{S(A L L)}=\mathrm{V}_{\mathrm{D}}=-10 \mathrm{~V}$ | $\mathrm{V}_{\mathrm{AL}}=0.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{AH}}=3 \mathrm{~V}$ |  | $\pm 2$ | 100 |  | $\pm 5$ | 100 |  |

INPUT

| ${ }^{\prime} A$ (on) or |
| :--- | ---: | ---: | :--- | :--- | :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| $I^{\prime}$ (off) |

## DYNAMIC



## SUPPLY

| Supply | + | V+ | 1 | 55 | $\mathrm{V}_{\mathrm{EN}}=5 \mathrm{~V}$ | All $\mathrm{V}_{\mathrm{A}}=0$ or 5 V | 200 | 1000 | $\mu \mathrm{A}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Current | - | V- | 1 | 2 |  |  | 100 | 1000 |  |
| Standby | + | V+ | 1 | 1 |  |  | 100 | 1000 |  |
| Current | - | V- | 1 | 1 | $\mathrm{V}_{\mathrm{EN}}=0$ |  | 100 | 1000 |  |

## NOTE 1: $\quad$ See Enable Input Strobing Levels, Section 1.

intersil's sole and exclusive warranty obligation with respect to this product shall be that stated in the warranty article of the condition of sale. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.
NOTE: All typical values have been characterized but are not tested.



0301-6
Figure 4: Switching Information


INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

NOTE: All typical values have been characterized but are not tested.

IH6216 APPLICATIONS

*TTL gate must have pullup to drive EN input
Figure 6: 2 Out of 32 Channel Multiplexer Using 2 IH6216s

DECODE TRUTH TABLE

| $\mathbf{A}_{\mathbf{3}}$ | $\mathbf{A}_{\mathbf{2}}$ | $\mathbf{A}_{\mathbf{1}}$ | $\mathbf{A}_{\mathbf{0}}$ | On Switch |  |
| :---: | :---: | :---: | :---: | :---: | :--- |
| 0 | 0 | 0 | 0 | S1a |  |
| 0 | 0 | 0 | 1 | S2a |  |
| 0 | 0 | 1 | 0 | S3a |  |
| 0 | 0 | 1 | 1 | S4a |  |
| 0 | 1 | 0 | 0 | S5a |  |
| 0 | 1 | 0 | 1 | S6a |  |
| 0 | 1 | 1 | 0 | S7a |  |
| 0 | 1 | 1 | 1 | S8a | VouT1 |
| 1 | 0 | 0 | 0 | S9a |  |
| 1 | 0 | 0 | 1 | S10a |  |
| 1 | 0 | 1 | 0 | S11a |  |
| 1 | 0 | 1 | 1 | S12a |  |
| 1 | 1 | 0 | 0 | S13a |  |
| 1 | 1 | 0 | 1 | S14a |  |
| 1 | 1 | 1 | 0 | S15a |  |
| 1 | 1 | 1 | 1 | S16a |  |

DECODE TRUTH TABLE

| $\mathbf{A}_{\mathbf{3}}$ | $\mathbf{A}_{\mathbf{2}}$ | $\mathbf{A}_{\mathbf{1}}$ | $\mathbf{A}_{\mathbf{0}}$ | On Switch |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 0 | S1b |  |
| 0 | 0 | 0 | 1 | S2b |  |
| 0 | 0 | 1 | 0 | S3b |  |
| 0 | 0 | 1 | 1 | S4b |  |
| 0 | 1 | 0 | 0 | S5b |  |
| 0 | 1 | 0 | 1 | S6b |  |
| 0 | 1 | 1 | 0 | S7b |  |
| 0 | 1 | 1 | 1 | S8b | V OUT2 |
| 1 | 0 | 0 | 0 | S9b |  |
| 1 | 0 | 0 | 1 | S10b |  |
| 1 | 0 | 1 | 0 | S11b |  |
| 1 | 0 | 1 | 1 | S12b |  |
| 1 | 1 | 0 | 0 | S13b |  |
| 1 | 1 | 0 | 1 | S14b |  |
| 1 | 1 | 1 | 0 | S15b |  |
| 1 | 1 | 1 | 1 | S16b |  |


*TTL inverter must have resistor pullup to drive EN input
Figure 7: 2 One of 32 Multiplexer Using Two IH6216s, and An IH5043 for Submultiplexing

[^377]
## General note on expandability of IH6216

The IH6216 is a two tier multiplexer, where 8 pairs of input channels are routed to a pair of outputs in blocks of 4. Each block of 4 input channels is routed to one common output channel, and thus the submultiplexed system looks like 4 blocks of 4 inputs routed to 4 different outputs with the 4 outputs tied in pairs. Thus 20 switches are needed to handle the 16 channels of information. The advantages of this are lower output capacitance and leakage than would be possible using a system with all 8 channels tied to one common output. Also the expandability into 2 out of 32,64 , 128, etc. is facilitated. Figures 6,7 , and 8 show how the IH6216 is expanded.

DECODE TRUTH TABLE

| $\mathbf{A}_{\mathbf{3}}$ | $\mathbf{A}_{\mathbf{2}}$ | $\mathbf{A}_{\mathbf{1}}$ | $\mathbf{A}_{\mathbf{0}}$ | On Switch |  |
| :---: | :---: | :---: | :---: | :---: | :--- |
| 0 | 0 | 0 | 0 | S1a |  |
| 0 | 0 | 0 | 1 | S2a |  |
| 0 | 0 | 1 | 0 | S3a |  |
| 0 | 0 | 1 | 1 | S4a |  |
| 0 | 1 | 0 | 0 | S5a |  |
| 0 | 1 | 0 | 1 | S6a |  |
| 0 | 1 | 1 | 0 | S7a |  |
| 0 | 1 | 1 | 1 | S8a | VouT1 |
| 1 | 0 | 0 | 0 | S9a |  |
| 1 | 0 | 0 | 1 | S10a |  |
| 1 | 0 | 1 | 0 | S11a |  |
| 1 | 0 | 1 | 1 | S12a |  |
| 1 | 1 | 0 | 0 | S13a |  |
| 1 | 1 | 0 | 1 | S14a |  |
| 1 | 1 | 1 | 0 | S15a |  |
| 1 | 1 | 1 | 1 | S16a |  |

Figure 6 shows a 2 of 32 multiplexer, using 2 IH6216s. Since the 6216 is itself a 2 tier MUX, the system as shown is basically a 2 tier system. Corresponding output points of each of the 6216 are connected together, and the ENable input strobe is used as the $A_{3}$ input. Since each output (pins 2 and 28) corresponds to an "ON" FET and an "OFF" FET, the overall system looks like 1 "ON" FET and 3 "OFF" FETs for each of the $V_{\text {out1 }}$ and $V_{\text {out2 }}$ outputs. Thus the output leakage will be $1 \mathrm{I}_{\mathrm{D}(\text { (on) }}$ plus $3 \mathrm{I}_{\mathrm{D} \text { (off) }}$ s or about 0.4 nA at room temperature. Throughput speed will be typically $0.8 \mu \mathrm{~s}$ for $\mathrm{t}_{\text {on }}$ and $0.3 \mu \mathrm{~s}$ for $\mathrm{t}_{\text {off }}$, with throughput channel resistance in the $500 \Omega$ area.


[^378]NOTE: All typical values have been characterized but are not tested.

Figure 7 shows the 2 of 32 MUX of Figure 6, with a third tier of submultiplexing added to further reduce leakage and output capacitance. The IH5043 has typical ON resistance of $50 \Omega$ (max. is $75 \Omega$ ) so it only increases throughput channel resistance from the 500 ohms of Figure 6 to about 550 ohms for Figure 7. Throughput channel speed is a little slower by about $0.5 \mu \mathrm{~s}$ for both ON and OFF time, and output leakage is about 0.2 nA .

Figure 8 shows a 2 of 64 MUX using 3 tier MUXing (similar to Figure 7). The Intersil IH5043 is used for the third tier of MUXing. Each $V_{\text {out }}$ point will see 3 OFF channels and 1 ON channel at anytime, so that the typical leakages will be about 0.4 nA . Throughput channel resistance will be in the $550 \Omega$ area and throughput switching speeds about $1.3 \mu \mathrm{~s}$ for ON time and $0.8 \mu \mathrm{~s}$ for OFF time.
The IH5043 was chosen as the third tier of the MUX because it will switch the same AC signals as the IH6216 (typically plus and minus 15 V ) and uses break before make switching. Also power supply quiescent currents are typically $1-2 \mu \mathrm{~A}$ so that no excessive system power is generated. Note that the logic of the 5043 is such that it can be tied directly to the ENable input (as shown in the figures) with no extra logic being required.

## Enable input strobing levels

The ENable input acts as an enabling or disabling pin for the IH6216 when used as a 2 out of 16 channel MUX, however when expanding the MUX to more than 16 channels, the EN pin acts as another address input. Figures 6 and 7 show the EN pin used as the $A_{3}$ input.

For the system to function properly the EN input (pin 18) must go to $5 \mathrm{~V} \pm 5 \%$ for the high state and less than 0.8 V for the low state. When using TTL logic, a pull-up of $1 \mathrm{k} \Omega$ or less resistor should be used to pull the output voltage up to 5 V . When using CMOS logic, the high state goes to the power supply so no pull-up is required.

If used on high voltage logic supplies, EN should be at least 0.7 V below $\mathrm{V}^{+}$at all times. See IH6208 data sheet for details.

## APPLICATION NOTES

Further information may be found in:
A003 "Understanding and Applying the Analog Switch"
A006 "A New CMOS Analog Gate Technology"
A020 "A Cookbook Approach to High Speed Data Acquisition and Microprocessor Interfacing"
R009 "Reduce CMOS Multiplexer Troubles Through Proper Device Selection"
NOTE: This multiplexer does not require external resistors and/or diodes to eliminate what is commonly known as a latch up or SCR action. Because of this fact, the rDS(ON) of the switch is maintained at specified values.

## IH9108 <br> IH9108 <br> 8-Channel High-Voltage Multiplexer with Latches

## GENERAL DESCRIPTION

The IH9108 is an 8-channel multiplexe with latet sovil signed for high voltage ( $\pm 50 \mathrm{~V}$ ) applications,inmicroprocessor based instrumentation and process control systems. The multiplexer features true bi-directional switch action over the full analog signal range. Interfacing with microprocessors is simplified by on-board data latches and control pins.

The IH9108 utilizes D/CMOS junction isolation technology providing high breakdown voltage ( $>120 \mathrm{~V}$ ). In addition, the IH9108 features low ON resistance ( $35 \Omega$ typ) and extremely low leakages ( 0.5 nA typ). The multiplexer provides 8 -channel single-ended multiplexing and demultiplexing. Individual channels are selected by addressing appropriate data latches with binary coded inputs ( $A_{0}, A_{1}$ and $A_{2}$ ). Switch state inputs are stored or cleared via write WR and device reset $\overline{R S}$ respectively. During system power-up or reset, switch turn-off is simplified by RS. The 1 H 9108 is available over the commercial $\left(0^{\circ} \mathrm{C}\right.$ to $\left.70^{\circ} \mathrm{C}\right)$, Industrial $\left(-25^{\circ} \mathrm{C}\right.$ to $\left.85^{\circ} \mathrm{C}\right)$ and Military ( $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$ ) temperature range in 18 pin sidebraze package.


FEATURES

- Low Leakage Current
- $\pm 50 \mathrm{~V}$ Analog Signal Range
- Low ON Resistance
- Latchable Logic Inputs
- Direct Reset ( $\overline{\mathrm{RS}})$


## APPLICATIONS

- Automatic Test Equipment
- Ultrasound Medical Equipment
- Microprocessor Controlled Systems
- Communications Systems
- Data Acquisition

ORDERING INFORMATION

| Part <br> Number | Temperature <br> Range | Package |
| :---: | :---: | :---: |
| IH9108CDN | $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ | Sidebraze 18-pin |
| IH9108IDN | $-25^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ | Sidebraze 18-pin |
| IH9108MDN | $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$ | Sidebraze 18-pin |



ABSOLUTE MAXIMUM RATINGS
V+.............................................................. +62 V
V- ............................................................. 62 V
Digital Inputs ........................... -0.3 V to $\mathrm{V}_{\mathrm{L}}+0.3 \mathrm{~V}$
Continuous Current S or D. . . . . . . . . . . . . . . . . . . . . . . . . 30 mA
Peak Current, S or D (Note 1) . . . . . . . . . . . . . . . . . . . . . 100 mA
Operating Temperature
(C Version) $\qquad$ $.0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
(I Version) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . $-25^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
(M Version) . . . . . . . . . . . . . . . . . . . . . . . . . . . $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$

Storage Temperature . . . . . . . . . . . . . . . . . . . $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
Power Dissipation (Package*) . . . . . . . . . . . . . . . . . . . 250 mW
*All leads soldered or welded to PC board.
NOTE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS Commercial and Industrial Grade

| Parameter | Symbol | Test Conditions (unless otherwise noted)$\begin{gathered} \mathrm{V}^{+}=60 \mathrm{~V}, \mathrm{~V}-=-60 \mathrm{~V}, \mathrm{GND}=\mathrm{V}_{\overline{\mathrm{WR}}}=0 \\ \mathbf{V}_{\mathbf{L}}=\mathrm{V}_{\overline{\mathbf{R S}}}=15 \mathrm{~V}, \mathrm{~T}_{\mathbf{A}}=25^{\circ} \mathrm{C} \end{gathered}$ |  | Limits |  |  | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Min | Typ (Note 3) | Max |  |
| MULTIPLEXER |  |  |  |  |  |  |  |
| Analog Signal Range | $V_{\text {analog }}$ |  |  | -50 |  | $+50$ | V |
| Drain-Source ON Resistance | r ${ }^{\text {d }}$ (ON) | $\begin{aligned} & V_{D}=-50 V, I_{S}=10 r \\ & -10 \mathrm{~V} \leq V_{D} \leq+10 \mathrm{~V} \\ & V_{D}=+50 \mathrm{~V}, I_{S}=10 r \end{aligned}$ | $\begin{aligned} & \mathrm{nA} \\ & \mathrm{Is}=10 \mathrm{~mA} \\ & \mathrm{nA} \end{aligned}$ |  | $\begin{aligned} & 25 \\ & 35 \\ & 95 \end{aligned}$ | $\begin{gathered} 35 \\ 50 \\ 120 \end{gathered}$ | $\Omega$ |
| Source OFF Leakage Current Drain OFF Leakage Current Drain ON Leakage Current | IS(OFF) <br> ID(OFF) <br> ID(ON) | See Fig. $5 V_{D}=-50 \mathrm{~V}$ <br> See Fig. $6 \mathrm{~V}_{\mathrm{S}}=-50 \mathrm{~V}$ <br> See Fig. $7 \mathrm{~V}_{\mathrm{S}}=-50 \mathrm{~V}$ | $\begin{aligned} & V_{S}=+50 \mathrm{~V} \\ & V_{D}=+50 \mathrm{~V} \\ & V_{D}=+50 \mathrm{~V} \end{aligned}$ |  | 0.5 5 5 | $\begin{gathered} 5 \\ 25 \\ 20 \\ \hline \end{gathered}$ | nA |
| INPUT |  |  |  |  |  |  |  |
| Input Current/Input Low Input Current/Input High | $\begin{aligned} & l_{\text {INL }} \\ & l_{\text {INH }} \end{aligned}$ | $\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}(\text { Note 2) } \\ & \mathrm{V}_{\mathrm{IN}}=15 \mathrm{~V} \text { (Note 2) } \end{aligned}$ |  |  | $\begin{aligned} & 0.1 \\ & 0.1 \end{aligned}$ | $\begin{aligned} & 2 \\ & 2 \end{aligned}$ | $\mu \mathrm{A}$ |
| DYNAMIC |  |  |  |  |  |  |  |
| Turn-ON Time <br> Turn-OFF Time <br> Break-Before-Make Interval | ton <br> toff <br> topen | $\begin{aligned} & R_{L}=5 K, C_{L}=10 \mathrm{pF} \\ & V_{S}= \pm 50 \mathrm{~V} \end{aligned}$ <br> Fig. 8 | See Fig. 3 <br> See Fig. 3 <br> See Fig. 4 |  | $\begin{gathered} 1 \\ 0.5 \\ 25 \end{gathered}$ | $\begin{aligned} & 2 \\ & 1 \end{aligned}$ | $\mu \mathrm{S}$ <br> $\mu \mathrm{S}$ <br> ns |
| Address Access Time Address Hold Time Reset Pulse Width Write Pulse Width | $\begin{aligned} & t_{A} \\ & t_{H} \\ & t_{R S} \\ & t_{W R} \end{aligned}$ | See Fig. 3 <br> See Fig. 3 twR $=500$ <br> See Fig. 3 <br> See Fig. 3 |  |  | $\begin{aligned} & 100 \\ & 300 \\ & 100 \\ & 300 \\ & \hline \end{aligned}$ |  | ns |
| Source OFF Capacitance Drain OFF Capacitance Channel ON Capacitance | $\begin{gathered} \mathrm{C}_{\mathrm{S}(\mathrm{OFF})} \\ \mathrm{C}_{\mathrm{D}(\mathrm{OFF})} \\ \mathrm{C}_{\mathrm{D}+\mathrm{S}(\mathrm{ON})} \end{gathered}$ | $\begin{aligned} & \mathrm{V}_{\mathrm{S}}=0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{D}}=0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{S}}=0 \mathrm{~V} \end{aligned}$ | $\mathrm{f}=50 \mathrm{kHz}$ |  | $\begin{gathered} 14 \\ 85 \\ 110 \end{gathered}$ |  | pF |
| OFF Isolation | OIRR | $\begin{aligned} & V_{\overline{R S}}=0 V, R_{L}=2 k, C_{l} \\ & V_{\text {analog }}=10 V_{p-p}, f= \end{aligned}$ | $\begin{aligned} & \mathrm{L}=3 \mathrm{pF} \\ & 100 \mathrm{kHz} \end{aligned}$ |  | 65 |  | dB |
| SUPPLY |  |  |  |  |  |  |  |
| Positive Supply Current Negative Supply Current Logic Supply Current | $\begin{aligned} & 1^{+} \\ & 1^{-} \end{aligned}$ $I_{L}$ | $\mathrm{V}_{\mathrm{IN}(\text { all })}=0$ or 15 V (Note 2) |  |  | $\begin{aligned} & 0.002 \\ & 0.003 \\ & 0.002 \\ & \hline \end{aligned}$ | 2 2 2 | $\mu \mathrm{A}$ |

NOTE 1: Pulsed at $1 \mathrm{mS}, 10 \%$ duty cycle.
2: Inputs are digital inputs ( $A_{0}, A_{1}, A_{2}, \overline{R S}$ and $\overline{W R}$ ).
3: For design reference only, not $100 \%$ tested.

[^379]ELECTRICAL CHARACTERISTICS

| Parameter | Symbol | Test Conditions (unless otherwise noted)$\begin{gathered} \mathrm{V}^{+}=60 \mathrm{~V}, \mathrm{~V}-=-60 \mathrm{~V}, \mathrm{GND}=\mathrm{V}_{\overline{\mathrm{WR}}}=0 \\ \mathrm{~V}_{\mathrm{L}}=\mathrm{V}_{\overline{\mathrm{RS}}}=15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{gathered}$ |  | Limits |  |  | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Min | Typ (Note 3) | Max |  |
| MULTIPLEXER |  |  |  |  |  |  |  |
| Analog Signal Range | $V_{\text {analog }}$ |  |  | -50 |  | $+50$ | V |
| Drain-Source ON Resistance | r'DS(ON) | $\begin{aligned} & V_{D}=-50 V, I_{S}=10 r \\ & -10 V \leq V_{D} \leq+10 \mathrm{~V} \\ & V_{D}=+50 V, I_{S}=10 \end{aligned}$ | $\begin{aligned} & \mathrm{nA} \\ & \mathrm{Is}=10 \mathrm{~mA} \\ & \mathrm{nA} \end{aligned}$ |  | $\begin{aligned} & 25 \\ & 35 \\ & 75 \\ & \hline \end{aligned}$ | $\begin{gathered} 35 \\ 50 \\ 120 \\ \hline \end{gathered}$ | $\Omega$ |
| Source OFF Leakage Current Drain OFF Leakage Current Drain ON Leakage Current | IS(OFF) <br> ld(OFF) <br> ID(ON) | $\begin{aligned} & \text { See Fig. } 5 V_{D}=-50 V \\ & \text { See Fig. } 6 V_{S}=-50 \mathrm{~V} \\ & \text { See Fig. } 7 V_{S}=-50 \mathrm{~V} \end{aligned}$ | $\begin{aligned} & V_{S}=+50 \mathrm{~V} \\ & V_{D}=+50 \mathrm{~V} \\ & V_{D}=+50 \mathrm{~V} \end{aligned}$ |  | $\begin{gathered} 0.5 \\ 5 \\ 5 \\ \hline \end{gathered}$ | $\begin{gathered} 2 \\ 15 \\ 15 \end{gathered}$ | nA |
| INPUT |  |  |  |  |  |  |  |
| Input Current/Input Low Input Current/Input High | IINL $\mathrm{I}_{\mathrm{INH}}$ | $\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}(\text { (Note } 2) \\ & \mathrm{V}_{\mathrm{IN}}=15 \mathrm{~V} \text { (Note 2) } \end{aligned}$ |  |  | $\begin{aligned} & 0.1 \\ & 0.1 \\ & \hline \end{aligned}$ | $\begin{aligned} & 1 \\ & 1 \end{aligned}$ | $\mu \mathrm{A}$ |
| DYNAMIC |  |  |  |  |  |  |  |
| Turn-ON Time <br> Turn-OFF Time <br> Break-Before-Make Interval | ton <br> toff <br> topen | $\begin{aligned} & \mathrm{R}_{\mathrm{L}}=5 \mathrm{~K}, \mathrm{C}_{\mathrm{L}}=10 \mathrm{pF} \\ & \mathrm{~V}_{\mathrm{S}}= \pm 50 \mathrm{~V} \end{aligned}$ <br> Fig. 8 | See Fig. 3 <br> See Fig. 3 <br> See Fig. 4 |  | $\begin{gathered} 1 \\ 0.5 \\ 25 \end{gathered}$ | $\begin{aligned} & 2 \\ & 1 \end{aligned}$ | $\mu \mathrm{S}$ <br> $\mu \mathrm{S}$ <br> ns |
| Address Access Time Address Hold Time Reset Pulse Width Write Pulse Width | $\begin{gathered} t_{A} \\ t_{H} \\ t_{R S} \\ t_{W R} \end{gathered}$ | See Fig. 3 <br> See Fig. 3 twR $=500$ <br> See Fig. 3 <br> See Fig. 3 |  |  | $\begin{aligned} & 100 \\ & 300 \\ & 100 \\ & 300 \\ & \hline \end{aligned}$ |  | ns |
| Source OFF Capacitance Drain OFF Capacitance Channel ON Capacitance | $\begin{gathered} \mathrm{C}_{S(\text { OFF })} \\ \mathrm{C}_{\mathrm{D}(\mathrm{OFF})} \\ \mathrm{C}_{\mathrm{D}+\mathrm{S}(\mathrm{ON})} \end{gathered}$ | $\begin{aligned} & \mathrm{V}_{\mathrm{S}}=0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{D}}=0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{S}}=0 \mathrm{~V} \end{aligned}$ | $\mathrm{f}=50 \mathrm{kHz}$ |  | $\begin{gathered} 14 \\ 85 \\ 110 \\ \hline \end{gathered}$ |  | pF |
| OFF Isolation | OIRR | $\begin{aligned} & V_{\overline{R S}}=0 V, R_{L}=2 k, C \\ & V_{\text {analog }}=10 V_{p-p}, f= \end{aligned}$ | $\begin{aligned} & \mathrm{L}=3 \mathrm{pF} \\ & 100 \mathrm{kHz} \end{aligned}$ |  | 65 |  | dB |
| SUPPLY |  |  |  |  |  |  |  |
| Positive Supply Current Negative Supply Current Logic Supply Current | $\begin{aligned} & 1+ \\ & 1- \end{aligned}$ $\mathrm{I}_{\mathrm{L}}$ | $\mathrm{V}_{\text {IN(all }}=0$ or 15 V (Note 2) |  |  | $\begin{aligned} & 0.002 \\ & 0.003 \\ & 0.002 \\ & \hline \end{aligned}$ | 1 1 1 | $\mu \mathrm{A}$ |

NOTE 1: Pulsed at $1 \mathrm{mS}, 10 \%$ duty cycle.
2: Inputs are digital inputs ( $A_{0}, A_{1}, A_{2}, \overline{R S}$ and $\overline{W R}$ ).
3: Typical values are not $100 \%$ tested, and are for design aid only.

[^380]TRUTH TABLE

| $A_{2}$ | $A_{1}$ | $A_{0}$ | $\overline{W R}$ | $\overline{R S}$ | ON Switch | Latch Condition |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $x$ | $X$ | $x$ | $x$ | 0 | None |  |
| $x$ | $x$ | $x$ | 5 | 1 | Maintains previous <br> switch condition | Latches <br> Address |
| $x$ | $x$ | $x$ | 1 | 5 | None | Latches Reset |
| $x$ | $x$ | $x$ | 7 | 1 | One of eight <br> switches | Unlatches Reset |
| $x$ | $x$ | $x$ | 5 | 5 |  | Not Allowed |
| 0 | 0 | 0 | 0 | 1 | 1 |  |
| 0 | 0 | 1 | 0 | 1 | 2 |  |
| 0 | 1 | 0 | 0 | 1 | 3 |  |
| 0 | 1 | 1 | 0 | 1 | 4 |  |
| 1 | 0 | 0 | 0 | 1 | 5 |  |
| 1 | 0 | 1 | 0 | 1 | 6 |  |
| 1 | 1 | 0 | 0 | 1 | 7 |  |
| 1 | 1 | 1 | 0 | 1 | 8 |  |

Logic " 1 ": $\mathrm{V}_{\mathrm{IN}} \geq 0.7\left(\mathrm{~V}_{\mathrm{L}}\right) \quad$ Logic " 0 ": $\mathrm{V}_{\mathrm{IN}} \leq 1.0 \mathrm{~V}$

## TIMING DIAGRAMS



Figure 3: ton, toff Timing


Figure 4: Break-Before-Make Timing

TEST CIRCUITS


Figure 6: $\mathrm{I}_{\mathrm{D}(\mathrm{OFF})}$ Test Circuit
0078-7

## Figurn lon

## Section 10 - Discretes

2N2607 10-1
2N2608 ..... 10-1
2N2609 ..... 10-1
2N2609JAN ..... 10-1
2N3684 ..... 10-2
2N3685 ..... 10-2
2N3686 ..... 10-2
2N3687 ..... 10-2
2N3810/A ..... 10-3
2N3811/A ..... 10-3
2N3821 ..... 10-5
2N3821JAN ..... 10-5
2N3821JTX ..... 10-5
2N3821JTXV ..... 10-5
2N3822 ..... 10-5
2N3822JAN ..... 10-5
2N3822JTX ..... 10-5
2N3822JTXV ..... 10-5
2N3823 ..... 10-7
2N3823JAN ..... 10-7
2N3823JTX ..... 10-7
2N3823JTXV ..... 10-7
2N3824 ..... 10-8
2N3921 ..... 10-9
2N3922 ..... 10-9
2N3954 ..... 10-11
2N3954A ..... 10-11
2N3955 ..... 10-11
2N3955A ..... 10-11
2N3956 ..... 10-11
2N3957 ..... 10-11
2N3958 ..... 10-11
2N3970 ..... 10-13
2N3971 ..... 10-13
2N3972 ..... 10-13
2N3993 ..... 10-15
2N3994 ..... 10-15
2N4044 ..... 10-16
2N4045 ..... 10-16
2N4100 ..... 10-16
2N4878 ..... 10-16
2N4859 ..... 10-30
2N4859JAN,JTX,JTXV ..... 10-30
2N4860 ..... 10-30
2N4860JAN,JTX,JTXV ..... 10-30
2N4861 ..... 10-30
2N4861JAN,JTX,JTXV ..... 10-30
2N4867/A ..... 10-32
2N4868/A ..... 10-32
2N4869/A ..... 10-32
2N5018 ..... 10-33
2N5019 ..... 10-33
2N5114 ..... 10-35
2N5114JAN,JTX,JTXV ..... 10-35
2N5115 ..... 10-35
2N5115JAN,JTX,JTXV ..... 10-35
2N5116 ..... 10-35
2N5116JAN,JTX,JTXV ..... 10-35
2N5117 ..... 10-37
2N5118 ..... 10-37
2N5119 ..... 10-37
2N5196 ..... 10-39
2N5197 ..... 10-39
2N5198 ..... 10-39
2N5199 ..... 10-39
2N5397 ..... 10-41
2N5398 ..... 10-41
2N5432 ..... 10-43
2N5433 ..... 10-43
2N5434 ..... 10-43
2N5452 ..... 10-45
2N5453 ..... $10-45$
2N5454 ..... 10-45
2N5457 ..... 10-47
2N5458 ..... 10-47
2N5459 ..... 10-47
2N5460 ..... 10-48
2N5461 ..... 10-48
2N5462 ..... 10-48
2N5463 ..... 10-48
2N5464 ..... 10-48
2N5465 ..... 10-48

## Section 10 - Discretes (Continued)

| 2N5484 | .10-50 | 3N189 | 10-71 | J176 | 10-92 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 2N5485 | .10-50 | 3N190 | 10-71 | J177 | 10-92 |
| 2N5486 | 10-50 | 3N191 | .10-71 | J201 | 10-94 |
| 2N5515 | 10-52 | ID100 | 10-73 | J202 | 10-94 |
| 2N5516 | .10-52 | ID101 | 10-73 | J203 | 10-94 |
| 2N5517 | .10-52 | IT100 | 10-75 | J204 | 10-94 |
| 2N5518 | .10-52 | IT101 | .10-75 | J308 | .10-95 |
| 2N5519 | . 10-52 | IT120 | .10-76 | J309 | .10-95 |
| 2N5520 | .10-52 | IT120A | .10-76 | J310 | 10-95 |
| 2N5521 | . 10-52 | IT121 | 10-76 | LM114/H | 10-97 |
| 2N5522 | . 10-52 | IT122 | 10-76 | LM114A/AH | 10-97 |
| 2N5523 | 10-52 | IT126 | 10-78 | M116 | 10-99 |
| 2N5524 | 10-52 | IT127 | 10-78 | U200 | 10-100 |
| 2N5638 | 10-54 | IT128 | 10-78 | U201 | 10-100 |
| 2N5639 | . 10-54 | IT129 | 10-78 | U202 | 10-100 |
| 2N5640 | 10-54 | IT130 | .10-80 | U231 | 10-101 |
| 2N5902 | .10-56 | IT130A | .10-80 | U232 | 10-101 |
| 2N5903 | 10-56 | IT131 | . $10-80$ | U233 | 10-101 |
| 2N5904 | 10-56 | IT132 | 10-80 | U234 | 10-101 |
| 2N5905 | 10-56 | IT136 | 10-82 | U235 | 10-101 |
| 2N5906 | 10-56 | IT137 | 10-82 | U257 | 10-103 |
| 2N5907 | 10-56 | IT138 | 10-82 | U304 | 10-104 |
| 2N5908 | . 10-56 | IT139 | .10-82 | U305 | 10-104 |
| 2N5909 | . 10-56 | IT500 | .10-84 | U306 | 10-104 |
| 2N5911 | . 10-58 | IT501 | .10-84 | U308 | 10-106 |
| 2N5912 | 10-58 | IT502 | 10-84 | U309 | 10-106 |
| IT5911 | 10-58 | IT503 | 10-84 | U310 | 10-106 |
| IT5912 | 10-58 | IT504 | 10-84 | U401 | 10-108 |
| ITC5911 | 10-58 | IT505 | 10-84 | U402 | 10-108 |
| ITC5912 | 10-58 | IT1700 | . 10-87 | U403 | 10-108 |
| 2N6483 | . 10-60 | IT1750 | . 10-88 | U404 | 10-108 |
| 2N6484 | .10-60 | J105 | .10-89 | U405 | 10-108 |
| 2N6485 | 10-60 | J106 | 10-89 | U406 | 10-108 |
| 3N161 | 10-62 | J107 | 10-89 | U1897 | 10-110 |
| 3N163 | 10-63 | J108 | 10-90 | U1898 | 10-110 |
| 3N164 | 10-63 | J109 | 10-90 | U1899 | 10-110 |
| 3N165 | 10-65 | J110 | .10-90 | VCR2N | 10-112 |
| 3N166 | . 10-65 | J111 | .10-91 | VCR3P | 10-112 |
| 3N170 | .10-67 | J112 | 10-91 | VCR4N | 10-112 |
| 3N171 | . 10-67 | $J 113$ | .10-91 | VCR5P | 10-112 |
| 3N172 | . 10-69 | $J 174$ | .10-92 | VCR7N | 10-112 |
| 3N173 | . 10-69 | J175 | .10-92 | VCR11B | 10-115 |
| 3N188 | .10-71 |  |  |  |  |

## APPLICATIONS

- Low-Level Choppers
- Data Switches
- Commutators

PIN CONFIGURATION



#### Abstract

ABSOLUTE MAXIMUM RATINGS ( $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted) Gate-Source Voltage ....................................... 30V Gate-Drain Voltage ....................................... . 30 V Gate Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 mA Storage Temperature Range...........$-65^{\circ} \mathrm{C}$ to $+200^{\circ} \mathrm{C}$ Operating Temperature Range ......... $-55^{\circ} \mathrm{C}$ to $+175^{\circ} \mathrm{C}$ Lead Temperature (Soldering, 10sec) ............. $+300^{\circ} \mathrm{C}$ Power Dissipation .................................... 300 mW Derate above $25^{\circ} \mathrm{C}$. . . . . . . . . . . . . . . . . . . . . . . . $2 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$


NOTE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

## ORDERING INFORMATION

| TO-18 |
| :---: |
| 2N2607 |
| 2N2608 |
| 2N2609 |

ELECTRICAL CHARACTERISTICS $\quad\left(T_{A}=25^{\circ} \mathrm{C}\right.$ unless otherwise specified)

| Symbol | Parameter | Test Conditions |  | 2N2607 |  | 2N2608 |  | 2N2609 |  | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Min | Max | Min | Max | Min | Max |  |
| IGSS | Gate Reverse Current | $\mathrm{V}_{\mathrm{GS}}=30 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0$ |  |  | 3 |  | 10 |  | 30 | nA |
|  |  | $V_{G S}=5 \mathrm{~V}, \mathrm{~V}_{\text {DS }}=0, \mathrm{~T}_{\mathrm{A}}=150^{\circ} \mathrm{C}$ |  |  | 3 |  | 10 |  | 30 | $\mu \mathrm{A}$ |
| BVGSS | Gate-Source Breakdown Voltage | $1_{G}=1 \mu A, V_{D S}=0$ |  | 30 |  | 30 |  | 30 |  | V |
| $V_{P}$ | Gate-Source Pinch-Off Voltage | $V_{D S}=-5 V, I_{D}=-1 \mu \mathrm{~A}$ |  | 1 | 4 | 1 | 4 | 1 | 4 | V |
| IDSS | Drain Current at Zero Gate Voltage | $\mathrm{V}_{\mathrm{DS}}=-5 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$ |  | -0.30 | -1.50 | -0.90 | $-4.50$ | -2 | -10 | mA |
| gis | Small-Signal Common-Source Forward Transconductance | $V_{D S}=-5 V, V_{G S}=0, f=1 \mathrm{kHz}$ |  | 330 |  | 1000 |  | 2500 |  | $\mu \mathrm{S}$ |
| Ciss | Common-Source Input Capacitance | $\begin{aligned} & V_{D S}=-5 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=1 \mathrm{~V}, \\ & \mathrm{f}=1 \mathrm{MHz}(\text { Note } 1) \end{aligned}$ |  |  | 10 |  | 17 |  | 30 | pF |
| NF | Noise Figure (Note 1) | $\begin{aligned} & \mathrm{V}_{\mathrm{DS}}=-5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{GS}}=0, \mathrm{f}=1 \mathrm{kHz} \end{aligned}$ | $\mathrm{R}_{\mathrm{G}}=10 \mathrm{M} \Omega$ |  | 3 |  |  |  |  | dB |
|  |  |  | $\mathrm{R}_{\mathrm{G}}=1 \mathrm{M} \Omega$ |  |  |  | 3 |  | 3 |  |

NOTE 1: For design reference only, not $100 \%$ tested.

[^381]FEATURES

- Low Noise
- High Input Impedance
- Low Capacitance

APPLICATIONS

- Low Level Choppers
- Data Switches
- Multiplexers
- Low Noise Amplifiers

PIN CONFIGURATION


## ABSOLUTE MAXIMUM RATINGS

( $T_{A}=25^{\circ} \mathrm{C}$ unless otherwise noted)
Gate-Source or Gate-Drain Voltage ................. . 50 V
Gate Current ........................................... . 50mA
Storage Temperature Range $\ldots . . \ldots . . .-65^{\circ} \mathrm{C}$ to $+200^{\circ} \mathrm{C}$
Operating Temperature Range $\ldots \ldots . .-55^{\circ} \mathrm{C}$ to $+175^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10sec) . ............ $+300^{\circ} \mathrm{C}$
Power Dissipation .................................... . . 300mW
Derate above $25^{\circ} \mathrm{C} . . . . . . . . . . . . . . . . . . . . . . . . .2 .0 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
NOTE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

## ORDERING INFORMATION

| TO-72 |
| :---: |
| $2 N 3684$ |
| $2 N 3685$ |
| $2 N 3686$ |
| $2 N 3687$ |

## ELECTRICAL CHARACTERISTICS $\left(T_{A}=25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

| Symbol | Parameter | Test Conditions | 2N3684 |  | 2N3685 |  | 2N3686 |  | 2N3687 |  | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Min | Max | Min | Max | Min | Max | Min | Max |  |
| BVGSS | Gate to Source Breakdown Voltage | $V_{D S}=0, I_{G}=1.0 \mu \mathrm{~A}$ | -50 |  | -50 |  | -50 |  | -50 |  | V |
| $\mathrm{V}_{\mathrm{P}}$ | Pinch-Off Voltage | $V_{D S}=20 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=0.001 \mu \mathrm{~A}$ | -2.0 | -5.0 | -1.0 | -3.5 | -0.6 | -2.0 | -0.3 | -1.2 |  |
| IGSS | Gate Leakage Current | $\mathrm{V}_{\mathrm{GS}}=-30 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0$ |  | -0.1 |  | -0.1 |  | -0.1 |  | -0.1 | nA |
|  |  | $\mathrm{T}_{\mathrm{A}}=150^{\circ} \mathrm{C}$ |  | -0.5 |  | -0.5 |  | -0.5 |  | -0.5 | $\mu \mathrm{A}$ |
| loss | Saturation Current, Drain-to-Source | $\mathrm{V}_{\mathrm{GS}}=0, \mathrm{~V}_{\mathrm{DS}}=20 \mathrm{~V}$ | 2.5 | 7.5 | 1.0 | 3.0 | 0.4 | 1.2 | 0.1 | 0.5 | mA |
| $\left\|Y_{\text {fs }}\right\|$ | Forward Transadmittance | $\begin{aligned} & V_{\mathrm{DS}}=20 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \\ & \mathrm{f}=1 \mathrm{kHz} \end{aligned}$ | 2000 | 3000 | 1500 | 2500 | 1000 | 2000 | 500 | 1500 | $\mu \mathrm{s}$ |
| $\mathrm{G}_{\text {os }}$ | Common Source Output Conductance |  |  | 50 |  | 25 |  | 10 |  | 5 | $\mu \mathrm{S}$ |
| $\mathrm{C}_{\text {iss }}$ | Common Source Input Capacitance | $\begin{aligned} & V_{\mathrm{DS}}=20 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \\ & \mathrm{f}=1 \mathrm{MHz}(\text { Note } 1) \end{aligned}$ |  | 4.0 |  | 4.0 |  | 4.0 |  | 4.0 | pF |
| $\mathrm{Crss}^{\text {r }}$ | Common Source Short Circuit Reverse Transfer Capacitance |  |  | 1.2 |  | 1.2 |  | 1.2 |  | 1.2 | pF |
| $\mathrm{r}_{\text {DS(on) }}$ | On Resistance | $\mathrm{V}_{\mathrm{DS}}=0, \mathrm{~V}_{\mathrm{GS}}=0$ |  | 600 |  | 800 |  | 1200 |  | 2400 | ohms |
| NF | Noise Figure (Note 1) | $\begin{aligned} & \mathrm{f}=100 \mathrm{~Hz}, \mathrm{R}_{\mathrm{G}}=10 \mathrm{M} \Omega \\ & \mathrm{NBW}=6 \mathrm{~Hz}, \mathrm{~V}_{\mathrm{DS}}=10 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V} \end{aligned}$ |  | 0.5 |  | 0.5 |  | 0.5 |  | 0.5 | dB |

NOTE 1: For design reference only, not $100 \%$ tested.

[^382]
## 2N3810/A, 2N3811/A Monolithic Dual Matched PNP General Purpose Amplifier

## PIN CONFIGURATION




|  | One Side | Both Sides |
| :---: | :---: | :---: |
| Power Dissipation .. | 500 mW | 600 mW |
| Derate above $25^{\circ} \mathrm{C}$ | $3.3 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ | $4.0 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ |

NOTE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

## ORDERING INFORMATION

| TO-78 |
| :---: |
| 2N3810 |
| 2N3810A |
| 2N3811 |
| 2N3811A |

Collector Current (Note 1) . ............................ . 50mA
Storage Temperature Range ........... $-65^{\circ} \mathrm{C}$ to $+175^{\circ} \mathrm{C}$
Operating Temperature Range ......... $-55^{\circ} \mathrm{C}$ to $+175^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10sec) ...........

ELECTRICAL CHARACTERISTICS $\quad\left(T_{A}=25^{\circ} \mathrm{C}\right.$ unless otherwise specified)

| Symbol | Parameter | Test Conditions |  | 2N3810/A |  | 2N3811/A |  | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Min | Max | Min | Max |  |
| $\mathrm{BV}_{\text {CBO }}$ | Collector-Base Breakdown Voltage | $\mathrm{I}_{\mathrm{C}}=-10 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{E}}=0$ |  | -60 |  | -60 |  | V |
| $\mathrm{BV}_{\text {CEO }}$ | Collector-Emitter Breakdown Voltage (Note 2) | $\mathrm{I}_{\mathrm{C}}=-10 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}}=0$ |  | -60 |  | -60 |  |  |
| $\mathrm{BV}_{\mathrm{EBO}}$ | Emitter-Base Breakdown Voltage | $\mathrm{I}_{\mathrm{E}}=-10 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{C}}=0$ |  | -5 |  | -5 |  |  |
| $I_{C}$ (off) | Collector Cutoff Current | $\mathrm{V}_{C B}=-50 \mathrm{~V}, \mathrm{I}_{\mathrm{E}}=0$ |  |  | -10 |  | $-10$ | nA |
|  |  |  | $\mathrm{T}_{\mathrm{A}}=+150^{\circ} \mathrm{C}$ |  | -10 |  | -10 | $\mu \mathrm{A}$ |
| $\mathrm{I}_{\mathrm{E} \text { (off) }}$ | Emitter Cutoff Current | $\mathrm{V}_{\mathrm{BE}}=4 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=0$ |  |  | -20 |  | -20 | nA |
| $h_{\text {FE }}$ | Static Forward Current Transfer Ratio | $V_{C E}=-5 \mathrm{~V}$ | $\mathrm{I}_{\mathrm{C}}=-10 \mu \mathrm{~A}$ | 100 |  | 225 |  |  |
|  |  |  | $\mathrm{I}_{\mathrm{C}}=-100 \mu \mathrm{~A}$ to -1 mA | 150 | 450 | 300 | 900 |  |
|  |  |  | $\mathrm{I}_{\mathrm{C}}=10 \mathrm{~mA}$ (Note 2) | 125 |  | 250 |  |  |
|  |  |  | $I_{C}=100 \mu A, T_{A}=-55^{\circ} \mathrm{C}$ | 75 |  | 150 |  |  |

[^383]ELECTRICAL CHARACTERISTICS（Continued）$\left(T_{A}=25^{\circ} \mathrm{C}\right.$ unless otherwise specified）

| Symbol | Parameter | Test Conditions |  | 2N3810／A |  | 2N3811／A |  | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Min | Max | Min | Max |  |
| $V_{\text {BE（sat）}}$ | Base－Emitter Saturation Voltage | $\mathrm{I}_{\mathrm{C}}=-100 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{B}}=-10 \mu \mathrm{~A}$ |  |  | －0．7 |  | －0．7 |  |
|  |  | $\mathrm{I}_{\mathrm{C}}=-1.0 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{B}}=-100 \mu \mathrm{~A}$ |  |  | －0．8 |  | －0．8 |  |
| $V_{C E}$（sat） | Collector－Emitter Saturation Voltage（Note 2） | $\mathrm{I}_{\mathrm{B}}=-10 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{C}}=-100 \mu \mathrm{~A}$ |  |  | －0．2 |  | －0．2 |  |
|  |  | $\mathrm{I}_{\mathrm{B}}=-100 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{C}}=-1 \mathrm{~mA}$ |  |  | －0．25 |  | $-0.25$ |  |
| $h_{\text {ie }}$ | Input Impedance（Note 4） | $\begin{aligned} & V_{C E}=-10 \mathrm{~V} \\ & I_{C}=-1 \mathrm{~mA} \\ & f=1 \mathrm{kHz} \end{aligned}$ |  | 3 | 30 | 10 | 40 | k $\Omega$ |
| $\mathrm{hfe}^{\text {fe }}$ | Forward Current Transfer Ratio（Note 4） |  |  | 150 | 600 | 300 | 900 |  |
| $\mathrm{hre}_{\text {re }}$ | Reverse Voltage Transfer Ratio（Note 4） |  |  |  | 0.25 |  | 0.25 |  |
| $h_{00}$ | Output Admittance（Note 4） |  |  | 5 | 60 | 5 | 60 | $\mu \mathrm{s}$ |
| $\left\|h_{\text {fe }}\right\|$ | Magnitude of small signal current gain（Note 4） | $V_{C E}=-5 \mathrm{~V}$ | $\begin{aligned} & I_{C}=-1 \mathrm{~mA} \\ & f=100 \mathrm{MHz} \end{aligned}$ | 1 | 5 | 1 | 5 |  |
|  |  |  | $\begin{aligned} & \mathrm{I} \mathrm{C}=-500 \mu \mathrm{~A}, \\ & \mathrm{f}=30 \mathrm{MHz} \end{aligned}$ | 1 |  | 1 |  |  |
| $\mathrm{C}_{\text {obo }}$ | Output Capacitance（Note 4） | $\mathrm{V}_{C B}=-5 \mathrm{~V}, \mathrm{I}_{\mathrm{E}}=0, \mathrm{f}=1 \mathrm{MHz}$ |  |  | 4 |  | 4 |  |
| $\mathrm{C}_{\text {ibo }}$ | Input Capacitance（Note 4） | $\mathrm{V}_{\mathrm{CB}}=-0.5 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=0, \mathrm{f}=1 \mathrm{MHz}$ |  |  | 8 |  | 8 | pF |
| $\mathrm{hFE}_{1} / \mathrm{h}_{\mathrm{FE}_{2}}$ | DC Current Gain Ratio | $V_{C E}=-5 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=100 \mu \mathrm{~A}$ |  | 0.9 | 1.0 | 0.9 | 1.0 |  |
|  | A devices |  |  | 0.95 | 1.0 | 0.95 | 1.0 |  |
| $\left\|\mathrm{V}_{\mathrm{BE}_{1}}-\mathrm{V}_{\mathrm{BE}_{2}}\right\|$ | Base－Emitter Voltage Differential | $V_{C E}=-5 \mathrm{~V}$ | $I_{C}=10 \mu A$ to 10 mA |  | －5 |  | －5 | mV |
|  | Differential <br> A devices |  |  |  | －2．5 |  | －2．5 |  |
|  |  |  | $\mathrm{I}_{\mathrm{C}}=100 \mu \mathrm{~A}$ |  | －3 |  | －3 |  |
|  | A devices |  |  |  | －1．5 |  | －1．5 |  |
| $\frac{\Delta \mathrm{V}_{\mathrm{BE}_{1}-V_{B E_{2}}}}{\Delta \mathrm{~T}}$ | Base－Emitter Voltage <br> Differential Gradient | $V_{C E}=-5, I_{C}=100 \mu \mathrm{~A}$ |  |  | 10 |  | 10 | $\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$ |
| NF | Spot Noise Figure （Note 4） | $\begin{aligned} & \mathrm{V}_{\mathrm{CE}}=-10 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=-100 \mu \mathrm{~A}, \mathrm{R}_{\mathrm{G}}=3 \mathrm{k} \Omega, \\ & \mathrm{f}=100 \mathrm{~Hz}, \text { Noise Bandwidth }=20 \mathrm{~Hz} \end{aligned}$ |  |  | 7 |  | 4 | dB |
|  |  | $\begin{aligned} & \mathrm{V}_{\mathrm{CE}}=-10 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=-100 \mu \mathrm{~A}, \mathrm{R}_{\mathrm{G}}=3 \mathrm{~K} \Omega, \\ & \mathrm{f}=1 \mathrm{kHz}, \text { Noise Bandwidth }=200 \mathrm{kHz} \end{aligned}$ |  |  | 3 |  | 1.5 |  |
|  |  | $\begin{aligned} & V_{C E}=-10 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=-100 \mu \mathrm{~A}, \mathrm{R}_{\mathrm{G}}=3 \mathrm{k} \Omega \\ & \mathrm{f}=10 \mathrm{kHz}, \text { Noise Bandwidth }=2 \mathrm{kHz} \end{aligned}$ |  |  | 2.5 |  | 1.5 |  |
|  |  | $\begin{aligned} & \mathrm{V}_{\mathrm{CE}}=-10 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=-100 \mu \mathrm{~A}, \mathrm{R}_{\mathrm{G}}=3 \mathrm{k} \Omega, \\ & \text { Noise Bandwidth }=15.7 \mathrm{kHz} \text { (Note 3) } \\ & \hline \end{aligned}$ |  |  | 3.5 |  | 2.5 |  |

NOTES：1．Per transistor．
2．Pulse width $\leq 300 \mu \mathrm{~s}$ ，duty cycle $\leq 2.0 \%$ ．
3． 3 dB down at 10 Hz and 10 kHz ．
4．For design reference only，not $100 \%$ tested．

## FEATURES

- Low Capacitance
- Up to $6500 \mu \mathrm{~s}$ Transconductance


## PIN CONFIGURATION



NOTE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ORDERING INFORMATION

| TO-72 |
| :---: |
| 2N3821 |
| 2N3822 |

$\dagger$ add JAN, JTX, JTXV to basic part number to specify these devices.

## ELECTRICAL CHARACTERISTICS $\quad\left(T_{A}=25^{\circ} \mathrm{C}\right.$ unless otherwise specified)

| Symbol | Parameter | Test Conditions | 2N3821 |  | 2N3822 |  | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Min | Max | Min | Max |  |
| IGSS | Gate Reverse Current | $\mathrm{V}_{\mathrm{GS}}=-30 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0$ |  | -0.1 |  | -0.1 | nA |
|  |  | $\mathrm{T}_{\mathrm{A}}=150^{\circ} \mathrm{C}$ |  | -0.1 |  | -0.1 | $\mu \mathrm{A}$ |
| BVGSS | Gate-Source Breakdown Voltage | $\mathrm{I}_{\mathrm{G}}=-1 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{DS}}=0$ | -50 |  | -50 |  | V |
| $\mathrm{V}_{\mathrm{GS} \text { (off) }}$ | Gate-Source Cutoff Voltage | $V_{D S}=15 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=0.5 \mathrm{nA}$ |  | -4 |  | -6 |  |
| $V_{G S}$ | Gate-Source Voltage | $\mathrm{V}_{\mathrm{DS}}=15 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=50 \mu \mathrm{~A}$ | -0.5 | -2 |  |  |  |
|  |  | $\mathrm{V}_{\mathrm{DS}}=15 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=200 \mu \mathrm{~A}$ |  |  | -1 | -4 |  |
| IDSS | Saturation Drain Current (Note 1) | $\mathrm{V}_{\mathrm{DS}}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$ | 0.5 | 2.5 | 2 | 10 | mA |

[^384]
## ELECTRICAL CHARACTERISTICS (Continued) $\left(T_{A}=25^{\circ} \mathrm{C}\right.$ unless otherwise specified)

| Symbol | Parameter | Test Conditions |  | 2N3821 |  | 2N3822 |  | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Min | Max | Min | Max |  |
| $\mathrm{g}_{\mathrm{fs}}$ | Common-Source Forward Transconductance (Note 1) | $\mathrm{V}_{\mathrm{DS}}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$ | $\mathrm{f}=1 \mathrm{kHz}$ | 1500 | 4500 | 3000 | 6500 |  |
| $\left\|y_{\text {fs }}\right\|$ | Common-Source Forward Transadmittance (Note 2) |  | $f=100 \mathrm{MHz}$ | 1500 |  | 3000 |  | $\mu \mathrm{s}$ |
| Gos | Common-Source Output Conductance (Note 1) |  | $\mathrm{f}=1 \mathrm{kHz}$ |  | 10 |  | 20 |  |
| $\mathrm{C}_{\text {iss }}$ | Common-Source Input Capacitance (Note 2) |  | $\mathrm{f}=1 \mathrm{MHz}$ |  | 6 |  | 6 | pF |
| $\mathrm{C}_{\text {rss }}$ | Common-Source Reverse Transfer Capacitance (Note 2) |  |  |  | 3 |  | 3 |  |
| NF | Noise Figure (Note 2) | $\begin{aligned} & V_{D S}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0, \\ & \mathrm{R}_{\mathrm{gen}}=1 \mathrm{meg}, \mathrm{BW}=5 \mathrm{~Hz} \end{aligned}$ | $f=10 \mathrm{~Hz}$ |  | 5 |  | 5 | dB |
| $\bar{e}_{n}$ | Equivalent Input Noise Voltage (Note 2) | $\begin{aligned} & \mathrm{V}_{\mathrm{DS}}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0, \\ & \mathrm{BW}=5 \mathrm{~Hz} \end{aligned}$ |  |  | 200 |  | 200 | $\frac{n \mathrm{~V}}{\sqrt{\mathrm{~Hz}}}$ |

[^385][^386]
# 2N3823, JAN, JTX, JTXV <br> N-Channel JFET <br> High Frequency Amplifier 

## FEATURES

- Low Noise
- Low Capacitance
- Transductance Up to $6500 \mu \mathrm{~s}$

PIN CONFIGURATION


5000

ABSOLUTE MAXIMUM RATINGS
( $T_{A}=25^{\circ} \mathrm{C}$ unless otherwise noted)
Gate-Source or Gate-Drain Voltage .................. - 30 V
Gate Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10mA
Storage Temperature Range ............ $-65^{\circ} \mathrm{C}$ to $+200^{\circ} \mathrm{C}$
Operating Temperature Range $\ldots . . . . .-55^{\circ} \mathrm{C}$ to $+175^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10sec) $\ldots . . . . . .$.
Power Dissipation .................................... . 300 mW
Derate above $25^{\circ} \mathrm{C} . \ldots . . . . . . . . . . . . . . . . . . . . . . .2 .2 m W /{ }^{\circ} \mathrm{C}$
NOTE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

## ORDERING INFORMATION


$\dagger$ add JAN, JTX, JTXV to basic part number to specify these devices.

ELECTRICAL CHARACTERISTICS $\quad\left(T_{A}=25^{\circ} \mathrm{C}\right.$ unless otherwise specified)

| Symbol | Parameter | Test Conditions |  | Min | Max | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| IGSS | Gate Reverse Current | $\mathrm{V}_{\mathrm{GS}}=-20 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0$ |  |  | -0.5 | nA |
|  |  |  | $\mathrm{T}_{\mathrm{A}}=150^{\circ} \mathrm{C}$ |  | -0.5 | $\mu \mathrm{A}$ |
| $\mathrm{BV}_{\text {GSS }}$ | Gate-Source Breakdown Voltage | $\mathrm{I}_{\mathrm{G}}=-1 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{DS}}=0$ |  | -30 |  |  |
| $V_{G S(\text { off })}$ | Gate-Source Cutoff Voltage | $\mathrm{V}_{\mathrm{DS}}=15 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=0.5 \mathrm{nA}$ |  |  | -8 | v |
| $\mathrm{V}_{\mathrm{GS}}$ | Gate-Source Voltage | $\mathrm{V}_{\text {DS }}=15 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=400 \mu \mathrm{~A}$ |  | -1.0 | -7.5 |  |
| IDSS | Saturation Drain Current | $\mathrm{V}_{\mathrm{DS}}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$ |  | 4 | 20 | mA |
| $\mathrm{gfs}^{\text {f }}$ | Common-Source Forward Transconductance (Note 1) | $\mathrm{V}_{\mathrm{DS}}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$ | $\mathrm{f}=1 \mathrm{kHz}$ | 3,500 | 6,500 |  |
| $\left\|Y_{\text {fs }}\right\|$ | Common-Source Forward Transadmittance (Note 2) |  | $\mathrm{f}=100 \mathrm{MHz}$ | 3,200 |  |  |
| gos | Common-Source Output Conductance (Note 1) |  | $\mathrm{f}=1 \mathrm{kHz}$ |  | 35 | $\mu \mathrm{s}$ |
| giss | Common-Source Input Conductance (Note 2) |  | $f=200 \mathrm{MHz}$ |  | 800 |  |
| goss | Common-Source Output Conductance (Note 2) |  |  |  | 200 |  |
| $\mathrm{C}_{\text {iss }}$ | Common-Source Input Capacitance (Note 2) |  | $\mathrm{f}=1 \mathrm{MHz}$ |  | 6 | pF |
| Crss | Common-Source Reverse Transfer Capacitance (Note 2) |  |  |  | 2 |  |
| NF | Noise Figure (Note 2) | $\begin{aligned} & \mathrm{V}_{\mathrm{DS}}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \\ & \mathrm{R}_{\mathrm{G}}=1 \mathrm{k} \Omega \end{aligned}$ | $\mathrm{f}=100 \mathrm{MHz}$ |  | 2.5 | dB |

NOTES: 1. These parameters are measured during a 2 ms interval 100 ms after DC power is applied.
2. For design reference only, not $100 \%$ tested.

[^387]
## feATURES

- $r_{d s}<250$ Ohms
$-I_{D(\text { off })}<0.1$ nA


## PIN CONFIGURATION



## ABSOLUTE MAXIMUM RATINGS

$\left(T_{A}=25^{\circ} \mathrm{C}\right.$ unless otherwise noted)
Gate-Source or Gate-Drain Voltage ................ -50.
Gate Current ............................................. . 10mA
Storage Temperature Range $\ldots \ldots . . . . .-65^{\circ} \mathrm{C}$ to $+200^{\circ} \mathrm{C}$
Operating Temperature Range ......... $-55^{\circ} \mathrm{C}$ to $+175^{\circ} \mathrm{C}$
Load Temperature (Soldering, 10sec) ............. $+300^{\circ} \mathrm{C}$
Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 300mW
Derate above $25^{\circ} \mathrm{C}$. . . . . . . . . . . . . . . . . . . . . . . $2.0 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
NOTE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

## ORDERING INFORMATION

| TO-72 |
| :---: |
| 2N3824 |

ELECTRICAL CHARACTERISTICS $\quad\left(T_{A}=25^{\circ} \mathrm{C}\right.$ unless otherwise specified)

| Symbol | Parameter | Test Conditions |  | Limits |  | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Min | Max |  |
| IGSS | Gate Reverse Current | $\mathrm{V}_{\mathrm{GS}}=-30 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0$ |  |  | -0.1 | nA |
|  |  |  | $\mathrm{T}_{\mathrm{A}}=150^{\circ} \mathrm{C}$ |  | -0.1 | $\mu \mathrm{A}$ |
| BVGSS | Gate-Source Breakdown Voltage | $\mathrm{I}_{\mathrm{G}}=-1 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{DS}}=0$ |  | -50 |  | V |
| ${ }^{\text {D (off) }}$ | Drain Cutoff Current | $V_{D S}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=-8 \mathrm{~V}$ |  |  | 0.1 | nA |
|  |  |  | $\mathrm{T}_{\mathrm{A}}=150^{\circ} \mathrm{C}$ |  | 0.1 | $\mu \mathrm{A}$ |
| $\mathrm{r}_{\text {ds(on) }}$ | Drain-Source ON Resistance | $V_{G S}=0 V, I_{D}=0$ | $\mathrm{f}=1 \mathrm{kHz}$ |  | 250 | $\Omega$ |
| $\mathrm{C}_{\text {iss }}$ | Common-Source Input Capacitance (Note 1) | $V_{D S}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$ | $\mathrm{f}=1 \mathrm{MHz}$ |  | 6 | pF |
| $\mathrm{C}_{\text {rss }}$ | Common-Source Reverse Transfer Capacitance (Note 1) | $V_{G S}=-8 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0$ |  |  | 3 |  |

NOTE 1: For design reference only, not $100 \%$ tested.
 General Purpose Amplifier


#### Abstract

ABSOLUTE MAXIMUM RATINGS ( $T_{A}=25^{\circ} \mathrm{C}$ unless otherwise noted) Gate-Source or Gate-Drain Voltage (Note 1) ....... -50V Gate Current (Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 mA Storage Temperature Range . . . . . . . . . . $-65^{\circ} \mathrm{C}$ to $+200^{\circ} \mathrm{C}$ Operating Temperature Range $\ldots \ldots . . .-55^{\circ} \mathrm{C}$ to $+200^{\circ} \mathrm{C}$ Load Temperature (Soldering, 10sec) ............. $+300^{\circ} \mathrm{C}$ Total Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . 300 mW Derate above $25^{\circ} \mathrm{C}$ $1.7 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ NOTE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.


## ORDERING INFORMATION

| TO-71 |
| :---: |
| 2N3921 |
| 2N3922 |

ELECTRICAL CHARACTERISTICS $\quad\left(T_{A}=25^{\circ} \mathrm{C}\right.$ unless otherwise specified)

| Symbol | Parameter | Test Conditions |  | Min | Max | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| IGSS | Gate Reverse Current | $\mathrm{V}_{\mathrm{GS}}=-30 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0$ |  |  | -1 | nA |
|  |  |  | $\mathrm{T}_{\mathrm{A}}=100^{\circ} \mathrm{C}$ |  | -1 | $\mu \mathrm{A}$ |
| $B V_{\text {DGO }}$ | Drain-Gate Breakdown Voltage | $\mathrm{I}_{\mathrm{D}}=1 \mu \mathrm{~A}, \mathrm{I}_{S}=0$ |  | 50 |  |  |
| $V_{G S}$ (off) | Gate-Source Cutoff Voltage | $V_{D S}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=1 \mathrm{nA}$ |  |  | -3 | V |
| $V_{G S}$ | Gate-Source Voltage | $V_{D S}=10 \mathrm{~V}, I_{D}=100 \mu \mathrm{~A}$ |  | -0.2 | -2.7 |  |
| $I_{G}$ | Gate Operating Current | $V_{D G}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=700 \mu \mathrm{~A}$ |  |  | -250 | pA |
|  |  |  | $\mathrm{T}_{\mathrm{A}}=100^{\circ} \mathrm{C}$ |  | -25 | nA |
| IDSS | Saturation Drain Current (Note 1) | $\mathrm{V}_{\mathrm{DS}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$ |  | 1 | 10 | mA |
| $g_{\text {fs }}$ | Common-Source Forward Transconductance (Note 2) | $\mathrm{V}_{\mathrm{DS}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$ | $\mathrm{f}=1 \mathrm{kHz}$ | 1500 | 7500 | $\mu \mathrm{s}$ |
| gos | Common-Source Output Conductance |  |  |  | 35 |  |
| $\mathrm{C}_{\text {iss }}$ | Common-Source Input Capacitance (Note 3) |  | $\mathrm{f}=1 \mathrm{MHz}$ |  | 18 | pF |
| $\mathrm{C}_{\text {rss }}$ | Common-Source Reverse Transfer Capacitance (Note 3) |  |  |  | 6 |  |
| $\mathrm{g}_{\text {fs }}$ | Common-Source Forward Transconductance | $V_{D G}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=700 \mu \mathrm{~A}$ | $f=1 \mathrm{kHz}$ | 1500 |  | $\mu \mathrm{S}$ |
| goss | Common-Source Output Conductance |  |  |  | 20 |  |
| NF | Spot Noise Figure (Note 3) | $\mathrm{V}_{\mathrm{DS}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$ | $\begin{aligned} & f=1 \mathrm{kHz}, \\ & R_{G}=1 \mathrm{meg} \Omega \end{aligned}$ |  | 2 | dB |

[^388]MATCHING CHARACTERISTICS $\quad\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right.$ unless otherwise specified)

| Symbol | Parameter | Test Conditions |  | 2N3921 |  | 2N3922 |  | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Min | Max | Min | Max |  |
| $\left\|V_{G S 1}-V_{G S 2}\right\|$ | Differential Gate-Source Voltage | $\begin{aligned} & V_{D G}=10 \mathrm{~V}, \\ & I_{D}=700 \mu \mathrm{~A} \end{aligned}$ |  |  | 5 |  | 5 | mV |
| $\frac{\Delta\left\|V_{\mathrm{GS} 1}-V_{\mathrm{GS} 2}\right\|}{\Delta \mathrm{T}}$ | Gate-Source Differential Voltage Change with Temperature |  | $\begin{aligned} & T_{A}=0^{\circ} \mathrm{C} \\ & T_{B}=100^{\circ} \mathrm{C} \end{aligned}$ |  | 10 |  | 25 | $\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$ |
| $\mathrm{g}_{\mathrm{f} 1} / \mathrm{g}_{\mathrm{fs} 2}$ | Transconductance Ratio |  | $\mathrm{f}=1 \mathrm{kHz}$ | 0.95 | 1.0 | 0.95 | 1.0 |  |

NOTES: 1. Per transistor.
2. Pulse test duration $=2 \mathrm{~ms}$.
3. For design reference only, not $100 \%$ tested.

2N3954-2N3958
2N3954A/2N3955A
Monolithic Dual N-Channel JFET
General Purpose Amplifier

## FEATURES

- Low Offset and Drift
- Low Capacitance
- Low Noise
- Superior Tracking Ability
- Low Output Conductance

PIN CONFIGURATION


## ABSOLUTE MAXIMUM RATINGS

( $T_{A}=25^{\circ} \mathrm{C}$ unless otherwise noted)
Gate-Drain or Gate-Source Voltage . . . . . . . . . . . . . . . -50 5
Gate-to-Gate Voltage . ................................... . $\pm 50 \mathrm{~V}$
Gate Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50mA
Total Device Dissipation $85^{\circ} \mathrm{C}$ (Each Side) . . . . . . . . 250 mW
Case Temperature (Both Sides) ....... 500 mW
Power Derating (Each Side) . . . . . . . . . . . . . . . . . $2.86 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
(Both Sides) .................... $4.3 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
Storage Temperature Range ........... $-65^{\circ} \mathrm{C}$ to $+200^{\circ} \mathrm{C}$
Lead Temperature ( $1 / 16^{\prime \prime}$ from case
for 10 seconds)
$300^{\circ} \mathrm{C}$
NOTE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

## ORDERING INFORMATION

| TO-71 |
| :--- |
| $2 N 3954$ |
| $2 N 3954 A$ |
| $2 N 3955$ |
| $2 N 3955 A$ |
| $2 N 3956$ |
| $2 N 3957$ |
| $2 N 3958$ |

ELECTRICAL CHARACTERISTICS ( $T_{A}=25^{\circ} \mathrm{C}$ unless otherwise specified)

| Symbol | Parameter | Test Conditions |  | 2N3954 |  | 2N3954A |  | 2N3955 |  | 2N3955A |  | 2N3956 |  | 2N3957 |  | 2N3958 |  | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Min | Max |  |
| IGSS | Gate Reverse Current | $\begin{aligned} & \mathrm{V}_{\mathrm{GS}}=-30 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DS}}=0 \end{aligned}$ |  |  | -100 |  | -100 |  | -100 |  | -100 |  | -100 |  | -100 |  | -100 | pA |
|  |  |  | $T_{A}=150^{\circ} \mathrm{C}$ |  | -500 |  | -500 |  | -500 |  | -500 |  | -500 |  | -500 |  | -500 | nA |
| $\mathrm{BV}_{\text {GSS }}$ | Gate-Source Breakdown Voltage | $\begin{aligned} & \mathrm{V}_{\mathrm{DS}}=0 \\ & \mathrm{I}_{\mathrm{G}}=-1 \mu \mathrm{~A} \end{aligned}$ |  | -50 |  | -50 |  | $-50$ |  | -50 |  | -50 |  | $-50$ |  | $-50$ |  |  |
| $\mathrm{V}_{\mathrm{GS} \text { (off) }}$ | Gate-Source Cutoff Voltage | $\begin{aligned} & V_{D S}=20 V \\ & I_{D}=1 \mathrm{nA} \end{aligned}$ |  | -1.0 | -4.5 | -1.0 | -4.5 | -1.0 | -4.5 | -1.0 | -4.5 | -1.0 | $-4.5$ | -1.0 | -4.5 | -1.0 | -4.5 | V |
| $\mathrm{V}_{\text {GS (f) }}$ | Gate-Source Forward Voltage | $\begin{aligned} & \mathrm{V}_{\mathrm{DS}}=0 \\ & \mathrm{I}_{\mathrm{G}}=1 \mathrm{~mA} \end{aligned}$ |  |  | 2.0 |  | 2.0 |  | 2.0 |  | 2.0 |  | 2.0 |  | 2.0 |  | 2.0 |  |
| $\mathrm{V}_{\mathrm{GS}}$ | Gate-Source Voltage | $V_{D S}=20 \mathrm{~V}$ | $I^{\prime}=50 \mu \mathrm{~A}$ |  | -4.2 |  | -4.2 |  | -4.2 |  | -4.2 |  | -4.2 |  | -4.2 |  | -4.2 |  |
|  |  |  | $I_{D}=200 \mu \mathrm{~A}$ | -0.5 | -4.0 | -0.5 | -4.0 | -0.5 | -4.0 | -0.4 | -4.0 | -0.5 | -4.0 | -0.5 | -4.0 | -0.5 | -4.0 |  |
| IG | Gate Operating Current | $\begin{aligned} & \begin{array}{l} V_{D S}=20 \mathrm{~V}, \\ I_{D}=200 \mu \mathrm{~A} \\ \hline \end{array} T_{A}=125^{\circ} \mathrm{C} \\ & \hline \end{aligned}$ |  |  | -50 |  | $-50$ |  | -50 |  | -50 |  | -50 |  | $-50$ |  | -50 | pA |
|  |  |  |  |  | -250 |  | -250 |  | -250 |  | -250 |  | -250 |  | -250 |  | -250 | nA |

[^389]ELECTRICAL CHARACTERISTICS (Continued) ( $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise specified)

| Symbol | Parameter | Test Conditions |  | 2N3954 |  | 2N3954A |  | 2N3955 |  | 2N3955A |  | 2N3956 |  | 2N3957 |  | 2N3958 |  | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Min | Max |  |
| IDSs | Saturation Drain Current | $\begin{aligned} & V_{\mathrm{DS}}=20 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{GS}}=0 \end{aligned}$ |  | 0.5 | 5.0 | 0.5 | 5.0 | 0.5 | 5.0 | 0.5 | 5.0 | 0.5 | 5.0 | 0.5 | 5.0 | 0.5 | 5.0 | mA |
| $\mathrm{g}_{\text {fs }}$ | Common-Source <br> Forward <br> Transconductance |  | $\mathrm{f}=1 \mathrm{kHz}$ | 1000 | 3000 | 1000 | 3000 | 1000 | 3000 | 1000 | 3000 | 1000 | 3000 | 1000 | 3000 | 1000 | 3000 | $\mu \mathrm{s}$ |
|  |  | (Note 2) | $\mathrm{f}=200 \mathrm{MHz}$ | 1000 |  | 1000 |  | 1000 |  | 1000 |  | 1000 |  | 1000 |  | 1000 |  |  |
| gos | Common-Source Output Conductance | $\begin{aligned} & \mathrm{V}_{\mathrm{DS}}=20 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{GS}}=0 \end{aligned}$ | $\mathrm{f}=1 \mathrm{kHz}$ |  | 35 |  | 35 |  | 35 |  | 35 |  | 35 |  | 35 |  | 35 |  |
| $\mathrm{c}_{\text {iss }}$ | Common-Source Input Capacitance (Note 2) |  | $\mathrm{f}=1 \mathrm{MHz}$ |  | 4.0 |  | 4.0 |  | 4.0 |  | 4.0 |  | 4.0 |  | 4.0 |  | 4.0 | pF |
| $\mathrm{C}_{\text {rss }}$ | Common Source Reverse Transfer Capacitance (Note 2) |  |  |  | 1.2 |  | 1.2 |  | 1.2 |  | 1.2 |  | 1.2 |  | 1.2 |  | 1.2 |  |
| $\mathrm{C}_{\text {dgo }}$ | Drain-Gate Capacitance (Note 2) | $\begin{aligned} & V_{D G}=10 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{S}}=0 \end{aligned}$ |  |  | 1.5 |  | 1.5 |  | 1.5 |  | 1.5 |  | 1.5 |  | 1.5 |  | 1.5 |  |
| NF | Common-Source <br> Spot Noise <br> Figure (Note 2) | $\begin{array}{\|l\|} \hline V_{D S}=20 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{GS}}=0 \\ \mathrm{R}_{\mathrm{G}}=10 \mathrm{MS} \\ \hline \end{array}$ | $\mathrm{f}=100 \mathrm{~Hz}$ |  | 0.5 |  | 0.5 |  | 0.5 |  | 0.5 |  | 0.5 |  | 0.5 |  | 0.5 | dB |
| $\mid \mathrm{IG} 1^{-1} \mathrm{I}_{\mathrm{G} 2}$ | Differential Gate Current | $\begin{aligned} & V_{D S}=20 \mathrm{~V}, \\ & 1 \mathrm{D}=200 \mu \mathrm{~A} \end{aligned}$ | $\mathrm{T}=125^{\circ} \mathrm{C}$ |  | 10 |  | 10 |  | 10 |  | 10 |  | 10 |  | 10 |  | 10 | nA |
| IDSS1/ $/ \mathrm{DSS} 2$ | Drain Saturation Current Ratio | $\begin{aligned} & \mathrm{V}_{\mathrm{DS}}=20 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{GS}}=0 \end{aligned}$ |  | 0.95 | 1.0 | 0.95 | 1.0 | 0.95 | 1.0 | 0.95 | 1.0 | 0.95 | 1.0 | 0.90 | 1.0 | 0.85 | 1.0 |  |
| $\mathrm{V}_{\mathrm{GS} 1}-\mathrm{V}_{\mathrm{GS} 2} \mid$ | Differential Gate-Source Voltage |  |  |  | 5.0 |  | 5.0 |  | 10.0 |  | 5.0 |  | 15 |  | 20 |  | 25 |  |
|  | Gate-Source Differential |  | $\begin{aligned} & \mathrm{T}=25^{\circ} \mathrm{C} \\ & \text { to }-55^{\circ} \mathrm{C} \\ & \hline \end{aligned}$ |  | 0.8 |  | 0.4 |  | 2.0 |  | 1.2 |  | 4.0 |  | 6.0 |  | 8.0 | mV |
| $\frac{\Delta\left\|V_{G S 1}-V_{G S 2}\right\|}{\Delta T}$ | Voltage Change With Temperature | $\begin{aligned} & V_{D S}=20 \mathrm{~V}, \\ & l_{D}=200 \mu \mathrm{~A} \end{aligned}$ | $\begin{aligned} & \mathrm{T}=25^{\circ} \mathrm{C} \\ & \text { to } 125^{\circ} \mathrm{C} \end{aligned}$ |  | 1.0 |  | 0.5 |  | 2.5 |  | 1.5 |  | 5.0 |  | 7.5 |  | 10.0 |  |
|  | Transconductance Ratio |  | $\mathrm{f}=1 \mathrm{kHz}$ | 0.97 | 1.0 | 0.97 | 1.0 | 0.97 | 1.0 | 0.95 | 1.0 | 0.95 | 1.0 | 0.90 | 1.0 | 0.85 | 1.0 |  |

NOTES: 1. Per Transistor.
2. For design reference only, not $100 \%$ tested.

[^390]
## FEATURES

- Low rDS(on)
- $I_{D(O F F)}<250 p A$
- Fast Switching


## PIN CONFIGURATION




#### Abstract

ABSOLUTE MAXIMUM RATINGS ( $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted) Gate-Source or Gate-Drain Voltage . . . . . . . . . . . . . . . -40V Gate Current ........................................... . 50mA Storage Temperature Range ........... . $-65^{\circ} \mathrm{C}$ to $+200^{\circ} \mathrm{C}$ Operating Temperature Range $\ldots . . . . . .-55^{\circ} \mathrm{C}$ to $+200^{\circ} \mathrm{C}$ Lead Temperature (Soldering, 10sec) ............. $+300^{\circ} \mathrm{C}$ Power Dissipation @ $25^{\circ} \mathrm{C}$ Case Temp. . . . . . . . . . . . . . 1.8 W Derate above $25^{\circ} \mathrm{C}$ $10 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ NOTE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.


## ORDERING INFORMATION



ELECTRICAL CHARACTERISTICS $\quad\left(T_{A}=25^{\circ} \mathrm{C}\right.$ unless otherwise specified)


NOTE 1: For design reference only, not $100 \%$ tested.

[^391]
## ELECTRICAL CHARACTERISTICS (Continued)



| INPUT PULSE | SAMPLING SCOPE |  |  |
| :--- | ---: | :--- | ---: |
| Rise Time | 0.25 ns | Rise Time | 0.4 ns |
| Fall Time | 0.75 ns | Input Resistance | $10 \mathrm{M} \Omega$ |
| Pulse Width | 200 ns | Input Capacitance | 1.5 pF |
| Pulse Rate | 550 pps |  |  |

Figure 1: Switching Time Test Circuit

P-Channel JFET

## General Purpose Amplifier/Switch

ABSOLUTE MAXIMUM RATINGS( $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted)Drain-Gate Voltage .................................... - 25 V
Drain-Source Voltage,Continuous Forward Gate Current$-10 \mathrm{~mA}$
Storage Temperature Range .. ...... $-65^{\circ} \mathrm{C}$ to $+200^{\circ} \mathrm{C}$Operating Temperature Range ......... $-55^{\circ} \mathrm{C}$ to $+175^{\circ} \mathrm{C}$Lead Temperature (Soldering, 10 sec )$+300^{\circ} \mathrm{C}$
Power Dissipation .....  300mW
Derate above $25^{\circ} \mathrm{C}$ ..... $2.0 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$

NOTE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

## ORDERING INFORMATION

| TO-72 |
| :---: |
| 2N3993 |
| 2N3994 |

## APPLICATIONS

0209-1

Used in high-speed commutator and chopper applications. Also ideal for "Virtual Gnd" switching; needs no ext. translator circuit to switch $\pm 10$ VAC. Can be driven direct from TTL or CMOS logic.

| Symbol | Parameter | Test Conditions (Note 3) |  | 2N3993 |  | 2N3994 |  | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Min | Max | Min | Max |  |
| BV ${ }_{\text {GSS }}$ | Gate-Source Breakdown Voltage | $\mathrm{I}_{\mathrm{G}}=1 \mu \mathrm{~A}$, | $\mathrm{V}_{\mathrm{DS}}=0$ | 25 |  | 25 |  | V |
| IJGO | Drain Reverse Current | $\mathrm{V}_{\mathrm{DG}}=-15 \mathrm{~V}$, | $\mathrm{I}_{\mathrm{S}}=0$ |  | -1.2 |  | -1.2 | $n \mathrm{~A}$ |
|  |  | $\mathrm{V}_{\mathrm{DG}}=-15 \mathrm{~V}$, | $\mathrm{l}_{\mathrm{S}}=0, \mathrm{~A}=150^{\circ}$ |  | -1.2 |  | $-1.2$ | $\mu \mathrm{A}$ |
| IDSS | Zero-Gate-Voltage Drain Current | $\mathrm{V}_{\mathrm{DS}}=-10 \mathrm{~V}$, | $\mathrm{V}_{\mathrm{GS}}=0$, (See Note 1) | -10 |  | -2 |  | mA |
| ${ }^{\text {D (off) }}$ | Drain Cutoff Current | $\mathrm{V}_{\mathrm{DS}}=-10 \mathrm{~V}$, | $\mathrm{V}_{\mathrm{GS}}=6 \mathrm{~V}$ |  |  |  | -1.2 | $n \mathrm{~A}$ |
|  |  | $V_{D S}=-10 \mathrm{~V}$, | $\mathrm{V}_{\mathrm{GS}}=6 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=150^{\circ} \mathrm{C}$ |  |  |  | -1 | $\mu \mathrm{A}$ |
|  |  | $\mathrm{V}_{\mathrm{DS}}=-10 \mathrm{~V}$, | $\mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V}$ |  | -1.2 |  |  | nA |
|  |  | $\mathrm{V}_{\mathrm{DS}}=-10 \mathrm{~V}$, | $V_{G S}=10 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=150^{\circ} \mathrm{C}$ |  | -1 |  |  | $\mu \mathrm{A}$ |
| $\mathrm{V}_{\text {GS(off) }}$ | Gate-Source Voltage | $\mathrm{V}_{\mathrm{DS}}=-10 \mathrm{~V}$, | $\mathrm{I}_{\mathrm{D}}=-1 \mu \mathrm{~A}$ | 4 | 9.5 | 1 | 5.5 | V |
| $\mathrm{r}_{\mathrm{ds}(\mathrm{on})}$ | Small-Signal Drain-Source On-State Resistance | $\begin{aligned} & V_{G S}=0, \\ & f=1 \mathrm{kHz} \end{aligned}$ | $I_{D}=0$ |  | 150 |  | 300 | $\Omega$ |
| $\left\|y_{\text {fs }}\right\|$ | Small-Signal Common-Source Forward Transfer Admittance | $\begin{aligned} & V_{D S}=-10 \mathrm{~V} \\ & \mathrm{f}=1 \mathrm{kHz} \end{aligned}$ | $\begin{aligned} & V_{G S}=0, \\ & (\text { See Note 1) } \end{aligned}$ | 6 | 12 | 4 | 10 | $\mu \mathrm{s}$ |
| $\mathrm{C}_{\text {iss }}$ | Common-Source Short-Circuit Input Capacitance (Note 3) | $\begin{aligned} & V_{D S}=-10 \mathrm{~V} \\ & f=1 \mathrm{MHz} \end{aligned}$ | $V_{G S}=0,$ <br> (See Note 2) |  | 16 |  | 16 | pF |
| $\mathrm{C}_{\text {rss }}$ | Common-Source Short-Circuit <br> Reverse Transfer Capacitance (Note 3) | $\begin{aligned} & V_{D S}=0 \\ & f=1 \mathrm{MHz} \end{aligned}$ | $\mathrm{V}_{\mathrm{GS}}=6 \mathrm{~V}$, |  |  |  | 5 | pF |
|  |  | $\begin{aligned} & V_{D S}=0 \\ & f=1 \mathrm{MHz} \end{aligned}$ | $\mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V}$, |  | 4.5 |  |  | pF |

NOTES: 1. These parameters must be measured using pulse techniques, $t_{p}=100 \mathrm{~ms}$, duty cycle $\leq 10 \%$.
2. This parameter must be measured with bias voltage applied for less than 5 seconds to avoid overheating.
3. For design reference only, not $100 \%$ tested.

# 2N4044, 2N4045, 2N4100, 2N4878, 2N4879, 2N4880 Dielectrically Isolated Monolithic Dual NPN General Purpose Amplifier 

## FEATURES

- High Gain at Low Current
- Low Output Capacitance
- Good hfe Match
- Tight VBE Tracking
- Dielectrically Isolated Matched Pairs for Differential Amplifiers


## PIN CONFIGURATION



0210-1
4000

## ORDERING INFORMATION

| TO-78 | TO-71 |
| :---: | :---: |
| 2N4044 | 2N4878 |
| 2N4045 | 2N4879 |
| 2N4100 | 2N4880 |

ABSOLUTE MAXIMUM RATINGS
( $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted)
Collector-Base or Collector-Emitter Voltage (Note 1)
2N4044, 2N487860 V

2N4100, 2N4879
55 V

2N4045, 2N4880 ......................................... . . 45 V
Collector-Collector Voltage ............................. . 100 V
Emitter Base Voltage (Note 2) . . . . . . . . . . . . . . . . . . . . . . . 7 V
Collector Current (Note 1) ............................. 10mA
Storage Temperature Range ........... $-65^{\circ} \mathrm{C}$ to $+175^{\circ} \mathrm{C}$
Operating Temperature Range $\ldots \ldots . .-55^{\circ} \mathrm{C}$ to $+175^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10sec) ............ $+300^{\circ} \mathrm{C}$

|  | TO-71 |  | TO-78 |  |
| :--- | :---: | :---: | :---: | :---: |
|  | One | Both | One | Both |
|  | Side | Sides | Side | Sides |
| Power Dissipation | 200 mW | 400 mW | 250 mW | 500 mW |
| Derate above $25^{\circ} \mathrm{C}$ |  |  |  |  |
| $\left(\mathrm{mW} /{ }^{\circ} \mathrm{C}\right)$ | 1.3 | 2.7 | 1.7 | 3.3 |

NOTE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS $\left(T_{A}=25^{\circ} \mathrm{C}\right.$ unless otherwise specified)

| Symbol | Parameter | Test Conditions | 2N4044 <br> 2N4878 |  | $\begin{aligned} & \text { 2N4100 } \\ & \text { 2N4879 } \end{aligned}$ |  | $\begin{aligned} & \text { 2N4045 } \\ & \text { 2N4880 } \end{aligned}$ |  | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Min | Max | Min | Max | Min | Max |  |
| $h_{\text {FE }}$ | DC Current Gain | $\mathrm{I}_{\mathrm{C}}=10 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{CE}}=5 \mathrm{~V}$ | 200 | 600 | 150 | 600 | 80 | 800 |  |
|  |  | $\mathrm{I}_{\mathrm{C}}=1.0 \mathrm{~mA}, \mathrm{~V}_{\text {CE }}=5 \mathrm{~V}$ | 225 |  | 175 |  | 100 |  |  |
|  |  | $\mathrm{I}=10 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{CE}}=5 \mathrm{~V} \quad \mathrm{~T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$ | 75 |  | 50 |  | 30 |  |  |
| $V_{B E}$ (on) | Emitter-Base On Voltage |  |  | 0.7 |  | 0.7 |  | 0.7 | V |
| $V_{C E}$ (sat) | Collector Saturation Voltage | $I_{C}=1.0 \mathrm{~mA}, I_{B}=0.1 \mathrm{~mA}$ |  | 0.35 |  | 0.35 |  | 0.35 |  |
| Ícbo | Collector Cutoff Current | $\mathrm{I}_{\mathrm{E}}=0, \mathrm{~V}_{C B}=45 \mathrm{~V}, 30 \mathrm{~V}$ |  | 0.1 |  | 0.1 |  | 0.1 | nA |
|  |  | $T_{A}=150^{\circ} \mathrm{C}$ |  | 0.1 |  | 0.1 |  | 0.1 | $\mu \mathrm{A}$ |
| IEbO | Emitter Cutoff Current | $\mathrm{I}_{\mathrm{C}}=0, \mathrm{~V}_{E B}=5 \mathrm{~V}$ |  | 0.1 |  | 0.1 |  | 0.1 | nA |
| $\mathrm{C}_{\text {obo }}$ | Output Capacitance (Note 4) | $\mathrm{I}_{\mathrm{E}}=0, \mathrm{~V}_{C B}=5 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$ |  | 0.8 |  | 0.8 |  | 0.8 | pF |

2N4044, 2N4045, $2 N 4100,2 N 4878$, 2N4879, 2N4880

ELECTRICAL CHARACTERISTICS (Continued) ( $T_{A}=25^{\circ} \mathrm{C}$ unless otherwise specified)

| Symbol | Parameter | Test Condlions |  | $\begin{aligned} & \text { 2N4044 } \\ & \text { 2N4878 } \end{aligned}$ |  | 2N4100 <br> 2N4879 |  | 2N4045 <br> 2N4880 |  | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Min | Max | Min | Max | Min | Max |  |
| $\mathrm{C}_{\text {te }}$ | Emitter Transition Capacitance (Note 4) | $\mathrm{I}_{\mathrm{C}}=0, \mathrm{~V}_{\mathrm{EB}}=0.5 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$ |  |  | 1 |  | 1 |  | 1 | pF |
| $\mathrm{C}_{\mathrm{C}_{1}, \mathrm{C}_{2}}$ | Collector to Collector Capacitance (Note 4) | $\mathrm{V}_{C C}=0, f=1 \mathrm{MHz}$ |  |  | 0.8 |  | 0.8 |  | 0.8 | pF |
| $l_{1}, c_{2}$ | Collector to Collector Leakage Current | $\mathrm{V}_{\mathrm{CC}}= \pm 100 \mathrm{~V}$ |  |  | 5 |  | 5 |  | 5 | pA |
| $\mathrm{V}_{\text {CEO }}$ (sust) | Collector to Emitter Sustaining Voltage | $I_{C}=1 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}}=0$ |  | 60 |  | 55 |  | 45 |  | V |
| $\mathrm{f}_{\mathrm{t}}$ | Current Gain Bandwidth Product (Note 4) | $\mathrm{I}_{\mathrm{C}}=1 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CE}}=10 \mathrm{~V}$ |  | 200 |  | 150 |  | 150 |  | MHz |
| $\mathrm{f}_{\mathrm{t}}$ | Current Gain Bandwidth Product (Note 4) | $\mathrm{I}_{\mathrm{C}}=10 \mu \mathrm{~A}, \mathrm{~V}_{C E}=10 \mathrm{~V}$ |  | 20 |  | 15 |  | 15 |  | MHz |
| NF | Narrow Band Noise Figure (Note 4) | $\begin{aligned} & \mathrm{I}_{\mathrm{C}}=10 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{CE}}=5 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{G}}=10 \mathrm{k} \Omega \\ & \hline \end{aligned}$ | $\begin{aligned} & f=1 \mathrm{kHz} \\ & \mathrm{BW}=200 \mathrm{~Hz} \end{aligned}$ |  | 2 |  | 3 |  | 3 | dB |
| $\mathrm{BV}_{\mathrm{CBO}}$ | Collector Base Breakdown Voltage | $I_{C}=10 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{E}}=0$ |  | 60 |  | 55 |  | 45 |  | V |
| $\mathrm{BV}_{\text {EbO }}$ | Emitter Base Breakdown Voltage (Note 2) | $\mathrm{I}_{\mathrm{E}}=10 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{C}}=0$ |  | 7 |  | 7 |  | 7 |  | V |

MATCHING CHARACTERISTICS $\quad\left(T_{A}=25^{\circ} \mathrm{C}\right.$ unless otherwise specified)

| $h_{\mathrm{FE}_{1}} / h_{\mathrm{FE}_{2}}$ | DC Current Gain Ratio (Note 3) | $\begin{aligned} & \mathrm{I} \mathrm{C}=10 \mu \mathrm{~A} \text { to } 1 \mathrm{~mA}, \\ & \mathrm{~V}_{\mathrm{CE}}=5 \mathrm{~V} \end{aligned}$ | 0.9 | 1 | 0.85 | 1 | 0.8 | 1 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\left\|V_{B E_{1}}-V_{B E_{2}}\right\|$ | Base Emitter Voltage Differential | $I_{C}=10 \mu \mathrm{~A}, \mathrm{~V}_{\text {CE }}=5 \mathrm{~V}$ |  | 3 |  | 5 |  | 5 | mV |
| $\left\|I_{B_{1}}-I_{B_{2}}\right\|$ | Base Current Differential | $\mathrm{I}_{\mathrm{C}}=10 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{CE}}=5 \mathrm{~V}$ |  | 5 |  | 10 |  | 25 | nA |
| $\left\|\Delta\left(V_{B E_{1}}-V_{B E_{2}}\right)\right\| / \Delta T$ | Base Emitter <br> Voltage Differential <br> Change with Temperature | $\begin{aligned} & \mathrm{I}_{\mathrm{C}}=10 \mu \mathrm{~A}, \\ & \mathrm{~V}_{\mathrm{CE}}=5 \mathrm{~V} \\ & \mathrm{~T}_{\mathrm{A}}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{aligned}$ |  | 3 |  | 5 |  | 10 | $\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$ |
| $\left\|\Delta\left(\mathrm{I}_{\mathrm{B}_{1}}-I_{\mathrm{B}_{2}}\right)\right\| / \Delta T$ | Base Current Differential Change with Temperature |  |  | 0.3 |  | 0.5 |  | 1 | $n A /{ }^{\circ} \mathrm{C}$ |

[^392]| SMALL SIGNAL CHARACTERISTICS |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Symbol | Parameter | Test Conditions | Typical Value | Units |
| $\mathrm{h}_{\text {lb }}$ | Input Resistance | $\mathrm{IC}=1 \mathrm{~mA}, \mathrm{~V}_{C B}=5 \mathrm{~V}($ Note 4$)$ | 28 | $\Omega$ |
| $\mathrm{hrb}_{\text {r }}$ | Voltage Feedback Ratio | CB | 43 | $\times 10^{-3}$ |
| $\mathrm{hfe}_{\text {fe }}$ | Small Signal Current Gain | $\mathrm{I}_{\mathrm{C}}=1 \mathrm{~mA}, \mathrm{~V}_{C E}=5 \mathrm{~V}($ Note 4$)$ | 250 |  |
| $h_{\text {ob }}$ | Output Conductance |  | 60 | $\mu \mathrm{S}$ |
| $h_{l e}$ | Input Resistance |  | 9.6 | $\mathrm{k} \Omega$ |
| $h r m_{\text {re }}$ | Voltage Feedback Ratio |  | 42 | $\times 10^{-3}$ |
| $\mathrm{h}_{\text {oe }}$ | Output Conductance |  | 12 | $\mu \mathrm{S}$ |

NOTES: 1. Per transistor.
2. The reverse base-emitter voltage must never exceed 7.0 volts and the reverse base-emitter current must never exceed $10 \mu \mathrm{~A}$.
3. The lowest of two $\mathrm{h}_{\mathrm{FE}}$ readings is taken as $\mathrm{h}_{\mathrm{FE}}$ for purposes of this ratio.
4. For design reference only, not $100 \%$ tested.

## FEATURES

- Low rDS(on)
- ID(OFF) $<100 \mathrm{PA}$ (JAN TX Types)
- Fast Switching

PIN CONFIGURATIONS


## ABSOLUTE MAXIMUM RATINGS

( $T_{A}=25^{\circ} \mathrm{C}$ uniess otherwise noted)
Gate-Source or Gate-Drain Voltage . . . . . . . . . . . . . . . 40 V
Gate Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10mA
Storage Temperature Range ........... $-65^{\circ} \mathrm{C}$ to $+200^{\circ} \mathrm{C}$ Operating Temperature Range $\ldots \ldots . . .-55^{\circ} \mathrm{C}$ to $+200^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10sec) ............ $+300^{\circ} \mathrm{C}$

|  | TO-18 | TO-92 |
| :---: | :---: | :---: |
| Power Dissipation .. | 1.8 W | 360 mW |
| Derate above $25^{\circ} \mathrm{C}$ | $10 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ | $3.3 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ |

Plastic


NOTE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

## ORDERING INFORMATION

| TO-92 | TO-18 $\dagger$ |
| :---: | :---: |
| ITE 4091 | 2N4091 |
| ITE 4092 | 2N4092 |
| ITE 4093 | 2N4093 |

$\dagger$ add JANTX to these part numbers if JANTX processing is desired.
ELECTRICAL CHARACTERISTICS $\quad\left(T_{A}=25^{\circ} \mathrm{C}\right.$ unless otherwise specified)

| Symbol | Parameter | Test Conditions | $\begin{gathered} \text { 2N/ITE } \\ 4091 \end{gathered}$ |  | $\begin{gathered} \text { 2N/ITE } \\ 4092 \end{gathered}$ |  | $\begin{gathered} \text { 2N/ITE } \\ 4093 \end{gathered}$ |  | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Min | Max | Min | Max | Min | Max |  |
| BVGSS | Gate-Source Breakdown Voltage | $\mathrm{I}_{\mathrm{G}}=-1 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{DS}}=0$ | -40 |  | -40 |  | -40 |  | V |
| IJGO | Drain Reverse Current (Not JANTX Specified) | $V_{D G}=20 \mathrm{~V}, \mathrm{I}_{S}=0$ |  | 200 |  | 200 |  | 200 | pA |
|  |  | $T_{A}=150^{\circ} \mathrm{C}$ |  | 400 |  | 400 |  | 400 | nA |
| IGSS | Gate Reverse Current (JANTX, ITE devices only) | $V_{G S}=-20 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0$ |  | -100 |  | -100 |  | -100 | pA |
|  |  | $\mathrm{T}_{\mathrm{A}}=150^{\circ} \mathrm{C}$ |  | -200 |  | -200 |  | -200 | nA |

[^393] ITE4091-ITE4093

ELECTRICAL CHARACTERISTICS (Continued) $\left(T_{A}=25^{\circ} \mathrm{C}\right.$ unless otherwise specified)

| Symbol | Parameter |  | Test Conditions |  |  |  | $\begin{gathered} \text { 2N/ITE } \\ 4091 \\ \hline \end{gathered}$ |  | $\begin{gathered} \text { 2N/ITE } \\ 4092 \\ \hline \end{gathered}$ |  | 2N/ITE 4093 |  | Units | | | | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
|  |  |  | Min | Max | Min | Max | Min | Max |  |
| Id(OFF) | Drain Cutoff Current | JANTX |  |  |  |  | $V_{D S}=20 \mathrm{~V}$ | $\begin{aligned} & \mathrm{V}_{\mathrm{GS}}=- \\ & \mathrm{V}_{\mathrm{GS}}=- \\ & \mathrm{V}_{\mathrm{GS}}=- \end{aligned}$ | 2V(4091) | $T_{A}=25^{\circ} \mathrm{C}$ |  | 100 |  | 100 |  | 100 | pA |
|  |  | JAN, JTXV | 3V(4092) |  | 200 |  |  |  | 200 |  |  | 200 |  |  |
|  |  | JANTX |  | $T_{A}=150^{\circ} \mathrm{C}$ |  | 200 |  |  |  | 200 |  | 200 |  |  |
|  |  | JAN, JTXV |  |  |  | 400 |  |  |  | 400 |  | 400 | nA |  |
| $\mathrm{V}_{\mathrm{p}}$ | Gate-Source Pinch-Off Voltage |  | $V_{D S}=20 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=1 \mathrm{nA}$ |  |  |  | -5 | -10 | -2 | -7 | -1 | -5 | V |  |
| IdSs | Drain Current at Zero Gate Voltage |  | $\begin{aligned} & \mathrm{V}_{\mathrm{DS}}=20 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0, \\ & \text { Pulse Test Duraton }=2 \mathrm{~ms} \end{aligned}$ |  |  |  | 30 |  | 15 |  | 8 |  | mA |  |
| $\mathrm{V}_{\mathrm{DS}}(\mathrm{ON})$ | Drain-Source ON Voltage |  | $\mathrm{V}_{\mathrm{GS}}=0$ | $\mathrm{I}_{\mathrm{D}}=2.5 \mathrm{~mA}$ |  |  |  |  |  |  |  | 0.2 |  |  |
|  |  |  | $\mathrm{I}_{\mathrm{D}}=4 \mathrm{~mA}$ |  |  |  | 0.2 |  |  | V |  |  |
|  |  |  | $\mathrm{I}_{\mathrm{D}}=6.6 \mathrm{~mA}$ |  | 0.2 |  |  |  |  |  |  |  |
| ${ }^{\text {ras }}$ (on) | Static Drain-Source ON Resistance |  |  | $V_{G S}=0, I_{D}=1 \mathrm{~mA}$ |  |  |  |  | 30 |  | 50 |  | 80 |  |  |
| $\mathrm{r}_{\text {ds }}(\mathrm{on})$ | Static Drain Source ON Resistance |  |  | $V_{G S}=0, I_{D}=0, f=1 \mathrm{kHz}$ |  |  |  |  | 30 |  | 50 |  | 80 | $\Omega$ |  |
| $\mathrm{C}_{\text {iss }}$ | Common-Source Input Capacitance |  | $V_{D S}=20 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0, f=1 \mathrm{MHz}$(Note 1) |  |  |  |  | 16 |  | 16 |  | 16 |  |  |
| $\mathrm{C}_{\text {rss }}$ | JANTX Only |  |  |  |  |  |  | 5 |  | 5 |  | 5 | pF |  |
|  | Common-Source <br> Reverse Transfer Capacitance |  | $\begin{aligned} & \mathrm{V}_{\mathrm{DS}}=0, \mathrm{~V}_{\mathrm{GS}}=-20 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz} \\ & \text { (Note 1) } \end{aligned}$ |  |  |  |  | 5 |  | 5 |  | 5 |  |  |
| $\mathrm{t}_{\mathrm{d}(\mathrm{ON})}$ | Turn-ON Delay Time (Note 1) |  | $\mathrm{V}_{\mathrm{DD}}=3 \mathrm{~V}, \mathrm{~V}_{\mathrm{GD}(\mathrm{ON})}=0$ |  |  |  |  | 15 |  | 15 |  | 20 |  |  |
| $\mathrm{tr}_{\mathrm{r}}$ | Rise Time (Note 1) |  |  | $I_{D(o n)}$ | $V_{G S(\text { off })}$ | $\mathrm{R}_{1}$ |  | 10 |  | 20 |  | 40 | ns |  |
| $\mathrm{t}_{\text {off }}$ | Turn-OFF Time (Note 1) |  | $\begin{aligned} & 4091 \\ & 4092 \\ & 4093 \end{aligned}$ | $\begin{array}{r} 6.6 \mathrm{~mA} \\ 4 \mathrm{~mA} \\ 2.5 \mathrm{~mA} \end{array}$ | $\begin{array}{r} -12 \mathrm{~V} \\ -8 \mathrm{~V} \\ -6 \mathrm{~V} \end{array}$ | $\begin{array}{r} \hline 425 \Omega \\ 700 \Omega \\ 1120 \Omega \end{array}$ |  | 40 |  | 60 |  | 80 |  |  |

NOTE 1. For design reference only, not $100 \%$ tested.

## FEATURES

- Low Leakage
- Low Capacitance

PIN CONFIGURATION


ABSOLUTE MAXIMUM RATINGS
( $T_{A}=25^{\circ} \mathrm{C}$ unless otherwise noted)
Gate-Source or Gate-Drain Voltage . . . . . . . . . . . . . . . . 40 V
Gate Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50mA
Storage Temperature Range ........... $-65^{\circ} \mathrm{C}$ to $+200^{\circ} \mathrm{C}$
Operating Temperature Range........$-55^{\circ} \mathrm{C}$ to $+175^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10sec) ............ $+300^{\circ} \mathrm{C}$
Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 300mW
Derate above $25^{\circ} \mathrm{C} . \ldots . . . . . . . . . . . . . . . . . . . .2 .2 m W /{ }^{\circ} \mathrm{C}$
NOTE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

## ORDERING INFORMATION

| TO-72 |
| :--- |
| 2N4117 |
| 2N4117A |
| 2N4118 |
| 2N4118A |
| 2N4119 |
| 2N4119A |

## ELECTRICAL CHARACTERISTICS $\quad \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise specified)

| Symbol | Parameter | Test Conditions | $\begin{aligned} & \text { 2N4117 } \\ & \text { 2N4117A } \\ & \hline \end{aligned}$ |  | $\begin{array}{r} \text { 2N4118 } \\ \text { 2N4118A } \\ \hline \end{array}$ |  | $\begin{gathered} \text { 2N4119 } \\ \text { 2N4119A } \\ \hline \end{gathered}$ |  | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Min | Max | Min | Max | Min | Max |  |
| BV ${ }_{\text {GSS }}$ | Gate-Source Breakdown Voltage | $\mathrm{I}_{\mathrm{G}}=-1 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{DS}}=0$ | -40 |  | -40 |  | -40 |  | V |
| IGSS | Gate Reverse Current | $V_{G S}=-20 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0$ |  | -10 |  | -10 |  | -10 | pA |
|  |  |  |  | -1 |  | -1 |  | -1 |  |
|  |  | $\mathrm{T}_{\mathrm{A}}=+150^{\circ} \mathrm{C}$ |  | -25 |  | -25 |  | -25 | $n A$ |
|  | A devices |  |  | -2.5 |  | -2.5 |  | -2.5 |  |
| $\mathrm{V}_{\mathrm{GS} \text { (off) }}$ | Gate-Source Pinch-Off Voltage | $\mathrm{V}_{\mathrm{DS}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=1 \mathrm{nA}$ | -0.6 | -1.8 | -1 | -3 | -2 | -6 | V |
| IDSS | Drain Current at Zero Gate Voltage (Note 1) | $\begin{aligned} & \mathrm{V}_{\mathrm{DS}}=10 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{GS}}=0 \end{aligned}$ | 0.02 | 0.09 | 0.08 | 0.24 | 0.20 | 0.60 | mA |
| $\mathrm{g}_{\text {fs }}$ | Common-Source Forward Transconductance (Note 1) | $\begin{aligned} & V_{D S}=10 \mathrm{~V} \\ & f=1 \mathrm{kHz} \end{aligned}$ | 70 | 210 | 80 | 250 | 100 | 330 | $\mu \mathrm{s}$ |
| $\mathrm{g}_{\text {fs }}$ | Common-Source Forward Transconductance (Note 2) | $\mathrm{V}_{\mathrm{GS}}=0, \mathrm{f}=30 \mathrm{MHz}$ | 60 |  | 70 |  | 90 |  |  |
| gos | Common-Source Output Conductance | $\begin{aligned} & V_{D S}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0, \\ & \mathrm{f}=1 \mathrm{kHz} \end{aligned}$ |  | 3 |  | 5 |  | 10 |  |
| $\mathrm{C}_{\text {iss }}$ | Common-Source Input Capacitance (Note 2) | $\begin{aligned} & V_{D S}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0, \\ & \mathrm{f}=1 \mathrm{MHz} \end{aligned}$ |  | 3 |  | 3 |  | 3 | pF |
| $\mathrm{Cr}_{\text {rss }}$ | Common-Source Reverse <br> Transfer Capacitance (Note 2) | $\begin{aligned} & V_{D S}=10 \mathrm{~V}, V_{G S}=0, \\ & f=1 \mathrm{MHz} \end{aligned}$ |  | 1.5 |  | 1.5 |  | 1.5 |  |

NOTES: 1. Pulse test: Pulse duration of 2 ms used during test.
2. For design reference only, not $100 \%$ tested.

[^394]
## General Purpose Amplifier/Switch

## FEATURES

- $C_{\text {rss }}<2 p F$
- Moderately High Forward Transconductance PIN CONFIGURATION



## ABSOLUTE MAXIMUM RATINGS

( $T_{A}=25^{\circ} \mathrm{C}$ unless otherwise noted)
Gate-Source or Gate-Drain Voltage ................. - 30 V
Gate Current ........................................... . . . . 10 mA
Storage Temperature Range . . . . . . . . . . $-65^{\circ} \mathrm{C}$ to $+200^{\circ} \mathrm{C}$
Operating Temperature Range ......... $-55^{\circ} \mathrm{C}$ to $+175^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10sec) ............ $+300^{\circ} \mathrm{C}$
Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 300 mW
Derate above $25^{\circ} \mathrm{C}$. . . . . . . . . . . . . . . . . . . . . . . $2.0 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
NOTE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ORDERING INFORMATION

| TO-72 |
| :---: |
| $2 N 4220$ |
| $2 N 4221$ |
| $2 N 4222$ |

ELECTRICAL CHARACTERISTICS $\left(T_{\mathrm{A}}=25^{\circ} \mathrm{C}\right.$ unless otherwise specified)

| Symbol | Parameter | Test Conditions |  |  | 2N4220 |  | 2N4221 |  | 2N4222 |  | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  | Min | Max | Min | Max | Min | Max |  |
| IGSs | Gate Reverse Current | $\mathrm{V}_{\mathrm{GS}}=-15 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0$ |  |  |  | -0.1 |  | -0.1 |  | -0.1 | nA |
|  |  |  |  | $\mathrm{T}_{\mathrm{A}}=150^{\circ} \mathrm{C}$ |  | -0.1 |  | -0.1 |  | -0.1 | $\mu \mathrm{A}$ |
| BVGSS | Gate-Source Breakdown Voltage | $\mathrm{I}_{\mathrm{G}}=-10 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{DS}}=0$ |  |  | -30 |  | -30 |  | -30 |  | $v$ |
| $V_{G S(\text { ffi) }}$ | Gate-Source Cutoff Voltage | $V_{D S}=15 \mathrm{~V}, I_{D}$ | $0.1 \mathrm{nA}$ |  |  | -4 |  | -6 |  | -8 |  |
| $V_{G S}$ | Gate-Source Voltage | $V_{D S}=15 \mathrm{~V}$ | $\begin{aligned} & I_{D}=50 \mu \mathrm{~A}(2 \mathrm{~N} 4220) \\ & I_{D}=200 \mu \mathrm{~A}(2 \mathrm{~N} 4221) \\ & I_{D}=500 \mu \mathrm{~A}(2 \mathrm{~N} 4222) \\ & \hline \end{aligned}$ |  | -0.5 | -2.5 | -1 | -5 | -2 | -6 | V |
| loss | Saturation Drain Current (Note 1) | $\mathrm{V}_{\mathrm{DS}}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$ |  |  | 0.5 | 3 | 2 | 6 | 5 | 15 | mA |
| $\mathrm{g}_{\mathrm{fs}}$ | Common-Source Forward Transconductance (Note 1) | $V_{D S}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$ |  | $\mathrm{f}=1 \mathrm{kHz}$ | 1000 | 4000 | 2000 | 5000 | 2500 | 6000 | $\mu \mathrm{s}$ |
| $\left\|y f_{s}\right\|$ | Common-Source Forward Transadmittance (Note 2) |  |  | $\mathrm{f}=100 \mathrm{MHz}$ | 750 |  | 750 |  | 750 |  |  |
| gos | Common-Source Output Conductance (Note 1) |  |  | $\mathrm{f}=1 \mathrm{kHz}$ |  | 10 |  | 20 |  | 40 |  |
| $\mathrm{c}_{\text {iss }}$ | Common-Source Input Capacitance (Note 2) |  |  | $f=1 \mathrm{MHz}$ |  | 6 |  | 6 |  | 6 | pF |
| $\mathrm{C}_{\text {rss }}$ | Common-Source Reverse Transfer Capacitance (Note 2) |  |  |  | 2 |  | 2 |  | 2 |  |

NOTES: 1. Pulse test duration 2 ms .
2. For design reference only, not $100 \%$ tested.

## FEATURES

- $\mathrm{NF}=3 \mathrm{~dB}$ Typical at 200 MHz
- $\mathrm{C}_{\text {rss }}<2 \mathrm{pF}$

PIN CONFIGURATION


## ABSOLUTE MAXIMUM RATINGS

( $T_{A}=25^{\circ} \mathrm{C}$ unless otherwise noted)
Gate-Source or Gate-Drain Voltage . . . . . . . . . . . . . . - 30 V
Gate Current ............................................. . . 10 mA
Storage Temperature Range ........... $-65^{\circ} \mathrm{C}$ to $+200^{\circ} \mathrm{C}$
Operating Temperature Range $\ldots \ldots . .-55^{\circ} \mathrm{C}$ to $+175^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10sec) ............ $+300^{\circ} \mathrm{C}$
Power Dissipation .................................... . . 300mW
Derate above $25^{\circ} \mathrm{C} . . . . . . . . . . . . . . . . . . . . . . . . . . .2 .2 m W /{ }^{\circ} \mathrm{C}$
NOTE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

## ORDERING INFORMATION



ELECTRICAL CHARACTERISTICS $\quad\left(T_{A}=25^{\circ} \mathrm{C}\right.$ unless otherwise specified)


NOTES: 1. Pulse test, duration 2 ms .
2. For design reference only, not $100 \%$ tested.

[^395]
## FEATURES

- Exceptionally High Figure of Merit
- Radiation Immunity
- Extremely Low Noise and Capacitance
- High Input Impedance


## APPLICATIONS

- Low-level Choppers
- Data Switches
- Multiplexers and Low Noise Amplifiers

PIN CONFIGURATION


## ABSOLUTE MAXIMUM RATINGS

( $T_{A}=25^{\circ} \mathrm{C}$ unless otherwise noted)
Gate-Source or Gate-Drain Voltage . . . . . . . . . . . . . . . -50V
Gate Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50mA
Storage Temperature Range ........... . $-65^{\circ} \mathrm{C}$ to $+200^{\circ} \mathrm{C}$
Operating Temperature Range ......... $-55^{\circ} \mathrm{C}$ to $+175^{\circ} \mathrm{C}$
Lead Temperature (Soidering, 10sec) ............. $+300^{\circ} \mathrm{C}$
Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 300mW
Derate above $25^{\circ} \mathrm{C}$ $2.0 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
NOTE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

## ORDERING INFORMATION

| TO-18 |
| :---: |
| $2 N 4338$ |
| $2 N 4339$ |
| $2 N 4340$ |
| $2 N 4341$ |

ELECTRICAL CHARACTERISTICS $\quad\left(T_{A}=25^{\circ} \mathrm{C}\right.$ unless otherwise specified)

|  | Parameter | Test Conditions |  | 2N4338 |  | 2N4339 |  | 2N4340 |  | 2N4341 |  | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Min | Max | Min | Max | Min | Max | Min | Max |  |
| lGSS | Gate Reverse Current | $V_{G S}=-30 \mathrm{~V}, V_{D S}=0$ |  |  | -0.1 |  | -0.1 |  | -0.1 |  | -0.1 | nA |
|  | $\mathrm{T}_{\mathrm{A}}=150^{\circ} \mathrm{C}$ |  |  |  | -0.1 |  | -0.1 |  | -0.1 |  | -0.1 | $\mu \mathrm{A}$ |
| $B V_{\text {GSS }}$ | Gate-Source Breakdown Voltage | $\mathrm{I}_{\mathrm{G}}=-1 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{DS}}=0$ |  | -50 |  | -50 |  | $-50$ |  | $-50$ |  | V |
| $V_{\text {GS(off) }}$ | Gate-Source Cutoff Voltage | $V_{D S}=15 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=0.1 \mu \mathrm{~A}$ |  | -0.3 | -1 | -0.6 | -1.8 | -1 | -3 | -2 | -6 |  |
| ID(off) | Drain Cutoff Current | $\begin{aligned} & V_{D S}=15 \mathrm{~V} \\ & V_{G S}=() \end{aligned}$ |  |  | $\begin{aligned} & 0.05 \\ & (-5) \end{aligned}$ |  | $\begin{aligned} & 0.05 \\ & (-5) \end{aligned}$ |  | $\begin{aligned} & 0.05 \\ & (-5) \end{aligned}$ |  | $\begin{gathered} 0.07 \\ (-10) \end{gathered}$ | nA $(\mathrm{V})$ |
| loss | Saturation Drain Current (Note 2) | $\mathrm{V}_{\mathrm{DS}}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$ |  | 0.2 | 0.6 | 0.5 | 1.5 | 1.2 | 3.6 | 3 | 9 | mA |
| $\mathrm{g}_{\mathrm{fs}}$ | Common-Source Forward Transconductance (Note 2) | $\mathrm{V}_{\mathrm{DS}}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$ | $f=1 \mathrm{kHz}$ | 600 | 1800 | 800 | 2400 | 1300 | 3000 | 2000 | 4000 | $\mu \mathrm{s}$ |
| gos | Common-Source Output Conductance |  |  |  | 5 |  | 15 |  | 30 |  | 60 |  |
| ros(on) | Drain-Source ON Resistance | $V_{D S}=0, l_{D S}=0$ |  |  | 2500 |  | 1700 |  | 1500 |  | 800 | ohm |
| $\mathrm{C}_{\text {iss }}$ | Common-Source Input Capacitance | $\begin{aligned} & V_{D S}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \\ & \text { (Note 1) } \end{aligned}$ | $\mathrm{f}=1 \mathrm{MHz}$ |  | 7 |  | 7 |  | 7 |  | 7 | pF |
| Crss | Common-Source Reverse <br> Transfer Capacitance |  |  |  | 3 |  | 3 |  | 3 |  | 3 |  |
| NF | Noise Figure ( Note 1) | $\begin{aligned} & V_{\mathrm{DS}}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \\ & R_{\mathrm{gen}}=1 \mathrm{meg}, \\ & \mathrm{BW}=200 \mathrm{~Hz} \end{aligned}$ | $f=1 \mathrm{kHz}$ |  | 1 |  | 1 |  | 1 |  | 1 | dB |

NOTE 1: For design reference only, not $100 \%$ tested. 2: Pulse test duration 2 ms (non-JEDEC Condition).

[^396]FEATURES

- Low ON Resistance
- Low Capacitance
- High Gain
- High Gate Breakdown Voltage
- Low Threshold Voltage

PIN CONFIGURATION



#### Abstract

ABSOLUTE MAXIMUM RATINGS ( $T_{A}=25^{\circ} \mathrm{C}$ unless otherwise noted) Drain-Source Voltage or Drain-Body Voltage .......... 25V Peak Gate-Source Voltage (Note 1) . . . . . . . . . . . . . . $\pm 125 \mathrm{~V}$ Drain Current . ........................................ 100mA Storage Temperature Range ........... $-65^{\circ} \mathrm{C}$ to $+200^{\circ} \mathrm{C}$ Operating Temperature Range $\ldots . . . . .-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ Lead Temperature (Soldering, 10sec) ............ $+300^{\circ} \mathrm{C}$ Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 375 mW Derate above $25^{\circ} \mathrm{C}$. . . . . . . . . . . . . . . . . . . . . . . . . . $3 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$


NOTE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

## ORDERING INFORMATION

| TO-72 |
| :---: |
| 2N4351 |

ELECTRICAL CHARACTERISTICS $\left(T_{A}=25^{\circ} \mathrm{C}\right.$ unless otherwise specified) Substrate connected to source.

| Symbol | Parameter | Test Conditions | Min | Max | Units |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $B V_{\text {DSS }}$ | Drain-Source Breakdown Voltage | $\mathrm{I}_{\mathrm{D}}=10 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{GS}}=0$ | 25 |  | V |
| IGSS | Gate Leakage Current | $\mathrm{V}_{\mathrm{GS}}= \pm 30 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0$ |  | 10 | pA |
| ldSS | Zero-Gate-Voltage Drain Current | $\mathrm{V}_{\mathrm{DS}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$ |  | 10 | nA |
| $\mathrm{V}_{\mathrm{GS}}(\mathrm{th})$ | Gate-Source Threshold Voltage | $V_{D S}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=10 \mu \mathrm{~A}$ | 1 | 5 | V |
| $I_{D(0 n)}$ | 'ON' Drain Current | $\mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=10 \mathrm{~V}$ | 3 |  | mA |
| $V_{\text {DS }}$ (on) | Drain-Source "ON" Voltage | $\mathrm{I}_{\mathrm{D}}=2 \mathrm{~mA}, \mathrm{~V}_{\mathrm{GS}}=10 \mathrm{~V}$ |  | 1 | V |
| r ${ }_{\text {DS }}(\mathrm{on}$ ) | Drain-Source Resistance | $\mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=0, f=1 \mathrm{kHz}$ |  | 300 | ohms |
| $\left\|y_{f s}\right\|$ | Forward Transfer Admittance | $\mathrm{V}_{\mathrm{DS}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=2 \mathrm{~mA}, \mathrm{f}=1 \mathrm{kHz}$ | 1000 |  | $\mu \mathrm{s}$ |
| $\mathrm{C}_{\text {rss }}$ | Reverse Transfer Capacitance (Note 2) | $\mathrm{V}_{\mathrm{DS}}=0, \mathrm{~V}_{\mathrm{GS}}=0, f=1 \mathrm{MHz}$ |  | 1.3 | pF |
| $\mathrm{C}_{\text {iss }}$ | Input Capacitance (Note 2) | $\mathrm{V}_{\mathrm{DS}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0, \mathrm{f}=1 \mathrm{MHz}$ |  | 5.0 |  |
| $\mathrm{C}_{\mathrm{d} \text { (sub) }}$ | Drain-Substrate Capacitance (Note 2) | $V_{D(S U B)}=10 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$ |  | 5.0 |  |
| $t_{d}($ on) | Turn-On Delay (Note 2) | Switching Times Test Circuit |  | 45 | ns |
| $t_{r}$ | Rise Time (Note 2) |  |  | 65 |  |
| $t_{\text {d(off) }}$ | Turn-Off Delay (Note 2) |  |  | 60 |  |
| $\mathrm{t}_{\mathrm{f}}$ | Fall Time (Note 2) |  |  | 100 |  |

NOTES: 1. Device must not be tested at $\pm 125 \mathrm{~V}$ more than once or longer than 300 ms .
2. For design reference only, not $100 \%$ tested.

## FEATURES

- $\mathrm{r}_{\text {ds(on) }}<\mathbf{3 0 0}$ Ohms (2N4391)
- $I_{D(O F F)}<100 \mathrm{pA}$
- Switches $\pm$ 10VAC With $\pm 15 \mathrm{~V}$ Supplies (2N4392, 2N4393)


## PIN CONFIGURATION

| TO-18 | TO-92 |
| :---: | :---: |
| (2N4391-93) | (ITE4391-93) |



0217-1

5001

## ORDERING INFORMATION*

| TO-92 | TO-18 |
| :---: | :---: |
| ITE 4391 | 2N4391 |
| ITE 4392 | 2N4392 |
| ITE 4393 | 2N4393 |

ABSOLUTE MAXIMUM RATINGS
( $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted)
Gate-Source or Gate-Drain Voltage ................. - 40 V

Gate Current ............................................ . . . 10mA
Storage Temperature Range ........... $-65^{\circ} \mathrm{C}$ to $+200^{\circ} \mathrm{C}$
Operating Temperature Range ......... $-55^{\circ} \mathrm{C}$ to $+200^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10sec) ............ $+300^{\circ} \mathrm{C}$

|  | TO-18 | TO-92 |
| :---: | :---: | :---: |
| Power Dissipation .. | 1.8 W | 360 mW |
| Derate above $25^{\circ} \mathrm{C}$ | $10 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ | $3.3 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ |

Plastic
Storage $\ldots \ldots .$.
Operating $\ldots \ldots .$.

NOTE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absoiute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS $\quad\left(T_{A}=25^{\circ} \mathrm{C}\right.$ unless otherwise specified)

| Symbol | Parameter | Test Conditions |  | 4391 |  | 4392 |  | 4393 |  | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Min | Max | Min | Max | Min | Max |  |
| IGSS | Gate Reverse Current | $\mathrm{V}_{\mathrm{GS}}=-20 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0$ |  |  | -100 |  | -100 |  | -100 | pA |
|  |  |  | $T_{A}=150^{\circ} \mathrm{C}$ |  | -200 |  | -200 |  | -200 | nA |
| BVGSS | Gate-Source Breakdown Voltage | $\mathrm{I}_{\mathrm{G}}=-1 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{DS}}=0$ |  | -40 |  | -40 |  | -40 |  | V |
| $l_{\text {( }}$ (off) | Drain Cutoff Current | $V_{D S}=20 \mathrm{~V}$ | $\begin{aligned} & \mathrm{V}_{\mathrm{GS}}=-5 \mathrm{~V}(4393) \\ & \mathrm{V}_{\mathrm{GS}}=-7 \mathrm{~V}(4392) \\ & \mathrm{V}_{\mathrm{GS}}=-12 \mathrm{~V}(4391) \end{aligned}$ |  | 100 |  | 100 |  | 100 | pA |
|  |  |  | $\begin{array}{r} \mathrm{V}_{\mathrm{GS}}=-12 \mathrm{~V}(4391) \\ \mathrm{T}_{\mathrm{A}}=150^{\circ} \mathrm{C} \\ \hline \end{array}$ |  | 200 |  | 200 |  | 200 | nA |
| $\mathrm{V}_{\mathrm{GS}(\mathrm{f})}$ | Gate-Source Forward Voltage | $\mathrm{I}_{\mathrm{G}}=1 \mathrm{~mA}, \mathrm{~V}_{\mathrm{DS}}=0$ |  |  | 1 |  | 1 |  | 1 | V |
| $V_{G S}$ (off) | Gate-Source Cutoff Voltage | $V_{D S}=20 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=1 \mathrm{nA}$ |  | -4 | -10 | -2 | -5 | -0.5 | -3 |  |
| loss | Saturation Drain Current (Note 1) | $\mathrm{V}_{\mathrm{DS}}=20 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$ |  | 50 | 150 | 25 | 75 | 5 | 30 | mA |


| Symbol | Parameter | Test Conditions |  |  |  | 91 | 4392 |  | 4393 |  | Units | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
|  |  |  |  |  | Max | Min | Max | Min | Max |  |
| $\mathrm{V}_{\text {DS(on) }}$ | Drain-Source ON Voltage | $\mathrm{V}_{\mathrm{GS}}=0$ | $\begin{aligned} & I_{D}=3 \mathrm{~mA}(439 \\ & \mathrm{I}_{\mathrm{D}}=6 \mathrm{~mA}(439 \\ & \mathrm{I}_{\mathrm{D}}=12 \mathrm{~mA}(43 \end{aligned}$ | 93) <br> ) 391) |  |  | 0.4 |  | 0.4 |  | 0.4 | V |
| ros(on) | Static Drain-Source ON Resistance | $\mathrm{V}_{\mathrm{GS}}=0, \mathrm{I}_{\mathrm{D}}=1 \mathrm{~mA}$ |  |  |  | 30 |  | 60 |  | 100 | $\Omega$ |
| $\mathrm{r}_{\text {ds }}$ (on) | Drain-Source ON Resistance | $V_{G S}=0, I_{D}=0$ |  | $\mathrm{f}=1 \mathrm{kHz}$ |  | 30 |  | 60 |  | 100 |  |
| $\mathrm{C}_{\text {iss }}$ | Common-Source Input Capacitance (Note 2) | $\mathrm{V}_{\mathrm{DS}}=20 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$ |  | $\mathrm{f}=1 \mathrm{MHz}$ |  | 14 |  | 14 |  | 14 |  |
| $\mathrm{C}_{\text {rss }}$ | Common-Source Reverse Transfer Capacitance (Note 2) | $V_{D S}=0$ | $V_{G S}=-5 \mathrm{~V}$ |  |  |  |  |  |  | 3.5 |  |
|  |  |  | $V_{G S}=-7 \mathrm{~V}$ |  |  |  |  | 3.5 |  |  | pF |
|  |  |  | $\mathrm{V}_{\mathrm{GS}}=-12 \mathrm{~V}$ |  |  | 3.5 |  |  |  |  |  |
| $\mathrm{t}_{\mathrm{d}}$ | Turn-ON Delay Time (Note 2) | $V_{D D}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS} \text { (on) }}=0$ |  |  |  | 15 |  | 15 |  | 15 |  |
| $t_{r}$ | Rise Time (Note 2) |  |  | $\mathrm{V}_{\text {GS(off) }}$ |  | 5 |  | 5 |  | 5 | ns |
| $\mathrm{t}_{\text {off }}$ | Turn-OFF Delay Time (Note 2) | $\begin{aligned} & 4391 \\ & 4392 \\ & 4393 \end{aligned}$ | $\begin{gathered} 12 \mathrm{~mA} \\ 6 \\ 3 \end{gathered}$ | $\begin{gathered} -12 V \\ -7 \\ -5 \end{gathered}$ |  | 20 |  | 35 |  | 50 |  |
| $\mathrm{t}_{\mathrm{f}}$ | Fall Time (Note 2) |  |  |  |  | 15 |  | 20 |  | 30 |  |

NOTES: 1. Pulse test required, pulse width $=300 \mu \mathrm{~s}$, duty cycle $\leq 3 \%$.
2. For design reference only, not $100 \%$ tested.

## Switching Times Test CIrcuit



[^397]FEATURES

- Low Noise
- Low Feedback Capacitance
- Low Output Capacitance
- High Transconductance
- High Power Gain

PIN CONFIGURATIONS



## ORDERING INFORMATION

| TO-92 | TO-72 |
| :---: | :---: |
| ITE 4416 | 2N4416 |
| - | 2N4416A |

ELECTRICAL CHARACTERISTICS ( $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise specified)

| Symbol | Parameter |  | Test Conditions |  | Min | Max | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| IGss | Gate Reverse Current |  | $\mathrm{V}_{G S}=-20 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0$ |  |  | -0.1 | nA |
|  |  |  |  | $\mathrm{T}_{\mathrm{A}}=150^{\circ} \mathrm{C}$ |  | -0.1 | $\mu \mathrm{A}$ |
| $\mathrm{BV}_{\mathrm{GSS}}$ | Gate-Source Breakdown Voltage | 2N4416/ITE4416 | $\mathrm{I}_{\mathrm{G}}=-1 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{DS}}=0$ |  | $-30$ |  | V |
|  |  | 2N4416A |  |  | -35 |  |  |
| $\mathrm{V}_{\mathrm{GS} \text { (off) }}$ | Gate-Source Cutoff Voltage | 2N4416/ITE4416 | $V_{D S}=15 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=1 \mathrm{nA}$ |  |  | -6 |  |
|  |  | 2N4416A |  |  | -2.5 | -6 |  |
| $\mathrm{V}_{\mathrm{GS}(\mathrm{f})}$ | Gate-Source Forward Voltage |  | $\mathrm{I}_{\mathrm{G}}=1 \mathrm{~mA}, \mathrm{~V}_{\mathrm{DS}}=0$ |  |  | 1 | V |
| IDSS | Drain Current at Zero Gate Voltage |  | $V_{D S}=15 \mathrm{~V}, \mathrm{~V}_{G S}=0$ | $f=1 \mathrm{kHz}$ | 5 | 15 | mA |
| $\mathrm{g}_{\mathrm{fs}}$ | Common-Source Forward Transconductance |  |  |  | 4500 | 7500 | $\mu \mathrm{S}$ |
| gos | Common-Source Output Conductance |  |  |  |  | 50 | $\mu \mathrm{s}$ |
| $\mathrm{Crss}^{\text {r }}$ | Common-Source Reverse Transfer Capacitance (Note 1) |  |  | $f=1 \mathrm{MHz}$ |  | 0.8 | pF |
| $\mathrm{C}_{\text {iss }}$ | Common-Source Input Capacitance (Note 1) |  |  |  |  | 4 | pF |
| Coss | Common-Source Output Capacitance (Note 1) |  |  |  |  | 2 | pr |

[^398]ELECTRICAL CHARACTERISTICS $\quad\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right.$ unless otherwise specified) (Continued)

| Symbol | Parameter | Test Conditions | 100 MHz |  | 400 MHz |  | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Min | Max | Min | Max |  |
| giss | Common-Source Input Conductance | $\mathrm{V}_{\mathrm{DS}}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$ (Note 1) |  | 100 |  | 1000 | $\mu \mathrm{S}$ |
| $\mathrm{b}_{\text {iss }}$ | Common-Source Input Susceptance |  |  | 2500 |  | 10,000 |  |
| Goss | Common-Source Output Conductance |  |  | 75 |  | 100 |  |
| $\mathrm{b}_{\text {oss }}$ | Common-Source Output Susceptance |  |  | 1000 |  | 4000 |  |
| $\mathrm{gfs}^{\text {f }}$ | Common-Source Forward Transconductance |  |  |  | 4000 |  |  |
| $\mathrm{G}_{\mathrm{ps}}$ | Common-Source Power Gain | $\mathrm{V}_{\mathrm{DS}}=15 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=5 \mathrm{~mA}$ (Note 1) | 18 |  | 10 |  | dB |
| NF | Noise Figure (Note 1) | $\mathrm{V}_{\mathrm{DS}}=15 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=5 \mathrm{~mA}, \mathrm{R}_{\mathrm{G}}=1 \mathrm{k} \Omega$ |  | 2 |  | 4 |  |

NOTE 1: For design reference only, not $100 \%$ tested.

- Low rDS(on)
- ${ }^{D}($ off $)<250 p A$
- Switches $\pm 10 \mathrm{~V}$ Signals With $\pm 15 \mathrm{~V}$ Supplies (2N4858, 2N4861)


## PIN CONFIGURATION



## ABSOLUTE MAXIMUM RATINGS

( $T_{A}=25^{\circ} \mathrm{C}$ unless otherwise noted)
Gate-Source or Gate-Drain Voltage
2N4856-58 ..... $-40 \mathrm{~V}$
2N4859-61 ..... $-30 \mathrm{~V}$
Gate Current ..... 50 mA
Storage Temperature Range ..... $200^{\circ} \mathrm{C}$

Operating Temperature Range . ........ $-55^{\circ} \mathrm{C}$ to $+200^{\circ} \mathrm{C}$
Led Temperature (Soldering, 10sec) .............. $+300^{\circ} \mathrm{C}$
Power Dissipation
$\ldots \mathrm{mW} /{ }^{\circ} \mathrm{C}$
Derate above $25^{\circ} \mathrm{C}$
NOTE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

## ORDERING INFORMATION

| TO-18 |
| :---: |
| 2N4856 $\dagger$ |
| 2N4857 $\dagger$ |
| 2N4858 $\dagger$ |
| 2N4859 |
| 2N4860 |
| $2 N 4861$ |

$\dagger$ add JAN, JTX, JTXV, to basic part number to specify these devices.

## ELECTRICAL CHARACTERISTICS $\quad\left(T_{A}=25^{\circ} \mathrm{C}\right.$ unless otherwise specified)

| Symbol | Parameter | Test Conditions | 2N4856 |  | 2N4857 |  | 2N4858 |  | 2N4859 |  | 2N4860 |  | 2N4861 |  | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Min | Max |  |
| BV ${ }_{\text {GSS }}$ | Gate-Source Breakdown Voltage | $\mathrm{I}_{\mathrm{G}}=-1 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{DS}}=0$ | -40 |  | -40 |  | -40 |  | -40 |  | -40 |  | -40 |  |  |
|  |  |  | -30 |  | -30 |  | -30 |  | -30 |  | -30 |  | -30 |  | $\checkmark$ |
| IGSS | Gate Reverse Current | $V_{G S}=-20 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0$ |  | -0.25 |  | -0.25 |  | -0.25 |  |  |  |  |  |  | nA |
|  |  | $\begin{aligned} & V_{G S}=-20 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0 \\ & \mathrm{~T}_{\mathrm{A}}=150^{\circ} \mathrm{C} \end{aligned}$ |  | $-0.5$ |  | -0.5 |  | -0.5 |  |  |  |  |  |  | $\mu \mathrm{A}$ |
|  |  | $V_{G S}=-15 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0$ |  |  |  |  |  |  |  | -0.25 |  | -0.25 |  | -0.25 | nA |
|  |  | $\begin{aligned} & V_{G S}=-15 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0 \\ & T_{A}=150^{\circ} \mathrm{C} \\ & \hline \end{aligned}$ |  |  |  |  |  |  |  | -0.5 |  | -0.5 |  | -0.5 | nA |
| D(off) | Drain Cutoff Current | $\mathrm{V}_{\mathrm{DS}}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=-10 \mathrm{~V}$ |  | 250 |  | 250 |  | 250 |  | 250 |  | 250 |  | 250 | pA |
|  |  | $T_{A}=150^{\circ} \mathrm{C}$ |  | 500 |  | 500 |  | 500 |  | 500 |  | 500 |  | 500 | nA |
| $V_{\text {GS (off) }}$ | Gate-Source Cutoff Voltage | $V_{D S}=15 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=0.5 \mathrm{nA}$ | -4 | -10 | -2 | -6 | -0.8 | -4 | -4 | $-10$ | -2 | -6 | -0.8 | -4 | V |
| IDSS | Saturation Drain Current (Note 1) | $V_{D S}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$ | 50 |  | 20 | 100 | 8 | 80 | 50 |  | 20 | 100 | 8 | 80 | mA |

ELECTRICAL CHARACTERISTICS (Continued) $\left(T_{A}=25^{\circ} \mathrm{C}\right.$ unless otherwise specified)

|  | Parameter | Test Conditions |  | 2N4856 |  | 2N4857 |  | 2N4858 |  | 2N4859 |  | 2N4860 |  | 2N4861 |  | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Symbor |  |  |  | Min | Max |  |
| $\mathrm{V}_{\text {DS(on) }}$ | Drain-Source ON Voltage | $\mathrm{V}_{\mathrm{GS}}=0, \mathrm{l}_{\mathrm{D}}=()$ |  |  | $\begin{array}{\|l\|} 0.75 \\ (20) \end{array}$ |  | $\begin{array}{\|l\|} \hline 0.50 \\ (10) \end{array}$ |  | $\begin{array}{\|c\|} \hline 0.50 \\ (5) \\ \hline \end{array}$ |  | $\begin{aligned} & 0.75 \\ & (20) \\ & \hline \end{aligned}$ |  | $\begin{array}{\|l\|} \hline 0.50 \\ (10) \end{array}$ |  | $\begin{gathered} 0.50 \\ (5) \end{gathered}$ | $\begin{array}{\|c\|} \hline V \\ (\mathrm{~mA}) \\ \hline \end{array}$ |
| rds(on) | Drain-Source ON Resistance | $\mathrm{V}_{\mathrm{GS}}=0, \mathrm{I}_{\mathrm{D}}=0$ | $\mathrm{f}=1 \mathrm{kHz}$ |  | 25 |  | 40 |  | 60 |  | 25 |  | 40 |  | 60 | ohm |
| $\mathrm{C}_{\text {iss }}$ | Common-Source Input Capacitance | $V_{D S}=0, V_{G S}=-10 \mathrm{~V}$ <br> (Note 2) | $\mathrm{f}=1 \mathrm{MHz}$ |  | 18 |  | 18 |  | 18 |  | 18 |  | 18 |  | 18 | pF |
| $\mathrm{C}_{\text {rss }}$ | Common-Source Reverse Transfer Capacitance |  |  |  | 8 |  | 8 |  | 8 |  | 8 |  | 8 |  | 8 |  |
| $t_{d}$ | Turn-ON Delay Time (Note 2) |  |  |  | 6 |  | 6 |  | 10 |  | 6 |  | 6 |  | 10 | ns |
| $\mathrm{tr}_{\text {r }}$ | Rise Time (Note 2) |  |  |  | 3 |  | 4 |  | 10 |  | 3 |  | 4 |  | 10 |  |
| toff | Turn-OFF Time (Note 2) |  |  |  | 25 |  | 50 |  | 100 |  | 25 |  | 50 |  | 100 |  |

NOTES: 1. Pulse test required, pulse width $=100 \mu \mathrm{~s}$, duty cycle $\leq 10 \%$.
2. For design reference only, not $100 \%$ tested.


[^399]
## FEATURES

- Low Noise Voltage
- Low Leakage
- High Gain

PIN CONFIGURATION


## ABSOLUTE MAXIMUM RATINGS

( $T_{A}=25^{\circ} \mathrm{C}$ unless otherwise noted)
Gate-Source or Gate-Drain Voltage ................. - 40V
Gate Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50mA
Storage Temperature Range ........... $-65^{\circ} \mathrm{C}$ to $+200^{\circ} \mathrm{C}$
Operating Temperature Range $\ldots \ldots . . .-55^{\circ} \mathrm{C}$ to $+200^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10sec) ............. $+300^{\circ} \mathrm{C}$
Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 300mW
Derate above $25^{\circ} \mathrm{C}$. ............................... $1.7 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
NOTE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

## ORDERING INFORMATION

| TO-72 |
| :--- |
| 2N4867 |
| 2N4867A |
| 2N4868 |
| 2N4868A |
| 2N4869 |
| 2N4869A |

ELECTRICAL CHARACTERISTICS $\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right.$ unless otherwise specified)

| Symbol | Parameter | Test Conditions |  | $\begin{gathered} \text { 2N4867 } \\ \text { 2N4867A } \\ \hline \end{gathered}$ |  | $\begin{gathered} \text { 2N4868 } \\ \text { 2N4868A } \\ \hline \end{gathered}$ |  | $\begin{gathered} \text { 2N4869 } \\ \text { 2N4869A } \\ \hline \end{gathered}$ |  | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Min | Max | Min | Max | Min | Max |  |
| IGSS | Gate Reverse Current | $\mathrm{V}_{\mathrm{GS}}=-30 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0$ |  |  | -0.25 |  | -0.25 |  | -0.25 | nA |
|  |  |  | $\mathrm{T}_{\mathrm{A}}=150^{\circ} \mathrm{C}$ |  | -0.25 |  | -0.25 |  | -0.25 | $\mu \mathrm{A}$ |
| BV ${ }_{\text {GSS }}$ | Gate-Source Breakdown Voltage | $\mathrm{I}_{\mathrm{G}}=-1 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{DS}}=0$ |  | -40 |  | -40 |  | $-40$ |  | V |
| $\mathrm{V}_{\mathrm{GS} \text { (off) }}$ | Gate-Source Cutoff Voltage | $\mathrm{V}_{\mathrm{DS}}=20 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=1 \mu \mathrm{~A}$ |  | -0.7 | -2 | -1 | -3 | -1.8 | -5 |  |
| loss | Saturation Drain Current (Note 1) | $V_{D S}=20 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$ |  | 0.4 | 1.2 | 1 | 3 | 2.5 | 7.5 | mA |
| $\mathrm{g}_{\text {ts }}$ | Common-Source Forward Transconductance (Note 1) | $\mathrm{V}_{\mathrm{DS}}=20 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$ | $f=1 \mathrm{kHz}$ | 700 | 2000 | 1000 | 3000 | 1300 | 4000 | $\mu \mathrm{S}$ |
| gos | Common-Source Output Conductance |  |  |  | 1.5 |  | 4 |  | 10 |  |
| $\mathrm{C}_{\text {rss }}$ | Common-Source Reverse Transfer Capacitance (Note 2) |  | $\mathrm{f}=1 \mathrm{MHz}$ |  | 5 |  | 5 |  | 5 | pF |
| Ciss | Common-Source Input Capacitance (Note 2) |  |  |  | 25 |  | 25 |  | 25 |  |
| $\bar{e}_{n}$ | Short Circuit Equivalent Input <br> Noise Voltage <br> (Note 2) <br> A devices | $\begin{aligned} & \mathrm{V}_{\mathrm{DS}}=10 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{GS}}=0 \end{aligned}$ | $\mathrm{f}=10 \mathrm{~Hz}$ |  | 20 |  | 20 |  | 20 |  |
|  |  |  | $f=1 \mathrm{kHz}$ |  | 10 |  | 10 |  | 10 | $\frac{n V}{\sqrt{H z}}$ |
|  |  |  | $f=10 \mathrm{~Hz}$ |  | 10 |  | 10 |  | 10 | $\sqrt{H z}$ |
|  |  |  | $f=1 \mathrm{kHz}$ |  | 5 |  | 5 |  | 5 |  |
| NF | Spot Noise Figure (Note 2) $\mathrm{V}_{\mathrm{DS}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$ <br>  $\mathrm{R}_{\mathrm{gen}}=20 \mathrm{~K},(2 N 4867$ Series) <br>  $\mathrm{R}_{\mathrm{gen}}=5 \mathrm{~K},(2 N 4867 \mathrm{~A}$ Series $)$ |  | $f=1 \mathrm{kHz}$ |  | 1 |  | 1 |  | 1 | dB |

NOTES: 1. Pulse test duration $=2 \mathrm{~ms}$.
2. For design reference only, not $100 \%$ tested.

## FEATURES

- Low Insertion Loss
- No Offset or Error Voltages Generated By Closed Switch
- Purely Resistive


## PIN CONFIGURATION



## APPLICATIONS

\author{

- Analog Switches <br> - Commutators <br> - Choppers
}

ABSOLUTE MAXIMUM RATINGS
( $T_{A}=25^{\circ} \mathrm{C}$ unless otherwise noted)
Gate-Drain or Gate-Source Voltage . . . . . . . . . . . . . . . . . 30V
Gate Current . ............................................ 50 mA
Storage Temperature Range ........... $-65^{\circ} \mathrm{C}$ to $+200^{\circ} \mathrm{C}$
Operating Temperature Range ......... $-55^{\circ} \mathrm{C}$ to $+200^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10sec) ............. $+300^{\circ} \mathrm{C}$
Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 500mW
Derate above $25^{\circ} \mathrm{C} . . . . . . . . . . . . . . . . . . . . . . . . . .3 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
NOTE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

## ORDERING INFORMATION*

| TO-18 |
| :---: |
| 2N5018 |
| 2N5019 |

## ELECTRICAL CHARACTERISTICS $\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right.$ unless otherwise specified)

| Symbol | Parameter | Test Conditions |  |  | 2N5018 |  | 2N5019 |  | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  | Min | Max | Min | Max |  |
| BVGSS | Gate-Source Breakdown Voltage | $\mathrm{I}_{\mathrm{G}}=1 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{DS}}=0$ |  |  | 30 |  | 30 |  | V |
| IGSS | Gate Reverse Current | $\mathrm{V}_{\mathrm{GS}}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0$ |  |  |  | 2 |  | 2 | nA |
| $\mathrm{I}_{\mathrm{D} \text { (off) }}$ | Drain Cutoff Current | $\mathrm{V}_{\mathrm{DS}}=-15 \mathrm{~V}$, | $\begin{aligned} & V_{G S}=12 \mathrm{~V}(2 N 5018) \\ & V_{G S}=7 \mathrm{~V}(2 N 5019) \end{aligned}$ |  |  | -10 |  | -10 |  |
|  |  |  |  |  |  | -10 |  | -10 |  |
| IDGO | Drain Reverse Current | $V_{D G}=-15 \mathrm{~V}, \mathrm{I}_{S}=0$ |  |  |  | -2 |  | -2 | nA |
|  |  |  |  | $\mathrm{T}_{\mathrm{A}}=150^{\circ} \mathrm{C}$ |  | -3 |  | -3 | $\mu \mathrm{A}$ |
| $\mathrm{V}_{\text {GS }}$ (off) | Gate-Source Cutoff Voltage | $V_{D S}=-15 V, I_{D}=-1 \mu \mathrm{~A}$ |  |  |  | 10 |  | 5 | V |
| IDSS | Saturation Drain Current | $\mathrm{V}_{\mathrm{DS}}=-20 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$ |  |  | -10 |  | -5 |  | mA |
| $\mathrm{V}_{\text {DS (on) }}$ | Drain-Source ON Voltage | $\begin{aligned} V_{G S}=0, I_{D} & =-6 m A(2 N 5018), \\ I_{D} & =-3 m A(2 N 5019) \end{aligned}$ |  |  |  | -0.5 |  | -0.5 | V |
| $\mathrm{r}_{\text {ds(on) }}$ | Static Drain-Source ON Resistance | $\mathrm{I}_{\mathrm{D}}=-1 \mathrm{~mA}, \mathrm{~V}_{\mathrm{GS}}=0$ |  |  |  | 75 |  | 150 |  |
| $\mathrm{r}_{\text {ds(on) }}$ | Drain-Source ON Resistance | $\mathrm{I}_{\mathrm{D}}=0, \mathrm{~V}_{\mathrm{GS}}=0$ |  | $\mathrm{f}=1 \mathrm{kHz}$ |  | 75 |  | 150 |  |
| $\mathrm{C}_{\text {iss }}$ | Common-Source Input Capacitance (Note 1) | $\mathrm{V}_{\mathrm{DS}}=-15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$ |  | $f=1 \mathrm{MHz}$ |  | 45 |  | 45 | pF |
| $\mathrm{C}_{\text {rss }}$ | Common-Source Reserve <br> Transfer Capacitance (Note 1) | $\begin{aligned} & V_{\mathrm{DS}}=0, \mathrm{~V}_{\mathrm{GS}}=12 \mathrm{~V}(2 \mathrm{~N} 5018), \\ & \mathrm{V}_{\mathrm{GS}}=7 \mathrm{~V}(2 \mathrm{~N} 5019) \end{aligned}$ |  |  |  | 10 |  | 10 | pF |

[^400]ELECTRICAL CHARACTERISTICS (Continued) $\left(T_{A}=25^{\circ} \mathrm{C}\right.$ unless otherwise specified)

|  |  |  |  |  |  |  | 018 |  | 019 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  | Min | Max | Min | Max |  |
| $\mathrm{t}_{\mathrm{d}(\mathrm{On})}$ | Turn-ON Delay Time (Note 1) | $\mathrm{V}_{\mathrm{DD}}=-6 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS} \text { (on) }}=0$ |  |  | $\mathrm{R}_{\mathrm{L}}$ |  | 15 |  | 15 | ns |
| $\mathrm{tr}_{\mathrm{r}}$ | Rise Time ( Note 1) | 2N5018 | $V_{G S} \text { (off) }$ | $I_{D(0 n)}$ |  |  | 20 |  | 75 |  |
| $t_{\text {d(off) }}$ | Turn-off Delay Time (Note 1) |  | 12V | $-6 \mathrm{~mA}$ | $\begin{gathered} 910 \Omega \\ 1.8 \mathrm{k} \Omega \end{gathered}$ |  | 15 |  | 25 |  |
| $t_{f}$ | Fall Time (Note 1) | 2N5019 | 7V | $-3 \mathrm{~mA}$ |  |  | 50 |  | 100 |  |

NOTES: 1. For design reference only, not $100 \%$ tested.


INPUT PULSE
RISE TIME < 1ns
FALL TIME < ins PULSE WIDTH 100ns REPLETION RATE 1MHz

SAMPLING SCOPE
RISE TIME 0.4 ns INPUT RESISTANCE 10M $\Omega$ INPUT CAPACITANCE 1.5pF

Figure 1: Switching Time Text Circuit

# 2N5114-2N5116, JAN, JTX, JTXV P-Channel JFET Switch 

## GENERAL DESCRIPTION

Ideal for inverting switching or "Virtual Gnd" switching into inverting input of Op. Amp. No driver is required and $\pm 10 \mathrm{VAC}$ signals can be handled using only +5 V logic (TTL or CMOS).

## FEATURES

- Low ON Resistance
- $I_{D(\text { off })}<500 \mathrm{pA}$
- Switches directly from TTL Logic

PIN CONFIGURATION



#### Abstract

ABSOLUTE MAXIMUM RATINGS ( $T_{A}=25^{\circ} \mathrm{C}$ unless otherwise noted) Gate-Drain or Gate-Source Voltage . . . . . . . . . . . . . . . . . 30V Gate Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 mA Storage Temperature Range . . . . . . . . . . . $-65^{\circ} \mathrm{C}$ to $+200^{\circ} \mathrm{C}$ Operating Temperature Range $\ldots \ldots . . .-55^{\circ} \mathrm{C}$ to $+200^{\circ} \mathrm{C}$ Lead Temperature (Soldering, 10sec) ............. $+300^{\circ} \mathrm{C}$ Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 500mW Derate above $25^{\circ} \mathrm{C} . \ldots . . . . . . . . . . . . . . . . . . . . . .3 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ NOTE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.


## ORDERING INFORMATION

| TO18 $\dagger$ |
| :---: |
| 2N5114 |
| 2N5115 |
| 2N5116 |

†add JAN, JTX, JTXV to basic part number to specify these devices.

## SWITCHING CHARACTERISTICS $\quad\left(T_{A}=25^{\circ} \mathrm{C}\right.$ unless otherwise specified)

| Symbol | Parameter | 2N5114 | 2N5115 | 2N5116 | JAN TX 2N5114 | JAN TX 2N55115 | JAN TX 2N5116 | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Max | Max | Max | Max | Max | Max |  |
| $\mathrm{t}_{\mathrm{d}}$ | Turn-ON Delay Time | 6 | 10 | 12 | 6 | 10 | 25 | ns |
| $\mathrm{tr}_{\mathrm{r}}$ | Rise Time (Note 2) | 10 | 20 | 30 | 10 | 20 | 35 |  |
| $t_{\text {off }}$ | Turn-OFF Delay Time (Note 2) | 6 | 8 | 10 | 6 | 8 | 20 |  |
| $\mathrm{t}_{\mathrm{f}}$ | Fall Time (Note 2) | 15 | 30 | 50 | 15 | 30 | 60 |  |

ELECTRICAL CHARACTERISTICS $\quad\left(T_{A}=25^{\circ} \mathrm{C}\right.$ unless otherwise specified)

| Symbol | Parameter | Test Conditions | 2N5114 |  | 2N5115 |  | 2N5116 |  | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Min | Max | Min | Max | Min | Max |  |
| BVGSS | Gate-Source Breakdown Voltage | $\mathrm{I}_{\mathrm{G}}=1 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{DS}}=0$ | 30 |  | 30 |  | 30 |  | V |
| IGSS | Gate Reverse Current | $\mathrm{V}_{\mathrm{GS}}=20 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0$ |  | 500 |  | 500 |  | 500 | pA |
|  |  | $\mathrm{T}_{\mathrm{A}}=150^{\circ} \mathrm{C}$ |  | 1.0 |  | 1.0 |  | 1.0 | $\mu \mathrm{A}$ |
| ID(off) | Drain Cutoff Current | $\begin{aligned} & V_{\mathrm{DS}}=-15 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{GS}}=12 \mathrm{~V}(2 N 5114) \\ & \mathrm{V}_{\mathrm{GS}}=7 \mathrm{~V}(2 N 5115) \\ & \mathrm{V}_{\mathrm{GS}}=5 \mathrm{~V}(2 N 5116) \end{aligned}$ |  | -500 |  | -500 |  | -500 | pA |
|  |  |  |  | -1.0 |  | -1.0 |  | -1.0 | $\mu \mathrm{A}$ |
| $V_{P}$ | Gate-Source Pinch-Off Voltage | $\mathrm{V}_{\mathrm{DS}}=-15 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=-1 \mathrm{nA}$ | 5 | 10 | 3 | 6 | 1 | 4 | V |

[^401]ELECTRICAL CHARACTERISTICS $\quad \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise specified）（Continued）

| Symbol | Parameter | Test Conditions | 2N5114 |  | 2N5115 |  | 2N5116 |  | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Min | Max | Min | Max | Min | Max |  |
| IDSs | Drain Current at Zero Gate Voltage （Note 1） | $\begin{array}{\|l} \hline \mathrm{V}_{\mathrm{GS}}=0 \\ \mathrm{~V}_{\mathrm{DS}}=-18 \mathrm{~V}(2 \mathrm{~N} 5114) \\ \mathrm{V}_{\mathrm{DS}}=-15 \mathrm{~V}(2 \mathrm{~N} 5115) \\ \mathrm{V}_{\mathrm{DS}}=-15 \mathrm{~V}(2 \mathrm{~N} 5116) \\ \hline \end{array}$ | －30 | －90 | －15 | －60 | －5 | －25 | mA |
| $\mathrm{V}_{\mathrm{GS}(\mathrm{f})}$ | Forward Gate－Source Voltage | $\mathrm{I}_{\mathrm{G}}=-1 \mathrm{~mA}, \mathrm{~V}_{\mathrm{DS}}=0$ |  | －1 |  | －1 |  | －1 |  |
| $\mathrm{V}_{\mathrm{DS} \text {（on）}}$ | Drain－Source ON Voltage | $\begin{array}{\|l} \hline \mathrm{V}_{\mathrm{GS}}=0 \\ \mathrm{I}_{\mathrm{D}}=-15 \mathrm{~mA}(2 \mathrm{~N} 5114) \\ \mathrm{I}_{\mathrm{D}}=-7 \mathrm{~mA}(2 \mathrm{~N} 5115) \\ \mathrm{I}_{\mathrm{D}}=-3 \mathrm{~mA}(2 \mathrm{~N} 5116) \\ \hline \end{array}$ |  | －1．3 |  | －0．8 |  | －0．6 | V |
| rbS（on） | Static Drain－Source ON Resistance | $\mathrm{V}_{\mathrm{GS}}=0, \mathrm{I}_{\mathrm{D}}=-1 \mathrm{~mA}$ |  | 75 |  | 100 |  | 150 |  |
| rds（on） | Small－Signal Drain－Source ON Resistance <br> Jan TX only | $V_{G S}=0, l_{D}=0, f=1 \mathrm{kHz}$ |  | 75 |  | 100 |  | 150 | $\Omega$ |
| $\mathrm{C}_{\text {iss }}$ | Common－Source Input <br> Capacitance（Note 2）  <br>   <br>   <br>   <br>   <br>   | $\mathrm{V}_{\mathrm{DS}}=-15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0, \mathrm{f}=1 \mathrm{mHz}$ |  | 25 |  | 25 |  | 25 |  |
| Crss | Common－Source Reverse Transfer Capacitance（Note 2） | $\begin{array}{\|l} \hline \mathrm{V}_{\mathrm{DS}}=0 \\ \mathrm{~V}_{\mathrm{GS}}=12 \mathrm{~V}(2 \mathrm{~N} 5114) \\ \mathrm{V}_{\mathrm{GS}}=7 \mathrm{~V}(2 \mathrm{~N} 5115) \\ \mathrm{V}_{\mathrm{GS}}=5 \mathrm{~V}(2 \mathrm{~N} 5116) \\ \mathrm{f}=1 \mathrm{mHz} \\ \hline \end{array}$ |  | 7 |  | 7 |  | $\begin{gathered} \mathrm{pF} \\ 7 \end{gathered}$ |  |

NOTES：1．Pulse test；duration $=2 \mathrm{~ms}$ ．
2．For design reference only，not $100 \%$ tested．


## TYPICAL PERFORMANCE CHARACTERISTICS





[^402]FEATURES

- High Gain at Low Current
- Low Output Capacitance
- Good hfe Match
- Tight $\mathrm{V}_{\mathrm{BE}}$ Tracking
- Dielectrically Isolated Matched Pairs for Differential Amplifiers


## PIN CONFIGURATION



| ABSOLUTE MAXIMUM RATINGS |  |  |
| :---: | :---: | :---: |
| ( $T_{A}=25^{\circ} \mathrm{C}$ unless otherwise noted) Collector-Base or Collector-Emitter |  |  |
|  |  |  |
|  |  |  |
| Emitter-Base Voltage (Notes 1 and 2) |  |  |
| Collector-Collector Voltage |  |  |
| Collector Current (Note 1) |  |  |
| Storage Temperature Range |  |  |
| Operating Temperature Range |  |  |
|  |  |  |
|  | ON | BOTH SIDES |
| Power Dissipation | 25 | 00mW |
| Derate above $25^{\circ} \mathrm{C}$ |  |  |

NOTE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

## ORDERING INFORMATION



ELECTRICAL CHARACTERISTICS $\quad\left(T_{A}=25^{\circ} \mathrm{C}\right.$ unless otherwise specified)

| Symbol |  | Test Condilions |  | $\begin{aligned} & \text { 2N5117 } \\ & \text { 2N5118 } \end{aligned}$ |  | 2N5119 |  | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Min | Max | Min | Max |  |
| $\mathrm{h}_{\text {FE }}$ | DC Current Gain | $\mathrm{I}_{\mathrm{C}}=10 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{CE}}=5.0 \mathrm{~V}$ |  | 100 | 300 | 50 |  |  |
|  |  | $\mathrm{I}_{\mathrm{C}}=500 \mu \mathrm{~A}, \mathrm{~V}_{\text {CE }}=5.0 \mathrm{~V}$ |  | 100 |  | 50 |  |  |
|  |  | $\mathrm{I}_{\mathrm{C}}=10 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{CE}}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$ |  | 30 |  | 20 |  |  |
| ${ }^{\text {cbo }}$ | Collector Cutoff-Current | $\mathrm{I}_{\mathrm{E}}=0, \mathrm{~V}_{\mathrm{CB}}=30 \mathrm{~V}$ |  |  | 0.1 |  | 0.1 | nA |
|  |  |  | $T_{A}=150^{\circ} \mathrm{C}$ |  | 0.1 |  | 0.1 | $\mu \mathrm{A}$ |
| IEBO | Emitter Cutoff Current | $\mathrm{I}_{\mathrm{C}}=0, \mathrm{~V}_{\mathrm{EB}}=5.0 \mathrm{~V}$ |  |  | 0.1 |  | 0.1 | nA |
| $\mathrm{l}_{\mathrm{C}_{1}-\mathrm{C}_{2}}$ | Collector-Collector Leakage | $\mathrm{V}_{\mathrm{CC}}=100 \mathrm{~V}$ |  |  | 5.0 |  | 5.0 | pA |
| GBW | Current Gain Bandwith Product (Note 4) | $\mathrm{I}_{\mathrm{C}}=500 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{CE}}=10 \mathrm{~V}$ |  | 100 |  | 100 |  | MHz |
| $\mathrm{C}_{\text {ob }}$ | Output Capacitance (Note 4) | $\mathrm{I}_{\mathrm{E}}=0, \mathrm{~V}_{C B}=5.0 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$ |  |  | 0.8 |  | 0.8 |  |
| $\mathrm{C}_{\text {te }}$ | Emitter Transition Capacitance (Note 4) | $\mathrm{I}_{\mathrm{C}}=0, \mathrm{~V}_{\text {EB }}=0.5 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$ |  |  | 1.0 |  | 1.0 | pF |
| $\mathrm{C}_{\mathrm{C}_{1}-\mathrm{C}_{2}}$ | Collector-Collector Capacitance (Note 4) | $\mathrm{V}_{\text {CC }}=0, f=1 \mathrm{MHz}$ |  |  | 0.8 |  | 0.8 |  |
| $\mathrm{V}_{\text {CEO(sust) }}$ | Collector-Emitter Sustaining Voltage | $\mathrm{I}_{\mathrm{C}}=1.0 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}}=0$ |  | 45 |  | 45 |  | V |
| NF | Narrow Band Noise Figure (Note 4) | $\begin{aligned} & \mathrm{IC}_{\mathrm{C}}=10 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{CE}}=5.0 \mathrm{~V} \\ & \mathrm{BW}=200 \mathrm{~Hz} \end{aligned}$ | $\mathrm{f}=1 \mathrm{kHz}, \mathrm{R}_{\mathrm{G}}=10 \mathrm{k} \Omega$ |  | 4.0 |  | 4.0 | dB |
| $\mathrm{BV}_{\mathrm{CBO}}$ | Collector Base Breakdown Voltage | $I_{C}=10 \mu A, I_{E}=0$ |  | 45 |  | 45 |  | V |
| $\mathrm{BV}_{\text {EBO }}$ | Emitter Base Breakdown Voltage | $I_{E}=10 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{C}}=0$ |  | 7.0 |  | 7.0 |  | V |

MATCHING CHARACTERISTICS $\quad\left(T_{A}=25^{\circ} \mathrm{C}\right.$ unless otherwise specified)

| Symbol | Parameter | Test Conditions |  | 2N5117 |  | 2N5118 |  | 2N5119 |  | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Min | Max | Min | Max | Min | Max |  |
| $\mathrm{hFE}_{1} / \mathrm{h}_{\mathrm{FE}_{2}}$ | DC Current Gain Ratio (Note 3) | $I_{C}=10 \mu \mathrm{~A}$ to $500 \mu \mathrm{~A}, \mathrm{~V}_{C}$ | CE $=5 \mathrm{~V}$ | 0.9 | 1.0 |  |  |  |  |  |
|  |  | $\mathrm{I}^{\prime}=10 \mu \mathrm{~A}, \mathrm{~V}_{C E}=5.0 \mathrm{~V}$ |  |  |  | 0.85 | 1.0 | 0.8 | 1.0 |  |
| $V_{B E} \cdot V_{B E}$ | Base-Emitter Voltage Differential | $I^{\prime}=10 \mu \mathrm{~A}$ to $500 \mu \mathrm{~A}$, | $E=5 \mathrm{~V}$ |  | 3.0 |  |  |  |  | mV |
|  |  | $\mathrm{IC}^{\prime}=10 \mu \mathrm{~A}, \mathrm{~V}_{C E}=5.0 \mathrm{~V}$ |  |  |  |  | 5.0 |  | 5.0 |  |
| $\mathrm{B}_{1}{ }^{-1} \mathrm{~B}_{2}$ | Base Current Differential |  |  |  | 10.0 |  | 15 |  | 40 | nA |
| $\Delta\left(V_{B E_{1}}-V_{B E_{2}}\right) / \Delta T$ | Base Voltage Differential Change with Temperature |  | $\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ |  | 3.0 |  | 5.0 |  | 10 | $\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$ |
| $\Delta\left(\mathrm{B}_{1}{ }^{-1} \mathrm{~B}_{2}\right) / \Delta T$ | Base-Current Differential Change with Temperature |  | $\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ |  | 0.3 |  | 0.5 |  | 1.0 | $n \mathrm{~A} /{ }^{\circ} \mathrm{C}$ |

NOTES: 1. Per transistor.
2. The reverse base-to-emitter voltage must never exceed 7.0 volts and the reverse base-to-emitter current must never exceed $10 \mu \mathrm{~A}$.
3. Lower of two $\mathrm{h}_{\mathrm{FE}}$ readings is defined as $\mathrm{h}_{\mathrm{FE}_{1}}$.
4. For design reference only, not $100 \%$ tested.

## PIN CONFIGURATION



6037


|  | One Side | Both Sides |
| :---: | :---: | :---: |
| Power Dissipation $\left(\mathrm{T}_{\mathrm{A}}=85^{\circ} \mathrm{C}\right) \ldots$ | 250 mW | 500 mW |
| Derating ..................... $2.6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ | $4.3 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ |  |

NOTE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

## ORDERING INFORMATION

\section*{| TO-71 |
| :---: |
| 2N5196 |
| 2N5197 |
| 2N5198 |
| 2N5199 | <br> ORDERING INFORMATON}

2N5196-2N5199


0224-1

ELECTRICAL CHARACTERISTICS $\quad\left(T_{A}=25^{\circ} \mathrm{C}\right.$ unless otherwise specified) (Continued)

| Symbol | Parameter | Test Conditions |  | 2N5196 |  | 2N5197 |  | 2N5198 |  | 2N5199 |  | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Min | Max | Min | Max | Min | Max | Min | Max |  |
| $\mid \mathrm{IG} 1^{-1} \mathrm{IG} 2$ \| | Differential Gate Current | $\begin{aligned} & V_{D G}=20 \mathrm{~V}, \\ & T_{A}=125^{\circ} \mathrm{C} \end{aligned}$ | $I_{D}=200 \mu \mathrm{~A}$ |  | 5 |  | 5 |  | 5 |  | 5 | nA |
| loss1/loss2 | Saturation Drain Current Ratio (Note 2) | $V_{D S}=20 \mathrm{~V}$, | $V_{G S}=0 \mathrm{~V}$ | 0.95 | 1 | 0.95 | 1 | 0.95 | 1 | 0.95 | 1 |  |
| $\mathrm{g}_{\mathrm{fs} 1} / \mathrm{g}_{\mathrm{fs} 2}$ | Transconductance Ratio (Note 2) | $\begin{aligned} & V_{D G}=20 V \\ & I_{D}=200 \mu \mathrm{~A} \end{aligned}$ | $\mathrm{f}=1 \mathrm{kHz}$ | 0.97 | 1 | 0.97 | 1 | 0.95 | 1 | 0.95 | 1 |  |
| $V_{G S 1}-V_{G S 2} \mid$ | Differential Gate-Source Voltage |  |  |  | 5 |  | 5 |  | 10 |  | 15 | mV |
| $\frac{\Delta\left\|V_{G S 1}=V_{G S 2}\right\|}{\Delta T}$ | Gate-Source Differential Voltage Change with Temperature (Note 3) |  | $\begin{aligned} & T_{A}=25^{\circ} \mathrm{C} \\ & T_{B}=125^{\circ} \mathrm{C} \end{aligned}$ |  | 5 |  | 10 |  | 20 |  | 40 | $\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$ |
|  |  |  | $\begin{aligned} & T_{A}=-55^{\circ} \mathrm{C} \\ & T_{B}=25^{\circ} \mathrm{C} \end{aligned}$ |  | 5 |  | 10 |  | 20 |  | 40 |  |
| $\left\|g_{o s 1}-g_{o s 2}\right\|$ | Differential Output Conductance |  | $\mathrm{f}=1 \mathrm{kHz}$ |  | 1 |  | 1 |  | 1 |  | 1 | $\mu \mathrm{S}$ |

NOTES: 1. Per transistor.
2. Pulse test required, pulsewidth $=300 \mu \mathrm{~s}$, duty cycle $<3 \%$.
3. Measured at endpoints $T_{A}$ and $T_{B}$.
4. For design reference only, not $100 \%$ tested.

## FEATURES

- $G_{p s}=15 \mathrm{~dB}$ Minimum (Common Gate) at $\mathbf{4 5 0 M H z}$
- Low Nolse
- Low Capacitance

PIN CONFIGURATION



#### Abstract

ABSOLUTE MAXIMUM RATINGS ( $T_{A}=25^{\circ} \mathrm{C}$ unless otherwise noted) Drain-Gate Voltage Drain-Source Voltage ..................................... 25V 25 Continuous Forward Gate Current .................. 10mA Storage Temperature Range...........$-65^{\circ} \mathrm{C}$ to $+200^{\circ} \mathrm{C}$ Operating Temperature Range $\ldots \ldots . .-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ Lead Temperature (Soldering, 10sec) ............ $+300^{\circ} \mathrm{C}$ Power Dissipation ............................... . 300mW Derate above $25^{\circ} \mathrm{C} . . . . . . . . . . . . . . . . . . . . . .2 .4 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ NOTE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.


## ORDERING INFORMATION

| TO-72 |
| :---: |
| 2N5397 |
| 2N5398 |

## ELECTRICAL CHARACTERISTICS $\left(T_{A}=25^{\circ} \mathrm{C}\right.$ uniess otherwise specified)

| Symbol | Parameter | Test Conditions |  | 2N5397 |  | 2N5398 |  | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Min | Max | Min | Max |  |
| IGSS | Gate Reverse Current | $V_{G S}=-15 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0$ |  |  | -0.1 |  | 0.1 | nA |
|  |  |  | $\mathrm{T}_{\mathrm{A}}=150^{\circ} \mathrm{C}$ |  | -0.1 |  | -0.1 | $\mu \mathrm{A}$ |
| BVGSS | Gate-Source Breakdown Voltage | $V_{D S}=0, I_{G}=-1 \mu \mathrm{~A}$ |  | -25 |  | -25 |  | V |
| $V_{G S}$ (off) | Gate-Source Cutoff Voltage | $V_{D S}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=1 \mathrm{nA}$ |  | -1.0 | $-6.0$ | -1.0 | -6.0 |  |
| IDSs | Saturation Drain Current (Note 1) | $V_{D S}=10 \mathrm{~V}, \mathrm{~V}_{\text {DS }}=0$ |  | 10. | 30 | 5 | 40 | mA |
| $\mathrm{V}_{\mathrm{GS}(\mathrm{f})}$ | Gate-Source Forward Voltage | $\mathrm{V}_{\mathrm{DS}}=0, \mathrm{I}_{\mathrm{G}}=1 \mathrm{~mA}$ |  |  | 1 |  | 1 | V |
| $\mathrm{g}_{\text {f }}$ | Common-Source Forward Transconductance (Note 1) | $V_{D S}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=10 \mathrm{~mA}$ | $\mathrm{f}=1 \mathrm{kHz}$ | 6000 | 10,000 |  |  |  |
|  |  | $V_{D S}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$ |  |  |  | 5500 | 10,000 | $\mu s$ |
| goss | Common-Source Output Conductance | $\mathrm{V}_{\mathrm{DS}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=10 \mathrm{~mA}$ |  |  | 200 |  |  |  |
|  |  | $V_{D S}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$ |  |  |  |  | 400 |  |
| $\mathrm{C}_{\text {rss }}$ | Common-Source Reverse Transfer Capacitance (Note 2) | $V_{D S}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=10 \mathrm{~mA}$ | $f=1 \mathrm{MHz}$ |  | 1.2 |  |  |  |
|  |  | $\mathrm{V}_{\mathrm{DS}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$ |  |  |  |  | 1.3 | pF |
| $\mathrm{C}_{\text {iss }}$ | Common-Source Input Capacitance (Note 2) | $V_{D G}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=10 \mathrm{~mA}$ |  |  | 5.0 |  |  |  |
|  |  | $V_{D S}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$ |  |  |  |  | 5.5 |  |

[^403]ELECTRICAL CHARACTERISTICS (Continued) ( $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise specified)

| Symbol | Parameter | Test Conditions |  | 2N5397 |  | 2N5398 |  | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Min | Max | Min | Max |  |
| giss | Common-Source Input Conductance (Note 2) | $V_{D G}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=10 \mathrm{~mA}$ | $\mathrm{f}=450 \mathrm{MHz}$ |  | 2000 |  |  | $\mu \mathrm{s}$ |
|  |  | $\mathrm{V}_{\mathrm{DG}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$ |  |  |  |  | 3000 |  |
| goss | Common-Source Output Conductance (Note 2) | $V_{D G}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=10 \mathrm{~mA}$ |  |  | 400 |  |  |  |
|  |  | $V_{D S}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$ |  |  |  |  | 500 |  |
| $\mathrm{g}_{\text {fs }}$ | Common-Source Forward Transconductance (Note 1, 2) | $\mathrm{V}_{\mathrm{DG}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=10 \mathrm{~mA}$ |  | 5500 | 9000 |  |  |  |
|  |  | $\mathrm{V}_{\mathrm{DS}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$ |  |  |  | 5000 | 10,000 |  |
| $\mathrm{G}_{\mathrm{ps}}$ | Common-Source Power Gain (neutralized) | $\begin{aligned} & V_{D G}=10 \mathrm{~V}, I_{D}=10 \mathrm{~mA} \\ & (\text { Note 2) } \end{aligned}$ |  | 15 |  |  |  | dB |
| NF | Common-Source, Spot Noise Figure (neutralized) |  |  |  | 3.5 |  |  |  |

NOTES: 1. Pulse test duration $=2 \mathrm{~ms}$
2. For design reference only, not $100 \%$ tested.


## ABSOLUTE MAXIMUM RATINGS <br> ( $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ uniess otherwise noted) <br> Gate-Source Voltage .................................... 25 V <br> Gate-Drain Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -25V <br> Gate Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100mA <br> Drain Current ........................................ . . 400mA <br> Storage Temperature Range ........... $-65^{\circ} \mathrm{C}$ to $+200^{\circ} \mathrm{C}$ <br> Operating Temperature Range $. \ldots . . . . .-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ <br> Lead Temperature (Soldering, 10sec) ............. $+300^{\circ} \mathrm{C}$ <br> Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 300mW <br> Derate above $25^{\circ} \mathrm{C} . . . . . . . . . . . . . . . . . . . . . . . . .2 .3 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$

NOTE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

## ORDERING INFORMATION

| TO-52 |
| :---: |
| 2N5432 |
| 2N5433 |
| $2 N 5434$ |

## ELECTRICAL CHARACTERISTICS ( $T_{A}=25^{\circ} \mathrm{C}$ uniess otherwise specified)

| Symbol | Parameter | Test Conditions |  | 2N5432 |  | 2N5433 |  | 2N5434 |  | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Min | Max | Min | Max | Min | Max |  |
| IGSS | Gate Reverse Current | $\mathrm{V}_{\mathrm{GS}}=-15 \mathrm{~V}, \mathrm{~V}$ | S $=0$ |  | -200 |  | -200 |  | -200 | pA |
|  |  |  | $\mathrm{T}_{\mathrm{A}}=150^{\circ} \mathrm{C}$ |  | -200 |  | -200 |  | -200 | nA |
| BVGSS | Gate Source Breakdown Voltage | $\mathrm{I}_{G}=-1 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{DS}}$ | $=0$ | -25 |  | -25 |  | -25 |  | $\checkmark$ |
| $l_{\text {d(off) }}$ | Drain Cutoff Current | $\mathrm{V}_{\mathrm{DS}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=-10 \mathrm{~V}$ |  |  | 200 |  | 200 |  | 200 | pA |
|  |  |  | $\mathrm{T}_{\mathrm{A}}=150^{\circ} \mathrm{C}$ |  | 200 |  | 200 |  | 200 | nA |
| $\mathrm{V}_{\mathrm{GS} \text { (off) }}$ | Gate-Source Cutoff Voltage | $V_{D S}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=3 \mathrm{nA}$ |  | -4 | -10 | -3 | -9 | -1 | -4 | V |
| Ioss | Saturation Drain Current (Note 1) | $\mathrm{V}_{\mathrm{DS}}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$ |  | 150 |  | 100 |  | 30 |  | mA |
| ros(on) | Static Drain-Source ON Resistance | $\mathrm{V}_{\mathrm{GS}}=0, \mathrm{ID}_{\mathrm{D}}=10 \mathrm{~mA}$ |  | 2 | 5 |  | 7 |  | 10 | ohm |
| $\mathrm{V}_{\mathrm{DS} \text { (on) }}$ | Drain-Source ON Voltage |  |  |  | 50 |  | 70 |  | 100 | mV |
| $\mathrm{r}_{\mathrm{ds}(\mathrm{On})}$ | Drain-Source ON Resistance | $\mathrm{V}_{\mathrm{GS}}=0, \mathrm{l}_{\mathrm{D}}=0$ | $\mathrm{f}=1 \mathrm{kHz}$ |  | 5 |  | 7 |  | 10 | ohm |
| $\mathrm{C}_{\text {iss }}$ | Common-Source Input Capacitance (Note 2) | $\begin{aligned} & V_{\mathrm{DS}}=0, \\ & \mathrm{~V}_{\mathrm{GS}}=-10 \mathrm{~V} \end{aligned}$ | $f=1 \mathrm{MHz}$ |  | 30 |  | 30 |  | 30 |  |
| Crss | Common-Source Reverse Transfer Capacitance (Note 2) |  |  |  | 15 |  | 15 |  | 15 | pF |
| $\mathrm{t}_{\text {d }}$ | Turn-ON Delay Time (Note 2) | $\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=1.5 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{GS} \text { (on) }}=0, \\ & \mathrm{~V}_{\mathrm{GS}(\text { off } 1}=-12 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{D}(\mathrm{on})}=10 \mathrm{~mA} \end{aligned}$ |  |  | 4 |  | 4 |  | 4 | ns |
| $t_{r}$ | Rise Time (Note 2) |  |  |  | 1 |  | 1 |  | 1 |  |
| $\mathrm{t}_{\text {fff }}$ | Turn-OFF Delay Time (Note 2) |  |  |  | 6 |  | 6 |  | 6 |  |
| $\mathrm{t}_{\mathrm{f}}$ | Fall Time (Note 2) |  |  |  | 30 |  | 30 |  | 30 |  |

NOTES: 1. Pulse test required, pulsewidth $300 \mu \mathrm{~s}$, duty cycle $\leq 3 \%$.
2. For design reference only, not $100 \%$ tested.

[^404]

| Input Pulse |  | Sampling Scope |  |
| :--- | :--- | :--- | :--- |
| Rise Time | 0.25 ns | Rise Time | 0.4 ns |
| Fall Time | 0.75 ns | Input Resistance | $10 \mathrm{M} \Omega$ |
| Pulse Width | 200 ns | Input Capacitance | 1.5 pF |
| Pulse Rate | 550 pps |  |  |

0226-3
Figure 1: Switching Time, Test Circuit

## GENERAL DESCRIPTION

Matched FET pairs for differential amplifiers. This family of general purpose FETs is characterized for low and medium frequency differential amplifier applications requiring low drift and low offset voltage.

## PIN CONFIGURATION



## FEATURES

- Low Offset Voltage
- Low Drift
- Low Capacitance
- Low Output Conductance


## ABSOLUTE MAXIMUM RATINGS

( $T_{A}=25^{\circ} \mathrm{C}$ unless otherwise noted)
Gate-Source or Gate Drain Voltage
(Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 V
Gate Current (Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . 50 mA
Storage Temperature Range ........... $-65^{\circ} \mathrm{C}$ to $+200^{\circ} \mathrm{C}$
Operating Temperature Range $\ldots . . . . .-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10sec) ............ $+300^{\circ} \mathrm{C}$

|  | One Side | Both Sides |
| :---: | :---: | :---: |
| Power Dissipation $\left(\mathrm{T}_{\mathrm{C}}=85^{\circ} \mathrm{C}\right) \ldots$ | 250 mW | 500 mW |
| Derate above $25^{\circ} \mathrm{C} \ldots \ldots \ldots .$. | $2.9 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ | $4.3 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ |

NOTE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

## ORDERING INFORMATION

| TO-71 |
| :---: |
| 2N5452 |
| 2N5453 |
| 2N5454 |

## ELECTRICAL CHARACTERISTICS $\quad\left(T_{A}=25^{\circ} \mathrm{C}\right.$ unless otherwise specified)

| Symbol | Parameter | Test Conditions | 2N5452 |  | 2N5453 |  | 2N5454 |  | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Min | Max | Min | Max | Min | Max |  |
| IGSS | Gate Reverse Current | $\mathrm{V}_{\mathrm{GS}}=-30 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0$ |  | -100 |  | -100 |  | -100 | pA |
|  | $\mathrm{T}_{\mathrm{A}}=150^{\circ} \mathrm{C}$ |  |  | $-200$ |  | $-200$ |  | -200 | nA |
| $B V_{G S S}$ | Gate-Source Breakdown Voltage | $\mathrm{V}_{\mathrm{DS}}=0, \mathrm{I}_{\mathrm{G}}=-1 \mu \mathrm{~A}$ | -50 |  | -50 |  | $-50$ |  |  |
| $V_{G S}$ (off) | Gate-Source Cutoff Voltage | $\mathrm{V}_{\mathrm{DS}}=20 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=1 \mathrm{nA}$ | -1 | $-4.5$ | -1 | -4.5 | -1 | -4.5 | V |
| $\mathrm{V}_{\mathrm{GS}}$ | Gate-Source Voltage | $V_{D S}=20 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=50 \mu \mathrm{~A}$ | -0.2 | -4.2 | -0.2 | -4.2 | -0.2 | -4.2 |  |
| $\mathrm{V}_{\mathrm{GS} \text { (f) }}$ | Gate-Source Forward Voltage | $\mathrm{V}_{\mathrm{DS}}=0, \mathrm{I}_{\mathrm{G}}=1 \mathrm{~mA}$ |  | 2 |  | 2 |  | 2 |  |
| IDSS | Saturation Drain Current | $\mathrm{V}_{\mathrm{DS}}=20 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$ | 0.5 | 5.0 | 0.5 | 5.0 | 0.5 | 5.0 | mA |

[^405]
## ELECTRICAL CHARACTERISTICS (Continued) $\left(T_{A}=25^{\circ} \mathrm{C}\right.$ unless otherwise specified)

| Symbol | Parameter | Test Conditions |  | 2N5452 |  | 2N5453 |  | 2N5454 |  | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Min | Max | Min | Max | Min | Max |  |
| $\mathrm{g}_{\mathrm{s}}$ | Common-Source Forward Transconductance | $V_{D S}=20 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$ | $f=1 \mathrm{kHz}$ | 1000 | 3000 | 1000 | 3000 | 1000 | 3000 |  |
|  |  |  | $\mathrm{f}=100 \mathrm{MHz}$ | 1000 |  | 1000 |  | 1000 |  |  |
| gos | Common-Source Output Conductance |  | $\mathrm{f}=1 \mathrm{kHz}$ |  | 3.0 |  | 3.0 |  | 3.0 |  |
|  |  | $V_{D S}=20 \mathrm{~V}, I_{D}=200 \mu \mathrm{~A}$ |  |  | 1.0 |  | 1.0 |  | 1.0 |  |
| $\mathrm{C}_{\text {iss }}$ | Common-Source Input Capacitance (Note 2) | $\mathrm{V}_{\mathrm{DS}}=20 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$ | $f=1 \mathrm{MHz}$ |  | 4.0 |  | 4.0 |  | 4.0 |  |
| Crss | Common-Source Reverse Transfer Capacitance (Note 2) |  |  |  | 1.2 |  | 1.2 |  | 1.2 | pF |
| $\mathrm{C}_{\text {dgo }}$ | Drain-Gate Capacitance (Note 2) | $V_{D G}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=0$ |  |  | 1.5 |  | 1.5 |  | 1.5 |  |
| $\bar{e}_{n}$ | Equivalent Short Circuit Input Noise Voltage | $\mathrm{V}_{\mathrm{DS}}=20 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$ | $\mathrm{f}=1 \mathrm{kHz}$ |  | 20 |  | 20 |  | 20 | $\frac{n V}{\sqrt{H z}}$ |
| NF | Common-Source Spot Noise Figure (Note 2) | $\begin{aligned} & V_{D S}=20 \mathrm{~V}, V_{G S}=0 \\ & R_{G}=10 \mathrm{M} \Omega \\ & \hline \end{aligned}$ | $\mathrm{f}=100 \mathrm{~Hz}$ |  | 0.5 |  | 0.5 |  | 0.5 | dB |
| $\mathrm{l}_{\text {DSS } 1 / I_{\text {DSS2 }}}$ | Drain Saturation Current Ratio | $\mathrm{V}_{\mathrm{DS}}=20 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$ |  | 0.95 | 1.0 | 0.95 | 1.0 | 0.95 | 1.0 |  |
| $\left\|\mathrm{V}_{\mathrm{GS} 1} \mathrm{~V}_{\mathrm{GS} 2}\right\|$ | Differential Gate-Source Voltage | $V_{D S}=20 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=200 \mu \mathrm{~A}$ |  |  | 5.0 |  | 10.0 |  | 15.0 |  |
| $\frac{\Delta\left\|\mathrm{V}_{\mathrm{GS} 1} \cdot \mathrm{~V}_{\mathrm{GS} 2}\right\|}{\Delta \mathrm{T}}$ | Gate-Source Voltage Differential Change with Temperature |  | T $=25^{\circ} \mathrm{C}$ to $-55^{\circ} \mathrm{C}$ |  | 0.4 |  | 0.8 |  | 2.0 |  |
|  |  |  | $\begin{aligned} & T=25^{\circ} \mathrm{C} \text { to } \\ & +125^{\circ} \mathrm{C} \end{aligned}$ |  | 0.5 |  | 1.0 |  | 2.5 | mV |
| $\mathrm{g}_{\mathrm{fs} 1} / \mathrm{g}_{\mathrm{fs} 2}$ | Transconductance Ratio |  | $\mathrm{f}=1 \mathrm{kHz}$ | 0.97 | 1.0 | 0.97 | 1.0 | 0.95 | 1.0 |  |
| $\left\|g_{o s 1}-g_{\text {os2 }}\right\|$ | Differential Output Conductance |  |  |  | 0.25 |  | 0.25 |  | 0.25 | $\mu \mathrm{s}$ |

NOTES: 1. Per transistor.
2. For design reference only, not $100 \%$ tested.

## PIN CONFIGURATION

5010
ABSOLUTE MAXIMUM RATINGS( $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted)
Drain-Gate Voltage ..... 25V
Drain-Source Voltage ..... 25V
Continuous Forward Gate Current ..... 10 mA
Storage Temperature Range

$\qquad$
$65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$Operating Temperature Range $\ldots \ldots . .-55^{\circ} \mathrm{C}$ to $+135^{\circ} \mathrm{C}$Lead Temperature (Soldering, 10sec) ............ $+300^{\circ} \mathrm{C}$Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 310mWDerate above $25^{\circ} \mathrm{C}$$2.82 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
NOTE: Stresses above those listed under "Absolute Maximum Ratings"may cause permanent damage to the device. These are stress ratings onlyand functional operation of the device at these or any other conditionsabove those indicated in the operational sections of the specifications is notimplied. Exposure to absolute maximum rating conditions for extended peri-ods may affect device reliability.

## ORDERING INFORMATION

| TO-92 |
| :---: |
| 2N5457 |
| 2N5458 |
| 2N5459 |

## ELECTRICAL CHARACTERISTICS ( $T_{A}=25^{\circ} \mathrm{C}$ unless otherwise specified)

| Symbol | Parameter |  | Test Conditions | Min | Max | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{BV}_{\mathrm{GSS}}$ | Gate-Source Breakdown Voltage |  | $\mathrm{I}_{\mathrm{G}}=-10 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{DS}}=0$ | -25 |  | V |
| $\mathrm{I}_{\text {GSS }}$ | Gate Reverse Current |  | $\mathrm{V}_{\mathrm{GS}}=-15 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0$ |  | -1.0 | $n A$ |
|  |  |  | $\mathrm{V}_{\mathrm{GS}}=-15 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0, \mathrm{~T}_{\mathrm{A}}=100^{\circ} \mathrm{C}$ |  | -200 |  |
| $\mathrm{V}_{\mathrm{GS} \text { (off) }}$ | Gate-Source Cutoff Voltage | 2N5457 | $V_{D S}=15 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=10 \mathrm{nA}$ | -0.5 | -6.0 | V |
|  |  | 2N5458 |  | -1.0 | -7.0 |  |
|  |  | 2N5459 |  | -2.0 | -8.0 |  |
| $V_{G S}$ | Gate-Source Voltage | 2N5457 | $\begin{aligned} & V_{D S}=15 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=100 \mu \mathrm{~A} \\ & \mathrm{~V}_{D S}=15 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=200 \mu \mathrm{~A} \\ & \mathrm{~V}_{\mathrm{DS}}=15 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=400 \mu \mathrm{~A} \end{aligned}$ |  |  | V |
|  |  | 2N5458 |  |  |  |  |
|  |  | 2N5459 |  |  |  |  |
| IDSS | Zero-Gate-Voltage Drain Current (Note 1) | 2N5457 | $V_{D S}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$ | 1.0 | 5.0 | mA |
|  |  | 2N5458 |  | 2.0 | 9.0 |  |
|  |  | 2N5459 |  | 4.0 | 16 |  |
| $\left\|y_{\text {fs }}\right\|$ | Forward Transfer Admittance | $2 N 5457$ | $\mathrm{V}_{\mathrm{DS}}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0, \mathrm{f}=1 \mathrm{kHz}$ | 1000 | 5000 | $\mu s$ |
|  |  | 2N5458 |  | 1500 | 5500 |  |
|  |  | 2N5459 |  | 2000 | 6000 |  |
| \| yos ${ }^{\text {\| }}$ | Output Admittance |  | $\mathrm{V}_{\mathrm{DS}}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0, f=1 \mathrm{kHz}$ |  | 50 | $\mu \mathrm{s}$ |
| $\mathrm{C}_{\text {iss }}$ | Input Capacitance (Note 2) |  | $\mathrm{V}_{\mathrm{DS}}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0, \mathrm{f}=1 \mathrm{MHz}$ |  | 7.0 | pF |
| $\mathrm{C}_{\text {rss }}$ | Reverse Transfer Capacitance (Note 2) |  | $V_{\text {DS }}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0, f=1 \mathrm{MHz}$ |  | 3.0 | pF |
| NF | Noise Figure (Note 2) |  | $\begin{aligned} & V_{D S}=15 \mathrm{~V}, V_{G S}=0, R_{G}=1 \mathrm{MHz} \\ & B W=1 \mathrm{~Hz}, f=1 \mathrm{kHz} \end{aligned}$ |  | 3.0 | dB |

NOTES: 1. Pulse test required. PW $\leq 630 \mathrm{~ms}$, duty cycle $\leq 10 \%$
2. For design reference only, not $100 \%$ tested.

[^406]
## PIN CONFIGURATION



ORDERING INFORMATION


## ABSOLUTE MAXIMUM RATINGS

( $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted)
Drain-Gate or Source-Gate Voltage
2N5460-2N5462 ................................... . . 40 V

2N5463 - 2N5465 .................................... . . . 60 V
Gate Current . .......................................... . . 10 mA
Storage Temperature Range ........... $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Operating Temperature Range ......... $-55^{\circ} \mathrm{C}$ to $+135^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10sec) ............. $+300^{\circ} \mathrm{C}$
Power Dissipation ..................................... 310 mW
Derate above $25^{\circ} \mathrm{C} . . . . . . . . . . . . . . . . . . . . . . .2 .82 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
NOTE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS $\left(T_{A}=25^{\circ} \mathrm{C}\right.$ unless otherwise specified)

| Symbol | Parameter |  | Test Cond | ditions | Min | Max | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| BVGSS | Gate-Source Breakdown Voltage | 2N5460, 2N5461, 2N5462 | $\mathrm{I}_{\mathrm{G}}=10 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{DS}}=0$ |  | 40 |  | V |
|  |  | 2N5463, 2N5464, 2N5465 |  |  | 60 |  |  |
| $V_{G S}(\mathrm{off})$ | Gate-Source Cutoff Voltage | 2N5460, 2N5463 | $V_{D S}=-15 \mathrm{~V}, I_{D}=1.0 \mu \mathrm{~A}$ |  | 0.75 | 6.0 | V |
|  |  | 2N5461, 2N5464 |  |  | 1.0 | 7.5 |  |
|  |  | 2N5462, 2N5465 |  |  | 1.8 | 9.0 |  |
| IGSS | Gate Reverse Current | 2N5460, 2N5461, 2N5462 | $V_{D S}=0$ | $\mathrm{V}_{\mathrm{GS}}=20 \mathrm{~V}$ |  | 5.0 | nA |
|  |  | 2N5463, 2N5464, 2N5465 |  | $\mathrm{V}_{\mathrm{GS}}=30 \mathrm{~V}$ |  | 5.0 |  |
|  |  | 2N5460, 2N5461, 2N5462 | $\mathrm{T}_{\mathrm{A}}=100^{\circ} \mathrm{C}$ | $\mathrm{V}_{\mathrm{GS}}=20 \mathrm{~V}$ |  | 1.0 | $\mu \mathrm{A}$ |
|  |  | 2N5463, 2N5464, 2N5465 |  | $\mathrm{V}_{\mathrm{GS}}=30 \mathrm{~V}$ |  | 1.0 |  |
| IDSS | Zero-Gate Voltage Drain Current | 2N5460, 2N5463 | $V_{D S}=-15 \mathrm{~V}$ | $\mathrm{V}_{\mathrm{GS}}=0$ | -1.0 | $-5.0$ | mA |
|  |  | 2N5461, 2N5464 |  |  | -2.0 | -9.0 |  |
|  |  | 2N5462, 2N5465 |  |  | -4.0 | -16 |  |
| $V_{G S}$ | Gate-Source Voltage | 2N5460, 2N5463 |  | $\mathrm{I}_{\mathrm{D}}=0.1 \mathrm{~mA}$ | 0.5 | 4.0 | V |
|  |  | 2N5461, 2N5464 |  | $\mathrm{I}_{\mathrm{D}}=-0.2 \mathrm{~mA}$ | 0.8 | 4.5 |  |
|  |  | 2N5462, 2N5465 |  | $\mathrm{I}_{\mathrm{D}}=-0.4 \mathrm{~mA}$ | 1.5 | 6.0 |  |

ELECTRICAL CHARACTERISTICS (Continued) $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise specified)

| Symbol | Parameter |  | Test Conditions |  |  | Min | Max | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{g}_{\mathrm{s}}$ | Forward Transadmittance | 2N5460, 2N5463 | $\begin{aligned} & V_{D S}=15 \mathrm{~V} \\ & V_{G S}=0 \mathrm{~V} \end{aligned}$ | $\mathrm{f}=1.0 \mathrm{kHz}$ |  | 1000 | 4000 |  |
|  |  | 2N5461, 2N5464 |  |  |  | 1500 | 5000 | $\mu \mathrm{S}$ |
|  |  | 2N5462, 2N5465 |  |  |  | 2000 | 6000 |  |
| gos | Output Admittance |  |  |  |  |  | 75 | $\mu \mathrm{S}$ |
| $\mathrm{C}_{\text {iss }}$ | Input Capacitance (Note 1) |  |  | $\mathrm{f}=1 \mathrm{mHz}$ |  |  | 7 | pF |
| $\mathrm{C}_{\text {rss }}$ | Reverse Transfer Capacitance (Note 1) |  |  |  |  |  | 2.0 | pF |
| NF | Common-Source Noise Figure (Note 1) |  |  | $\mathrm{f}=100 \mathrm{~Hz}$ | $\mathrm{R}_{\mathrm{G}}=1.0 \mathrm{M} \Omega$ |  | 2.5 | dB |
| $\bar{e}_{n}$ | Equivalent Short-Circuit Input Noise Voltage (Note 1) |  |  | $\mathrm{BW}=1.0 \mathrm{~Hz}$ |  |  | 115 | $\frac{n V}{\sqrt{H z}}$ |

NOTE 1: For design reference only, not $100 \%$ tested.

2N5484-2N5486 N-Channel JFET High Frequency Amplifier

FEATURES

- Up to 400 MHz Operation
- Economy Packaging
- $\mathrm{C}_{\text {rss }}<1.0 \mathrm{pF}$

PIN CONFIGURATION



#### Abstract

ABSOLUTE MAXIMUM RATINGS ( $\mathrm{A}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise specified) Drain-Gate Voltage 25 V Source Gate Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 V Drain Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30mA Forward Gate Current . . . . . . . . . . . . . . . . . . . . . . . . . . . 10mA Storage Temperature Range ........... $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ Operating Temperature Range $\ldots \ldots . . .-55^{\circ} \mathrm{C}$ to $+135^{\circ} \mathrm{C}$ Lead Temperature (Soldering, 10sec) ............ $+300^{\circ} \mathrm{C}$ Power Dissipation .................................... . . 310mW Derate above $25^{\circ} \mathrm{C}$ $2.82 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ NOTE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.


## ORDERING INFORMATION

| TO-92 |
| :---: |
| $2 N 5484$ |
| $2 N 5485$ |
| $2 N 5486$ |

ELECTRICAL CHARACTERISTICS ( $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise specified)

| Symbol | Parameter | Test Conditions |  | 2N5484 |  | 2N5485 |  | 2N5486 |  | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Min | Max | Min | Max | Min | Max |  |
| IGSS | Gate Reverse Current | $\mathrm{V}_{\mathrm{GS}}=-20 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0$ |  |  | -1.0 |  | -1.0 |  | -1.0 | nA |
|  |  |  | $\mathrm{T}_{\mathrm{A}}=100^{\circ} \mathrm{C}$ |  | $-200$ |  | -200 | . | -200 |  |
| BV ${ }_{\text {GSS }}$ | Gate-Source Breakdown Voltage | $\mathrm{I}_{\mathrm{G}}=-1 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{DS}}=0$ |  | -25 |  | -25 |  | -25 |  | V |
| $V_{\text {GS }}$ (off) | Gate-Source Cutoff Voltage | $V_{D S}=15 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=10 \mathrm{nA}$ |  | -0.3 | $-3.0$ | -0.5 | -4.0 | -2.0 | -6.0 |  |
| IDSS | Saturation Drain Current | $\mathrm{V}_{\mathrm{DS}}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$ (Note 1) |  | 1.0 | 5.0 | 4.0 | -10 | 8.0 | 20 | mA |
| $\mathrm{g}_{\mathrm{fs}}$ | Common-Source Forward Transconductance | $\mathrm{V}_{\mathrm{DS}}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$ | $f=1 \mathrm{kHz}$ | $3000$ | 6000 | 3500 | 7000 | 4000 | 8000 | $\mu \mathrm{S}$ |
| gos | Common-Source Output Conductance |  |  |  | 50 |  | 60 |  | 75 |  |
| $R \mathrm{e}_{\text {(yfs) }}$ | Common-Source Forward Transconductance (Note 2) |  | $\mathrm{f}=100 \mathrm{MHz}$ | 2500 |  |  |  |  |  |  |
|  |  |  | $f=400 \mathrm{MHz}$ |  |  | 3000 |  | 3500 |  |  |
| $\mathrm{Re}_{(\text {(yos })}$ | Common-Source Output Conductance (Note 2) |  | $f=100 \mathrm{MHz}$ |  | 75 |  |  |  |  |  |
|  |  |  | $f=400 \mathrm{MHz}$ |  | . . |  | 100 |  | 100 |  |
| $R \mathrm{e}_{\text {(yis) }}$ | Common-Source Input Conductance (Note 2) |  | $\mathrm{f}=100 \mathrm{MHz}$ |  | 100 |  |  | . |  |  |
|  |  |  | $f=400 \mathrm{MHz}$ |  | $\cdots$ |  | 1000 |  | 1000 |  |
| $\mathrm{C}_{\text {iss }}$ | Common-Source Input Capacitance (Note 2) |  | $\mathrm{f}=1 \mathrm{MHz}$ |  | 5.0 |  | 5.0 |  | 5.0 | pF |
| $\mathrm{C}_{\text {rss }}$ | Common-Source Reverse Transfer Capacitance (Note 2) |  |  |  | 1.0 |  | 1.0 |  | 1.0 |  |
| Coss | Common-Source Output Capacitance (Note 2) |  |  |  | 2.0 |  | 2.0 |  | 2.0 |  |

[^407]ELECTRICAL CHARACTERISTICS
( $T_{A}=25^{\circ} \mathrm{C}$ unless otherwise specified) (Continued)

| Symbol | Parameter | Test Condilions |  | 2N5484 |  | 2N5485 |  | 2N5486 |  | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Min | Max | Min | Max | Min | Max |  |
| NF | Noise Figure <br> (Note 2) | $\begin{aligned} & V_{D S}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0, \\ & \mathrm{R}_{\mathrm{G}}=1 \mathrm{M} \Omega \end{aligned}$ | $f=1 \mathrm{kHz}$ |  | 2.5 |  | 2.5 |  | 2.5 | dB |
|  |  | $\begin{aligned} & V_{D S}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=1 \mathrm{~mA}, \\ & \mathrm{R}_{\mathrm{G}}=1 \mathrm{k} \Omega \end{aligned}$ | $f=100 \mathrm{MHz}$ |  | 3.0 |  |  |  |  |  |
|  |  | $\begin{aligned} & V_{D S}=15 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=4 \mathrm{~mA}, \\ & R_{G}=1 \mathrm{k} \Omega \end{aligned}$ |  |  |  |  | 2.0 |  | 2.0 |  |
|  |  |  | $\mathrm{f}=400 \mathrm{MHz}$ |  |  |  | 4.0 |  | 4.0 |  |
| $\mathrm{G}_{\mathrm{ps}}$ | Common-Source Power Gain (Note 2) | $\mathrm{V}_{\mathrm{DS}}=15 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=1 \mathrm{~mA}$ | $\mathrm{f}=100 \mathrm{MHz}$ | 16 | 25 |  |  |  |  |  |
|  |  | $V_{D S}=15 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=4 \mathrm{~mA}$ |  |  |  | 18 | 30 | 18 | 30 |  |
|  |  |  | $f=400 \mathrm{MHz}$ |  |  | 10 | 20 | 10 | 20 |  |

[^408] 2. For design reference only, not $100 \%$ tested.

## FEATURES

- Tight Temperature Tracking
- Tight Matching
- High Common Mode Rejection
- Low Noise


## PIN CONFIGURATION



## ABSOLUTE MAXIMUM RATINGS

( $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise specified)
Gate-Source or Gate-Drain Voltage . . . . . . . . . . . . . . . 40 V
Gate Current (Note 1) ................................ . 50mA
Storage Temperature Range . .......... . $-65^{\circ} \mathrm{C}$ to $+200^{\circ} \mathrm{C}$
Operating Temperature Range $\ldots \ldots . . .-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10sec) ............. $+300^{\circ} \mathrm{C}$

|  | One Side | Both Sides |
| :---: | :---: | :---: |
| Power Dissipation $\left(\mathrm{T}_{\mathrm{A}}=85^{\circ} \mathrm{C}\right)$ | 250 mW | 375 mW |
| Derate above $25^{\circ} \mathrm{C} \ldots \ldots$. | $2.0 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ | $3.0 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ |

NOTE: Per transistor.
NOTE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
ORDERING INFORMATION

| TO-72 |
| :---: |
| 2N5515 |
| 2N5516 |
| 2N5517 |
| 2N5518 |
| 2N5519 |
| 2N5520 |
| 2N5521 |
| 2N5522 |
| 2N5523 |
| 2N5524 |

ELECTRICAL CHARACTERISTICS $\quad\left(T_{A}=25^{\circ} \mathrm{C}\right.$ unless otherwise specified)

| Symbol | Parameter | Test Conditions |  | Min | Max | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| IGSS | Gate Reverse Current | $\mathrm{V}_{\mathrm{GS}}=-30 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0$ |  |  | -250 | pA |
|  |  |  | $\mathrm{T}_{\mathrm{A}}=150^{\circ} \mathrm{C}$ |  | -250 | nA |
| $B V_{\text {GSS }}$ | Gate-Source Breakdown Voltage | $\mathrm{I}_{\mathrm{G}}=-1 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{DS}}=0$ |  | -40 |  | V |
| $\mathrm{V}_{\mathrm{P}}$ | Gate-Source Pinch-Off Voltage | $\mathrm{V}_{\mathrm{DS}}=20 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=1 \mathrm{nA}$ |  | -0.7 | -4 |  |
| ldss | Drain Current at Zero Gate Voltage (Note 1) | $\mathrm{V}_{\mathrm{DS}}=20 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$ |  | 0.5 | 7.5 | mA |
| $\mathrm{g}_{\mathrm{fs}}$ | Common-Source Forward Transconductance (Note 1) |  | $\mathrm{f}=1 \mathrm{kHz}$ | 1000 | 4000 | $\mu \mathrm{S}$ |
| goss | Common-Source Output Conductance |  |  |  | 10 |  |
| $\mathrm{C}_{\text {rss }}$ | Common-Source Reverse Transfer Capacitance (Note 3) |  | $f=1 \mathrm{MHz}$ |  | 5 | pF |
| Ciss | Common-Source Input Capacitance (Note 3) |  |  |  | 25 |  |

[^409]ELECTRICAL CHARACTERISTICS (Continued) ( $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise specified)

| Symbol | Parameter |  | Test Conditions |  | Min | Max | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\bar{e}_{n}$ | Equivalent Input Noise Voltage (Note 3) | 2N5515-19 | $V_{D G}=20 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=200 \mu \mathrm{~A}$ | $\mathrm{f}=10 \mathrm{~Hz}$ |  | 30 | $\mathrm{nV} / \sqrt{\mathrm{Hz}}$ |
|  |  | 2N5520-24 |  |  |  | 15 |  |
|  |  | 2N5515-24 |  | $\mathrm{f}=1 \mathrm{kHz}$ |  | 10 |  |
| $I_{G}$ | Gate Current |  |  |  |  | -100 | pA |
|  |  |  | $\mathrm{T}_{\mathrm{A}}=125^{\circ} \mathrm{C}$ |  | -100 | nA |  |
| $V_{G S}$ | Gate Source Voltage |  |  |  | -0.2 | $-3.8$ | V |
| $\mathrm{g}_{\mathrm{fs}}$ | Common-Source Forward Transconductance (Note 1) |  |  | $\mathrm{f}=1 \mathrm{kHz}$ | 500 | 1000 | $\mu \mathrm{S}$ |
| goss | Common-Source Output Conductance |  |  |  |  | 1 | $\mu \mathrm{S}$ |

MATCHING CHARACTERISTICS $\left(T_{A}=25^{\circ} \mathrm{C}\right.$ unless otherwise specified)

| Symbol | Parameter | Test Conditions | 2N5515,20 |  | 2N5516,21 |  | 2N5517,22 |  | 2N5518,23 |  | 2N5519,24 |  | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Min | Max |  |
| IDSS1/ldss2 | Drain Current Ratio at Zero Gate Voltage (Note 1) | $\begin{aligned} & \mathrm{V}_{\mathrm{DS}}=20 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{GS}}=0 \end{aligned}$ | 0.95 | 1 | 0.95 | 1 | 0.95 | 1 | 0.95 | 1 | 0.90 | 1 |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| $\left\|\mathrm{G}_{1}-\mathrm{I}_{\mathrm{G} 2}\right\|$ | Differential Gate Current $\left(+125^{\circ} \mathrm{C}\right)$ | $\begin{aligned} & V_{D G}=20 V \\ & I_{D}=200 \mu \mathrm{~A} \end{aligned}$ |  | 10 |  | 10 |  | 10 |  | 10 |  | 10 | nA |
| $\mathrm{g}_{\mathrm{fs} 1} / \mathrm{g}_{\mathrm{fs} 2}$ | Transconductance Ratio (Note 1) | $\begin{aligned} & V_{D G}=20 V, \\ & l_{D}=200 \mu \mathrm{~A} \\ & \mathrm{f}=1 \mathrm{kHz} \end{aligned}$ | 0.97 | 1 | 0.97 | 1 | 0.95 | 1 | 0.95 | 1 | 0.90 | 1 |  |
| $\mathrm{g}_{\text {oss } 1}$ - $\mathrm{goss2}$ | Differential Output Conductance | $\begin{aligned} & V_{D G}=20 V \\ & l_{D}=200 \mu \mathrm{~A} \\ & f=1 \mathrm{kHz} \end{aligned}$ |  | 0.1 |  | 0.1 |  | 0.1 |  | 0.1 |  | 0.1 | $\mu \mathrm{S}$ |
| $\mathrm{V}_{\mathrm{GS} 1}-\mathrm{V}_{\mathrm{GS} 2}$ | Differential Gate-Source Voltage | $\begin{aligned} & V_{D G}=20 \mathrm{~V}, \\ & I_{D}=200 \mu \mathrm{~A} \end{aligned}$ |  | 5 |  | 5 |  | 10 |  | 15 |  | 15 | mV |
| $\frac{\Delta\left\|V_{G S 1}-V_{G S 2}\right\|}{\Delta T}$ | Gate-Source Voltage <br> Differential Drift $\left(\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C}\right)$ | $\begin{aligned} & V_{D G}=20 \mathrm{~V}, \\ & l_{D}=200 \mu \mathrm{~A} \end{aligned}$ |  | 5 |  | 10 |  | 20 |  | 40 |  | 80 | $\frac{\mu \mathrm{V}}{}{ }^{\circ} \mathrm{C}$ |
| CMRR | Common Mode Rejection Ratio (Note 2, 3) | $\begin{aligned} & V_{D D}=10 \text { to } 20 \mathrm{~V}, \\ & I_{D}=200 \mu \mathrm{~A} \end{aligned}$ | 100 |  | 100 |  | 90 |  |  |  |  |  | dB |

NOTES: 1. Pulse duration of 28 ms used during test.
2. $C M R R=20 \log _{10} \Delta V_{D D} / \Delta I V_{G S 1}-V_{G S 2} I,\left(\Delta V_{D D}=10 \mathrm{~V}\right)$
3. For design reference only, not $100 \%$ tested.

[^410]
## FEATURES

- Economy Packaging
- Fast Switching
- Low Drain-Source 'ON' Resistance

PIN CONFIGURATION


ABSOLUTE MAXIMUM RATINGS
( $T_{A}=25^{\circ} \mathrm{C}$ unless otherwise specified)
Drain-Source Voltage
Drain-Gate Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 V
Source-Gate Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30V
Forward Gate Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10mA
Storage Temperature Range ............ $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Operating Temperature Range $\ldots \ldots . . .-55^{\circ} \mathrm{C}$ to $+135^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10sec) ............. $+300^{\circ} \mathrm{C}$
Power Dissipation . ................................... . 310mW
Derate above $25^{\circ} \mathrm{C}$. . . . . . . . . . . . . . . . . . . . . . $2.82 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
NOTE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

## ORDERING INFORMATION

| TO-92 |
| :---: |
| 2N5638 |
| 2N5639 |
| 2N5640 |

ELECTRICAL CHARACTERISTICS $\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right.$ unless otherwise specified)

| Symbol | Parameter | Test Conditions |  |  | 2N5638 |  | 2N5639 |  | 2N5640 |  | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  | Min | Max | Min | Max | Min | Max |  |
| $\mathrm{BV}_{\text {GSS }}$ | Gate Reverse Breakdown Voltage | $\mathrm{I}_{\mathrm{G}}=-10 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{DS}}$ | =0 |  | -30 |  | -30 |  | -30 |  | V |
| IGss | Gate Reverse Current | $\mathrm{V}_{\mathrm{GS}}=-15 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0$ |  |  |  | -1.0 |  | -1.0 |  | -1.0 | nA |
|  |  |  |  | $\mathrm{T}_{\mathrm{A}}=100^{\circ} \mathrm{C}$ |  | -1.0 |  | -1.0 |  | -1.0 | $\mu \mathrm{A}$ |
| LD(off) | Drain Cutoff Current | $\begin{aligned} & V_{\mathrm{DS}}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=-12 \mathrm{~V}(2 \mathrm{~N} 5638), \mathrm{V}_{\mathrm{GS}}=-8 \mathrm{~V}(2 \mathrm{~N} 5639), \\ & \mathrm{V}_{\mathrm{GS}}=-6 \mathrm{~V}(2 \mathrm{~N} 5640) \end{aligned}$ |  |  |  | 1.0 |  | 1.0 |  | 1.0 | nA |
|  |  |  |  |  |  | 1.0 |  | 1.0 |  | 1.0 | $\mu \mathrm{A}$ |
| IDSs | Saturation Drain Current | $\mathrm{V}_{\mathrm{DS}}=20 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$ ( Note 1) |  |  | 50 |  | 25 |  | 5.0 |  | mA |
| $\mathrm{V}_{\text {DS }}$ (on) | Drain-Source ON Voltage | $\begin{aligned} & V_{G S}=0, I_{D}=12 \mathrm{~mA}(2 \mathrm{~N} 5638), \\ & \mathrm{I}_{\mathrm{D}}=6 \mathrm{~mA}(2 \mathrm{~N} 5639), \mathrm{I}_{\mathrm{D}}=3 \mathrm{~mA}(2 \mathrm{~N} 5640) \end{aligned}$ |  |  |  | 0.5 |  | 0.5 |  | 0.5 | V |
| $\mathrm{rDS}_{(\text {(on) }}$ | Static Drain-Source ON Resistance | $\mathrm{l}_{\mathrm{D}}=1 \mathrm{~mA}, \mathrm{~V}_{\mathrm{GS}}=0$ |  |  |  | 30 |  | 60 |  | 100 | $\Omega$ |
| $\mathrm{rds}_{(0 n)}$ | Drain-Source ON Resistance | $V_{G S}=0, I_{D}=0$ |  | $\mathrm{f}=1 \mathrm{kHz}$ |  | 30 |  | 60 |  | 100 |  |
| $\mathrm{C}_{\text {iss }}$ | Common-Source Input Capacitance (Note 2) | $\mathrm{V}_{\mathrm{GS}}=-12 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0$ |  | $\mathrm{f}=1 \mathrm{MHz}$ |  | 10 |  | 10 |  | 10 | pF |
| $\mathrm{C}_{\text {rss }}$ | Common-Source Reverse Transfer Capacitance (Note 2) |  |  |  | 4.0 |  | 4.0 |  | 4.0 |  |  |
| $\mathrm{to}_{\text {(On) }}$ | Turn-On Delay Time (Note 2) |  |  |  |  | 4.0 |  | 6.0 |  | 8.0 |  |
| $\mathrm{t}_{\mathrm{r}}$ | Rise Time ( Note 2) |  |  |  |  | 5.0 |  | 8.0 |  | 10 |  |
| $t_{d}$ | Turn-OFF Delay Time (Note 2) |  |  |  |  | 5.0 |  | 10 |  | 15 | ns |
| $\mathrm{tf}_{4}$ | Fall Time (Note 2) |  |  |  |  | 10 |  | 20 |  | 30 |  |

NOTES: 1. Pulse test; $\mathrm{PW} \leq 300 \mu \mathrm{~s}$, duty cycle $\leq 3.0 \%$.
2. For design reference only, not $100 \%$ tested.

[^411]

# 2N5902-2N5909 Monolithic Dual N-Channel JFET General Purpose Amplifier 

FEATURES

- Tight Tracking
- Good Matching

PIN CONFIGURATION


ABSOLUTE MAXIMUM RATINGS
( $T_{A}=25^{\circ} \mathrm{C}$ unless otherwise specified)
Gate-Drain or Gate-Source Voltage (Note 1)-40V

Gate Current (Note 1)
10 mA

Storage Temperature Range . . . . . . . . . . $-65^{\circ} \mathrm{C}$ to $+200^{\circ} \mathrm{C}$
Operating Temperature Range ......... $-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10sec)

|  | One Side | Both Sides |
| :---: | :---: | :---: |
| Power Dissipation $\ldots \ldots \ldots$. | 367 mW | 500 mW |
| Derate above $25^{\circ} \mathrm{C} \ldots \ldots .$. | $3 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ | $4 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ |

NOTE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

## ORDERING INFORMATION

| TO-99 |
| :---: |
| 2N5902 |
| 2N5903 |
| 2N5904 |
| 2N5905 |
| 2N5906 |
| 2N5907 |
| 2N5908 |
| 2N5909 |

ELECTRICAL CHARACTERISTICS $\left(T_{A}=25^{\circ} \mathrm{C}\right.$ unless otherwise specified)

| Symbol | Parameter | Test Conditions |  | 2N5902-6 |  | 2N5903-7 |  | 2N5904-8 |  | 2N5905-9 |  | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Min | Max | Min | Max | Min | Max | Min | Max |  |
| $\mid \mathrm{I}_{\mathbf{G} 1}-\mathrm{l}_{\mathrm{G} 2}$ | Differential Gate Current | $\begin{aligned} & V_{D G}=10 \mathrm{~V}, \\ & \mathrm{ID}_{\mathrm{D}}=30 \mu \mathrm{~A}, \\ & \mathrm{~T}_{\mathrm{A}}=125^{\circ} \mathrm{C} \end{aligned}$ | 2N5902-5 |  | 2.0 |  | 2.0 |  | 2.0 |  | 2.0 |  |
|  |  |  | 2N5906-9 |  | 0.2 |  | 0.2 |  | 0.2 |  | 0.2 | nA |
| $\frac{\mathrm{lDSS} 1}{\mathrm{lDSS} 2}$ | Saturation Drain Current Ratio | $V_{D S}=10 \mathrm{~V}, \mathrm{~V}_{G S}=0$ |  | 0.95 | 1 | 0.95 | 1 | 0.95 | 1 | 0.95 | 1 |  |
| $g_{\mathrm{fs} 1} g_{\mathrm{fs} 2}$ | Transconductance Ratio | $\begin{aligned} & V_{D G}=10 \mathrm{~V}, \\ & \mathrm{ID}_{\mathrm{D}}=30 \mu \mathrm{~A} \end{aligned}$ | $\mathrm{f}=1 \mathrm{kHz}$ | 0.97 | 1 | 0.97 | 1 | 0.95 | 1 | 0.95 | 1 |  |
| $\left\|\mathrm{V}_{\mathrm{GS} 1}-\mathrm{V}_{\mathrm{GS} 2}\right\|$ | Differential Gate-Source Voltage |  |  |  | 5 |  | 5 |  | 10 |  | 15 | mV |
| $\frac{\Delta \mid V_{\mathrm{GS} 1}-V_{\mathrm{GS} 2}}{\Delta \mathrm{~T}}$ | Gate-Source Voltage Differential Drift (Measured at end points $T_{A}$ and $T_{B}$ ) |  | $\begin{aligned} & T_{A}=25^{\circ} \mathrm{C} \\ & T_{B}=125^{\circ} \mathrm{C} \end{aligned}$ |  | 5 |  | 10 |  | 20 |  | 40 | $\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$ |
|  |  |  | $\begin{aligned} & \mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{B}}=25^{\circ} \mathrm{C} \end{aligned}$ |  | 5 |  | 10 |  | 20 |  | 40 |  |
| gos1-gos2 | Differential Output Conductance |  | $\mathrm{f}=1 \mathrm{kHz}$ |  | 0.2 |  | 0.2 |  | 0.2 |  | 0.2 | $\mu \mathrm{s}$ |

[^412]ELECTRICAL CHARACTERISTICS (Continued) $\left(T_{A}=25^{\circ} \mathrm{C}\right.$ unless otherwise specified)

| Symbol | Parameter | Test Conditions |  | 2N5902-5 |  | 2N5906-9 |  | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Min | Max | Min | Max |  |
| IGSS | Gate Reverse Current | $\mathrm{V}_{\mathrm{GS}}=-20 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0$ |  |  | -5 |  | -2 | PA |
|  |  |  | $\mathrm{T}_{\mathrm{A}}=125^{\circ} \mathrm{C}$ |  | -10 |  | -5 | nA |
| BV GSS | Gate-Source Breakdown Voltage | $\mathrm{I}_{\mathrm{G}}=-1 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{DS}}=0$ |  | -40 |  | -40 |  | V |
| $V_{G S}$ (off) | Gate-Source Cutoff Voltage | $V_{D S}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=1 \mathrm{nA}$ |  | -0.6 | -4.5 | -0.6 | -4.5 |  |
| $V_{G S}$ | Gate Source Voltage | $V_{D G}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=30 \mu \mathrm{~A}$ |  |  | -4 |  | -4 |  |
| $\mathrm{IG}_{G}$ | Gate Operating Current |  |  |  | -3 |  | -1 | pA |
|  |  |  | $\mathrm{T}_{\mathrm{A}}=125^{\circ} \mathrm{C}$ |  | -3 |  | -1 | nA |
| IDSS | Saturation Drain Current | $V_{D S}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$ | $\mathrm{f}=1 \mathrm{kHz}$ | 30 | 500 | 30 | 500 | $\mu \mathrm{A}$ |
| $\mathrm{g}_{\text {fs }}$ | Common-Source Forward Transconductance |  |  | 70 | 250 | 70 | 250 | $\mu \mathrm{S}$ |
| gos | Common-Source Output Conductance |  |  |  | 5 |  | 5 |  |
| $\mathrm{C}_{\text {iss }}$ | Common-Source Input Capacitance | $\begin{aligned} & \mathrm{V}_{\mathrm{DS}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \\ & \text { (Note 1) } \end{aligned}$ | $f=1 \mathrm{MHz}$ |  | 3 |  | 3 |  |
| $\mathrm{C}_{\text {rss }}$ | Common-Source Reverse Transfer Capacitance |  |  |  | 1.5 |  | 1.5 | pF |
| gfs | Common-Source Forward Transconductance | $V_{D G}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=30 \mu \mathrm{~A}$ | $\mathrm{f}=1 \mathrm{kHz}$ | 50 | 150 | 50 | 150 | $\mu \mathrm{S}$ |
| gos | Common-Source Output Conductance |  |  |  | 1 |  | 1 |  |
| $\bar{e}_{n}$ | Equivalent Short Circuit Input Noise Voltage (Note 1) | $\mathrm{V}_{\mathrm{DS}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$ |  |  | 0.2 |  | 0.1 | $\frac{\mu \mathrm{V}}{\sqrt{\mathrm{Hz}}}$ |
| NF | Spot Noise Figure (Note 1) |  | $\begin{aligned} & f=100 \mathrm{~Hz} \\ & R_{\mathrm{G}}=10 \mathrm{M} \Omega \end{aligned}$ |  | 3 |  | 1 | dB |

NOTE 1: For design reference only, not 100\% tested.

[^413]| ABSOLUTE MAXIMUM RATINGS |  |  |  |
| :---: | :---: | :---: | :---: |
| ( $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted) |  |  |  |
| Gate-Drain or Gate-Source Voltage |  |  |  |
| Gate Current |  |  |  |
| Storage Temperature Range |  |  |  |
| Operating Temperature Range |  |  |  |
| Lead Temperature (Soldering, 10sec) |  |  |  |
|  | TO-71 | TO-99 |  |
|  | Bot |  |  |
|  | Side Sides | Side | Sides |
| Power |  |  |  |
| Dissipation .... 200mW | 200 mW 400 mW | 367 mW | 500 mW |
| Derate above |  |  |  |
| $25^{\circ} \mathrm{C} \ldots . . . . .1 .6 \mathrm{~mW} /{ }^{\circ} \mathrm{C} 3.2 \mathrm{~mW} /{ }^{\circ} \mathrm{C} 3.0 \mathrm{~mW} /{ }^{\circ} \mathrm{C} 4.0 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ |  |  |  |
| NOTE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. |  |  |  |

## ORDERING INFORMATION

| TO-71 | TO-99 | Wafer | Dice |
| :---: | :---: | :---: | :---: |
| IT5911 | 2N5911 | 2N5911/W | 2N5911/D |
| IT5912 | 2N5912 | 2N5912/W | 2N5912/D |

ELECTRICAL CHARACTERISTICS $\quad \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise specified)

| Symbol | Parameter | Test Conditions |  | Min | Max | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{I}_{\text {GSS }}$ | Gate Reverse Current | $\mathrm{V}_{\mathrm{GS}}=-15 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0$ |  |  | -100 | pA |
|  |  |  | $\mathrm{T}_{\mathrm{A}}=150^{\circ} \mathrm{C}$ |  | -250 | nA |
| BV ${ }_{\text {GSS }}$ | Gate Reverse Breakdown Voltage | $\mathrm{I}_{\mathrm{G}}=-1 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{DS}}=0$ |  | -25 |  |  |
| $V_{G S}$ (off) | Gate-Source Cutoff Voltage | $\mathrm{V}_{\mathrm{DS}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=1 \mathrm{nA}$ |  | -1 | -5 | v |
| $\mathrm{V}_{\text {GS }}$ | Gate-Source Voltage | $V_{D G}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=5 \mathrm{~mA}$ |  | -0.3 | -4 |  |
| $I_{G}$ | Gate Operating Current |  |  |  | -100 | pA |
|  |  |  | $\mathrm{T}_{\mathrm{A}}=150^{\circ} \mathrm{C}$ |  | -100 | nA |
| Idss | Saturation Drain Current (Pulsewidth $300 \mu \mathrm{~s}$, duty cycle $\leq 3 \%$ ) | $\mathrm{V}_{\mathrm{DS}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}$ |  | 7 | 40 | mA |
| gf ${ }_{\text {s }}$ | Common-Source Forward Transconductance | $V_{D G}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=5 \mathrm{~mA}$ | $\mathrm{f}=1 \mathrm{kHz}$ | 5000 | 10,000 | $\mu \mathrm{S}$ |
| $\mathrm{gf}_{\mathrm{s}}$ | Common-Source Forward Transconductance (Note 1) |  | $\mathrm{f}=100 \mathrm{MHz}$ | 5000 | 10,000 |  |
| gos | Common-Source Output Conductance |  | $\mathrm{f}=1 \mathrm{kHz}$ |  | 100 |  |
| Goss | Common-Source Output Conductance (Note 1) |  | $\mathrm{f}=100 \mathrm{MHz}$ |  | 150 |  |
| $\mathrm{C}_{\text {iss }}$ | Common-Source Input Capacitance (Note 1) |  | $\mathrm{f}=1 \mathrm{MHz}$ |  | 5 | pF |
| $\mathrm{C}_{\text {rss }}$ | Common-Source Reverse Transfer Capacitance (Note 1) |  |  |  | 1.2 |  |
| $\bar{e}_{n}$ | Equivalent Short Circuit Input Noise Voltage (Note 1) |  | $\mathrm{f}=10 \mathrm{kHz}$ |  | 20 | $\frac{n \mathrm{~V}}{\sqrt{H z}}$ |
| NF | Spot Noise Figure (Note 1) |  | $\begin{aligned} & f=10 \mathrm{kHz} \\ & \mathrm{R}_{\mathrm{G}}=100 \mathrm{k} \Omega \\ & \hline \end{aligned}$ |  | 1 | dB |

2N5911, 2N5912, ITC5911, ITC5912,
IT5911, IT5912
ELECTRICAL CHARACTERISTICS (Continued) $\left(T_{A}=25^{\circ} \mathrm{C}\right.$ unless otherwise specified)

| Symbol | Parameter | Test Conditions |  | IT, 2N5911 |  | IT, 2N5912 |  | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Min | Max | Min | Max |  |
| $\mid \mathrm{l}_{\mathrm{G} 1-\mathrm{l}_{\mathrm{G} 2} \mid}$ | Differential Gate Current | $V_{D G}=10 \mathrm{~V}, I_{D}=5 \mathrm{~mA}$ | $\mathrm{T}_{\mathrm{A}}=125^{\circ} \mathrm{C}$ |  | 20 |  | 20 | nA |
| $\frac{\text { loss1 }}{\text { IDSS2 }}$ | Saturation Drain Current Ratio | $\begin{aligned} & \mathrm{V}_{\mathrm{DS}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \\ & \text { (Pulsewidth } 300 \mu \mathrm{~s} \text {, duty cycle } \leq 3 \% \text { ) } \end{aligned}$ |  | 0.95 | 1 | 0.95 | 1 |  |
| $\left\|\mathrm{V}_{\mathrm{GS} 1}-\mathrm{V}_{\mathrm{GS} 2}\right\|$ | Differential Gate-Source Voltage | $V_{D G}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=5 \mathrm{~mA}$ |  |  | 10 |  | 15 | mV |
| $\frac{\Delta\left\|V_{\mathrm{GS} 1}-V_{\mathrm{GS} 2}\right\|}{\Delta T}$ | Gate-Source Voltage Differential Drift (Measured at end points, $\mathrm{T}_{\mathrm{A}}$ and $\mathrm{T}_{\mathrm{B}}$ ) |  | $\begin{aligned} & T_{A}=25^{\circ} \mathrm{C} \\ & T_{B}=125^{\circ} \mathrm{C} \end{aligned}$ |  | 20 |  | 40 | $\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$ |
| $\Delta T$ |  |  | $\begin{aligned} & T_{A}=-55^{\circ} \mathrm{C} \\ & T_{B}=25^{\circ} \mathrm{C} \end{aligned}$ |  | 20 |  | 40 |  |
| $\frac{g_{\mathrm{fs} 1}}{g_{\mathrm{fs} 2}}$ | Transconductance Ratio |  | $\mathrm{f}=1 \mathrm{kHz}$ | 0.95 | 1 | 0.95 | 1 |  |

NOTE 1: For design reference only, not 100\% tested.

## FEATURES

- Ultra Low Noise
- High CMRR
- Low Offset
- Tight Tracking

PIN CONFIGURATION


## ABSOLUTE MAXIMUM RATINGS

( $T_{A}=25^{\circ} \mathrm{C}$ unless otherwise noted)
Gate-Source or Gate-Drain Voltage (Note 1) ....... -50V
Gate-Gate Voltage ..................................... . $\pm 50 \mathrm{~V}$
Gate Current (Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . 50mA
Storage Temperature Range . . . . . . . . . . . $-65^{\circ} \mathrm{C}$ to $+200^{\circ} \mathrm{C}$
Operating Temperature Range $\ldots \ldots . .-55^{\circ} \mathrm{C}$ to $+175^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10sec) ............ $+300^{\circ} \mathrm{C}$

|  | One Side | Both Sides |
| :---: | :---: | :---: |
| Power Dissipation $\ldots \ldots \ldots$. | 250 mW | 400 mW |
| Derate above $25^{\circ} \mathrm{C} \ldots \ldots \ldots$ | $1.7 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ | $2.7 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ |

NOTE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

## ORDERING INFORMATION

| TO-71 |
| :---: |
| 2N6483 |
| 2N6484 |
| 2N6485 |

ELECTRICAL CHARACTERISTICS $\left(T_{A}=25^{\circ} \mathrm{C}\right.$ unless otherwise specified)

| Symbol | Parameter | Test Conditions | Min | Max | Units |
| :---: | :---: | :---: | :---: | :---: | :---: |
| IGSS | Gate Reverse Current | $\mathrm{V}_{\mathrm{GS}}=-30 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0$ |  | -200 | pA |
|  |  | $\mathrm{T}_{\mathrm{A}}=150^{\circ} \mathrm{C}$ |  | -200 | nA |
| $B V_{G S S}$ | Gate-Source Breakdown Voltage | $\mathrm{I}_{\mathrm{G}}=-1 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{DS}}=0$ | $-50$ |  | V |
| $\mathrm{V}_{\mathrm{p}}$ | Gate-Source Pinch Off Voltage | $\mathrm{V}_{\mathrm{DS}}=20 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=1 \mathrm{nA}$ | -0.7 | $-4.0$ |  |
| IDSS | Drain Current at Zero Gate Voltage (Note 2) | $\mathrm{V}_{\mathrm{DS}}=20 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$ | 0.5 | 7.5 | mA |
| $\mathrm{g}_{\mathrm{fs}}$ | Common-Source Forward Transconductance (Note 2) | $\begin{aligned} & \mathrm{V}_{\mathrm{DS}}=20 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0, \mathrm{f}=1 \mathrm{kHz} \\ & \text { (Note 6) } \end{aligned}$ | 1000 | 4000 | $\mu \mathrm{s}$ |
| goss | Common-Source Output Conductance |  |  |  |  |
| $\mathrm{C}_{\text {iss }}$ | Common-Source Input Capacitance | $\begin{aligned} & V_{D S}=20 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0, f=1 \mathrm{MHz} \\ & \text { (Note 6) } \end{aligned}$ |  | 20 | pF |
| $\mathrm{C}_{\text {rss }}$ | Common-Source Reverse Transfer Capacitance |  |  | 3.5 |  |
| $\mathrm{I}_{\mathrm{G}}$ | Gate Current | $V_{G D}=20 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=200 \mu \mathrm{~A}$ (Note 6) |  | 100 | pA |
|  |  | $\mathrm{T}_{\mathrm{A}}=150^{\circ} \mathrm{C}$ |  | 100 | nA |
| $\mathrm{V}_{\mathrm{GS}}$ | Gate Source Voltage | $V_{D G}=20 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=200 \mu \mathrm{~A}$ | 0.2 | 3.8 | V |
| $\mathrm{g}_{\text {f }}$ | Common-Source Forward Transconductance | $V_{D G}=20 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=200 \mu \mathrm{~A}, \mathrm{f}=1 \mathrm{kHz}$ | 500 | 1500 | $\mu \mathrm{s}$ |
| $\mathrm{g}_{\mathrm{os}}$ | Common-Source Output Conductance | $V_{D G}=20 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=200 \mu \mathrm{~A}$ |  | 1 |  |
| $\bar{e}_{n}$ | Equivalent Input Noise Voltage (Note 6) | $V_{D S}=20 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=200 \mu \mathrm{~A}, \mathrm{f}=10 \mathrm{~Hz}$ |  | 10 | $\mathrm{nV} / \sqrt{\mathrm{Hz}}$ |
|  |  | $V_{D S}=20 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=200 \mu \mathrm{~A}, \mathrm{f}=1 \mathrm{kHz}$ |  | 5 |  |

NOTES: 1. Per transistor.
2. Pulse test required; pulse width $=2 \mathrm{~ms}$.

MATCHING CHARACTERISTICS (Continued) ( $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise specified)

| Symbol | Parameter | Test Conditions | 2N6483 |  | 2N6484 |  | 2N6485 |  | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Min | Max | Min | Max | Min | Max |  |
| $\frac{\mathrm{IDSS} 1}{\mathrm{IDSS}^{2}}$ | Drain Current Ratio at Zero Gate Voltage | $\begin{aligned} & \mathrm{V}_{\mathrm{DS}}=20 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \\ & \text { (Note 4) } \end{aligned}$ | 0.95 | 1 | 0.95 | 1 | 0.95 | 1 |  |
| $\left\|I_{G 1}-I_{G 2}\right\|$ | Differential Gate Current | $\begin{aligned} & V_{D G}=20 \mathrm{~V}, I_{D}=200 \mu \mathrm{~A} \\ & T_{A}=+125^{\circ} \mathrm{C} \end{aligned}$ |  | 10 |  | 10 |  | 10 | nA |
| $\frac{\mathrm{g}_{\mathrm{fs} 1}}{\mathrm{~g}_{\mathrm{gs} 2}}$ | Transconductance Ratio | $\begin{aligned} & V_{D G}=20 V, I_{D}=200 \mu \mathrm{~A}, \\ & f=1 \mathrm{kHz} \text { (Note 4) } \end{aligned}$ | 0.97 | 1 | 0.97 | 1 | 0.95 | 1 |  |
| $\left\|g_{o s 1}-g_{o s 2}\right\|$ | Differential Output Conductance (Note 6) | $\begin{aligned} & V_{D G}=20 \mathrm{~V}, I_{D}=200 \mu \mathrm{~A}, \\ & f=1 \mathrm{kHz} \end{aligned}$ |  | 0.1 |  | 0.1 |  | 0.1 | $\mu \mathrm{S}$ |
| $\left\|V_{G S 1}-V_{G S 2}\right\|$ | Differential Gate-Source Voltage | $V_{D G}=20 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=200 \mu \mathrm{~A}$ |  | 5 |  | 10 |  | 15 | mV |
| $\frac{\Delta \mid \mathrm{V}_{\mathrm{GS} 1}-\mathrm{V}_{\mathrm{GS} 2}}{\Delta \mathrm{~T}}$ | Gate-Source Voltage Differential Drift | $\begin{aligned} & V_{D G}=20 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=200 \mu \mathrm{~A} \\ & \mathrm{~T}_{\mathrm{A}}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{aligned}$ |  | 5 |  | 10 |  | 25 | $\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$ |
| CMRR | Common Mode Rejection Ratio (Note 6) | $\begin{aligned} & V_{D D}=10 \text { to } 20 \mathrm{~V}, \\ & I_{D}=200 \mu \mathrm{~A}(\text { Note } 5) \end{aligned}$ | 100 |  | 100 |  | 90 |  | dB |

NOTES: 3. These ratings are limiting values above which the serviceability of any individual semiconductor device may be impaired.
4. Pulse duration of 2 ms used during test.
5. $\mathrm{CMRR}=20 \log _{10} \Delta \mathrm{~V}_{\mathrm{DD}} / \Delta\left|\mathrm{V}_{\mathrm{GS} 1}-\mathrm{V}_{\mathrm{GS}}\right|,\left(\Delta \mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}\right)$, not included in JEDEC registration.
6. For design reference only, not $100 \%$ tested.

## TYPICAL PERFORMANCE CHARACTERISTICS



0235-3



0235-4


3N161
Diode Protected P-Channel Enhancement Mode MOSFET General Purpose Amplifier/Switch

## FEATURES

- Channel Cut Off With Zero Gate Voltage
- Square-Law Transfer Characteristic Reduces Distortion
- Independent Substrate Connection Provides Flexibility in Biasing
- Internally Connected Diode Protects Gate From Damage Due to Overvoltage


## PIN CONFIGURATION




Derate above $25^{\circ} \mathrm{C}$
$3.0 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
NOTE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

## ORDERING INFORMATION



ELECTRICAL CHARACTERISTICS $\quad \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{BS}}=0$ unless otherwise specified)

| Symbol | Parameter | Test Conditions |  | Min | Max | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| IGSSF | Forward Gate-Terminal Current | $\mathrm{V}_{\mathrm{GS}}=-25 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0$ |  |  | -100 | pA |
|  |  |  | $\mathrm{T}_{\mathrm{A}}=+100^{\circ} \mathrm{C}$ |  | -10 | nA |
| BVGSS | Forward Gate-Source Breakdown Voltage | $\mathrm{I}_{\mathrm{G}}=-0.1 \mathrm{~mA}, \mathrm{~V}_{\mathrm{DS}}=0$ |  | -25 |  | V |
| IDSs | Zero-Gate-Voltage Drain Current | $V_{D S}=-15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$ |  |  | -10 | nA |
|  |  | $V_{D S}=-25 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$ |  |  | -10 | $\mu \mathrm{A}$ |
| $\mathrm{V}_{\mathrm{GS}}(\mathrm{th})$ | Gate-Source Threshold Voltage | $V_{D S}=-15 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=-10 \mu \mathrm{~A}$ |  | -1.5 | -5 | V |
| $V_{G S}$ | Gate-Source Voltage | $\mathrm{V}_{\text {DS }}=-15 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=-8 \mathrm{~mA}$ |  | -4.5 | -8 |  |
| $l_{\text {d (on) }}$ | On-State Drain Current (Note 2) | $\mathrm{V}_{\mathrm{DS}}=-15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=-15 \mathrm{~V}$ |  | -40 | $-120$ | mA |
| $\left\|y_{\text {fs }}\right\|$ | Small-Signal Common-Source Forward Transfer Admittance | $V_{D S}=-15 V, l_{D}=-8 \mathrm{~mA}$ | $\mathrm{f}=1 \mathrm{kHz}$ | 3500 | 6500 | $\mu \mathrm{s}$ |
| $\left\|y_{0 s}\right\|$ | Small-Signal Common-Source Output Admittance |  |  |  | 250 |  |
| $\mathrm{C}_{\text {iss }}$ | Common-Source Short-Circuit Input Capacitance (Note 1) |  | $f=1 \mathrm{MHz}$ |  | 10 | pF |
| $\mathrm{C}_{\text {rss }}$ | Common-Source Short Circuit <br> Reverse Transfer Capacitance (Note 1) |  |  |  | 4 |  |

NOTE 1: For design reference only, not $100 \%$ tested.
2: Pulse test duration $300 \mu \mathrm{~s}$; duty cycle $\leq 3 \%$

INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE.
THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILLTY AND FITNESS FOR A PARTICULAR USE.

FEATURES

- Very High Input Impedance
- High Gate Breakdown
- Fast Switching
- Low Capacitance

PIN CONFIGURATION


ORDERING INFORMATION

| TO-72 |
| :---: |
| 3N163 |
| 3N164 |

ABSOLUTE MAXIMUM RATINGS (Note 1)
( $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted)
Drain-Source or Drain-Gate Voltage
3N163 ..... $-40 \mathrm{~V}$
3N164 ..... $-30 \mathrm{~V}$
Static Gate-Source Voltage
3N163 ..... $\pm 40 \mathrm{~V}$
3N164 ..... $\pm 30 \mathrm{~V}$
Transient Gate-Source Voltage (Note 2) ..... $\pm 125 \mathrm{~V}$
Drain Current ..... 50mA
Storage Temperature ..... $+200^{\circ} \mathrm{C}$
Operating Temperature ..... $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10sec) ..... $+300^{\circ} \mathrm{C}$
Power Dissipation ..... 375 mW
Derate above $+25^{\circ} \mathrm{C}$ $3.0 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
NOTES: 1. See handling precautions on 3N170 data sheet.
2. Devices must not be tested at $\pm 125 \mathrm{~V}$ more than once, nor for longer than 300 ms .
NOTE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

## ELECTRICAL CHARACTERISTICS $\quad\left(T_{A}=25^{\circ} \mathrm{C}\right.$ and $\mathrm{V}_{\mathrm{BS}}=0$ unless otherwise specified)

| Symbol | Parameter | Test Conditions | 3N163 |  | 3N164 |  | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Min | Max | Min | Max |  |
| IGSS | Gate-Body Leakage Current | $\begin{aligned} & \mathrm{V}_{\mathrm{GS}}=-40 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0(3 \mathrm{~N} 163) \\ & \mathrm{V}_{\mathrm{GS}}=-30 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0(3 \mathrm{~N} 164) \end{aligned}$ |  | -10 |  | -10 | pA |
|  |  | $T_{A}=+125^{\circ} \mathrm{C}$ |  | -25 |  | -25 |  |
| BV ${ }_{\text {DSS }}$ | Drain-Source Breakdown Voltage | $\mathrm{I}_{\mathrm{D}}=-10 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{GS}}=0$ | -40 |  | -30 |  | V |
| $B V_{\text {SDS }}$ | Source-Drain Breakdown Voltage | $\mathrm{I}_{\mathrm{S}}=-10 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{GD}}=0, \mathrm{~V}_{\mathrm{BD}}=0$ | -40 |  | -30 |  |  |
| $\mathrm{V}_{\mathrm{GS}}(\mathrm{th})$ | Threshold Voltage | $V_{D S}=V_{G S}, I_{D}=-10 \mu \mathrm{~A}$ | -2.0 | $-5.0$ | -2.0 | -5.0 |  |
| $\mathrm{V}_{\mathrm{GS}}(\mathrm{th})$ | Threshold Voltage | $\mathrm{V}_{\mathrm{DS}}=-15 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=-10 \mu \mathrm{~A}$ | -2.0 | $-5.0$ | -2.0 | $-5.0$ |  |
| $V_{G S}$ | Gate Source Voltage | $\mathrm{V}_{\mathrm{DS}}=-15 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=-0.5 \mathrm{~mA}$ | -2.5 | -6.5 | -2.5 | -6.5 |  |
| loss | Zero Gate Voltage Drain Current | $\mathrm{V}_{\mathrm{DS}}=-15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$ |  | 200 |  | 400 | pA |
| ISDS | Source Drain Current | $\mathrm{V}_{\mathrm{SD}}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=\mathrm{V}_{\mathrm{DB}}=0$ |  | 400 |  | 800 |  |
| rDS(on) | Drain-Source on Resistance | $\mathrm{V}_{\mathrm{GS}}=-20 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=-100 \mu \mathrm{~A}$ |  | 250 |  | 300 | ohms |
| $I_{D(0 n)}$ | On Drain Current | $\mathrm{V}_{\mathrm{DS}}=-15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=-10 \mathrm{~V}$ | -5.0 | -30.0 | $-3.0$ | $-30.0$ | mA |

[^414]ELECTRICAL CHARACTERISTICS (Continued) $\left(T_{A}=25^{\circ} \mathrm{C}\right.$ and $\mathrm{V}_{\mathrm{BS}}=0$ unless otherwise specified)

| Symbol | Parameter | Test Conditions | 3N163 |  | 3N164 |  | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Min | Max | Min | Max |  |
| $g_{\text {fs }}$ | Forward Transconductance | $\mathrm{V}_{\mathrm{DS}}=-15 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=-10 \mathrm{~mA}, \mathrm{f}=1 \mathrm{kHz}$ | 2000 | 4000 | 1000 | 4000 | $\mu \mathrm{S}$ |
| gos | Output Admittance |  |  | 250 |  | 250 |  |
| $\mathrm{C}_{\text {iss }}$ | Input Capacitance-Output Shorted | $\begin{aligned} & V_{D S}=-15 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=-10 \mathrm{~mA}, \mathrm{f}=1 \mathrm{MHz} \\ & \text { (Note 1) } \end{aligned}$ |  | 2.5 |  | 2.5 | pF |
| Crss | Reverse Transfer Capacitance |  |  | 0.7 |  | 0.7 |  |
| $\mathrm{C}_{\text {oss }}$ | Output Capacitance Input Shorted |  |  | 3.0 |  | 3.0 |  |

NOTE 1: For design reference only, not 100\% tested.
SWITCHING CHARACTERISTICS $\quad\left(T_{A}=25^{\circ} \mathrm{C}\right.$ and $\mathrm{V}_{B S}=0$ unless otherwise specified)

| Symbol | Parameter | Test Conditions | 3N163 |  | 3N164 |  | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Min | Max | Min | Max |  |
| $\mathrm{t}_{\text {on }}$ | Turn-On Delay Time | $\begin{aligned} & V_{D D}=-15 \mathrm{~V} \\ & I_{D(\text { on })}=-10 \mathrm{~mA} \text { (Note } 1 \text { ) } \\ & R_{G}=R_{L}=1.4 \mathrm{k} \Omega \end{aligned}$ |  | 12 |  | 12 | ns |
| $\mathrm{tr}_{r}$ | Rise Time |  |  | 24 |  | 24 |  |
| $t_{\text {off }}$ | Turn-Off Time |  |  | 50 |  | 50 |  |



Figure 1. Switching Times Test Circuit

## 3N165, 3N166 <br> Monolithic Dual P-Channel <br> Enhancement Mode MOSFET <br> General Purpose Amplifier

| OLUTE MAXIMUM RATINGS (Note1) |  |
| :---: | :---: |
| $A=25^{\circ} \mathrm{C}$ unless otherwise specified) |  |
| rain-Source or Drain-Gate Voltage (Note 2) |  |
| 3N165 |  |
| 3N166 |  |
| ransient Gate-Sou |  |
| ate-Gate Voltage |  |
| drain Current (Note 2) | OmA |
| torage Temperature | $200^{\circ} \mathrm{C}$ |
| Operating Temperature | $150^{\circ} \mathrm{C}$ |
| Lead Temperature (Soldering, 10sec) |  |
| Power Dissipation |  |
| One Side |  |
| Both Sides | 525 mW |
| Total Derating above 25 | nW |
| NOTE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. |  |

## ORDERING INFORMATION

| TO-99 |
| :--- |
| 3N165 |
| 3N166 |

DEVICE SCHEMATIC


## FEATURES

- Very High Impedance
- High Gate Breakdown
- Low Capacitance


## PIN CONFIGURATION



ELECTRICAL CHARACTERISTICS $\left(T_{A}=25^{\circ} \mathrm{C}\right.$ and $\mathrm{V}_{B S}=0$ unless otherwise specified)

| Symbol | Parameter | Test Conditions | Limits |  | Units |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Min | Max |  |
| IGSSR | Gate Reverse Leakage Current | $\mathrm{V}_{\mathrm{GS}}=40 \mathrm{~V}$ |  | 10 | pA |
| IGSsF | Gate Forward Leakage Current | $\mathrm{V}_{\mathrm{GS}}=-40 \mathrm{~V}$ |  | -10 |  |
|  |  | $\mathrm{T}_{\mathrm{A}}=+125^{\circ} \mathrm{C}$ |  | -25 |  |
| IDSS | Drain to Source Leakage Current | $V_{D S}=-20 \mathrm{~V}$ |  | -200 |  |
| ISDS | Source to Drain Leakage Current | $V_{S D}=-20, V_{D B}=0$ |  | -400 |  |
| $l_{\text {d }}$ (on) | On Drain Current | $\mathrm{V}_{\mathrm{DS}}=-15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=-10 \mathrm{~V}$ | -5 | -30 | mA |
| $\mathrm{V}_{\mathrm{GS}}(\mathrm{th})$ | Gate Source Threshold Voltage | $V_{D S}=-15 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=-10 \mu \mathrm{~A}$ | -2 | -5 | V |
| $\mathrm{V}_{\mathrm{GS}}(\mathrm{th})$ | Gate Source Threshold Voltage | $V_{D S}=V_{G S}, I_{D}=-10 \mu \mathrm{~A}$ | -2 | -5 |  |
| ros(on) | Drain Source ON Resistance | $\mathrm{V}_{\mathrm{GS}}=-20 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=-100 \mu \mathrm{~A}$ |  | 300 | ohms |

## ELECTRICAL CHARACTERISTICS (Continued) $\left(T_{A}=25^{\circ} \mathrm{C}\right.$ and $\mathrm{V}_{\mathrm{BS}}=0$ unless otherwise specified)

| Symbol | Parameter | Test Conditions | Limits |  | Units |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Min | Max |  |
| $\mathrm{g}_{\mathrm{fs}}$ | Forward Transconductance | $V_{D S}=-15 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=-10 \mathrm{~mA}, \mathrm{f}=1 \mathrm{kHz}$ | 1500 | 3000 | $\mu \mathrm{S}$ |
| gos | Output Admittance |  |  | 300 |  |
| $\mathrm{C}_{\text {iss }}$ | Input Capacitance | $\begin{aligned} & V_{D S}=-15 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=-10 \mathrm{~mA}, \mathrm{f}=1 \mathrm{MHz} \\ & \text { (Note 4) } \end{aligned}$ |  | 3.0 | pF |
| $\mathrm{C}_{\text {rss }}$ | Reverse Transfer Capacitance |  |  | 0.7 |  |
| $\mathrm{Cosss}^{\text {a }}$ | Output Capacitance |  |  | 3.0 |  |
| $\mathrm{R}_{\mathrm{E}}\left(\mathrm{Y}_{\text {fs }}\right)$ | Common Source Forward Transconductance | $\mathrm{V}_{\mathrm{DS}}=-15 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=-10 \mathrm{~mA}, \mathrm{f}=100 \mathrm{MHz}$ (Note 4) | 1200 |  | $\mu \mathrm{s}$ |

## MATCHING CHARACTERISTICS 3N165

| Symbol | Parameter | Test Conditions | Limits |  | Units |
| :--- | :--- | :--- | :---: | :---: | :---: |
|  |  |  | Min | Max |  |
| $\mathrm{Y}_{\mathrm{fS} 1} / \mathrm{Y}_{\mathrm{fs} 2}$ | Forward Transconductance Ratio | $\mathrm{V}_{\mathrm{DS}}=-15 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=-500 \mu \mathrm{~A}, \mathrm{f}=1 \mathrm{kHz}$ | 0.90 | 1.0 |  |
| $\mathrm{~V}_{\mathrm{GS} 1-2}$ | Gate Source Threshold Voltage Differential | $\mathrm{V}_{\mathrm{DS}}=-15 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=-500 \mu \mathrm{~A}$ |  | 100 | mV |
| $\frac{\Delta \mathrm{V}_{\mathrm{GS} 1-2}}{}$ | Gate Source Threshold Voltage Differential <br> Change with Temperature | $\mathrm{V}_{\mathrm{DS}}=-15 \mathrm{~V}, \mathrm{I}_{\mathrm{A}}=-500 \mu \mathrm{~A}$ <br> $\mathrm{~T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$ to $=+25^{\circ} \mathrm{C}$ |  | 100 | $\mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ |

NOTES 1. See handling precautions on 3N170 data sheet.
2. Per transistor.
3. Devices must not be tested at $\pm 125 \mathrm{~V}$ more than once, nor for longer than 300 ms .
4. For design reference only, not $100 \%$ tested.

## 3N170, 3N171 N -Channel Enhancement Mode MOSFET Switch

## FEATURES

- Low Switching Voltages
- Fast Switching Times
- Low Drain-Source Resistance
- Low Reverse Transfer Capacitance


## PIN CONFIGURATION



ORDERING INFORMATION

| TO-72 |
| :---: |
| 3N170 |
| 3N171 |

## HANDLING PRECAUTIONS

MOS field-effect transistors have extremely high input resistance and can be damaged by the accumulation of excess static charge. To avoid possible damage to the device while wiring, testing, or in actual operation, follow the procedures outlined below.

1. To avoid the build-up of static charge, the leads of the devices should remain shorted together with a metal ring except when being tested or used.
2. Avoid unnecessary handling. Pick up devices by the case instead of the leads.
3. Do not insert or remove devices from circuits with the power on as transient voltages may cause permanent damage to the devices.


#### Abstract

ABSOLUTE MAXIMUM RATINGS ( $T_{A}=25^{\circ} \mathrm{C}$ unless otherwise noted) Drain-Gate Voltage .................................. $\pm 35 \mathrm{~V}$ Drain-Source Voltage . ...................................... . 25 V Gate-Source Voltage ................................. $\pm 35 \mathrm{~V}$ Drain Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30mA Storage Temperature Range ........... $-65^{\circ} \mathrm{C}$ to $+200^{\circ} \mathrm{C}$ Operating Temperature Range $\ldots \ldots . . .-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ Lead Temperature (Soldering, 10sec) ............. $+300^{\circ} \mathrm{C}$ Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 300mW Derate above $25^{\circ} \mathrm{C}$. . . . . . . . . . . . . . . . . . . . . . . $2.4 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ NOTE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.


ELECTRICAL CHARACTERISTICS $\quad\left(25^{\circ} \mathrm{C}\right.$ unless otherwise noted) Substrate connected to source.

| Symbol | Parameter |  | Test Conditions |  |  | Units | |
|---|---|---|---|---|---|---|---|
|  |  |  | Min | Max |  |
| $B V_{\text {DSS }}$ | Drain-Source Breakdown Voltage |  |  | $\mathrm{I}_{\mathrm{D}}=10 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{GS}}=0$ | 25 |  | V |
| IGSS | Gate Leakage Current |  | $\mathrm{V}_{\mathrm{GS}}= \pm 35 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0$ |  | $\pm 10$ | pA |
|  |  |  | $\mathrm{V}_{\mathrm{GS}}=35 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0, \mathrm{~T}_{\mathrm{A}}=125^{\circ} \mathrm{C}$ |  | 100 |  |
| Idss | Zero-Gate-Voltage Drain Current |  | $\mathrm{V}_{\mathrm{DS}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$ |  | 10 | nA |
|  |  |  | $\mathrm{T}_{\mathrm{A}}=125^{\circ} \mathrm{C}$ |  | 1.0 | $\mu \mathrm{A}$ |
| $\mathrm{VGS}_{\text {(th) }}$ | Gate-Source <br> Threshold Voltage | 3N170 | $V_{D S}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=10 \mu \mathrm{~A}$ | 1.0 | 2.0 | V |
|  |  | 3N171 |  | 1.5 | 3.0 |  |
| $l_{\text {d }}$ (on) | "ON" Drain Current |  | $\mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=10 \mathrm{~V}$ | 10 |  | mA |
| $V_{\text {DS(on) }}$ | Drain-Source "ON" Voltage |  | $\mathrm{I}_{\mathrm{D}}=10 \mathrm{~mA}, \mathrm{~V}_{\mathrm{GS}}=10 \mathrm{~V}$ |  | 2.0 | V |
| $\mathrm{r}_{\text {ds(on) }}$ | Drain-Source ON Resistance |  | $\mathrm{V}_{G S}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=0, f=1.0 \mathrm{kHz}$ |  | 200 | $\Omega$ |

ELECTRICAL CHARACTERISTICS (Continued) $\left(T_{A}=25^{\circ} \mathrm{C}\right.$ unless otherwise specified) Substrate connected to source.

| Symbol | Parameter | Test Conditions | Limits |  | Units |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Min | Max |  |
| $\left\|Y_{\text {fs }}\right\|$ | Forward Transfer Admittance | $\begin{aligned} & V_{D S}=10 \mathrm{~V}, I_{D}=2.0 \mathrm{~mA}, \\ & f=1.0 \mathrm{kHz} \end{aligned}$ | 1000 |  | $\mu \mathrm{S}$ |
| $\mathrm{C}_{\text {rss }}$ | Reverse Transfer Capacitance (Note 1) | $\mathrm{V}_{\mathrm{DS}}=0, \mathrm{~V}_{\mathrm{GS}}=0, \mathrm{f}=1.0 \mathrm{MHz}$ |  | 1.3 | pF |
| $\mathrm{C}_{\text {iss }}$ | Input Capacitance (Note 1) | $\mathrm{V}_{\mathrm{DS}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0, \mathrm{f}=1.0 \mathrm{MHz}$ |  | 5.0 |  |
| $\mathrm{C}_{\mathrm{d} \text { (sub) }}$ | Drain-Substrate Capacitance (Note 1) | $V_{D(S U B)}=10 \mathrm{~V}, f=1.0 \mathrm{MHz}$ |  | 5.0 |  |
| $t_{d(0 n)}$ | Turn-On Delay Time (Note 1) | $\begin{aligned} & V_{D D}=10 \mathrm{~V}, I_{D(o n)}=10 \mathrm{~mA} \\ & V_{G S(o n)}=10 \mathrm{~V}, V_{G S(\text { off })}=0, \\ & R_{G}=50 \Omega \end{aligned}$ |  | 3.0 | ns |
| $t_{r}$ | Rise Time (Note 1) |  |  | 10 |  |
| $t_{d \text { (off) }}$ | Turn-Off Delay Time (Note 1) |  |  | 3.0 |  |
| $t_{f}$ | Fall Time (Note 1) |  |  | 15 |  |

NOTE 1: For design reference only, not 100\% tested.

## FEATURES

- High Input Impedance
- Diode Protected Gate


## PIN CONFIGURATION



## DEVICE SCHEMATIC



## ABSOLUTE MAXIMUM RATINGS

( $T_{A}=25^{\circ} \mathrm{C}$ unless otherwise noted)
Drain-Source or Drain-Gate Voltage
$\qquad$40V

3N173

30 V
50 mA
Gate Forward Current ..... $10 \mu \mathrm{~A}$
Gate Reverse Current ..... 1mA
Storage TemperatureOperating T
$\qquad$
$\qquad$
$\qquad$ $-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10sec) ............. $+300^{\circ} \mathrm{C}$ Power Dissipation 375 mW

NOTE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

## ORDERING INFORMATION*

| TO-72 |
| :---: |
| 3N172 |
| 3N173 |

## ELECTRICAL CHARACTERISTICS $\quad \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{B S}=0$ unless otherwise specified)

| Symbol | Parameter | Test Conditions | 3N172 |  | 3N173 |  | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Min | Max | Min | Max |  |
| IGSS | Gate Reverse Current | $\mathrm{V}_{\mathrm{GS}}=-20 \mathrm{~V}$ |  | -200 |  | -500 | pA |
|  |  | $\mathrm{T}_{\mathrm{A}}=+125^{\circ} \mathrm{C}$ |  | -0.5 |  | -1.0 | $\mu \mathrm{A}$ |
| $\mathrm{BV}_{\text {GSS }}$ | Gate Breakdown Voltage | $\mathrm{I}_{\mathrm{D}}=-10 \mu \mathrm{~A}$ | -40 | -125 | -30 | -125 |  |
| $B V_{\text {DSS }}$ | Drain-Source Breakdown Voltage | $\mathrm{I}_{\mathrm{D}}=-10 \mu \mathrm{~A}$ | -40 |  | -30 |  |  |
| $B V_{\text {SDS }}$ | Source-Drain Breakdown Voltage | $I_{S}=-10 \mu A, V_{D B}=0$ | -40 |  | -30 |  | V |
| $\mathrm{V}_{\text {GS(th) }}$ | Threshold Voltage | $V_{D S}=V_{G S}, I_{D}=-10 \mu \mathrm{~A}$ | -2.0 | -5.0 | -2.0 | $-5.0$ |  |
|  |  | $V_{D S}=-15 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=-10 \mu \mathrm{~A}$ | -2.0 | -5.0 | -2.0 | -5.0 |  |
| $\mathrm{V}_{\mathrm{GS}}$ | Gate Source Voltage | $\mathrm{V}_{\mathrm{DS}}=-15 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=-500 \mu \mathrm{~A}$ | -3.0 | -6.5 | -2.5 | -6.5 |  |
| IDSS | Zero Gate Voltage Drain Current | $\mathrm{V}_{\mathrm{DS}}=-15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$ |  | -0.4 |  | -10 | nA |
| ISDS | Zero Gate Voltage Source Current | $\mathrm{V}_{\mathrm{SD}}=-15 \mathrm{~V}, \mathrm{~V}_{\mathrm{DB}}=0, \mathrm{~V}_{\mathrm{GD}}=0$ |  | -0.4 |  | -10 |  |
| $\mathrm{r}_{\text {DS }}(\mathrm{on})$ | Drain Source On Resistance | $\mathrm{V}_{\mathrm{GS}}=-20 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=-100 \mu \mathrm{~A}$ |  | 250 |  | 350 | ohms |
| $I_{D(0 n)}$ | On Drain Current | $\mathrm{V}_{\mathrm{DS}}=-15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=-10 \mathrm{~V}$ | $-5.0$ | -30 | -5.0 | -30 | mA |

[^415]Small-Signal Electrical Characteristics $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and Buik (substrate) Lead Connected to Source

| Symbol | Parameter | Test Conditions | 3N172 |  | 3N173 |  | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Min | Max | Min | Max |  |
| $\left\|y_{\text {fs }}\right\|$ | Magnitude of Small-Signal, Common-Source, Short-Circuit, Forward Transadmittance* | $\begin{aligned} & V_{D S}=-15 \mathrm{~V}, I_{D}=-10 \mathrm{~mA}, \\ & f=1 \mathrm{kHz} \end{aligned}$ | 1500 | 4000 | 1000 | 4000 | $\mu \mathrm{mhos}$ |
| $\left\|y_{\text {os }}\right\|$ | Magnitude of Small-Signal, Common-Source, Short-Circuit, Output Admittance* | $\begin{aligned} & V_{D S}=-15 \mathrm{~V}, I_{D}=-10 \mathrm{~mA}, \\ & f=1 \mathrm{kHz} \end{aligned}$ |  | 250 |  | 250 | $\mu \mathrm{mhos}$ |
| $\mathrm{C}_{\text {iss }}$ | Small-Signal, Common-Source, Short-Circuit, Input Capacitance* | $\begin{aligned} & V_{D S}=-15 V, I_{D}=-10 \mathrm{~mA}, \\ & f=1 \mathrm{MHz} \end{aligned}$ |  | 3.5 |  | 3.5 | pF |
| Crss | Small-Signal, Common-Source, Short-Circuit, Reverse Transfer Capacitance* | $\begin{aligned} & V_{D S}=-15 V, I_{D}=-10 \mathrm{~mA} \\ & f=1 \mathrm{MHz} \end{aligned}$ |  | 1.0 |  | 1.0 | pF |
| Coss | Small-Signal, Common-Source, Short-Circuit, Output Capacitance* | $\begin{aligned} & V_{D S}=-15 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=-10 \mathrm{~mA}, \\ & \mathrm{f}=1 \mathrm{MHz} \end{aligned}$ |  | 3.0 |  | 3.0 | pF |

Noise Characteristics

| Symbol | Parameter | Test Conditions | Typical | Units |
| :--- | :---: | :---: | :---: | :---: |
| $N F$ | Common-Source Spot Noise Figure | $V_{D S}=-15 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=-1 \mathrm{~mA}$, <br> $\mathrm{f}=1 \mathrm{kHz}, \mathrm{R}_{\mathrm{G}}=1 \mathrm{M} \Omega$ | 1.0 | dB |

Switching Characteristics $T_{A}=25^{\circ} \mathrm{C}$ Bulk (substrate) Lead Connected to Source

| Symbol | Parameter | Test Conditions | 3N172 |  | 3N173 |  | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Min | Max | Min | Max |  |
| $\mathrm{t}_{\mathrm{d}}$ (on) | Turn-On Delay Time* | $\begin{aligned} & V_{D D}=-15 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{D}(\mathrm{on})}=-10 \mathrm{~mA} \end{aligned}$ |  | 12 |  | 12 | ns |
| $\mathrm{t}_{\mathrm{r}}$ | Rise Time* | $\mathrm{R}_{\mathrm{G}}=\mathrm{R}_{\mathrm{L}}=1.4 \mathrm{k} \Omega$ |  | 24 |  | 24 | ns |
| $\mathrm{t}_{\text {off }}$ | Turn-Off Time* | See Test Circuit Below |  | 50 |  | 50 | ns |

*Registered JEDEC Data

## Switching Time Detail



INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.
NOTE: All typical values have been characterized but are not tested.

# 3N188-3N191 <br> Dual P-Channel <br> Enhancement Mode MOSFET <br> General Purpose Amplifier 

## FEATURES

- Very High Input Impedance
- High Gate Breakdown 3N190-3N191
- Zener Protected Gate 3N188-3N189
- Low Capacitance

PIN CONFIGURATION


|  |  |
| :---: | :---: |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |

ORDERING INFORMATION

| TO-99 |
| :---: |
| 3N188 |
| 3N189 |
| 3N190 |
| 3N191 |

ELECTRICAL CHARACTERISTICS $\quad T_{A}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{B S}=0$ unless otherwise specified)

| Symbol | Parameter | Test Conditions | 3N188 <br> 3N189 |  | 3N190 <br> 3N191 |  | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Min | Max | Min | Max |  |
| IGSSR | Gate Reverse Current | $\mathrm{V}_{\mathrm{GS}}=40 \mathrm{~V}$ |  |  |  | 10 | pA |
| IGSSF | Gate Forward Current | $\mathrm{V}_{\mathrm{GS}}=-40 \mathrm{~V}$ |  | -200 |  | -10 |  |
|  |  | $\mathrm{T}_{\mathrm{A}}=125^{\circ} \mathrm{C}$ |  | -200 |  | -25 |  |
| BV ${ }_{\text {DSS }}$ | Drain-Source Breakdown Voltage | $\mathrm{I}_{\mathrm{D}}=-10 \mu \mathrm{~A}$ | -40 |  | -40 |  | V |
| $\mathrm{BV}_{\text {SDS }}$ | Source-Drain Breakdown Voltage | $\mathrm{I}_{\mathrm{S}}=-10 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{BD}}=0$ | -40 |  | -40 |  |  |
| $\mathrm{V}_{\mathrm{GS} \text { (th) }}$ | Threshold Voltage | $V_{D S}=-15 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=-10 \mu \mathrm{~A}$ | -2.0 | -5.0 | -2.0 | -5.0 |  |
|  |  | $V_{D S}=V_{G S}, I_{D}=-10 \mu \mathrm{~A}$ | -2.0 | -5.0 | -2.0 | -5.0 |  |
| $V_{G S}$ | Gate Source Voltage | $\mathrm{V}_{\mathrm{DS}}=-15 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=-500 \mu \mathrm{~A}$ | $-3.0$ | -6.5 | -3.0 | -6.5 |  |
| IDSs | Zero Gate Voltage Drain Current | $\mathrm{V}_{\mathrm{DS}}=-15 \mathrm{~V}$ |  | -200 |  | -200 | pA |
| ISDS | Source Drain Current | $\mathrm{V}_{\mathrm{SD}}=-15 \mathrm{~V}, \mathrm{~V}_{\mathrm{DB}}=0$ |  | -400 |  | -400 |  |
| rDS(on) | Drain-Source on Resistance | $\mathrm{V}_{\text {DS }}=-20 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=-100 \mu \mathrm{~A}$ |  | 300 |  | 300 | ohms |
| $I_{\text {d (on) }}$ | On Drain Current | $\mathrm{V}_{\mathrm{DS}}=-15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=-10 \mathrm{~V}$ | $-5.0$ | $-30.0$ | -5.0 | $-30.0$ | mA |

[^416]ELECTRICAL CHARACTERISTICS (Continued) $\left(T_{A}=25^{\circ} \mathrm{C}\right.$ and $\mathrm{V}_{B S}=0$ unless otherwise specified)

| Symbol | Parameter | Test Conditions |  | 3N188 <br> 3N189 |  | 3N190 <br> 3N191 |  | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Min | Max | Min | Max |  |
| $\mathrm{gfs}^{\text {s }}$ | Forward Transconductance (Note 3) | $\begin{aligned} & V_{D S}=-15 V \\ & I_{D}=-10 \mathrm{~mA} \end{aligned}$ | $\mathrm{f}=1 \mathrm{kHz}$ | 1500 | 4000 | 1500 | 4000 | $\mu \mathrm{S}$ |
| $Y_{0 S}$ | Output Admittance |  |  |  | 300 |  | 300 |  |
| $\mathrm{C}_{\text {iss }}$ | Input Capacitance Output Shorted (Note 5) |  | $\mathrm{f}=1 \mathrm{MHz}$ |  | 4.5 |  | 4.5 | pF |
| $\mathrm{C}_{\text {rss }}$ | Reverse Transfer Capacitance (Note 5) |  |  |  | 1.5 |  | 1.0 |  |
| $\mathrm{Coss}^{\text {c }}$ | Output Capacitance Input Shorted (Note 5) |  |  |  | 3.0 |  | 3.0 |  |

SWITCHING CHARACTERISTICS $\quad T_{A}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{B S}=0$ unless otherwise specified)

| Symbol | Parameter | Test Conditions | Limits |  | Units |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Min | Max |  |
| $t_{d(0 n)}$ | Turn On Delay Time | $\begin{aligned} & V_{D D}=-15 \mathrm{~V}, I_{D}=-10 \mathrm{~mA} \\ & R_{G}=R_{L}=1.4 \mathrm{k} \Omega \text { (Note } 5 \text { ) } \end{aligned}$ |  | 15 | ns |
| $t_{r}$ | Rise Time |  |  | 30 |  |
| $t_{\text {off }}$ | Turn Off Time |  |  | 50 |  |

MATCHING CHARACTERISTICS $\quad\left(T_{A}=25^{\circ} \mathrm{C}\right.$ and $\mathrm{V}_{\mathrm{BS}}=0$ unless otherwise specified) 3 N 188 and 3 N190

| Symbol | Parameter | Test Conditions | Limits |  | Units |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Min | Max |  |
| $\mathrm{Y}_{\mathrm{fs} 1} / \mathrm{Y}_{\mathrm{fs} 2}$ | Forward Transconductance Ratio | $V_{D S}=-15 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=-500 \mu \mathrm{~A}, \mathrm{f}=1 \mathrm{kHz}$ | 0.85 | 1.0 |  |
| $\mathrm{V}_{\text {GS } 1-2}$ | Gate Source Threshold Voltage Differential | $V_{D S}=-15 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=-500 \mu \mathrm{~A}$ |  | 100 | mV |
| $\frac{\Delta V_{\mathrm{GS} 1-2}}{\Delta \mathrm{~T}}$ | Gate Source Threshold Voltage Differential Change with Temperature (Note 4) | $\begin{aligned} & V_{D S}=-15 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=-500 \mu \mathrm{~A}, \\ & \mathrm{~T}=-55^{\circ} \mathrm{C} \text { to }+25^{\circ} \mathrm{C} \end{aligned}$ |  | 100 | $\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$ |
| $\frac{\Delta V_{\mathrm{GS} 1-2}}{\Delta T}$ | Gate Source Threshold Voltage Differential Change with Temperature (Note 4) | $\begin{aligned} & V_{D S}=-15 \mathrm{~V}, I_{D}=-500 \mu \mathrm{~A} \\ & T=+25^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{aligned}$ |  | 100 | $\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$ |

NOTES: 1. Per transistor.
2. Approximately doubles for every $10^{\circ} \mathrm{C}$ increase in $T_{A}$.
3. Pulse test duration $=300 \mu \mathrm{~s}$; duty cycle $\leq 3 \%$.
4. Measured at end points, $T_{A}$ and $T_{B}$.
5. For design reference only, not $100 \%$ tested.

[^417]NOTE: All typical values have been characterized but are not tested.

## ID100, ID101 <br> Dual Low Leakage Diode

FEATURES
$-I_{R}=0.1 p A$ (Typical)

- $\mathrm{BV}_{\mathrm{R}}>30 \mathrm{~V}$
$-\mathrm{C}_{\mathrm{rss}}=0.75 \mathrm{pF}$ (Typical)


## ABSOLUTE MAXIMUM RATINGS

( $T_{A}=25^{\circ} \mathrm{C}$ unless otherwise noted)
Diode Reverse Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 V
Diode to Diode Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . $\pm 50 \mathrm{~V}$
Forward Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20mA
Reverse Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 1 A
Storage Temperature Range ........... $-65^{\circ} \mathrm{C}$ to $+200^{\circ} \mathrm{C}$
Operating Temperature Range ......... $-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10sec) ............ $+300^{\circ} \mathrm{C}$
Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 300mW
Derate above $25^{\circ} \mathrm{C}$. ........................... $2.4 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
NOTE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

The ID100 and ID101 are monolithic dual diodes intended for use in applications requiring extremely low leakage currents. Applications include interstage coupling with reverse isolation, signal clipping and clamping and protection of ultra low leakage FET differential dual and operational amplifiers.

## PIN CONFIGURATIONS



ORDERING INFORMATION

| TO78 | TO71 |
| :---: | :---: |
| ID100 | ID101 |

0243-1
4000

ELECTRICAL CHARACTERISTICS (@ $25^{\circ} \mathrm{C}$ unless otherwise noted)

| Symbol | Parameter | Test Conditions | ID100, ID101 |  |  | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Min | Typ | Max |  |
| $\mathrm{V}_{\mathrm{F}}$ | Forward Voltage Drop | $\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$ | 0.8 |  | 1.1 | V |
| $\mathrm{BV}_{\mathrm{R}}$ | Reverse Breakdown Voltage | $\mathrm{I}_{\mathrm{R}}=1 \mu \mathrm{~A}$ | 30 |  |  | V |
| $I_{R}$ | Reverse Leakage Current | $\mathrm{V}_{\mathrm{R}}=1 \mathrm{~V}$ |  | 0.1 |  | pA |
|  |  | $\mathrm{V}_{\mathrm{R}}=10 \mathrm{~V}$ |  | 2.0 | 10 |  |
|  |  | $\mathrm{T}_{\mathrm{A}}=125^{\circ} \mathrm{C}$ |  |  | 10 | nA |
| $\left.\|l\| l\right\|_{\text {R1- }} \mathrm{R}^{2} \mid$ | Differential Leakage Current | $\mathrm{V}_{\mathrm{R}}=10 \mathrm{~V}$ |  |  | 3 | pA |
| $\mathrm{C}_{\text {rss }}$ | Total Reverse Capacitance | $\mathrm{V}_{\mathrm{R}}=10 \mathrm{~V}, \mathrm{f}=1 \mathrm{~Hz}$ (Note 1) |  | 0.75 | 1 | pF |

NOTE 1: For design reference only, not $100 \%$ tested.
2: Pins 3 and 5 should not be connected together nor connected to the circuit in any way.

[^418]

0243-3

4
CAPACITANCE vs. VOLTAGE


0243-4

FORWARD CURRENT vs. VOLTAGE


## IT100, IT101 P-Channel JFET Switch



## GENERAL DESCRIPTION

This P-channel JFET has been designed to directly interface with TTL logic, thus eliminating the need for costly drivers, in analog gate circuitry. Bipolar inputs of $\pm 15 \mathrm{~V}$ can be switched. The FET is OFF for hi level inputs ( +5 V or +15 V ) and ON for low level inputs ( $<0.5 \mathrm{~V}$ for IT100, <1.5V for IT101).

## PIN CONFIGURATION



## FEATURES

- Interfaces Directly w/TTL Logic Elements
- $r_{D S(o n)}<75 \Omega$ for 5V Logic Drive
- $l_{D(0 f f)}<100 \mathrm{PA}$


## ABSOLUTE MAXIMUM RATINGS

( $T_{A}=25^{\circ} \mathrm{C}$ unless otherwise noted)
Gate-Source Voltage .................................... 35 V
Gate-Drain Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35V
Gate Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50mA
Storage Temperature Range ........... $-65^{\circ} \mathrm{C}$ to $+200^{\circ} \mathrm{C}$
Operating Temperature Range $\ldots \ldots . .-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10sec) ............. $+300^{\circ} \mathrm{C}$
Power Dissipation ... . . . . . . . . . . . . . . . . . . . . . . . . . . 300mW
Derate above $25^{\circ} \mathrm{C}$. . . . . . . . . . . . . . . . . . . . . . . $2.4 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
NOTE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

## ORDERING INFORMATION

| TO-18 |
| :---: |
| IT100 |
| IT101 |

## ELECTRICAL CHARACTERISTICS ( $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise specified)

| Symbol | Parameter | Test Conditions | IT100 |  | IT101 |  | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Min | Max | Min | Max |  |
| IGSS | Gate Reverse Current | $\mathrm{V}_{\mathrm{GS}}=20 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0$ |  | 200 |  | 200 | pA |
| $B V_{\text {GSS }}$ | Gate-Source Breakdown Voltage | $\mathrm{I}_{\mathrm{G}}=1 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{DS}}=0$ | 35 |  | 35 |  | V |
| $\mathrm{V}_{\mathrm{P}}$ | Pinch Off Voltage | $\mathrm{I}_{\mathrm{D}}=1 \mathrm{nA}, \mathrm{V}_{\mathrm{DS}}=-15 \mathrm{~V}$ | 2 | 4.5 | 4 | 10 |  |
| loss | Drain Current | $\mathrm{V}_{\mathrm{GS}}=0, \mathrm{~V}_{\mathrm{DS}}=-15 \mathrm{~V}$ | -10 |  | -20 |  | mA |
| $\mathrm{g}_{\mathrm{fs}}$ | Transconductance | $\mathrm{V}_{\mathrm{GS}}=0, \mathrm{~V}_{\mathrm{DS}}=-15 \mathrm{~V}$ | 8 |  | 8 |  | mS |
| gos | Output Conductance |  |  | 1 |  | 1 |  |
| $\mathrm{l}_{\mathrm{D} \text { (off) }}$ | Drain (OFF) Leakage | $\mathrm{V}_{\mathrm{DS}}=-10 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=15 \mathrm{~V}$ |  | $-100$ |  | $-100$ | pA |
| r ${ }_{\text {DS }}(\mathrm{on}$ ) | Drain-Source "ON" Resistance | $\mathrm{V}_{\mathrm{GS}}=0, \mathrm{~V}_{\mathrm{DS}}=-0.1 \mathrm{~V}$ |  | 75 |  | 60 | $\Omega$ |
| $\mathrm{C}_{\text {iss }}$ | Input Capacitance | $V_{D G}=-20 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$ (Note 1) |  | 35 |  | 35 | pF |
| $\mathrm{C}_{\text {rss }}$ | Reverse Transfer Capacitance | $\mathrm{V}_{\mathrm{DG}}=-10 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=0$ (Note 1) |  | 12 |  | 12 |  |

NOTE 1: For design reference only, not 100\% tested.

General Purpose Amplifier

FEATURES

- High hfe at Low Current
- Low Output Capacitance
- Good Matching
- Tight VBE Tracking

PIN CONFIGURATION


| ABSOLUTE MAXIMUM RATINGS |  |
| :---: | :---: |
| ( $T_{A}=25^{\circ} \mathrm{C}$ unless otherwise noted) |  |
| Collector-Base Voltage (Note 1) | 45V |
| Collector-Emitter Voltage (Note 1) | 45V |
| Emitter Base Voltage (Notes 1 and 2) | 7 V |
| Collector Current (Note 1) | 50mA |
| Collector-Collector Voltage | 60 V |
| Storage Temperature Range | $+200^{\circ} \mathrm{C}$ |
| Operating Temperature Range | $+150^{\circ} \mathrm{C}$ |
| Lead Temperature (Soldering, 10sec) | $300^{\circ}$ |


|  | TO-78 |  | TO-71 |  |
| :---: | :---: | :---: | :---: | :---: |
|  | One | Both | One | Both |
|  | Side | Sides | Side | Sides |
| Power Dissipation | 250 mW | 500 mW | 200 mW | 400 mW |
| Derate Above |  |  |  |  |
| $25^{\circ} \mathrm{C} \ldots \ldots . .$. | $1.7 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ | $3.3 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ | $1.3 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ | $2.7 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ |

NOTE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ORDERING INFORMATION

| TO-78 | TO-71 |
| :---: | :---: |
| IT120 | IT120-TO71 |
| IT121 | IT121-TO71 |
| IT122 | IT122-TO71 |

ELECTRICAL CHARACTERISTICS $\quad \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise specified)

| Symbol | Parameter | Test Conditions |  | IT120A |  | IT120 |  | IT121 |  | IT122 |  | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Min | Max | Min | Max | Min | Max | Min | Max |  |
| $h_{\text {FE }}$ | DC Current Gain | $\mathrm{I}_{\mathrm{C}}=10 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{CE}}=5$ | V | 200 |  | 200 |  | 80 |  | 80 |  |  |
|  |  | $\mathrm{I}_{\mathrm{C}}=1.0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CE}}=5$ | 5.0 V | 225 |  | 225 |  | 100 |  | 100 |  |  |
|  |  | $\mathrm{I}_{\mathrm{C}}=10 \mu \mathrm{~A}$, | $\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$ | 75 |  | 75 |  | 30 |  | 30 |  |  |
| $\mathrm{V}_{\mathrm{BE}}(\mathrm{ON})$ | Emitter-Base On Voltage | $\mathrm{V}_{C E}=5.0 \mathrm{~V}$ |  |  | 0.7 |  | 0.7 |  | 0.7 |  | 0.7 | V |
| $\mathrm{V}_{\text {CE }}(S A T)$ | Collector Saturation Voltage | $\mathrm{I}_{\mathrm{C}}=0.5 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}}=0.0$ | .05mA |  | 0.5 |  | 0.5 |  | 0.5 |  | 0.5 |  |
| ICBO | Collector Cutoff Current | $\mathrm{I}_{\mathrm{E}}=0, \mathrm{~V}_{C B}=45 \mathrm{~V}$ |  |  | 1.0 |  | 1.0 |  | 1.0 |  | 1.0 | nA |
|  |  |  | $\mathrm{T}_{\mathrm{A}}=+150^{\circ} \mathrm{C}$ |  | 10 |  | 10 |  | 10 |  | 10 | $\mu \mathrm{A}$ |
| IEBO | Emitter Cutoff Current | $\mathrm{I}_{\mathrm{C}}=0, \mathrm{~V}_{\mathrm{EB}}=5.0 \mathrm{~V}$ |  |  | 1.0 |  | 1.0 |  | 1.0 |  | 1.0 | nA |
| $\mathrm{C}_{\text {obo }}$ | Output Capacitance | $\mathrm{I}_{\mathrm{E}}=0, \mathrm{~V}_{\mathrm{CB}}=5.0 \mathrm{~V}$ | $\mathrm{f}=1 \mathrm{MHz}$ <br> (Note 3) |  | 2.0 |  | 2.0 |  | 2.0 |  | 2.0 | pF |
| $\mathrm{C}_{\text {te }}$ | Emitter Transition Capacitance | $\begin{aligned} & \mathrm{I}_{\mathrm{C}}=0, \\ & \mathrm{~V}_{\mathrm{EB}}=0.5 \mathrm{~V} \end{aligned}$ |  |  | 2.5 |  | 2.5 |  | 2.5 |  | 2.5 |  |
| $\mathrm{C}_{\mathrm{C}_{1}, \mathrm{C}_{2}}$ | Collector to Collector Capacitance | $\mathrm{V}_{\mathrm{CC}}=0$ |  |  | 4.0 |  | 4.0 |  | 4.0 |  | 4.0 |  |

[^419]ELECTRICAL CHARACTERISTICS
( $T_{A}=25^{\circ} \mathrm{C}$ unless otherwise specified)

| Symbol | Parameter | Test Conditions | IT120A |  | IT120 |  | IT121 |  | IT122 |  | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Min | Max | Min | Max | Min | Max | Min | Max |  |
| $\mathrm{IC}_{1}, \mathrm{C}_{2}$ | Collector to Collector Leakage Current | $\mathrm{V}_{C C}= \pm 60 \mathrm{~V}$ (Note 3) |  | 10 |  | 10 |  | 10 |  | 10 | nA |
| $\mathrm{V}_{\text {CEO }}$ (SUST) | Collector to Emitter Sustaining Voltage | $\mathrm{I}_{\mathrm{C}}=1.0 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}}=0$ | 45 |  | 45 |  | 45 |  | 45 |  | V |
| GBW | Current Gain Bandwidth Product (Note 3) | $\mathrm{I}_{\mathrm{C}}=10 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{CE}}=5 \mathrm{~V}$ | 10 |  | 10 |  | 7 |  | 7 |  | MHz |
|  |  | $\mathrm{I}_{\mathrm{C}}=1 \mathrm{~mA}, \mathrm{~V}_{C E}=5 \mathrm{~V}$ | 220 |  | 220 |  | 180 |  | 180 |  |  |
| $\left\|\mathrm{V}_{\mathrm{BE}_{1}}-\mathrm{V}_{\mathrm{BE}_{2}}\right\|$ | Base Emitter Voltage Differential | $\mathrm{I}_{\mathrm{C}}=10 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{CE}}=5.0 \mathrm{~V}$ |  | 1 |  | 2 |  | 3 |  | 5 | mV |
| $\left\|I_{B_{1}}-I_{B_{2}}\right\|$ | Base Current Differential |  |  | 2.5 |  | 5 |  | 25 |  | 25 | nA |
| $\left.\frac{\Delta\left(\mathrm{V}_{\mathrm{BE}}^{1}\right.}{}-\mathrm{V}_{\left.\mathrm{BE}_{2}\right)}\right) ~ \Delta T$ | Base-Emitter Voltage Differential Change with Temperature | (Note 3) $\begin{aligned} & T_{A}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\ & \mathrm{I}_{\mathrm{C}}=10 \mu \mathrm{~A}, \mathrm{~V}_{C E}=5.0 \mathrm{~V} \end{aligned}$ |  | 3 |  | 5 |  | 10 |  | 20 | $\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$ |

NOTES: 1. Per transistor.
2. The reverse base-to-emitter voltage must never exceed 7.0 volts and the reverse base-to-emitter current must never exceed $10 \mu \mathrm{~A}$.
3. For design reference only, not $100 \%$ tested.

[^420]
## FEATURES

－High Gain at Low Current
－Low Output Capacitance
－Tight $\mathrm{I}_{\mathrm{B}}$ Match
－Tight $\mathrm{V}_{\mathrm{BE}}$ Tracking
－Dielectrically Isolated Matched Pairs for Differential Amplifiers

## PIN CONFIGURATION



4001

## ORDERING INFORMATION

| TO78 | TO－71 |
| :---: | :---: |
| IT126 | IT126－TO71 |
| IT127 | IT127－TO71 |
| IT128 | IT128－TO71 |
| IT129 | IT129－TO71 |



|  | TO71 |  | TO78 |  |
| :--- | :---: | :---: | :---: | :---: |
|  | One | Both | One | Both |
| Power Dissipation | Side | Sides | Side | Sides |
| Total Dissipation at $25^{\circ} \mathrm{C}$ | 200 mW | 400 mW | 250 mW | 500 mW |
|  |  | 1.3 | 2.7 | 1.7 |
|  | 3.3 |  |  |  |
| Derating Factor $\ldots . . .$. | $\mathrm{mW} /{ }^{\circ} \mathrm{C}$ |

NOTE：Stresses above those listed under＂Absolute Maximum Ratings＂ may cause permanent damage to the device．These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied．Exposure to absolute maximum rating conditions for extended peri－ ods may affect device reliability．

ELECTRICAL CHARACTERISTICS $\quad\left(T_{A}=25^{\circ} \mathrm{C}\right.$ unless otherwise specified）

| Symbol | Parameter | Test Conditions | IT126 |  | IT127 |  | IT128 |  | IT129 |  | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Min | Max | Min | Max | Min | Max | Min | Max |  |
| $\mathrm{h}_{\text {FE }}$ | DC Current Gain | $\mathrm{I}_{\mathrm{C}}=10 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{CE}}=5 \mathrm{~V}$ | 150 |  | 150 |  | 100 |  | 70 |  |  |
|  |  | $\mathrm{I}_{\mathrm{C}}=1.0 \mathrm{~mA}, \mathrm{~V}_{\text {CE }}=5 \mathrm{~V}$ | 200 | 800 | 200 | 800 | 150 | 800 | 100 |  |  |
|  |  | $\mathrm{I}_{\mathrm{C}}=10 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CE}}=5 \mathrm{~V}$ | 230 |  | 230 |  | 170 |  | 115 |  |  |
|  |  | $\mathrm{I}_{\mathrm{C}}=50 \mathrm{~mA}, \mathrm{~V}_{\text {CE }}=5 \mathrm{~V}$ | 100 |  | 100 |  | 75 |  | 50 |  |  |
|  |  | $\mathrm{I}_{\mathrm{C}}=1 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CE}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$ | 75 |  | 75 |  | 60 |  | 40 |  |  |
| $V_{\text {BE（ }}$（on） | Emitter－Base On Voltage | $\mathrm{I}_{\mathrm{C}}=10 \mathrm{~mA}, \mathrm{~V}_{\text {CE }}=5 \mathrm{~V}$ |  | 0.9 |  | 0.9 |  | 0.9 |  | 0.9 | V |
|  |  | $\mathrm{I}_{\mathrm{C}}=50 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CE}}=5 \mathrm{~V}$ |  | 1.0 |  | 1.0 |  | 1.0 |  | 1.0 |  |
| $V_{\text {CE（sat）}}$ | Collector Saturation Voltage | $\mathrm{I}_{\mathrm{C}}=10 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}}=1 \mathrm{~mA}$ |  | 0.3 |  | 0.3 |  | 0.3 |  | 0.3 |  |
|  |  | $I_{C}=50 \mathrm{~mA}, I_{B}=5 \mathrm{~mA}$ |  | 1.0 |  | 1.0 |  | 1.0 |  | 1.0 |  |
| ICBO | Collector Cutoff Current | $\begin{aligned} & \mathrm{I}_{\mathrm{E}}=0, \mathrm{~V}_{C B}=45 \mathrm{~V}, \\ & \mathrm{~V}_{C B}=30 \mathrm{~V}^{*}(\mathrm{IT} 129), \mathrm{T}_{\mathrm{A}}=+150^{\circ} \mathrm{C} \end{aligned}$ |  | 0.1 |  | 0.1 |  | 0.1 |  | 0．1＊ | nA |
|  |  |  |  | 0.1 |  | 0.1 |  | 0.1 |  | 0．1＊ | $\mu \mathrm{A}$ |

[^421]ELECTRICAL CHARACTERISTICS (Continued) $\left(T_{A}=25^{\circ} \mathrm{C}\right.$ unless otherwise specified)

| Symbol | Parameter | Test Conditions | IT126 |  | IT127 |  | IT128 |  | IT129 |  | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Min | Max | Min | Max | Min | Max | Min | Max |  |
| IEBO | Emitter Cutoff Current | $\mathrm{I}_{\mathrm{C}}=0, \mathrm{~V}_{\mathrm{EB}}=5 \mathrm{~V}$ |  | 0.1 |  | 0.1 |  | 0.1 |  | 0.1 | nA |
| $\mathrm{C}_{\text {obo }}$ | Output Capacitance (Note 3) | $\mathrm{I}_{\mathrm{E}}=0, \mathrm{~V}_{\mathrm{CB}}=20 \mathrm{~V}$ |  | 3 |  | 3 |  | 3 |  | 3 | pF |
| $\mathrm{BV}_{\mathrm{C}_{1} \mathrm{C}_{2}}$ | Collector to Collector Breakdown Voltage | $\mathrm{l}_{\mathrm{C}}= \pm 1 \mu \mathrm{~A}$ | $\pm 100$ |  | $\pm 100$ |  | $\pm 100$ |  | $\pm 100$ |  | V |
| $\mathrm{V}_{\text {CEO }}$ (sust) | Collector to Emitter Sustaining Voltage | $\mathrm{I}_{\mathrm{C}}=1 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}}=0$ | 60 |  | 60 |  | 55 |  | 45 |  |  |
| $\mathrm{BV}_{\mathrm{CBO}}$ | Collector Base Breakdown Voltage | $\mathrm{I}_{\mathrm{C}}=10 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{E}}=0$ | 60 |  | 60 |  | 55 |  | 45 |  |  |
| $B V_{\text {EBO }}$ | Emitter Base Breakdown Voltage | $\mathrm{I}_{\mathrm{E}}=10 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{C}}=0$ | 7 |  | 7 |  | 7 |  | 7 |  |  |

## MATCHING CHARACTERISTICS

| Symbol | Parameter | Test Conditions | IT126 |  | IT127 |  | IT128 |  | IT129 |  | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Min | Max | Min | Max | Min | Max | Min | Max |  |
| $\left\|V_{B E_{1}}-V_{B E_{2}}\right\|$ | Base Emitter Voltage Differential | $\mathrm{I}_{\mathrm{C}}=1 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CE}}=5 \mathrm{~V}$ |  | 1 |  | 2 |  | 3 |  | 5 | mV |
| $\frac{\Delta\left(\left\|\mathrm{V}_{\mathrm{BE}_{1}}-\mathrm{V}_{\mathrm{BE}_{2}}\right\|\right)}{\Delta \mathrm{T}}$ | Base Emitter Voltage Differential Change with Temperature (Note 3) | $\begin{gathered} \mathrm{I}_{\mathrm{C}}=1 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CE}}=5 \mathrm{~V} \\ \mathrm{~T}_{\mathrm{A}}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{gathered}$ |  | 3 |  | 5 |  | 10 |  | 20 | $\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$ |
| $\left\|I_{B_{1}-I_{B_{2}}}\right\|$ | Base Current Differential | $\mathrm{I}_{\mathrm{C}}=10 \mu \mathrm{~A}, \mathrm{~V}_{\text {CE }}=5 \mathrm{~V}$ |  | 2.5 |  | 5 |  | 10 |  | 20 | nA |
|  |  | $\mathrm{I}_{\mathrm{C}}=1 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CE}}=5 \mathrm{~V}$ |  | 0.25 |  | 0.5 |  | 1.0 |  | 2.0 | $\mu \mathrm{A}$ |

NOTES: 1. Per transistor.
2. The reverse base-to-emitter voltage must never exceed 7.0 volts and the reverse base-to-emitter current must never exceed $10 \mu \mathrm{~A}$.
3. For design reference only, not $100 \%$ tested.

[^422]
## IT130-IT132 Monolithic Dual PNP General Purpose Amplifier

## FEATURES

- High hfe at Low Current
- Low Output Capacitance
- Tight $\mathrm{I}_{\mathrm{B}}$ Match
- Tight $\mathrm{V}_{\mathrm{BE}}$ Tracking


## PIN CONFIGURATIONS




#### Abstract

ABSOLUTE MAXIMUM RATINGS ( $T_{A}=25^{\circ} \mathrm{C}$ unless otherwise specified) Collector-Base Voltage (Note 1) ......................... 45 V Collector-Emitter Voltage (Note 1) . . . . . . . . . . . . . . . . . . . 45V Emitter Base Voltage (Notes 1 and 2) . . . . . . . . . . . . . . . . 7 V Collector Current (Note 1) . ............................. . 50 mA Collector-Collector Voltage . . . . . . . . . . . . . . . . . . . . . . . 60V Storage Temperature Range ............ $-65^{\circ} \mathrm{C}$ to $+175^{\circ} \mathrm{C}$ Operating Temperature Range $\ldots \ldots . . .-55^{\circ} \mathrm{C}$ to $+175^{\circ} \mathrm{C}$ Lead Temperature (Soldering, 10sec) ............ $+300^{\circ} \mathrm{C}$ |  | TO-71 |  | TO-78 |  |
| :---: | :---: | :---: | :---: | :---: |
|  | One | Both | One | Both |
| Side | Sides | Side | Sides |  |
| 200 mW | 400 mW | 250 mW | 500 mW |  |

\section*{Power}

Dissipation $1.3 \mathrm{~mW} /{ }^{\circ} \mathrm{C} 2.7 \mathrm{~mW} /{ }^{\circ} \mathrm{C} 1.7 \mathrm{~mW} /{ }^{\circ} \mathrm{C} 3.3 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ NOTE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.


## ORDERING INFORMATION

| TO-78 | TO-71 |
| :---: | :---: |
| IT130A | IT130A-TO71 |
| IT130 | IT130-TO71 |
| IT131 | IT131-TO71 |
| IT132 | IT132-TO71 |

ELECTRICAL CHARACTERISTICS (Continued) $\left(T_{A}=25^{\circ} \mathrm{C}\right.$ uniess otherwise specified)

| Symbol | Parameter | Test Conditions | IT130A |  | IT130 |  | IT131 |  | IT132 |  | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Min | Max | Min | Max | Min | Max | Min | Max |  |
| $\mathrm{C}_{1}-\mathrm{C}_{2}$ | Collector to Collector Leakage Current | $\mathrm{V}_{\mathrm{CC}}= \pm 60 \mathrm{~V}$ |  | 10 |  | 10 |  | 10 |  | 10 | nA |
| $V_{\text {CEO }}$ (SUST) | Collector to Emitter Sustaining Voltage | $\mathrm{I}_{\mathrm{C}}=1.0 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}}=0$ | -45 |  | -45 |  | -45 |  | -45 |  | V |
| GBW | Current Gain <br> Bandwidth Product (Note 3) | $\mathrm{I}^{\prime}=10 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{CE}}=5 \mathrm{~V}$ | 5 |  | 5 |  | 4 |  | 4 |  | MHz |
|  |  | $\mathrm{I}_{\mathrm{C}}=1 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CE}}=5 \mathrm{~V}$ | 110 |  | 110 |  | 90 |  | 90 |  |  |
| $\left\|\mathrm{V}_{\mathrm{BE}_{1}}-\mathrm{V}_{\mathrm{BE}_{2}}\right\|$ | Base Emitter Voltage Differential | $\mathrm{I}^{\prime}=10 \mu \mathrm{~A}, \mathrm{~V}_{C E}=5.0 \mathrm{~V}$ |  | 1 |  | 2 |  | 3 |  | 5 | mV |
| $\mid l_{B_{1}-l_{B_{2}} \mid}$ | Base Current Differential | $\mathrm{I}_{\mathrm{C}}=10 \mu \mathrm{~A}, \mathrm{~V}_{C E}=5.0 \mathrm{~V}$ |  | 2.5 |  | 5 |  | 25 |  | 25 | nA |
| $\Delta\left(\mathrm{V}_{\mathrm{BE}_{1}}-\mathrm{V}_{\mathrm{BE}_{2}}\right) / \Delta \mathrm{T}$ | Base-Emitter Voltage Differential Change with Temperature (Note 3) | $\begin{aligned} & T_{A}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\ & \mathrm{IC}=10 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{CE}}=5.0 \mathrm{~V} \end{aligned}$ |  | 3 |  | 5 |  | 10 |  | 20 | $\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$ |

NOTES: 1. Per transistor.
2. The reverse base-to-emitter voitage must never exceed 7.0 V , and the reverse base-to-emitter current must never exceed $10 \mu \mathrm{~A}$.
3. For design reference only, not $100 \%$ tested.

[^423]
## FEATURES

- High Gain at Low Current
- Low Output Capacitance
- Tight IB Match
- Tight $\mathrm{V}_{\mathrm{BE}}$ Tracking
- Dielectrically Isolated Matched Pairs for Differential Amplifiers


## PIN CONFIGURATION



## ORDERING INFORMATION

| TO-78 | TO-71 |
| :---: | :---: |
| IT136 | IT136-TO71 |
| IT137 | IT137-TO71 |
| IT138 | IT138-TO71 |
| IT139 | IT139-TO71 |

ABSOLUTE MAXIMUM RATINGS
( $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted)
Collector-Base Voltage (Note 1)
IT136, IT137 ..... 60V
IT138 ..... 55 V
IT139 ..... 45 V
Collector-Emitter Voltage (Note 1) IT136, IT137 ..... 60V
IT 138 ..... 55V
IT139 ..... 45V
Emitter Base Voltage (Notes 1 and 2) ..... 7V
Collector Current (Note 1) ..... 100 mA
Collector-Collector Voltage ..... 70 V
Storage Temperature Range ..... $-65^{\circ} \mathrm{C}$ to $+175^{\circ} \mathrm{C}$
Operating Temperature Range ..... $-55^{\circ} \mathrm{C}$ to $+175^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10sec)TO-78

|  | One | Both | One | Both |
| :--- | :--- | :--- | :--- | :--- |
| Side | Sides | Side | Sides |  |

Power
Dissipation... $200 \mathrm{~mW} \quad 400 \mathrm{~mW} \quad 250 \mathrm{~mW} \quad 500 \mathrm{~mW}$ Derate
above $25^{\circ} \mathrm{C} . .1 .3 \mathrm{~mW} /{ }^{\circ} \mathrm{C} 2.7 \mathrm{~mW} /{ }^{\circ} \mathrm{C} 1.7 \mathrm{~mW} /{ }^{\circ} \mathrm{C} 3.3 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
NOTE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS ( $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise specified)

| Symbol | Parameter | Test Conditions | IT136 |  | IT137 |  | IT138 |  | IT139 |  | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Min | Max | Min | Max | Min | Max | Min | Max |  |
| $\mathrm{h}_{\text {FE }}$ | DC Current Gain | $\mathrm{I}_{\mathrm{C}}=10 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{CE}}=5 \mathrm{~V}$ | 150 |  | 150 |  | 100 |  | 70 |  |  |
|  |  | $\mathrm{I}_{\mathrm{C}}=1.0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CE}}=5 \mathrm{~V}$ | 150 | 800 | 150 | 800 | 100 | 800 | 70 | 800 |  |
|  |  | $\mathrm{I}_{\mathrm{C}}=10 \mathrm{~mA}, \mathrm{~V}_{\text {CE }}=5 \mathrm{~V}$ | 125 |  | 125 |  | 80 |  | 50 |  |  |
|  |  | $\mathrm{I}_{\mathrm{C}}=50 \mathrm{~mA}, \mathrm{~V}_{\text {CE }}=5 \mathrm{~V}$ | 65 |  | 60 |  | 40 |  | 25 |  |  |
|  |  | $\begin{aligned} & \mathrm{I}_{\mathrm{C}}=1 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CE}}=5 \mathrm{~V} \\ & \mathrm{~T}_{\mathrm{A}}=55^{\circ} \mathrm{C} \end{aligned}$ | 75 |  | 75 |  | 60 |  | 40 |  |  |
| $\mathrm{V}_{\mathrm{BE} \text { (on) }}$ | Emitter-Base On Voltage | $\mathrm{I}_{\mathrm{C}}=10 \mathrm{~mA}, \mathrm{~V}_{\text {CE }}=5 \mathrm{~V}$ |  | . 9 |  | . 9 |  | . 9 |  | . 9 | V |
|  |  | $\mathrm{I}_{\mathrm{C}}=50 \mathrm{~mA}, \mathrm{~V}_{\text {CE }}=5 \mathrm{~V}$ |  | 1.0 |  | 1.0 |  | 1.0 |  | 1.0 |  |
| $\mathrm{V}_{\text {CE (sat) }}$ | Collector Saturation Voltage | $\mathrm{I}_{\mathrm{C}}=1 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}}=.1 \mathrm{~mA}$ |  | . 3 |  | . 3 |  | . 3 |  | . 3 |  |
|  |  | $\mathrm{I}_{C}=10 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}}=1 \mathrm{~mA}$ |  | . 6 |  | . 6 |  | . 6 |  | . 6 |  |

[^424]ELECTRICAL CHARACTERISTICS
(Continued) $\left(T_{A}=25^{\circ} \mathrm{C}\right.$ unless otherwise specified)


NOTES: 1. Per transistor.
2. The reverse base-to-emitter voltage must never exceed 7.0 volts and the reverse base-to-emitter current must never exceed $10 \mu \mathrm{~A}$.
3. For design reference only, not $100 \%$ tested.

## GENERAL DESCRIPTION

A low noise, low leakage FET that employs a cascode structure to accomplish very low $\mathrm{I}_{\mathrm{G}}$ at high voltage levels, while giving high transconductance and very high common, mode rejection ratio.

## PIN CONFIGURATION



## SCHEMATIC DIAGRAM



FEATURES

- CMRR $>120 \mathrm{~dB}$
$-\mathrm{I}_{\mathrm{G}}<5 \mathrm{PA}$ @ $\mathbf{5 0 V}_{\mathrm{DG}}$
$-\mathrm{C}_{\text {rss }}<0.5 \mathrm{pF}$
- ${ }^{\circ} \mathrm{gos}>.025 \mu \mathrm{~s}$


## ABSOLUTE MAXIMUM RATINGS

( $T_{A}=25^{\circ} \mathrm{C}$ unless otherwise specified)
Drain-Source and Drain-Gate
Voltages (Note 1) ....................................... 60V
Drain Current (Note 1) ............................... 50mA
Gate-Gate Voltage ................................. $\pm 60 \mathrm{~V}$
Storage Temperature .................. $-65^{\circ} \mathrm{C}$ to $+200^{\circ} \mathrm{C}$
Operating Temperature $\ldots \ldots \ldots \ldots . .-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10sec) ............ $+300^{\circ} \mathrm{C}$

|  | One Side | Both Sides |
| :---: | :---: | :---: |
| Power Dissipation (Note 3) $\ldots$. | 250 mW | 500 mW |
| Derate above $25^{\circ} \mathrm{C} \ldots . . . .$. | $3.8 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ | $7.7 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ |

NOTE 1. Per transistor.
NOTE 2. Due to the non-symmetrical structure of these devices, the drain and source ARE NOT interchangeable.
NOTE 3. @ $85^{\circ} \mathrm{C}$ free air temp.
NOTE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

## ORDERING INFORMATION

| TO-71 |
| :---: |
| IT500 |
| IT501 |
| IT502 |
| IT503 |
| IT504 |
| IT505 |

ELECTRICAL CHARACTERISTICS ( $T_{A}=25^{\circ} \mathrm{C}$ unless otherwise specified)

| Symbol | Characteristics | Test Conditions |  | Limits ${ }^{\text {a }}$ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Min | Max |  |
| IGSS | Gate Reverse Current | $\mathrm{V}_{\mathrm{GS}}=-20 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0, \mathrm{~T}_{\mathrm{A}}=125^{\circ} \mathrm{C}$ |  |  | $-100$ | pA |
|  |  |  |  |  | -5 | nA |
| BV ${ }_{\text {GSS }}$ | Gate-Source Breakdown Voltage | $\mathrm{I}_{\mathrm{G}}=-1 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{DS}}=0$ |  | -50 |  | V |
| $\mathrm{V}_{\text {GS }}$ (off) | Gate-Source Cutoff Voltage | $V_{D S}=20 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=1 \mathrm{nA}$ |  | -0.7 | -4 |  |
| $\mathrm{V}_{\mathrm{GS}}$ | Gate-Source Voltage | $V_{D G}=35 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=200 \mu \mathrm{~A}, \mathrm{~T}_{\mathrm{A}}=125^{\circ} \mathrm{C}$ |  | -0.2 | -3.8 |  |
| $\mathrm{I}_{\mathrm{G}}$ | Gate Operating Current |  |  |  | -5 | pA |
|  |  |  |  |  | -5 | nA |
| ldss | Saturation Drain Current (Note 1) | $V_{D S}=20 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$ |  | 0.7 | 7 | mA |
| $\mathrm{g}_{\mathrm{f}}$ | Common-Source Forward Transconductance (Note 1) | $V_{D S}=20 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$ | $\mathrm{f}=1 \mathrm{kHz}$ | 1000 | 4000 | $\mu \mathrm{S}$ |
| $\mathrm{g}_{\mathrm{fs}}$ | Common-Source Forward Transconductance (Note 1) | $V_{D G}=20 \mathrm{~V}, I_{D}=200 \mu \mathrm{~A}$ |  | 500 | 1600 |  |
| gos | Common-Source Output Conductance | $\mathrm{V}_{\mathrm{DS}}=20 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$ |  |  | 1 |  |
| gos | Common-Source Output Conductance | $V_{D S}=20 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=200 \mu \mathrm{~A}$ |  |  | 0.025 |  |
| $\mathrm{C}_{\mathrm{g} 1 \mathrm{~g} 2}$ | Gate to Gate Capacitance (Note 4) | $\mathrm{V}_{\mathrm{G} 1}=\mathrm{V}_{\mathrm{G} 2}=10 \mathrm{~V}$ | $f=1 \mathrm{MHz}$ |  | 3.5 | pF |
| Ciss | Common-Source Input Capacitance (Note 4) | $\mathrm{V}_{\mathrm{DS}}=20 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$ |  |  | 7 | pF |
| Crss | Common-Source Reverse Transfer Capacitance (Note 3, 4) |  |  |  | 0.5 |  |
| NF | Spot Noise Figure (Note 4) |  | $\begin{aligned} & \mathrm{f}=100 \mathrm{~Hz} \\ & \mathrm{R}_{\mathrm{G}}=10 \mathrm{M} \Omega \\ & \hline \end{aligned}$ |  | 0.5 | dB |
| $\bar{e}_{n}$ | Equivalent Input Noise Voltage (Note 4) |  | $f=10 \mathrm{~Hz}$ |  | 50 | $\frac{\mu \mathrm{V}}{\sqrt{\mathrm{Hz}}}$ |
|  |  |  | $\mathrm{f}=1 \mathrm{kHz}$ |  | 15 |  |


| Symbol | Characteristics | Test Conditions | IT500 |  | IT501 |  | IT502 |  | IT503 |  | IT504 |  | IT505 |  | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Min | Max |  |
| $\mathrm{I}_{\mathrm{G} 1}{ }^{-\mathrm{I}_{\mathrm{G} 2}}$ | Differential Gate Current | $\begin{aligned} & V_{D G}=20 \mathrm{~V}, \\ & I_{D}=200 \mu \mathrm{~A}, \mathrm{~T}_{\mathrm{A}}=125^{\circ} \mathrm{C} \end{aligned}$ |  | 5 |  | 5 |  | 5 |  | 5 |  | 10 |  | 15 | nA |
| $\frac{\mathrm{lDSS} 1}{\mathrm{l} \mathrm{DSS} 2}$ | Saturation Drain Current Ratio (Note 1) | $\mathrm{V}_{\mathrm{DS}}=20 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}$ | 0.95 | 1 | 0.95 | 1 | 0.95 | 1 | 0.95 | 1 | 0.9 | 1 | 0.85 | 1 |  |
| $\mathrm{g}_{\text {fs } 1} / \mathrm{g}_{\mathrm{fs} 2}$ | Transconductance Ratio (Note 1) | $\mathrm{f}=1 \mathrm{kHz}$ | 0.97 | 1 | 0.97 | 1 | 0.95 | 1 | 0.95 | 1 | 0.90 | 1 | 0.85 | 1 |  |

[^425]ELECTRICAL CHARACTERISTICS (Continued) $\left(T_{A}=25^{\circ} \mathrm{C}\right.$ unless otherwise specified)

| Symbol | Characteristics | Test Conditions |  | IT500 |  | IT501 |  | IT502 |  | IT503 |  | IT504 |  | IT505 |  | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Min | Max |  |
| $\mathrm{V}_{\mathrm{GS} 1}-\mathrm{V}_{\mathrm{GS} 2}$ | Differential GateSource Voltage | $\begin{aligned} & V_{D G}=20 \mathrm{~V} \\ & I_{D}=200 \mu \mathrm{~A} \end{aligned}$ |  |  | 5 |  | 5 |  | 10 |  | 15 |  | 25 |  | 50 | mV |
| $\frac{\Delta \mathrm{V}_{\mathrm{GS} 1}-\mathrm{V}_{\mathrm{GS} 2}}{\Delta \mathrm{~T}}$ | Gate-Source Differential Voltage |  | $\begin{aligned} & T_{A}=25^{\circ} \mathrm{C} \\ & T_{B}=125^{\circ} \mathrm{C} \\ & \hline \end{aligned}$ |  | 5 |  | 10 |  | 20 |  | 40 |  | 100 |  | 200 | $\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$ |
|  | Change with Temp. (Note 2, 4) |  | $\begin{aligned} & \mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{B}}=25^{\circ} \mathrm{C} \\ & \hline \end{aligned}$ |  | 5 |  | 10 |  | 20 |  | 40 |  | 100 |  | 200 |  |
| $C_{\text {MRR }}$ (Note 5) | Common Mode Rejection Ratio (Note 4) | $\Delta V_{D D}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=200 \mu \mathrm{~A}$ |  | 120 |  | 120 |  | 120 |  | 120 |  | 120 |  | 120 |  | dB |

NOTES: 1. Pulse test required, pulsewidth $=300 \mu \mathrm{~s}$, duty cycle $\leq 3 \%$.
2. Measured at end points, $T_{A}$ and $T_{B}$.
3. With case guarded $\mathrm{C}_{\mathrm{rss}}$ is typically $<0.15 \mathrm{pF}$.
4. For design reference only, not $100 \%$ tested.
5. $\mathrm{C}_{\mathrm{MRR}}=20 \log _{10} \Delta \mathrm{~V}_{\mathrm{DD}} / \Delta\left[\mathrm{V}_{\mathrm{gs} 1}-\mathrm{V}_{\mathrm{gs} 2}\right], \Delta \mathrm{V}_{\mathrm{DD}}=10 /-20 \mathrm{~V}$

## TYPICAL PERFORMANCE CHARACTERISTICS



0250-4



TYPICAL CAPACITANCE VS. GATE-SOURCE VOLTAGE


0250-5

0250-7

0250-6

[^426]
## IT1700

P-Channel

## Enhancement Mode MOSFET <br> General Purpose Amplifier

7
8
8

## FEATURES

- Low ON-Resistance
- High Gain
- Low Noise Voltage
- High Input Impedance
- Low Leakage


## PIN CONFIGURATION



ABSOLUTE MAXIMUM RATINGS
( $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted)
Drain-Source and Gate-Source Voltage ............ - 40V
Peak Gate-Source Voltage (Note 1) ................. $\pm 125 \mathrm{~V}$
Drain Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50mA
Storage Temperature $\ldots . . \ldots \ldots . . . . . . .5^{\circ} \mathrm{C}$ to $+200^{\circ} \mathrm{C}$
Operating Temperature Range $\ldots . . . . .-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10sec) ............ $+300^{\circ} \mathrm{C}$
Power Dissipation .................................... . 375mW
Derate above $25^{\circ} \mathrm{C} . . . . . . . . . . . . . . . . . . . . . . . . . .3 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
NOTE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

## ORDERING INFORMATION

| TO-72 |
| :---: |
| IT1700 |

## ELECTRICAL CHARACTERISTICS $\quad \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{BS}}=0$ unless otherwise specified)

| Symbol | Parameter | Test Conditions | Limits |  | Units |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Min | Max |  |
| $B V_{\text {DSS }}$ | Drain to Source Breakdown Voltage | $\mathrm{V}_{\mathrm{GS}}=0, \mathrm{I}_{\mathrm{D}}=-10 \mu \mathrm{~A}$ | -40 |  | V |
| $B V_{S D S}$ | Source to Drain Breakdown Voltage | $V_{G S}=0, l_{D}=-10 \mu \mathrm{~A}$ | -40 |  | V |
| IGSS | Gate Leakage Current |  | (See note 2) |  |  |
| IDSS | Drain to Source Leakage Current | $\mathrm{V}_{\mathrm{GS}}=0, \mathrm{~V}_{\mathrm{DS}}=-20 \mathrm{~V}$ |  | 200 | pA |
| IDSS ( $150^{\circ} \mathrm{C}$ ) | Drain to Source Leakage Current |  |  | 0.4 | $\mu \mathrm{A}$ |
| IsDS | Source to Drain Leakage Current |  |  | 400 | pA |
| ISDS ( $150^{\circ} \mathrm{C}$ ) | Source to Drain Leakage Current |  |  | 0.8 | $\mu \mathrm{A}$ |
| $\mathrm{V}_{\mathrm{GS}}(\mathrm{th})$ | Gate Threshold Voltage | $V_{G S}=V_{D S}, l_{D}=-10 \mu \mathrm{~A}$ | -2 | -5 | $\checkmark$ |
| ${ }^{\text {r DS }}$ (on) | Static Drain to Source "on" Resistance | $\mathrm{V}_{\mathrm{GS}}=-10 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0$ |  | 400 | ohms |
| IDS(on) | Drain to Source "on" Current | $\mathrm{V}_{\mathrm{GS}}=-10 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=-15 \mathrm{~V}$ | 2 |  | mA |
| $\mathrm{gfs}^{\text {f }}$ | Forward Transconductance Common Source | $\begin{aligned} & \begin{array}{l} V_{D S}=-15 \mathrm{~V}, I_{D}=-10 \mathrm{~mA} \\ f=1 \mathrm{kHz} \end{array} \end{aligned}$ | 2000 | 4000 | $\mu \mathrm{S}$ |
| $\mathrm{C}_{\text {iss }}$ | Small Signal, Short Circuit, Common Source, Input Capacitance | $\begin{aligned} & V_{D S}=-15 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=-10 \mathrm{~mA} \\ & f=1 \mathrm{MHz} \text { (Note 3) } \end{aligned}$ |  | 5 | pF |
| $\mathrm{C}_{\text {rss }}$ | Small Signal, Short Circuit, Common Source, Reverse Transfer Capacitance | $\begin{aligned} & V_{D G}=-15 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=0 \\ & \mathrm{f}=1 \mathrm{MHz} \text { (Note } 3 \text { ) } \end{aligned}$ |  | 1.2 | pF |
| $\mathrm{Cosss}^{\text {che }}$ | Small Signal, Short Circuit, Common Source, Output Capacitance | $\begin{aligned} & V_{D S}=-15 \mathrm{~V}, I_{D}=-10 \mathrm{~mA} \\ & f=1 \mathrm{MHz} \text { (Note 3) } \end{aligned}$ |  | 3.5 | pF |

NOTES: 1. Device must not be tested at $\pm 125 \mathrm{~V}$ more than once nor longer than 300 ms .
2. Actual gate current is immeasurable. Package suppliers are required to guarantee a package leakage of <10pA. External package leakage is the dominant mode which is sensitive to both transient and storage environment, which cannot be guaranteed.
3. For design reference only, not $100 \%$ tested.

[^427]IT1750
N -Channel
Enhancement Mode MOSFET General Purpose Amplifier Switch

## FEATURES

- Low ON Resistance
- Low $\mathrm{C}_{\text {dg }}$
- High Gain
- Low Threshold Voltage

PIN CONFIGURATION



#### Abstract

ABSOLUTE MAXIMUM RATINGS ( $T_{A}=25^{\circ} \mathrm{C}$ unless otherwise noted) Drain-Source and Gate-Source Voltage ................ 25V Peak Gate-Source Voltage (Note 1) ................. . $\pm 125 \mathrm{~V}$ Drain Current ........................................ . 100mA Storage Temperature Range . .......... $-65^{\circ} \mathrm{C}$ to $+200^{\circ} \mathrm{C}$ Operating Temperature Range $\ldots \ldots . . .-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ Lead Temperature (Soldering, 10sec) . ............ $+300^{\circ} \mathrm{C}$ Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 375mW Derate above $25^{\circ} \mathrm{C}$. . . . . . . . . . . . . . . . . . . . . . . . . . $3 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$


NOTE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

## ORDERING INFORMATION

| TO-72 |
| :---: |
| IT1750 |

## ELECTRICAL CHARACTERISTICS

( $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, Body connected to Source and $\mathrm{V}_{\mathrm{BS}}=0$ unless otherwise specified)

| Symbol | Parameter | Test Conditions | Limits |  | Units |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Min | Max |  |
| $\mathrm{V}_{\mathrm{GS}}(\mathrm{th})$ | Gate to Source Threshold Voltage | $\mathrm{V}_{\mathrm{DS}}=\mathrm{V}_{\mathrm{GS}}, \mathrm{I}_{\mathrm{D}}=10 \mu \mathrm{~A}$ | 0.50 | 3.0 | V |
| ldss | Drain Leakage Current | $\mathrm{V}_{\mathrm{DS}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$ |  | 10 | nA |
| lass | Gate Leakage Current |  | See note 2. |  |  |
| BV ${ }_{\text {DSS }}$ | Drain Breakdown Voltage | $\mathrm{I}_{\mathrm{D}}=10 \mu \mathrm{~A}, \mathrm{~V}_{G S}=0$ | 25 |  | V |
| ros(on) | Drain To Source on Resistance | $\mathrm{V}_{\mathrm{GS}}=20 \mathrm{~V}$ |  | 50 | ohms |
| $l{ }_{\text {d }}$ (on) | Drain Current | $V_{D S}=V_{G S}=10 \mathrm{~V}$ | 10 |  | mA |
| $\mathrm{Y}_{\mathrm{fs}}$ | Forward Transadmittance | $\begin{aligned} & V_{D S}=10 \mathrm{~V}, I_{D}=10 \mathrm{~mA}, \\ & f=1 \mathrm{kHz} \end{aligned}$ | 3,000 |  | $\mu \mathrm{S}$ |
| Ciss | Total Gate Input Capacitance | $\begin{aligned} & l_{D}=10 \mathrm{~mA}, V_{D S}=10 \mathrm{~V}, \\ & \mathrm{f}=1 \mathrm{MHz}(\text { Note } 3) \end{aligned}$ |  | 6.0 | pF |
| $\mathrm{C}_{\text {dg }}$ | Gate to Drain Capacitance | $V_{\text {DG }}=10 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$ (Note 3) |  | 1.6 | pF |

NOTES: 1. Devices must not be tested at $\pm 125 \mathrm{~V}$ more than once nor longer than 300 ms .
2. Actual gate current is immeasurable. Package suppliers are required to guarantee a package leakage of <10pA. External package leakage is the dominant mode which is sensitive to both transient and storage environment, which cannot be guaranteed.
3. For design reference only, not $100 \%$ tested.

FEATURES

- Low rDS(on)

PIN CONFIGURATION


## ORDERING INFORMATION

| TO92 |
| :---: |
| J105 |
| J106 |
| J107 |

## APPLICATIONS

- Analog Switches
- Choppers
- Commutators


## ABSOLUTE MAXIMUM RATINGS

( $T_{A}=25^{\circ} \mathrm{C}$ unless otherwise noted)
Gate-Drain or Gate-Source Voltage . ................. - 25 V
Gate Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50mA
Storage Temperature Range ........... $-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Operating Temperature Range $\ldots . . . . . .-55^{\circ} \mathrm{C}$ to $+135^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10sec) ............. $+300^{\circ} \mathrm{C}$
Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 360mW
Derate above $25^{\circ} \mathrm{C}$. . . . . . . . . . . . . . . . . . . . . . $3.3 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
NOTE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS $\quad T_{A}=25^{\circ} \mathrm{C}$ unless otherwise specified)

| Symbol | Parameter | Test Conditions |  |  |  | J105 |  |  | J106 |  |  | J107 |  |  | Units | | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
|  |  |  |  |  |  | Min | Typ | Max | Min | Typ | Max | Min | Typ | Max |  |
| IGSS | Gate-Reverse Current (Note 1) | $\mathrm{V}_{\mathrm{DS}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=-15 \mathrm{~V}$ |  |  |  |  |  | -3 |  |  | -3 |  |  | -3 | nA |
| $\mathrm{V}_{\mathrm{GS} \text { (off) }}$ | Gate-Source Cutoff Voltage | $V_{D S}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=1 \mu \mathrm{~A}$ |  |  |  | -4.5 |  | $-10$ | -2 |  | -6 | -0.5 |  | -4.5 | V |
| BV ${ }_{\text {GSS }}$ | Gate-Source Breakdown Voltage | $\mathrm{V}_{\mathrm{DS}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{G}}=-1 \mu \mathrm{~A}$ |  |  |  | -25 |  |  | -25 |  |  | -25 |  |  |  |
| loss | Drain Saturation Current (Note 2) | $\mathrm{V}_{\mathrm{DS}}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}$ |  |  |  | 500 |  |  | 200 |  |  | 100 |  |  | mA |
| ld(off) | Drain Cutoff Current (Note 1) | $\mathrm{V}_{\mathrm{DS}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=-10 \mathrm{~V}$ |  |  |  |  |  | 3 |  |  | 3 |  |  | 3 | nA |
| ros(on) | Drain source ON Resistance | $\mathrm{V}_{\mathrm{DS}} \leq 0.1 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}$ |  |  |  |  |  | 3 |  |  | 6 |  |  | 8 | $\Omega$ |
| $\mathrm{C}_{\text {dg(off) }}$ | Drain Gate OFF Capacitance | $\begin{aligned} & \mathrm{V}_{\mathrm{DS}}=0 \mathrm{~V}, \\ & \mathrm{VGS}_{\mathrm{GS}}=-10 \mathrm{~V} \\ & \text { (Note 3) } \end{aligned}$ |  | $f=1 \mathrm{MHz}$ |  |  |  | 35 |  |  | 35 |  |  | 35 | pF |
| $\mathrm{C}_{\text {sg(off) }}$ | Source Gate OFF Capacitance |  |  |  |  | 35 |  |  | 35 |  |  | 35 |  |
| $\begin{aligned} & \mathrm{C}_{\mathrm{dg}(\mathrm{on})} \\ & +\mathrm{C}_{\mathrm{sg}(\mathrm{on})} \end{aligned}$ | Drain Gate plus Source Gate ON Capacitance | (Note 3)$\mathrm{V}_{\mathrm{DS}}=\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}$ |  |  |  |  |  | 160 |  |  | 160 |  |  | 160 |  |
| $t_{d}($ on) | Turn On Delay Time | Switching Time-Test Conditions (Note 3) |  |  | J107 |  | 15 |  |  | 15 |  |  | 15 |  | ns |
| $t_{r}$ | Rise Time | $V_{D D}$ $\mathrm{V}_{\mathrm{GS}}$ (off) $\mathrm{R}_{\mathrm{L}}$ | $\begin{gathered} 105 \\ \hline 1.5 \mathrm{~V} \\ -12 \mathrm{~V} \\ 50 \Omega \end{gathered}$ |  |  |  | $J 106$ | 20 |  |  |  | 20 |  |  |  | 20 |  |
| $t_{\text {d(off }}$ | Turn Off Delay Time |  |  | $\begin{aligned} & 1.5 \mathrm{~V} \\ & -7 \mathrm{~V} \\ & 50 \Omega \end{aligned}$ | $\begin{aligned} & 1.5 \mathrm{~V} \\ & -5 \mathrm{~V} \\ & 50 \Omega \end{aligned}$ |  | 15 |  |  | 15 |  |  | 15 |  |  |
| $t_{f}$ | Fall Time |  |  |  |  |  | 20 |  |  | 20 |  |  | 20 |  |  |

NOTES: 1. Approximately doubles for every $10^{\circ} \mathrm{C}$ increase in $\mathrm{T}_{\mathrm{A}}$.
2. Pulse test duration $=300 \mu \mathrm{~s}$; duty cycle $\leq 3 \%$.
3. For design reference only, not $100 \%$ tested.

[^428]
## FEATURES

- Low Cost
- Automated Insertion Package
- Low Insertion Loss
- No Offset or Error Voltages Generated by Closed Switch

Purely Resistive
High Isolation Resistance from Driver

- Fast Switching
- Low Noise


## ABSOLUTE MAXIMUM RATINGS

( $T_{A}=25^{\circ} \mathrm{C}$ unless otherwise noted)
Gate-Drain or Gate-Source Voltage . . . . . . . . . . . . . . . . . - 25 V
Gate Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 mA
Storage Temperature Range ............ $-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Operating Temperature Range $\ldots \ldots . . .-55^{\circ} \mathrm{C}$ to $+135^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10sec) .............. $+300^{\circ} \mathrm{C}$
Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 360mW
Derate above $25^{\circ} \mathrm{C}$
$.3 .3 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
NOTE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

APPLICATIONS

- Analog Switches
- Choppers
- Commutators
- Low-Noise Audio Amplifiers

PIN CONFIGURATION


ELECTRICAL CHARACTERISTICS $\quad\left(T_{A}=25^{\circ} \mathrm{C}\right.$ unless otherwise specified)

| Symbol | Parameter | Test Conditions |  |  |  | $J 108$ |  |  | J109 |  |  | $J 110$ |  |  | Units | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
|  |  |  |  |  |  | Min | Typ | Max | Min | Typ | Max | Min | Typ | Max |  |
| IGSS | Gate Reverse Current (Note 1) | $\mathrm{V}_{\mathrm{DS}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=-15 \mathrm{~V}$ |  |  |  |  |  | -3 |  |  | -3 |  |  | -3 | nA |
| $\mathrm{V}_{\mathrm{GS}}$ (off) | Gate-Source Cutoff Voltage | $V_{D S}=5$ | $I_{D}=1 \mu \mathrm{~A}$ |  |  | -3 |  | -10 | -2 |  | -6 | -0.5 |  | -4 | V |
| BVGSS | Gate-Source Breakdown Voltage | $\mathrm{V}_{\mathrm{DS}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{G}}=-1 \mu \mathrm{~A}$ |  |  |  | -25 |  |  | -25 |  |  | -25 |  |  |  |
| IDSS | Drain Saturation Current (Note 2) | $V_{D S}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}$ |  |  |  | 80 |  |  | 40 |  |  | 10 |  |  | mA |
| ${ }^{\text {D (off) }}$ | Drain Cutoff Current (Note 1) | $\mathrm{V}_{\mathrm{DS}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=-10 \mathrm{~V}$ |  |  |  |  |  | 3 |  |  | 3 |  |  | 3 | nA |
| ros(on) | Drain-Source ON Resistance | $\mathrm{V}_{\mathrm{DS}} \leq 0.1 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}$ |  |  |  |  |  | 8 |  |  | 12 |  |  | 18 | $\Omega$ |
| $\mathrm{C}_{\text {dg(off) }}$ | Drain-Gate OFF Capacitance | $\begin{aligned} & \mathrm{V}_{\mathrm{DS}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=-10 \mathrm{~V} \\ & (\text { Note 3) } \end{aligned}$ |  |  | MHz |  |  | 15 |  |  | 15 |  |  | 15 | pF |
| $\mathrm{C}_{\text {sg(off) }}$ | Source-Gate OFF Capacitance |  |  |  |  |  | 15 |  |  | 15 |  |  | 15 |  |
| $\mathrm{C}_{\mathrm{dg} \text { (on) }}$ <br> $\mathrm{C}_{\mathrm{sg}(\text { on })}$ | Drain-Gate Plus SourceGate ON Capacitance | $\begin{aligned} & \mathrm{V}_{\mathrm{DS}}=\mathrm{V}_{\mathrm{GS}}=0 \\ & \text { (Note 3) } \end{aligned}$ |  |  |  |  |  | 85 |  |  | 85 |  |  | 85 |  |
| $\mathrm{t}_{\mathrm{d} \text { (on) }}$ | Turn ON Delay Time | Switching Time Test Conditions (Note 3) |  |  |  |  | 4 |  |  | 4 |  |  | 4 |  |  |
| $\mathrm{t}_{\mathrm{r}}$ | Rise Time |  | J108 |  |  | J110 |  | 1 |  |  | 1 |  |  | 1 |  |  |
| $\mathrm{t}_{\mathrm{d} \text { (off) }}$ | Turn OFF Delay Time | $V_{D D}$ <br> $V_{G S}$ | $\begin{gathered} 1.5 \mathrm{~V} \\ -12 \mathrm{~V} \end{gathered}$ | $\begin{aligned} & 1.5 \mathrm{~V} \\ & -7 \mathrm{~V} \end{aligned}$ | $\begin{aligned} & 1.5 \mathrm{~V} \\ & -5 \mathrm{~V} \end{aligned}$ |  | 6 |  |  | 6 |  |  | 6 |  | ns |
| $\mathrm{t}_{\mathrm{f}}$ | Fall Time |  | $150 \Omega$ | $150 \Omega$ | $150 \Omega$ |  | 30 |  |  | 30 |  |  | 30 |  |  |

NOTE 1: Approximately doubles for every $10^{\circ} \mathrm{C}$ increase in $\mathrm{T}_{\mathrm{A}}$.
2: Pulse test duration $=300 \mu \mathrm{~s}$; duty cycle $\leq 3 \%$.
3: For design reference only, not $100 \%$ tested.

INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. the warrainty shall be exclusive and shall be in lieu of all other warranties, express, implied or statutory, including the implied warranties of MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.
NOTE: All typical values have been characterized but are not tested.

## FEATURES

－Low Cost
－Automated Insertion Package
－Low Insertion Loss
－No Offset or Error Voltage Generated By Closed Switch
－Purely Resistive
－High Isolation Resistance From Driver
－Fast Switching
－Short Sample and Hold Aperture Time
PIN CONFIGURATION


## APPLICATIONS

－Analog Switches
－Choppers
－Commutators

## ABSOLUTE MAXIMUM RATINGS

（ $T_{A}=25^{\circ} \mathrm{C}$ unless otherwise noted）
Gate－Drain or Gate－Source Voltage ．．．．．．．．．．．．．．．．．－35V
Gate Current ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 50 mA
Storage Temperature Range $\ldots . . \ldots . . .-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Operating Temperature Range $\ldots \ldots . . .-55^{\circ} \mathrm{C}$ to $+135^{\circ} \mathrm{C}$
Lead Temperature（Soldering， 10 sec ）．．．．．．．．．．．．$+300^{\circ} \mathrm{C}$
Power Dissipation ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 360 mW
Derate Above $25^{\circ} \mathrm{C}$ ．．．．．．．．．．．．．．．．．．．．．．．． $3.3 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
NOTE：Stresses above those listed under＂Absolute Maximum Ratings＂ may cause permanent damage to the device．These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied．Exposure to absolute maximum rating conditions for extended peri－ ods may affect device reliability．

## ORDERING INFORMATION

| TO－92 |
| :---: |
| $J 111$ |
| $J 112$ |
| $J 113$ |

## ELECTRICAL CHARACTERISTICS $\left(T_{A}=25^{\circ} \mathrm{C}\right.$ unless otherwise specified）



NOTES：1．Approximately doubles for every $10^{\circ} \mathrm{C}$ increase in $T_{A}$ ．
2．Pulse Test duration $300 \mu \mathrm{~s}$ ；duty cycle $\leq 3 \%$ ．
3．For design reference only，not $100 \%$ tested．

[^429]
## FEATURES

- Low Insertion Loss
- No Offset or Error Generated By Closed Switch -Purely Resistive
-High Isolation Resistance From Driver
- Short Sample and Hold Aperture Time
- Fast Switching

PIN CONFIGURATION
5508

## APPLICATIONS <br> - Analog Switches <br> - Choppers <br> - Commutators

## ABSOLUTE MAXIMUM RATINGS

( $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted)
Gate-Drain or Gate-Source Voltage .................... . 30 V
Gate Current ............................................. . . . . 50 mA
Storage Temperature Range . .......... $-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Operating Temperature Range $\ldots \ldots . . .-55^{\circ} \mathrm{C}$ to $+135^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10sec) ............... 300³ C
Power Dissipation ................................... . 350 mW
Derate above $25^{\circ} \mathrm{C} . . . . . . . . . . . . . . . . . . . . . . . . . .3 .3 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
NOTE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

## ORDERING INFORMATION

| TO-92 |
| :---: |
| J17X |

ELECTRICAL CHARACTERISTICS $\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right.$ unless otherwise specified)

| Symbol | Parameter | Test Conditions | $J 174$ |  |  | $J 175$ |  |  | J176 |  |  | J177 |  |  | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Min | Typ | Max |  |
| lGSS | Gate Reverse Current (Note 1) | $V_{D S}=0, V_{G S}=20 \mathrm{~V}$ |  |  | 1 |  |  | 1 |  |  | 1 |  |  | 1 | $n A$ |
| $\mathrm{V}_{\mathrm{GS} \text { (off) }}$ | Gate Source Cutoff Voltage | $V_{D S}=-15 V, I_{D}=-10 n A$ | 5 |  | 10 | 3 |  | 6 | 1 |  | 4 | 0.8 |  | 2.25 | $v$ |
| BVGSS | Gate Source Breakdown Voltage | $\mathrm{V}_{\mathrm{DS}}=0, \mathrm{I}_{\mathrm{G}}=1 \mu \mathrm{~A}$ | 30 |  |  | 30 |  |  | 30 |  |  | 30 |  |  |  |
| IDSS | Drain Saturation Current (Note 2) | $\mathrm{V}_{\mathrm{DS}}=-15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$ | -20 |  | -135 | -7 |  | -70 | -2 |  | -35 | -1.5 |  | -20 | mA |
| lD(off) | Drain Cutoff Current (Note 1) | $\mathrm{V}_{\mathrm{DS}}=-15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=10 \mathrm{~V}$ |  |  | -1 |  |  | -1 |  |  | -1 |  |  | -1 | nA |
| rDS(on) | Drain-Source ON Resistance | $\mathrm{V}_{\mathrm{GS}}=0, \mathrm{~V}_{\mathrm{DS}}=-0.1 \mathrm{~V}$ |  |  | 85 |  |  | 125 |  |  | 250 |  |  | 300 | $\Omega$ |

[^430]
## ELECTRICAL CHARACTERISTICS (Continued)



NOTES: 1. Approximately doubles for every $10^{\circ} \mathrm{C}$ increase in $\mathrm{T}_{\mathrm{A}}$.
2. Pulse test duration $-300 \mu \mathrm{~s}$; duty cycle $\leq 3 \%$.
3. For design reference only, not $100 \%$ tested.

## FEATURES

- High Input Impedance
- Low IGss

PIN CONFIGURATION


## ABSOLUTE MAXIMUM RATINGS

( $T_{A}=25^{\circ} \mathrm{C}$ unless otherwise noted)
Gate-Source or Gate-Drain Voltage .................. - 40 V
Gate Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50mA
Storage Temperature Range ........... $-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ Operating Temperature Range $\ldots \ldots . . .-55^{\circ} \mathrm{C}$ to $+135^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10sec) ............. $+300^{\circ} \mathrm{C}$
Power Dissipation ................................... . . 360mW
Derate above $25^{\circ} \mathrm{C} . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ~ 3.3 m W /{ }^{\circ} \mathrm{C}$
NOTE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

## ORDERING INFORMATION

| TO-92 |
| :---: |
| J 201 |
| J 202 |
| J 203 |
| J 204 |

ELECTRICAL CHARACTERISTICS $\quad\left(T_{A}=25^{\circ} \mathrm{C}\right.$ unless otherwise specified)

| Symbol | Parameter | Test Conditions |  | J201 |  |  | J202 |  |  | J203 |  |  | J204 |  |  | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Min | Typ | Max |  |
| IGSS | Gate Reverse Current (Note 1) | $\mathrm{V}_{\mathrm{DS}}=0, \mathrm{~V}_{\mathrm{GS}}=-20 \mathrm{~V}$ |  |  |  | -100 |  |  | -100 |  |  | -100 |  |  | -100 | pA |
| $V_{G S}$ (off) | Gate-Source Cutoff Voltage | $V_{D S}=20 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=10 \mathrm{nA}$ |  | -0.3 |  | -1.5 | -0.8 |  | -4.0 | -2.0 |  | -10.0 | -0.3 |  | -2.0 | V |
| $\mathrm{BV}_{\text {GSS }}$ | Gate-Source Breakdown Voltage | $\mathrm{V}_{\mathrm{DS}}=0, \mathrm{I}_{\mathrm{G}}=1 \mu \mathrm{~A}$ |  | -40 |  |  | -40 |  |  | -40 |  |  | -25 |  |  |  |
| ldss | Saturation Drain Current (Note 2) | $\mathrm{V}_{\mathrm{DS}}=20 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$ |  | 0.2 |  | 1.0 | 0.9 |  | 4.5 | 4.0 |  | 20 | 0.2 | 1.2 | 3.0 | mA |
| $\mathrm{I}_{\mathrm{G}}$ | Gate Current (Note 1) | $V_{D G}=20 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=\mathrm{I}_{\mathrm{DSS}}(\mathrm{min})$ |  |  | -10 |  |  | -10 |  |  | -10 |  |  | -10 |  | pA |
| gfs | Common-Source Forward Transconductance (Note 2) | $\begin{aligned} & \mathrm{V}_{\mathrm{DS}}=20 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{GS}}=0 \end{aligned}$ | $\mathrm{f}=1 \mathrm{kHz}$ | 500 |  |  | 1,000 |  |  | 1,500 |  |  | 500 | 1,500 |  | $\mu \mathrm{s}$ |
| gos | Common Source Output Conductance |  |  |  | 1 |  |  | 3.5 |  |  | 10 |  |  | 2.5 |  |  |
| Ciss | Common-Source Input Conductance |  | $\begin{aligned} & f=1 \mathrm{MHz} \\ & \text { (Note 3) } \end{aligned}$ |  | 4 |  |  | 4 |  |  | 4 |  |  | 4 |  | pF |
| Crss | Common-Source Reverse Transfer Capacitance |  |  |  | 1 |  |  | 1 |  |  | 1 |  |  | 1 |  |  |
| $\overline{\bar{e}}_{n}$ | Equivalent Short-Circuit Input Noise Voltage | $\begin{aligned} & \mathrm{V}_{\mathrm{DS}}=10 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{GS}}=0 \end{aligned}$ | $\begin{aligned} & \mathrm{f}=1 \mathrm{kHz} \\ & \text { (Note 3) } \\ & \hline \end{aligned}$ |  | 5 |  |  | 5 |  |  | 5 |  |  | 10 |  | $\frac{n \mathrm{~V}}{\sqrt{\mathrm{~Hz}}}$ |

NOTES: 1. Approximately doubles for every $10^{\circ} \mathrm{C}$ increase in $\mathrm{T}_{\mathrm{A}}$.
2. Pulse test duration $=2 \mathrm{~ms}$.
3. For design reference only, not $100 \%$ tested.

OLEP-80\&r

## FEATURES

- Industry Standard Part in Low Cost Plastic Package
- High Power Gain
- Low Noise
- Dynamic Range Greater Than 100dB
- Easily Matched to $75 \Omega$ Input

PIN CONFIGURATION

APPLICATIONS

- VHF/UHF Amplifiers
- Oscillators
- Mixers


## ABSOLUTE MAXIMUM RATINGS

( $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted)
Drain-Gate Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -25 V
Drain-Source Voltage . 25 V
Continuous Forward Gate Current . ................ - 10mA
Storage Temperature Range ........... $-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Operating Temperature Range $\ldots \ldots . .-55^{\circ} \mathrm{C}$ to $+135^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10sec) ............. $+300^{\circ} \mathrm{C}$
Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 360mW
Derate above $25^{\circ} \mathrm{C}$........................... . $3.27 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$

## ORDERING INFORMATION

| TO-92 |
| :---: |
| J 3 XX |

NOTE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS ( $T_{A}=25^{\circ} \mathrm{C}$ unless otherwise specified)

| Symbol | Parameter | Test Conditions |  | J308 |  |  | J309 |  |  | J310 |  |  | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Min | Typ | Max | Min | Typ | Max | Min | Typ | Max |  |
| $\mathrm{BV}_{\text {GSS }}$ | Gate-Source Breakdown Voltage | $\begin{aligned} & \mathrm{I}_{\mathrm{G}}=-1 \mu \mathrm{~A}, \\ & \mathrm{~V}_{\mathrm{DS}}=0 \end{aligned}$ |  | -25 |  |  | -25 |  |  | -25 |  |  | V |
| IGSS | Gate Reverse Current | $\begin{array}{\|l\|} \hline \mathrm{V}_{\mathrm{GS}}=-15 \mathrm{~V}, \\ \mathrm{~V}_{\mathrm{DS}}=0 \\ \mathrm{~T}_{\mathrm{A}}=125^{\circ} \mathrm{C} \\ \hline \end{array}$ |  |  |  | -1.0 |  |  | -1.0 |  |  | -1.0 | nA |
|  |  |  |  |  |  | -1.0 |  |  | -1.0 |  |  | -1.0 | $\mu \mathrm{A}$ |
| $\mathrm{V}_{\mathrm{GS}}(\mathrm{fff})$ | Gate-Source Cutoff Voltage | $\begin{aligned} & V_{D S}=10 V \\ & I_{D}=1 \mathrm{nA} \\ & \hline \end{aligned}$ |  | -1.0 |  | -6.5 | -1.0 |  | -4.0 | -2.0 |  | -6.5 | V |
| IDSS | Saturation Drain Current (Note 1) | $\begin{aligned} & \mathrm{V}_{\mathrm{DS}}=10 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{GS}}=0 \\ & \hline \end{aligned}$ |  | 12 |  | 60 | 12 |  | 30 | 24 |  | 60 | mA |
| $\mathrm{V}_{\mathrm{GS}}(\mathrm{f})$ | Gate-Source Forward Voltage | $\begin{aligned} & \mathrm{V}_{\mathrm{DS}}=0, \\ & \mathrm{I}_{\mathrm{G}}=1 \mathrm{~mA} \end{aligned}$ |  |  |  | 1.0 |  |  | 1.0 |  |  | 1.0 | V |
| $\mathrm{g}_{\text {fs }}$ | Cornmon-Source Forward Transconductance | $V_{D S}=10 \mathrm{~V}$$I_{D}=10 \mathrm{~mA}$ | $\mathrm{f}=1 \mathrm{kHz}$ | 8,000 | 17,000 |  | 10,000 | 17,000 |  | 8,000 | 17,000 |  |  |
| gos | Common-Source Output Conductance |  |  |  |  | 250 |  |  | 250 |  |  | 250 | $\mu \mathrm{S}$ |
| $\mathrm{g}_{\mathrm{fg}}$ | Common-Gate Forward Transconductance |  |  |  | 13,000 |  |  | 13,000 |  |  | 12,000 |  | $\mu$ |
| gog | Common Gate Output Conductance | (Note 2) |  |  | 150 |  |  | 150 |  |  | 150 |  |  |

[^431]ELECTRICAL CHARACTERISTICS (Continued) $\left(T_{A}=25^{\circ} \mathrm{C}\right.$ unless otherwise specified)

| Symbol | Parameter | Test Conditions |  | J308 |  |  | J309 |  |  | J310 |  |  | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Min | Typ | Max | Min | Typ | Max | Min | Typ | Max |  |
| $\mathrm{C}_{\mathrm{gd}}$ | Gate-Drain Capacitance | $\begin{aligned} & V_{D S}=10 \mathrm{~V} \\ & V_{G S}=-10 \mathrm{~V} \end{aligned}$ | $f=1 \mathrm{MHz}$ <br> (Note 2) |  | 1.8 | 2.5 |  | 1.8 | 2.5 |  | 1.8 | 2.5 | pF |
| $\mathrm{C}_{\mathrm{gs}}$ | Gate-Source Capacitance |  |  |  | 4.3 | 5.0 |  | 4.3 | 5.0 |  | 4.3 | 5.0 |  |
| $e_{n}$ | Equivalent Short-Circuit Input Noise Voltage | $\begin{aligned} & V_{D S}=10 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{D}}=10 \mathrm{~mA} \end{aligned}$ | $\begin{gathered} f=100 \mathrm{~Hz} \\ \text { (Note 2) } \end{gathered}$ |  | 10 |  |  | 10 |  |  | 10 |  | $\frac{n V}{\sqrt{H z}}$ |
| $R \mathrm{e}_{(\text {Vfs })}$ | Common-Source Forward Transconductance | $\begin{aligned} & V_{D S}=10 \mathrm{~V}, \\ & I_{D}=10 \mathrm{~mA} \\ & (\text { Note } 2) \end{aligned}$ | $\mathrm{f}=105 \mathrm{MHz}$ |  | 12 |  |  | 12 |  |  | 12 |  | $\mu \mathrm{s}$ |
| $R e_{(V f g)}$ | Common-Gate Input Conductance |  |  |  | 14 |  |  | 14 |  |  | 14 |  |  |
| $\mathrm{Re}_{(\text {Vis })}$ | Common-Source Input Conductance |  |  |  | 0.4 |  |  | 0.4 |  |  | 0.4 |  |  |
| $\mathrm{Re}_{(\text {Vos }}$ | Common-Source Output Conductance |  |  |  | 0.15 |  |  | 0.15 |  |  | 0.15 |  |  |
| $\mathrm{G}_{\mathrm{pg}}$ | Common-Gate Power Gain at Noise Match |  |  |  | 16 |  |  | 16 |  |  | 16 |  | dB |
| NF | Noise Figure |  |  |  | 1.5 |  |  | 1.5 |  |  | 1.5 |  |  |
| $\mathrm{G}_{\mathrm{pg}}$ | Common-Gate Power Gain at Noise Match |  | $\mathrm{f}=450 \mathrm{MHz}$ |  | 11 |  |  | 11 |  |  | 11 |  |  |
| NF | Noise Figure |  |  |  | 2.7 |  |  | 2.7 |  |  | 2.7 |  |  |

NOTES: 1. Pulse test PW $300 \mu \mathrm{~s}$, duty cycle $\leq 3 \%$.
2. For design reference only, not $100 \%$ tested.

[^432]
## LM114/H, LM114A/AH Monolithic Dual NPN General Purpose Amplifier

## GENERAL DESCRIPTION

These devices contain a pair of junction-isolated NPN transistors fabricated on a single silicon substrate. This monolithic structure makes possible extremely tight parameter matching at low cost. Further, advanced processing techniques yield exceptionally high current gains at low collector currents, virtual elimination of "popcorn noise," low leakages and improved long-term stability.

Although designed primarily for high breakdown voltage and exceptional DC characteristics, these transistors have surprisingly good high-frequency performance. The gainbandwidth product is 300 MHz with 1 mA collector current and 5 V collector-base voltage and 22 MHz with $10 \mu \mathrm{~A}$ collector current. Typical collector-base capacitance is only 1.6 pF at 5 V .

## PIN CONFIGURATION



## FEATURES

- Low Offset Voltage
- Low Drift
- High Current Gain
- Tight Beta Match
- High Breakdown Voltage
- Matching Guaranteed Over A OV to 45V CollectorBase Voltage Range
- CMRR $>100 \mathrm{~dB}$


## ABSOLUTE MAXIMUM RATINGS

( $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted)
Collector-Base Voltage (1) ..... 45V
Collector-Emitter Voltage (1) ..... 45V
Collector-Collector Voltage ..... 45V
Emitter-Base Voltage (1) ..... 6 V
Collector Current (1) ..... 20 mA
Storage Temperature Range $65^{\circ} \mathrm{C}$ to $+200^{\circ} \mathrm{C}$
Operating Temperature Range ..... $-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10sec) ..... $+300^{\circ} \mathrm{C}$
Power Dissipation ( $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ ) .....  800 mW
Derate above $25^{\circ} \mathrm{C}$ ..... $14 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$

NOTE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

## ORDERING INFORMATION

| TO-71 | TO-78 |
| :---: | :---: |
| LM114 | LM114H |
| LM114A | LM114AH |

## ELECTRICAL CHARACTERISTICS (NOTE 2)

| Symbol | Parameter | Test Conditions | Maximum Limits |  | Units |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | LM114A, AH | LM114, H |  |
| $\mathrm{V}_{\mathrm{BE} \text { 1-2 }}$ | Offset Voltage | $1 \mu \mathrm{~A} \leq \mathrm{I}_{\mathrm{C}} \leq 100 \mu \mathrm{~A}$ | 0.5 | 2.0 | mV |
| $\mathrm{l}_{\mathrm{B1}-2}$ | Offset Current | $I_{C}=10 \mu \mathrm{~A}$ | 2.0 | 10 | nA |
|  | Bias Current | $I_{C}=1 \mu \mathrm{~A}$ | 0.5 | 40 | nA |
|  |  | $I_{C}=10 \mu \mathrm{~A}$ | 20 |  |  |
|  |  | $I_{C}=1 \mu \mathrm{~A}$ | 3.0 |  |  |
| $\Delta \mathrm{V}_{\mathrm{BE}} / \mathrm{V}$ | Offset Voltage Change | $0 \mathrm{~V} \leq \mathrm{V}_{C B} \leq \mathrm{V}_{\mathrm{MAX}}, \mathrm{IC}=10 \mu \mathrm{~A}$ | 0.2 | 1.5 | mV |
| $\Delta l_{B} / V$ | Offset Current Change |  | 1.0 | 4.0 | nA |

ELECTRICAL CHARACTERISTICS (Continued) $\left(T_{A}=25^{\circ} \mathrm{C}\right.$ unless otherwise specified)

| Symbol | Parameter | Test Conditions | Maximum Limits |  | Units |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | LM114A, AH | LM114, H |  |
| $\begin{aligned} & \Delta \mathrm{V}_{\mathrm{BE}} / \Delta \mathrm{T} \\ & \Delta \mathrm{l}_{\mathrm{B} 1-2} / \Delta \mathrm{T} \\ & \Delta \mathrm{I}_{\mathrm{B}} / \Delta \mathrm{T} \\ & \hline \end{aligned}$ | Offset Voltage Drift | $-55^{\circ} \mathrm{C} \leq \mathrm{T}_{A} \leq+125^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{C}}=10 \mu \mathrm{~A}$ | 2.0 | 10 | $\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$ |
|  | Offset Current |  | 12 | 50 | nA |
|  | Bias Current |  | 60 | 150 |  |
| ICBO | Collector-Base Leakage Current | $\mathrm{V}_{C B}=\mathrm{V}_{\text {MAX }}$ | 10 | 50 | pA |
|  |  | $\mathrm{T}_{\mathrm{A}}=125^{\circ} \mathrm{C}$ (Note 3) | 10 | 50 | nA |
| ICEO | Collector-Emitter Leakage Current | $\mathrm{V}_{\mathrm{CE}}=\mathrm{V}_{\mathrm{MAX}}, \mathrm{V}_{\mathrm{EB}}=0 \mathrm{~V}$ | 50 | 200 | pA |
|  |  | $\mathrm{T}_{\mathrm{A}}=125^{\circ} \mathrm{C}$ (Note 3) | 50 | 200 | nA |
| $\mathrm{I}_{\mathrm{C} 1-\mathrm{C} 2}$ | Collector-Collector Leakage Current | $V_{C C}=V_{\text {MAX }} \quad 1$ | 100 | 300 | pA |
|  |  |  | 100 | 300 | nA |

NOTES: 1: Per transistor. 2: These specifications apply for $T_{A}=+25^{\circ} \mathrm{C}$ and $0 \mathrm{~V} \leq \mathrm{V}_{C B} \leq \mathrm{V}_{\mathrm{MAX}}$, unless otherwise specified. For the LM 114 and $\mathrm{LM} 114 \mathrm{~A}, \mathrm{~V}_{\mathrm{MAX}}=30 \mathrm{~V}$. 3. For design reference only, not $100 \%$ tested.

[^433]Diode Protected N -Channel

M116
Enhancement Mode MOSFET
General Purpose Amplifier

## FEATURES

- Low IGss
- Integrated Zener Clamp for Gate Protection


## PIN CONFIGURATION



## ORDERING INFORMATION



## DEVICE SCHEMATIC




#### Abstract

ABSOLUTE MAXIMUM RATINGS ( $T_{A}=25^{\circ} \mathrm{C}$ unless otherwise noted) Drain to Source Voltage ................................. . 30 V Gate to Drain Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30V Drain Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 mA Gate Zener Current . . . . . . . . . . . . . . . . . . . . . . . . $\pm 0.1 \mathrm{~mA}$ Storage Temperature Range ........... $-65^{\circ} \mathrm{C}$ to $+200^{\circ} \mathrm{C}$ Operating Temperature Range $\ldots \ldots . . .-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ Lead Temperature (Soldering, 10sec) ............ $+300^{\circ} \mathrm{C}$ Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225mW Derate above $25^{\circ} \mathrm{C}$. . . . . . . . . . . . . . . . . . . . . . . $2.2 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ NOTE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.


ELECTRICAL CHARACTERISTICS $\quad\left(T_{A}=25^{\circ} \mathrm{C}\right.$ and $\mathrm{V}_{\mathrm{BS}}=0$ unless otherwise specified)

| Symbol | Parameter | Test Conditions | M116 |  | Units |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Min | Max |  |
| ros(on) | Drain Source ON Resistance | $\mathrm{V}_{\mathrm{GS}}=20 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=100 \mu \mathrm{~A}$ |  | 100 | $\Omega$ |
|  |  | $\mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=100 \mu \mathrm{~A}$ |  | 200 |  |
| $\mathrm{V}_{\mathrm{GS}}(\mathrm{th})$ | Gate Threshold Voltage | $V_{G S}=V_{D S}, I_{D}=10 \mu \mathrm{~A}$ | 1 | 5 | V |
| BV ${ }_{\text {DSS }}$ | Drain-Source Breakdown Voltage | $\mathrm{I}_{\mathrm{D}}=1 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{GS}}=0$ | 30 |  |  |
| $B V_{\text {SDS }}$ | Source-Drain Breakdown Voltage | $\mathrm{I}_{\mathrm{S}}=1 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{GD}}=\mathrm{V}_{\mathrm{BD}}=0$ | 30 |  |  |
| $B V_{G B S}$ | Gate-Body Breakdown Voltage | $\mathrm{I}_{\mathrm{G}}=10 \mu \mathrm{~A}, \mathrm{~V}_{S B}=V_{D B}=0$ | 30 | 60 |  |
| ID(OFF) | Drain Cutoff Current | $\mathrm{V}_{\mathrm{DS}}=20 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$ |  | 10 | nA |
| IS(OFF) | Source Cutoff Current | $\mathrm{V}_{\mathrm{SD}}=20 \mathrm{~V}, \mathrm{~V}_{\mathrm{GD}}=\mathrm{V}_{\mathrm{BD}}=0$ |  | 10 |  |
| lass | Gate-Body Leakage | $\mathrm{V}_{\mathrm{GS}}=20 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0$ |  | 100 | pA |
| $\mathrm{C}_{\mathrm{gs}}$ | Gate-Source (Note 1) | $V_{G B}=V_{D B}=V_{S B}=0, f=1 M H z$ <br> Body Guarded |  | 2.5 | pF |
| $\mathrm{C}_{\mathrm{gd}}$ | Gate-Drain Capacitance (Note 1) |  |  | 2.5 |  |
| $\mathrm{C}_{\mathrm{db}}$ | Drain-Body Capacitance (Note 1) | $\mathrm{V}_{\mathrm{GB}}=0, \mathrm{~V}_{\mathrm{DB}}=10 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$ |  | 7 |  |
| $\mathrm{C}_{\text {iss }}$ | Input Capacitance (Note 1) | $\mathrm{V}_{\mathrm{GB}}=0, \mathrm{~V}_{\mathrm{DB}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{BS}}=0, \mathrm{f}=1 \mathrm{MHz}$ |  | 10 |  |

[^434][^435]
## FEATURES

- Low Insertion Loss
- Good OFF Isolation

PIN CONFIGURATION


## APPLICATIONS

- Analog Switches
- Commutators
- Choppers


## ABSOLUTE MAXIMUM RATINGS

( $T_{A}=25^{\circ} \mathrm{C}$ uniess otherwise noted)
Gate-Drain or Gate-Source Voltage ................. -30V
Gate Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50mA
Storage Temperature Range ........... $-65^{\circ} \mathrm{C}$ to $+200^{\circ} \mathrm{C}$
Operating Temperature Range ......... $-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10sec) ............ $+300^{\circ} \mathrm{C}$
Total Device Dissipation ( $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ ) .................. 1.8 W
Derate above $25^{\circ} \mathrm{C}$ $10 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$

NOTE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

## ORDERING INFORMATION

| TO-18 |
| :---: |
| U200 |
| U201 |
| U202 |

ELECTRICAL CHARACTERISTICS $\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right.$ unless otherwise specified)

| Symbol | Parameter | Test Conditions |  | U200 |  | U201 |  | U202 |  | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Min | Max | Min | Max | Min | Max |  |
| IGSS | Gate Reverse Current | $\mathrm{V}_{\mathrm{GS}}=-20 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0$ |  |  | -1 |  | -1 |  | -1 | nA |
|  |  |  | $\mathrm{T}_{\mathrm{A}}=150^{\circ} \mathrm{C}$ |  | -1 |  | -1 |  | -1 | $\mu \mathrm{A}$ |
| BVGSS | Gate-Source Breakdown Voltage | $\mathrm{I}_{\mathrm{G}}=-1 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{DS}}=0$ |  | -30 |  | -30 |  | -30 |  | V |
| $\mathrm{V}_{\mathrm{GS} \text { (off) }}$ | Gate-Source Cutoff Voltage | $V_{D S}=20 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=10 \mathrm{nA}$ |  | -0.5 | -3 | -1.5 | -5 | -3.5 | -10 |  |
| ld(off) | Drain Cutoff Current | $V_{D S}=10 \mathrm{~V}, \mathrm{~V}_{G S}=-12 \mathrm{~V}$ |  |  | 1 |  | 1 |  | 1 | nA |
|  |  |  | $\mathrm{T}_{\mathrm{A}}=150^{\circ} \mathrm{C}$ |  | 1 |  | 1 |  | 1 | $\mu \mathrm{A}$ |
| loss | Saturation Drain Current (Note 1) | $\mathrm{V}_{\mathrm{DS}}=20 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$ |  | 3 | 25 | 15 | 75 | 30 | 150 | mA |
| rds(on) | Drain-Source ON Resistance | $\mathrm{V}_{\mathrm{GS}}=0, \mathrm{I}_{\mathrm{D}}=0$ | $\mathrm{f}=1 \mathrm{kHz}$ |  | 150 |  | 75 |  | 50 | ohm |
| $\mathrm{C}_{\text {iss }}$ | Common-Source Input Capacitance (Note 2) | $\mathrm{V}_{\mathrm{DS}}=20 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$ | $f=1 \mathrm{MHz}$ |  | 30 |  | 30 |  | 30 | pF |
| $\mathrm{C}_{\text {rss }}$ | Common-Source Reverse <br> Transfer Capacitance (Note 2) | $\begin{aligned} & \mathrm{V}_{\mathrm{DS}}=0, \\ & \mathrm{~V}_{\mathrm{GS}}=-12 \mathrm{~V} \end{aligned}$ |  |  | 8 |  | 8 |  | 8 |  |

NOTES: 1: Pulse test required, pulsewidth $=300 \mu \mathrm{~s}$, duty cycle $\leq 3 \%$.
2. For design reference only, not $100 \%$ tested.

[^436]123

## APPLICATIONS

FEATURES

- Good Matching Characteristics

PIN CONFIGURATION


- Differential Amplifiers
- Low and Medium Frequency Amplifiers


## ABSOLUTE MAXIMUM RATINGS

( $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted)
Gate-Source or Gate-Drain Voltage (Note 1) ....... -50V
Gate Current (Note 1) . ................................. . 50mA
Storage Temperature Range ............ $-65^{\circ} \mathrm{C}$ to $+200^{\circ} \mathrm{C}$
Operating Temperature Range $\ldots \ldots . . .-55^{\circ} \mathrm{C}$ to $+200^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10sec) ............. $+300^{\circ} \mathrm{C}$
Power Dissipation . 300 mW
Derate above $25^{\circ} \mathrm{C}$
$1.7 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
NOTE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

## ORDERING INFORMATION

| TO-71 |
| :---: |
| U23X |

ELECTRICAL CHARACTERISTICS $\quad\left(T_{A}=25^{\circ} \mathrm{C}\right.$ unless otherwise specified)

| Symbol | Parameter | Test Conditions |  | Limits |  | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Min | Max |  |
| IGss | Gate Reverse Current | $\mathrm{V}_{\mathrm{GS}}=-30 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0$ |  |  | -100 | PA |
|  |  |  | $\mathrm{T}_{\mathrm{A}}=150^{\circ} \mathrm{C}$ |  | -500 | nA |
| BVGSS | Gate-Source Breakdown Voltage | $\mathrm{I}_{\mathrm{G}}=1 \mu \mathrm{~A}, \mathrm{~V}_{\text {DS }}=0$ |  | -50 |  |  |
| $V_{\text {GS(off) }}$ | Gate-Source Cutoff Voltage | $\mathrm{V}_{\mathrm{DS}}=20 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=1 \mathrm{nA}$ |  | -0.5 | -4.5 | v |
| $\mathrm{V}_{\mathrm{GS}}$ | Gate-Source Voltage |  |  | -0.3 | -4.0 |  |
| $I_{G}$ | Gate Operating Current | $V_{D G}=20 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=200 \mu \mathrm{~A}$ |  |  | -50 | PA |
|  |  |  | $\mathrm{T}_{\mathrm{A}}=125^{\circ} \mathrm{C}$ |  | -250 | nA |
| IDSs | Saturation Drain Current (Note 2) | $\mathrm{V}_{\mathrm{DS}}=20 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$ |  | 0.5 | 5.0 | mA |
| $\mathrm{gis}^{\text {f }}$ | Common-Source Forward Transconductance (Note 2) | $\mathrm{V}_{\mathrm{DS}}=20 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$ | $\mathrm{f}=1 \mathrm{kHz}$ | 1000 | 5000 | $\mu \mathrm{s}$ |
|  |  |  | $\begin{gathered} f=100 \mathrm{MHz} \\ \text { (Note 4) } \\ \hline \end{gathered}$ | 1000 |  |  |
| $\mathrm{g}_{\text {f }}$ | Common-Source Forward Transconductance (Note 2) | $V_{D G}=20 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=200 \mu \mathrm{~A}$ | $\mathrm{f}=1 \mathrm{kHz}$ | 600 | 1600 |  |
| gos | Common-Source Output Capacitance | $\mathrm{V}_{\mathrm{DS}}=20 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$ |  |  | 35 |  |
| gos | Common-Source Output Conductance | $\mathrm{V}_{\mathrm{DG}}=20 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=200 \mu \mathrm{~A}$ |  |  | 10 |  |
| $\mathrm{C}_{\text {iss }}$ | Common-Source Input Capacitance (Note 4) | $\mathrm{V}_{\mathrm{DS}}=20 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$ | $f=1 \mathrm{MHz}$ |  | 6 | pF |
| $\mathrm{C}_{\text {rss }}$ | Common-Source Reverse Transfer Capacitance (Note 4) |  |  |  | 2 |  |
| $\overline{e_{n}}$ | Equivalent Short Circuit Input Noise Voltage |  | $f=100 \mathrm{~Hz}$ |  | 80 | $\frac{n V}{\sqrt{H z}}$ |

## ELECTRICAL CHARACTERISTICS (Continued) $\left(T_{A}=25^{\circ} \mathrm{C}\right.$ unless otherwise specified)

| Symbol | Matching Characteristics | Test Conditions |  | $\begin{gathered} \mathrm{U} 231 \\ \operatorname{Max} \end{gathered}$ | $\left.\begin{gathered} \mathrm{U} 232 \\ \operatorname{Max} \end{gathered} \right\rvert\,$ | $\left\|\begin{array}{l} \mathrm{U} 233 \\ \mathrm{Max} \end{array}\right\|$ | $\begin{gathered} \mathrm{U} 234 \\ \mathrm{Max} \end{gathered}$ | $\begin{aligned} & \mathrm{U} 235 \\ & \mathrm{Max} \end{aligned}$ | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\left\|\left.\right\|_{G 1}-I_{G 2}\right\|$ | Differential Gate Current (Note 4) | $V_{D G}=20 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=200 \mu \mathrm{~A}, \mathrm{~T}_{A}=125^{\circ} \mathrm{C}$ |  | 10 | 10 | 10 | 10 | 10 | nA |
| $\frac{\left(l_{\text {DSS } 1}-l_{\mathrm{DSS}}\right)}{\mathrm{I}_{\mathrm{DSS}}}$ | Saturation Drain Current Match (Note 2, 4) | $V_{D S}=20 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$ |  | 5 | 5 | 5 | 10 | 15 | \% |
| $\left\|\mathrm{V}_{\mathrm{GS} 1}-\mathrm{V}_{\mathrm{GS} 2}\right\|$ | Differential Gate-Source Voltage | $V_{D G}=20 \mathrm{~V}, I_{D}=200 \mu \mathrm{~A}$ | $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ | 5 | 10 | 15 | 20 | 25 | mV |
| $\frac{\Delta\left\|\mathrm{V}_{\mathrm{GS} 1}-\mathrm{V}_{\mathrm{GS} 2}\right\|}{\Delta \mathrm{T}}$ | Gate-Source Voltage Differential Drift (Note 3) |  | $\begin{aligned} & T_{A}=25^{\circ} \mathrm{C} \\ & T_{B}=125^{\circ} \mathrm{C} \end{aligned}$ | 10 | 25 | 50 | 75 | 100 | $\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$ |
|  |  |  | $\begin{aligned} & \mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{B}}=25^{\circ} \mathrm{C} \\ & \hline \end{aligned}$ | 10 | 25 | 50 | 75 | 100 |  |
| $\frac{\left(g_{\mathrm{fs} 1}-\mathrm{g}_{\mathrm{f} 2}\right)}{\mathrm{g}_{\mathrm{f} 1} 1}$ | Transconductance Match (Notes 2, 4) |  | $\mathrm{f}=1 \mathrm{kHz}$ | 3 | 5 | 5 | 10 | 15 | \% |
| $\left\|g_{\text {os1 }}-\mathrm{g}_{\text {os2 }}\right\|$ | Differential Output Conductance |  |  | 5 | 5 | 5 | 5 | 5 | $\mu \mathrm{s}$ |

NOTES: 1. Per transistor.
2. Pulse test required, pulse width $=300 \mu \mathrm{~s}$, duty cycle $\leq 3 \%$.
3. Measured at end points, $T_{A}$ and $T_{B}$
4. For design reference only, not $100 \%$ tested.

[^437]Dual N -Channel JFET High Frequency Amplifier

NNIER

## FEATURES

- $\mathrm{g}_{\mathrm{fs}}>4500 \mu \mathrm{~s}$ From DC to 100 MHz
- Matched VGS, $\mathrm{g}_{\text {fs }}$ and $\mathrm{gos}_{\text {os }}$

PIN CONFIGURATION


| ABSOLUTE MAXIMUM RATINGS |  |  |
| :---: | :---: | :---: |
| ( $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted) |  |  |
| Gate-Drain or Gate-Source Voltage (Note 1) |  |  |
| Gate Current (Note 1) |  |  |
| Storage Temperature Range . ......... $-65^{\circ} \mathrm{C}$ to $+200^{\circ} \mathrm{C}$ |  |  |
| Operating Temperature Range $\ldots \ldots . . .-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ Lead Temperature (Soldering, 10 sec ) $\ldots . . . . . . .+300^{\circ} \mathrm{C}$ |  |  |
|  |  |  |
|  | One Side | Both Side |
| $\left(\mathrm{T}_{\mathrm{A}}=85^{\circ} \mathrm{C}\right) \quad \ldots \ldots \ldots$ |  |  |
|  |  |  |
| Derate above $25^{\circ} \mathrm{C}$ | $3.8 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ |  |

NOTE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

## ORDERING INFORMATION



ELECTRICAL CHARACTERISTICS $\left(T_{A}=25^{\circ} \mathrm{C}\right.$ unless otherwise specified)

| Symbol | Parameter | Test Conditions |  | Min | Max | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| IGSS | Gate Reverse Current | $\mathrm{V}_{\mathrm{GS}}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0$ |  |  | -100 | pA |
|  |  |  | $\mathrm{T}_{\mathrm{A}}=150^{\circ} \mathrm{C}$ |  | -250 | nA |
| BVGSS | Gate-Source Breakdown Voltage | $\mathrm{I}_{\mathrm{G}}=-1 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{DS}}=0$ |  | -25 |  | V |
| VGS(off) | Gate-Source Cutoff Voltage | $V_{D S}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=1 \mathrm{nA}$ |  | -1 | -5 |  |
| IDSS | Saturation Drain Current (Note 2) | $\mathrm{V}_{\mathrm{DS}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$ |  | 5 | 40 | mA |
| $\mathrm{g}_{\mathrm{fs}}$ | Common-Source Forward Transconductance | $V_{D S}=10 \mathrm{~V}, I_{D}=5 \mathrm{~mA}$ | $\mathrm{f}=1 \mathrm{kHz}$ | 4500 | 10,000 |  |
| $\mathrm{g}_{\text {fs }}$ | Common-Source Forward Transconductance | $\mathrm{V}_{\mathrm{DG}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=5 \mathrm{~mA}$ | $\mathrm{f}=100 \mathrm{MHz}$ (Note 3) | 4500 | 10,000 | $\mu \mathrm{s}$ |
| gos | Common-Source Output Conductance | $V_{D S}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=5 \mathrm{~mA}$ | $\mathrm{f}=1 \mathrm{kHz}$ |  | 200 |  |
| Goss | Common-Source Output Conductance | $V_{D G}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=5 \mathrm{~mA}$ | $\mathrm{f}=100 \mathrm{MHz}$ |  | 200 |  |
| $\mathrm{C}_{\text {iss }}$ | Common-Source Input Capacitance |  | $\mathrm{f}=1 \mathrm{MHz}$ |  | 5 | pF |
| Crss | Common-Source Reverse Transfer Capacitance |  |  |  | 1.2 |  |
| $\overline{e_{n}}$ | Equivalent Input Noise Voltage |  | $\mathrm{f}=10 \mathrm{kHz}$ |  | 30 | $\frac{n V}{\sqrt{H z}}$ |
| $\frac{\mathrm{I}_{\mathrm{DSS}}}{\mathrm{I}_{\mathrm{DSS} 2}}$ | Drain Current Ratio at Zero Gate Voltage (Note 2) | $V_{D S}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$ |  | 0.85 | 1 |  |
| $\left\|\mathrm{V}_{\mathrm{GS} 1}-\mathrm{V}_{\mathrm{GS} 2}\right\|$ | Differential Gate-Source Voltage | $V_{D G}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=5 \mathrm{~mA}$ |  |  | 100 | mV |
| $\frac{\mathrm{g}_{\mathrm{fs}} 1}{\mathrm{~g}_{\mathrm{fs} 2}}$ | Transconductance Ratio |  | $\mathrm{f}=1 \mathrm{kHz}$ | 0.85 | 1 |  |
| $\left\|g_{o s} 1-g_{o s} 2\right\|$ | Differential Output Conductance |  |  |  | 20 | $\mu \mathrm{s}$ |

NOTES: 1. Per transistor.
2. Pulse test required, pulse width $=300 \mu \mathrm{~s}$, duty cycle $\leq 3 \%$.
3. For design reference only, not $100 \%$ tested.

FEATURES

- Low ON Resistance
- ID(off) $<500 \mathrm{pA}$
- Switches directly from TTL Logic (U306)

PIN CONFIGURATION


## APPLICATIONS

- Analog Switches
- Commutators
- Choppers


## ABSOLUTE MAXIMUM RATINGS

( $T_{A}=25^{\circ} \mathrm{C}$ unless otherwise noted)
Gate-Drain or Gate-Source Voltage (Note 1) .......... 30V
Gate Current ............................................ . . . . 50 mA
Storage Temperature Range ........... $-65^{\circ} \mathrm{C}$ to $+200^{\circ} \mathrm{C}$
Operating Temperature Range $\ldots \ldots . . .-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10sec) ................ 300 ${ }^{\circ} \mathrm{C}$
Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 350mW
Derate above $25^{\circ} \mathrm{C}$. . . . . . . . . . . . . . . . . . . . . . . $2.8 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
NOTE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

## ORDERING INFORMATION

| TO-18 |
| :---: |
| U304 |
| U305 |
| U306 |

ELECTRICAL CHARACTERISTICS $\quad\left(T_{A}=25^{\circ} \mathrm{C}\right.$ unless otherwise specified)

| Symbol | Parameter | Test Conditions |  | U304 |  | U305 |  | U306 |  | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Min | Max | Min | Max | Min | Max |  |
| IGSS | Gate Reverse Current | $\mathrm{V}_{\mathrm{GS}}=20 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}$ |  |  | 500 |  | 500 |  | 500 | pA |
|  |  |  | $T_{A}=150^{\circ} \mathrm{C}$ |  | 1.0 |  | 1.0 |  | 1.0 | $\mu \mathrm{A}$ |
| BVGSS | Gate-Source Breakdown Voltage | $\mathrm{I}_{\mathrm{G}}=1 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{DS}}=0$ |  | 30 |  | 30 |  | 30 |  | V |
| $V_{\text {GS(off) }}$ | Gate-Source Cutoff Voltage | $V_{D S}=-15 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=-1 \mu \mathrm{~A}$ |  | 5 | 10 | 3 | 6 | 1 | 4 |  |
| $V_{\text {DS(on) }}$ | Drain-Source ON Voltage | $\begin{aligned} V_{G S}=0, I_{D} & =-15 \mathrm{~mA}(\mathrm{U} 304), \\ I_{D} & =-7 \mathrm{~mA}(\text { U305 }), \\ I_{D} & =-3 \mathrm{~mA}(\text { U306 }) \end{aligned}$ |  |  | -1.3 |  | -0.8 |  | -0.6 |  |
| IDSS | Saturation Drain Current (Note 1) | $\mathrm{V}_{\mathrm{DS}}=-15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$ |  | -30 | -90 | -15 | -60 | -5 | -25 | mA |
| ${ }^{\text {l }}$ (off) | Drain Cutoff Current | $\begin{aligned} \mathrm{V}_{\mathrm{DS}}=-15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}} & =12 \mathrm{~V}(\mathrm{U} 304) \\ \mathrm{V}_{\mathrm{GS}} & =7 \mathrm{~V}(\mathrm{U} 305) \\ \mathrm{V}_{\mathrm{GS}} & =5 \mathrm{~V}(\mathrm{U} 306) \end{aligned}$ |  |  | -500 |  | -500 |  | -500 | pA |
|  |  |  | $\mathrm{T}_{\mathrm{A}}=150^{\circ} \mathrm{C}$ |  | -1.0 |  | -1.0 |  | -1.0 | $\mu \mathrm{A}$ |
| ros(on) | Static Drain-Source ON Resistance | $\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=-1 \mathrm{~mA}$ |  |  | 85 |  | 110 |  | 175 | $\Omega$ |
| $\mathrm{rds}^{\text {(on) }}$ | Drain-Source ON Resistance | $V_{G S}=0 V, l_{D}=0$ | $\mathrm{f}=1 \mathrm{kHz}$ |  | 85 |  | 110 |  | 175 | $\Omega$ |

[^438]ELECTRICAL CHARACTERISTICS (Continued) ( $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise specified)


NOTES: 1. Pulse test pulsewidth $=300 \mu \mathrm{~s}$, duty cycle $\leq 3 \%$.
2. For design reference only, not $100 \%$ tested.

U308-U310
N-Channel JFET
High Frequency Amplifier

## FEATURES

- High Power Gain
- Low Noise
- Dynamic Range Greater Than 100dB
- Easily Matched to $75 \Omega$ Input


## PIN CONFIGURATIONS



ABSOLUTE MAXIMUM RATINGS
( $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted)
Gate-Drain or Gate-Source Voltage ................. . - 25 V
Gate Current 20 mA
Storage Temperature ................... $-65^{\circ} \mathrm{C}$ to $+200^{\circ} \mathrm{C}$
Operating Temperature Range $\ldots \ldots . .-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10sec) ............. $+300^{\circ} \mathrm{C}$
Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 500mW
Derate above $25^{\circ} \mathrm{C} . . . . . . . . . . . . . . . . . . . . . . .4 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
NOTE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

## ORDERING INFORMATION

| TO-52 |
| :---: |
| U308 |
| U309 |
| U310 |

ELECTRICAL CHARACTERISTICS $\quad\left(T_{A}=25^{\circ} \mathrm{C}\right.$ unless otherwise specified)

| Symbol | Parameter | Test Conditions |  | U308 |  |  | U309 |  |  | U310 |  |  | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Min | Typ | Max | Min | Typ | Max | Min | Typ | Max |  |
| IGSS | Gate Reverse Current | $\mathrm{V}_{\mathrm{GS}}=-15 \mathrm{~V}$ |  |  |  | -150 |  |  | -150 |  |  | -150 | pA |
|  |  | $V_{\mathrm{GS}}=0$ | $T_{A}=125^{\circ} \mathrm{C}$ |  |  | -150 |  |  | -150 |  |  | -150 | nA |
| $\mathrm{BV}_{\text {GSS }}$ | Gate-Source Breakdown Voltage | $\mathrm{I}_{\mathrm{G}}=-1 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{DS}}=0$ |  | -25 |  |  | -25 |  |  | -25 |  |  | V |
| $V_{G S}$ (off) | Gate-Source Cutoff Voltage | $V_{D S}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=1 \mathrm{nA}$ |  | -1.0 |  | -6.0 | -1.0 |  | -4.0 | -2.5 |  | -6.0 |  |
| ldss | Saturation Drain Current (Note 1) | $V_{D S}=10 \mathrm{~V}, \mathrm{~V}_{G S}=0$ |  | 12 |  | 60 | 12 |  | 30 | 24 |  | 60 | mA |
| $\mathrm{V}_{\mathrm{GS}}(\mathrm{f})$ | Gate-Source Forward Voltage | $\mathrm{I}_{\mathrm{G}}=10 \mathrm{~mA}, \mathrm{~V}_{\mathrm{DS}}=0$ |  |  |  | 1.0 |  |  | 1.0 |  |  | 1.0 | V |
| $\mathrm{gfg}_{\text {fg }}$ | Common-Gate Forward Transconductance (Note 1) | $\begin{aligned} & V_{D S}=10 \mathrm{~V}, \\ & \mathrm{l}_{\mathrm{D}}=10 \mathrm{~mA} \end{aligned}$ | $\mathrm{f}=1 \mathrm{kHz}$ | 10 | 17 |  | 10 | 17 |  | 10 | 17 |  | $\mu \mathrm{S}$ |
| gogs | Common Gate Output Conductance |  |  |  |  | 250 |  |  | 250 |  |  | 250 | $\mu \mathrm{S}$ |
| $\mathrm{C}_{\mathrm{gd}}$ | Drain-Gate Capacitance | $\begin{aligned} & \mathrm{V}_{\mathrm{GS}}=-10 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{DS}}=10 \mathrm{~V} \end{aligned}$ | $\begin{array}{r} \mathrm{f}=1 \mathrm{MHz} \\ (\text { Note } 2) \end{array}$ |  |  | 2.5 |  |  | 2.5 |  |  | 2.5 | pF |
| $\mathrm{C}_{\mathrm{gs}}$ | Gate-Source Capacitance |  |  |  |  | 5.0 |  |  | 5.0 |  |  | 5.0 |  |
| $e_{n}$ | Equivalent Short Circuit Input Noise Voltage | $\begin{aligned} & V_{D S}=10 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{D}}=10 \mathrm{~mA} \\ & \hline \end{aligned}$ | $\begin{gathered} f=100 \mathrm{~Hz} \\ \text { (Note 2) } \end{gathered}$ |  | 10 |  |  | 10 |  |  | 10 |  | $\frac{n V}{\sqrt{H z}}$ |

[^439]ELECTRICAL CHARACTERISTICS (Continued) $\left(T_{A}=25^{\circ} \mathrm{C}\right.$ unless otherwise specified)

| Symbol | Parameter | Test Conditions |  | U308 |  |  | U309 |  |  | U310 |  |  | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Min | Typ | Max | Min | Typ | Max | Min | Typ | Max |  |
| gfg | Common-Gate Forward |  | $\mathrm{f}=100 \mathrm{MHz}$ |  | 15 |  |  | 15 |  |  | 15 |  |  |
|  |  |  | $\mathrm{f}=450 \mathrm{MHz}$ |  | 14 |  |  | 14 |  |  | 14 |  |  |
| gogs | Common-Gate Output | $V_{D S}=10 \mathrm{~V}$ | $f=100 \mathrm{MHz}$ |  | 0.18 |  |  | 0.18 |  |  | 0.18 |  |  |
|  |  |  | $f=450 \mathrm{MHz}$ |  | 0.32 |  |  | 0.32 |  |  | 0.32 |  |  |
| $\mathrm{G}_{\mathrm{pg}}$ | Common-Gate Power Gain |  | $f=100 \mathrm{MHz}$ | 14 | 16 |  | 14 | 16 |  | 14 | 16 |  |  |
|  |  |  | $f=450 \mathrm{MHz}$ | 10 | 11 |  | 10 | 11 |  | 10 | 11 |  | B |
| NF | Noise Figure | (Note 2) | $f=100 \mathrm{MHz}$ |  | 1.5 | 2.0 |  | 1.5 | 2.0 |  | 1.5 | 2.0 |  |
|  |  |  | $f=450 \mathrm{MHz}$ |  | 2.7 | 3.5 |  | 2.7 | 3.5 |  | 2.7 | 3.5 |  |

NOTES: 1. Pulse test duration $=2 \mathrm{~ms}$.
2. For design reference only, not $100 \%$ tested.

## FEATURES

- Minimum System Error and Calibration
- Low Drift With Temperature
- Operates From Low Power Supply Voltages
- High Output Impedance

PIN CONFIGURATION


## ABSOLUTE MAXIMUM RATINGS

( $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted)
Gate-Drain or Gate-Source Voltage . . . . . . . . . . . . . . . . . 50V
Gate Current (Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 mA
Storage Temperature Range ........... $-65^{\circ} \mathrm{C}$ to $+200^{\circ} \mathrm{C}$
Operating Temperature Range .......... $-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10sec) ............ $+300^{\circ} \mathrm{C}$

|  | One Side | Both Sides |
| :---: | :---: | :---: |
| Power Dissipation $\left(\mathrm{T}_{\mathrm{A}}=85^{\circ} \mathrm{C}\right)$ | 300 mW | 500 mW |
| Derate above $25^{\circ} \mathrm{C} \ldots \ldots$. | $2.6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ | $5 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ |

NOTE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

## ORDERING INFORMATION

| TO-71 |
| :---: |
| U40X |

ELECTRICAL CHARACTERISTICS $\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right.$ unless otherwise specified)

| Symbol | Parameter | Test Conditions |  | U401 |  | U402 |  | U403 |  | U404 |  | U405 |  | U406 |  | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Min | Max |  |
| $\mathrm{BV}_{\text {GSS }}$ | Gate-Source Breakdown Voltage | $\mathrm{V}_{\mathrm{DS}}=0, \mathrm{I}_{\mathrm{G}}=$ | $-1 \mu \mathrm{~A}$ | -50 |  | $-50$ |  | -50 |  | -50 |  | -50 |  | -50 |  | V |
| IGSS | Gate Reverse Current (Note 2) | $V_{D S}=0, V_{G S}$ | $s=-30 \mathrm{~V}$ |  | -25 |  | -25 |  | -25 |  | -25 |  | -25 |  | -25 | pA |
| $\mathrm{V}_{\mathrm{GS} \text { (off) }}$ | Gate-Source Cutoff Voltage | $V_{D S}=15 \mathrm{~V}$, | $D=1 \mathrm{nA}$ | -. 5 | -2.5 | $-.5$ | -2.5 | $-.5$ | -2.5 | $-.5$ | -2.5 | -. 5 | -2.5 | $-.5$ | -2.5 | V |
| $V_{G S}($ on) | Gate-Source Voltage (on) | $\mathrm{V}_{\mathrm{DG}}=15 \mathrm{~V}$ | $l_{D}=200 \mu \mathrm{~A}$ |  | -2.3 |  | $-2.3$ |  | -2.3 |  | -2.3 |  | $-2.3$ |  | $-2.3$ |  |
| ldSs | Saturation Drain Current (Note 3) | $V_{D S}=10 \mathrm{~V}$, | GS $=0$ | 0.5 | 10.0 | 0.5 | 10.0 | 0.5 | 10.0 | 0.5 | 10.0 | 0.5 | 10.0 | 0.5 | 10.0 | mA |
| $\mathrm{I}_{\mathrm{G}}$ | Operating Gate Current (Note 2) | $\begin{array}{r} V_{D G}=15 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=200 \mu \mathrm{~A} \\ \mathrm{~T}_{\mathrm{A}}=125^{\circ} \mathrm{C} \end{array}$ |  |  | -15 |  | -15 |  | -15 |  | -15 |  | -15 |  | -15 | pA |
|  |  |  |  |  | -10 |  | -10 |  | -10 |  | -10 |  | -10 |  | -10 | nA |
| $\mathrm{BV}_{\mathrm{G} 1 \text {-G2 }}$ | Gate-Gate Breakdown Voltage | $\begin{aligned} & \mathrm{V}_{\mathrm{DS}}=0, \mathrm{~V}_{\mathrm{GS}}=0, \\ & \mathrm{I}_{\mathrm{G}}= \pm 1 \mu \mathrm{~A} \\ & \hline \end{aligned}$ |  | $\pm 50$ |  | V |
| $\mathrm{g}_{\text {ts }}$ | Common-Source Forward Transconductance (Note 3) | $\begin{aligned} & V_{D S}=10 \mathrm{~V}, \\ & V_{G S}=0 \end{aligned}$ | $f=1 \mathrm{kHz}$ | 2000 | 7000 | 2000 | 7000 | 2000 | 7000 | 2000 | 7000 | 2000 | 7000 | 2000 | 7000 | $\mu \mathrm{S}$ |
| gos | Common-Source Output Conductance |  |  |  | 20 |  | 20 |  | 20 |  | 20 |  | 20 |  | 20 |  |
| $\mathrm{g}_{\text {fs }}$ | Common-Source Forward Transconductance | $\begin{aligned} & V_{D G}=15 V \\ & I_{D}=200 \mu \mathrm{~A} \end{aligned}$ | $f=1 \mathrm{kHz}$ | 1000 | 2000 | 1000 | 2000 | 1000 | 2000 | 1000 | 2000 | 1000 | 2000 | 1000 | 2000 |  |
| $\mathrm{gos}_{0}$ | Common-Source Output Conductance |  |  |  | 2.0 |  | 2.0 |  | 2.0 |  | 2.0 |  | 2.0 |  | 2.0 |  |
| $\mathrm{C}_{\text {iss }}$ | Common-Source Input Capacitance (Note 6) |  | $\mathrm{f}=1 \mathrm{MHz}$ |  | 8.0 |  | 8.0 |  | 8.0 |  | 8.0 |  | 8.0 |  | 8.0 | pF |
| $\mathrm{C}_{\text {rss }}$ | Common-Source Reverse Transfer Capacitance (Note 6) |  |  |  | 3.0 |  | 3.0 |  | 3.0 |  | 3.0 |  | 3.0 |  | 3.0 |  |

[^440]ELECTRICAL CHARACTERISTRICS (Continued) $\left(T_{A}=25^{\circ} \mathrm{C}\right.$ unless otherwise specified)

| Symbol | Parameter | Test Conditions |  | U401 |  | U402 |  | U403 |  | U404 |  | U405 |  | U406 |  | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Min | Max |  |
| $e_{n}$ | Equivalent Short-Circuit Input Noise Voltage | $\begin{aligned} & V_{D S}=15 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{GS}}=0 \end{aligned}$ | $\begin{aligned} & \mathrm{f}=10 \mathrm{~Hz} \\ & \text { (Note 6) } \end{aligned}$ |  | 20 |  | 20 |  | 20 |  | 20 |  | 20 |  | 20 | $\frac{n V}{\sqrt{H z}}$ |
| CMRR | Common-Mode Rejection Ratio | $\begin{aligned} & V_{D G}=10 \text { to } 20 \mathrm{~V}, \\ & I_{D}=200 \mu \mathrm{~A}(\text { Note } 5,6) \end{aligned}$ |  | 95 |  | 95 |  | 95 |  | 95 |  | 90 |  |  |  | dB |
| $\left\|\mathrm{V}_{\mathrm{GS} 1}-\mathrm{V}_{\mathrm{GS} 2}\right\|$ | Differential Gate-Source Voltage | $V_{D G}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=200 \mu \mathrm{~A}$ |  |  | 5 |  | 10 |  | 10 |  | 15 |  | 20 |  | 40 | mV |
| $\frac{\left\|\Delta \mathrm{V}_{\mathrm{GS} 1}-\mathrm{V}_{\mathrm{GS} 2}\right\|}{\Delta \mathrm{T}}$ | Gate-Source Voltage Differential Drift (Note 4) | $\begin{aligned} & V_{D G}=10 \mathrm{~V}, \\ & I_{D}=200 \mu \mathrm{~A} \end{aligned}$ | $\begin{aligned} & T_{A}=-55^{\circ} \mathrm{C}, \\ & T_{B}=+25^{\circ} \mathrm{C}, \\ & T_{C}=+125^{\circ} \mathrm{C} \end{aligned}$ |  | 10 |  | 10 |  | 25 |  | 25 |  | 40 |  | 80 | $\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$ |

NOTES: 1. Per transistor.
2. Approximately doubles for every $10^{\circ} \mathrm{C}$ increase in $\mathrm{T}_{\mathrm{A}}$.
3. Pulse test duration $=300 \mu \mathrm{~s}$; duty cycle $\leq 3 \%$.
4. Measured at end points, $T_{A}, T_{B}, T_{C}$.
5. $C M R R=20 \log _{10}\left[\frac{\Delta V_{D D}}{\Delta\left|V_{G S_{1}}-V_{G S_{2}}\right|}\right], \Delta V_{D D}=10 V$.
6. For design reference only, not $100 \%$ tested.

## FEATURES

- Low Insertion Loss
- No Error or Offset Voltage Generated By Closed Switch


## PIN CONFIGURATION



## APPLICATIONS

- Analog Switches, Choppers


## ABSOLUTE MAXIMUM RATINGS

( $T_{A}=25^{\circ} \mathrm{C}$ unless otherwise noted)
Gate-Drain or Gate-Source Voltage .................. . -40V
Forward Gate Current . ................................. . . 10mA
Storage Temperature Range $. \ldots \ldots . . . .-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Operating Temperature Range $\ldots \ldots . . .-55^{\circ} \mathrm{C}$ to $+135^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10sec) ............. $+300^{\circ} \mathrm{C}$
Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 350mW
Derate above $25^{\circ} \mathrm{C} . . . . . . . . . . . . . . . . . . . . . .3 .2 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
NOTE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
ORDERING INFORMATION

| TO-92 | TO-92-18 |
| :---: | :---: |
| U1897 | U1897-18 |
| U1898 | U1898-18 |
| U1899 | U1899-18 |

ELECTRICAL CHARACTERISTICS $\quad\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right.$ unless otherwise specified)

| Symbol | Parameter | Test Conditions | U1897 |  | U1898 |  | U1899 |  | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Min | Max | Min | Max | Min | Max |  |
| BVGSS | Gate-Source Breakdown Voltage | $\mathrm{I}_{\mathrm{G}}=-1 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{DS}}=0$ | -40 |  | -40 |  | -40 |  | V |
| lass | Gate Reverse Current | $\mathrm{V}_{\mathrm{GS}}=-20 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0$ |  | -400 |  | -400 |  | $-400$ | pA |
| IDGO | Drain-Gate Leakage Current | $V_{D G}=20 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=0$ |  | 200 |  | 200 |  | 200 |  |
| ISGO | Source-Gate Leakage Current | $V_{S G}=20 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=0$ |  | 200 |  | 200 |  | 200 |  |
| ${ }^{\text {D (off) }}$ | Drain Cutoff Current | $\begin{aligned} & \mathrm{V}_{\mathrm{DS}}=20 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{GS}}=-12 \mathrm{~V}(\mathrm{U} 1897) \end{aligned}$ |  | 200 |  | 200 |  | 200 |  |
|  |  | $\begin{aligned} & V_{G S}=-8 V(U 1898) \\ & V_{G S}=-6 V(U 1899) \end{aligned} T_{A}=85^{\circ} \mathrm{C}$ |  | 10 |  | 10 |  | 10 | nA |
| $V_{G S}$ (off) | Gate-Source Cutoff Voltage | $V_{D S}=20 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=1 \mathrm{nA}$ | -5.0 | $-10$ | -2.0 | -7.0- | -1.0 | -5.0 | V |
| IDSS | Saturation Drain Current (Note 1) | $\mathrm{V}_{\mathrm{DS}}=20 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$ | 30 |  | 15 |  | 8.0 |  | mA |
| $V_{\text {DS(on) }}$ | Drain-Source ON Voltage | $\begin{aligned} & \mathrm{V}_{\mathrm{GS}}=0, \mathrm{I}_{\mathrm{D}}=6.6 \mathrm{~mA} \text { (U1897) } \\ & \mathrm{I}_{\mathrm{D}}=4.0 \mathrm{~mA}(\mathrm{U} 1898) \\ & \mathrm{I}_{\mathrm{D}}=2.5 \mathrm{~mA}(\mathrm{U} 1899) \\ & \hline \end{aligned}$ |  | 0.2 |  | 0.2 |  | 0.2 | V |
| $r_{\text {rs }}(\mathrm{on})$ | Static Drain-Source ON Resistance | $\mathrm{I}_{\mathrm{D}}=1 \mathrm{~mA}, \mathrm{~V}_{\mathrm{GS}}=0$ |  | 30 |  | 50 |  | 80 | $\Omega$ |

[^441]ELECTRICAL CHARACTERISTICS (Continued) $\left(T_{A}=25^{\circ} \mathrm{C}\right.$ unless otherwise specified)

| Symbol | Parameter | Test Conditions |  | U1897 |  | U1898 |  | U1899 |  | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Min | Max | Min | Max | Min | Max |  |
| $\mathrm{C}_{\text {dg }}$ | Drain-Gate Capacitance | $V_{D G}=20 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=0$ | $f=1 \mathrm{MHz}$ <br> (Note 2) |  | 5 |  | 5 |  | 5 | pF |
| $\mathrm{C}_{\text {sg }}$ | Source-Gate Capacitance | $V_{S G}=20 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=0$ |  |  | 5 |  | 5 |  | 5 |  |
| $\mathrm{C}_{\text {iss }}$ | Common-Source Input Capacitance | $\mathrm{V}_{\mathrm{DS}}=20 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$ |  |  | 16 |  | 16 |  | 16 |  |
| Crss | Common-Source Reverse Transfer Capacitance |  |  |  | 3.5 |  | 3.5 |  | 3.5 |  |
| $\mathrm{t}_{\mathrm{d}(\text { On) }}$ | Turn ON Delay Time (Note 2) | Switching Time Test Conditions    <br>     <br>  U1897 U1898 U1899 <br> $V_{\text {DD }}$ $3 V$ 3 V 3 V <br> $\mathrm{~V}_{\mathrm{GS}(\text { on })}$ 0 0 0 <br> $\mathrm{~V}_{\mathrm{GS} \text { (off) }}$ -12 V -8 V -6 V <br> $\mathrm{R}_{\mathrm{L}}$ $425 \Omega$ $770 \Omega$ $1120 \Omega$ <br> $\mathrm{I}_{\mathrm{D} \text { (on) }}$ 6.6 mA 4 mA 2.5 mA |  |  | 15 |  | 15 |  | 20 | ns |
| $\mathrm{t}_{\mathrm{r}}$ | Rise Time ( Note 2) |  |  |  | 10 |  | 20 |  | 40 |  |
| $\mathrm{t}_{\text {off }}$ | Turn OFF Time (Note 2) |  |  |  | 40 |  | 60 |  | 80 |  |

[^442]2. For design reference only, not $100 \%$ tested.

[^443]
## APPLICATIONS

- Small Signal Attenuators
- Filters
- Amplifier Gain Control
- Oscillator Amplitude Control

ORDERING INFORMATION

| TO-18 | TO-72 | Wafer | Dice |
| :---: | :---: | :---: | :---: |
| VCR2N | - | VCR2N/W | VCR2N/D |
| VCR4N | - | VCR4N/W | VCR4N/D |
| - | VCR3P | VCR3P/W | VCR3P/D |
| - | VCR7N | VCR7N/W | VCR7N/D |

ABSOLUTE MAXIMUM RATINGS
( $T_{A}=25^{\circ} \mathrm{C}$ unless otherwise noted)
Gate-Drain or Gate-Source Voltage .................... . 15V
Gate Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10mA
Storage Temperature Range . . . . . . . . . . $-65^{\circ} \mathrm{C}$ to $+200^{\circ} \mathrm{C}$
Operating Temperature Range $. \ldots . . . .-55^{\circ} \mathrm{C}$ to $+175^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10sec) ............. $+300^{\circ} \mathrm{C}$
Power Dissipation .................................. 300 mW
Derate above $25^{\circ} \mathrm{C}$. . . . . . . . . . . . . . . . . . . . . . . . . $2 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
NOTE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

## PIN CONFIGURATIONS

| TO-18 (VCR2N, 7N) |  | $\begin{gathered} \text { TO-72 } \\ \text { (P-Channel) } \\ \text { (VCR3P, 5P) } \end{gathered}$ |  | TO-72 (N-Channel) (VCR, 7N) |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | 0268-1 |  |  |  |  |
|  |  | 5001-VCR2N 5010(4N)-VCR4N 5510(5P)-VCR5P | 0268-3 | 5007-VCR7N 5008-VCR3P | 0268-4 |

ELECTRICAL CHARACTERISTICS
( $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise specified)
N Channel VCR FETs

| Symbol | Parameter | Test Conditions |  | VCR2N |  | VCR4N |  | VCR7N |  | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Min | Max | Min | Max | Min | Max |  |
| STATIC |  |  |  |  |  |  |  |  |  |  |
| IGSS | Gate Reverse Current | $\begin{aligned} & V_{\mathrm{GS}}=-15 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{DS}}=0 \end{aligned}$ |  |  | -5 |  | -0.2 |  | -0.1 | nA |
| $\mathrm{BV}_{\text {GSS }}$ | Gate-Source Breakdown Voltage | $\begin{aligned} & \mathrm{I}_{\mathrm{G}}=-1 \mu \mathrm{~A}, \\ & \mathrm{~V}_{\mathrm{DS}}=0 \end{aligned}$ |  | -15 |  | -15 |  | -15 |  | V |
| $V_{G S(0 f f)}$ | Gate-Source Cutoff Voltage | $l_{D}=1 \mu \mathrm{~A}, V_{D S}=10 \mathrm{~V}$ |  | 1.0 | 3.5 | -3.5 | -7 | -2.5 | -5 |  |
| $\mathrm{r}_{\text {ds }}$ (on) | Drain source ON Resistance | $V_{G S}=0, I_{D}=0$ | $f=1 \mathrm{kHz}$ | 20 | 60 | 200 | 600 | 4,000 | 8,000 | $\Omega$ |

## DYNAMIC (Note 1)

| $\mathrm{C}_{\text {dgo }}$ | Drain-Gate Capacitance | $\mathrm{V}_{\mathrm{GD}}=-10 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=0$ | $\mathrm{f}=1 \mathrm{MHz}$ |  | 7.5 |  | 3 |  | 1.5 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $\mathrm{C}_{\text {sgo }}$ | Source-Gate Capacitance | $\mathrm{V}_{\mathrm{GS}}=-10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=0$ |  |  | 7.5 |  | 3 |  | 1.5 |

NOTE 1: For design reference only, not $100 \%$ tested.
P Channel VCR FETS

| Symbol | Parameter | Test Conditions | VCR3P |  | VCR5P |  | Units |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Max | Min | Max |  |  |

STATIC

| IGSS | Gate Reverse Current | $\mathrm{V}_{\mathrm{GS}}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0$ |  |  | 20 |  | 10 | nA |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $B V_{\text {GSS }}$ | Gate-Source Breakdown Voltage | $\mathrm{I}_{\mathrm{G}}=1 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{DS}}=0$ |  | 15 |  | 15 |  | V |
| $V_{\text {GS (off) }}$ | Gate-Source Cutoff Voltage | $\mathrm{I}_{\mathrm{D}}=-1 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{DS}}=-10 \mathrm{~V}$ |  | 1.0 | 5 | 3.5 | 7 |  |
| rds(on) | Drain-Source ON Resistance | $V_{G S}=0, l_{D}=0$ | $\mathrm{f}=1 \mathrm{kHz}$ | 70 | 200 | 300 | 900 | $\Omega$ |

DYNAMIC (Note 1)

| $\mathrm{C}_{\text {dgo }}$ | Drain-Gate Capacitance | $V_{G D}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=0$ | $f=1 \mathrm{MHz}$ <br> (Note 1) | 6 | 3 | pF |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{C}_{\text {sgo }}$ | Source-Gate Capacitance | $V_{G S}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=0$ |  | 6 | 3 |  |

NOTE 1: For design reference only, not $100 \%$ tested.

## JFETS AS VOLTAGE REGULATORS

The voltage controlled resistor is a junction field effect transistor whose drain to source ON resistance is controlled by gate to source voltage.
The gate control terminal is high impedance thereby allowing negligible control current. The gate voltage is zero for minimum resistance, and increases as the gate voltage approaches the pinch-off voltage.
This VCR is intended for use on applications using low level AC signals. Figure 1 shows the output characteristics, with an enlarged graph of VDS $=0$ for $A C$ signals with no DC component. Operation is in the first and third quadrants; the device will operate in the first quadrant only if a constant
current is applied to the drain and the input signal level is kept low.

Figure 1 also shows that certain combinations of gate control voltage and signal levels will cause resistance modulation. This distortion may be improved by introducing local feedback as shown in figure 2 for best frequency response and impedance levels; eliminating the feedback capacitor will require the gate control voltage to be double for the same ON resistance. The resistor values should be equal, and about $100 \Omega$.

Best gate control voltage for best linearity is up to about $0.8 \mathrm{~V}_{\text {PK; }}$; ON resistance increases rapidly beyond this point.

[^444]


Figure 2

## VCR11N <br> Voltage Controlled Resistors

## APPLICATIONS

- Small Signal Attenuators
- Filters
- Amplifier Gain Control
- Oscillator Amplitude Control


## PIN CONFIGURATION




#### Abstract

ABSOLUTE MAXIMUM RATINGS ( $T_{A}=25^{\circ} \mathrm{C}$ unless otherwise noted) Gate-Drain or Gate-Source Voltage Gate Current 10 mA Total Device Dissipation at $T_{A}=25^{\circ} \mathrm{C}$ (Derate at $2.0 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ to $175^{\circ} \mathrm{C}$ ) 300 mW Storage Temperature Range ........... $-55^{\circ} \mathrm{C}$ to $+175^{\circ} \mathrm{C}$ NOTE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.


## ORDERING INFORMATION

| TO-71 |
| :---: |
| VCR11N |

## ELECTRICAL CHARACTERISTICS $\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right.$ unless otherwise specified)

| Symbol | Characteristic | Test Conditions |  | Min | Max | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| IGSS | Gate Reverse Current | $\mathrm{V}_{\mathrm{GS}}=-15 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0$ |  |  | -0.2 | nA |
| BVGSS | Gate-Source Breakdown Voltage | $\mathrm{I}_{\mathrm{G}}=-1 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{DS}}=0$ |  | -25 |  | V |
| $V_{\text {GS (off) }}$ | Gate-Source Cutoff Voltage | $\mathrm{I}_{\mathrm{D}}=1 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{DS}}=10 \mathrm{~V}$ |  | -8 | -12 |  |
| $\mathrm{r}_{\mathrm{ds}(\mathrm{on})}$ | Drain Source ON Resistance | $V_{G S}=0, l_{D}=0$ | $\mathrm{f}=1 \mathrm{kHz}$ | 100 | 200 | $\Omega$ |
| $\mathrm{C}_{\text {dgo }}$ | Drain-Gate Capacitance (Note 2) | $\mathrm{V}_{\mathrm{GD}}=-10 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=0$ | $f=1 \mathrm{MHz}$ |  | 8 | pF |
| $\mathrm{C}_{\text {sgo }}$ | Source-Gate Capacitance (Note 2) | $\mathrm{V}_{\mathrm{GS}}=-10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=0$ |  |  | 8 |  |
| rosmin |  | $V_{D S}=100 \mathrm{mV}$ | $r_{\text {DS } 1}=200 \Omega$ | . 95 | 1 |  |
| r ${ }_{\text {DS }}$ max |  | $\mathrm{V}_{\mathrm{GS} 1}=\mathrm{V}_{\mathrm{GS} 2}$ | $\mathrm{r}_{\mathrm{DS} 1}=2 \mathrm{k} \Omega$ | . 95 | 1 |  |

NOTES: 1. $\mathrm{V}_{\mathrm{GS} 1}+$ Control Voltage necessary to force $\mathrm{r}_{\mathrm{DS}}$ to $200 \Omega$ or $2 \mathrm{k} \Omega$.
2. For design reference only, not $100 \%$ tested.

[^445]
## Section 11 - Data Communications

IM26C91 ..................11-1
IM4702/4712 . . . . . . . . . 11-19
IM6402 .................. . 11-26
IM6403 .................. . 11-26
ICL232 . . . . . . . . . . . . . . . 11-36

$$
1
$$

Universal Asynchronous Receivers Transmitter (UART)

## GENERAL DESCRIPTION

The IM26C91 is a high-performance Uly yersal Asynchironous Receiver/Transmitter that provides full daiplex operation. Operating speed can be selected from 18 fixed baud rates ranging from 50 to 38.4 K baud, or from an internal programmable counter/timer ( $16 \times$ clock speed), or from an external $1 \times$ or $16 \times$ clock. The ability to program the operating speed independently makes the UART particularly well suited for dual-speed channel applications, e.g. clustered terminal systems.

The quadruple buffered receiver minimizes potential receiver overrun and reduces overhead in interrupt driven systems. Handshaking capability disables a remote UART transmitter when the receiver buffer is full.

The IM26C91 UART is fabricated in 1.5 micron advanced VLSI CMOS technology which permits monolithic construction and encapsulation in a $0.3^{\prime \prime}$ wide 24 -pin DIP. The device is TTL compatible and operates from a single +5 V power supply.

FEATURES

- Programmable Data Format: -5 to 8 Data Bits Plus Parity
-Odd, Even, no Parity or Force Parity
-1, 1.5 or 2 Stop Bits Programmable in $1 / 16$ Bit Increments
- Parity, Framing, and Overrun Error Detection
- False Start Bit Detection
- Line Break Detection and Generation
- Programmable Channel Mode
-Normal (Full-Duplex)
-Automatic Echo
-Local Loopback
-Remote Loopback
- Single Interrupt Output with Seven Maskable Interrupting Conditions
- On-Chip Crystal Oscillator
- 300 mil 24 Pin DIP


## ORDER INFORMATION

$V_{C C}=5 \mathrm{~V} \pm 10 \%$

| Part <br> Number | Temperature <br> Range | Package |
| :---: | :---: | :---: |
| IM26C91CX24 | $0^{\circ}$ to $+70^{\circ} \mathrm{C}$ | 24 Lead Plastic |



## ABSOLUTE MAXIMUM RATINGS

Voltage from $V_{\text {CC }}$ to $\operatorname{GND}$ (Note 1) ........ -0.3 to +6.0 V
Voltage from any Pin
to GND (Note 1). -0.3 to $V_{C C} \pm 10 \%$ V
Power Dissipation .......................................2W
Operating Temperature Range (Note 2) $\ldots . .0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ Storage Temperature Range $\ldots . . . . . . .-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
NOTE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.


ELECTRICAL CHARACTERISTICS DC ELECTRICAL CHARACTERISTICS

$$
T_{A}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C}, \mathrm{~V}_{C C}=5.0 \mathrm{~V} \pm 10 \% 3,4,5
$$

| Symbol | Parameter | Test Conditions | Limits |  |  | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Min | Typ | Max |  |
| $\mathrm{V}_{\text {IL }}$ | Input Low Voltage |  | -0.3 |  | 0.8 | V |
| $\mathrm{V}_{\text {IH }}$ | Input High Voltage <br> All Except X1/CLK <br> X1/CLK |  | $\begin{gathered} 2.0 \\ 0.9 \mathrm{~V}_{\mathrm{CC}} \\ \hline \end{gathered}$ |  | $\begin{aligned} & \mathrm{V}_{\mathrm{CC}} \\ & \mathrm{~V}_{\mathrm{CC}} \end{aligned}$ | $\begin{aligned} & V \\ & V \end{aligned}$ |
| V OL | Output Low Voltage (Note 6) | $\mathrm{lOL}=2.4 \mathrm{~mA}$ |  |  |  |  |
| V OH | Output High Voltage (Note 6) (Except Open Drain Outputs) | $\mathrm{IOH}^{\text {O }}=-400 \mu \mathrm{~A}$ | 2.4 |  |  | V |
| IIL | Input Leakage Current | $\mathrm{V}_{\text {IN }}=0$ to $\mathrm{V}_{\mathrm{CC}}$ | -10 |  | 10 | $\mu \mathrm{A}$ |
| IILL | Data Bus 3-State Leakage Current | $V_{O}=0.4$ to $V_{C C}$ | -10 |  | 10 | $\mu \mathrm{A}$ |
| IOD | Open Drain Output Leakage Current | $\mathrm{V}_{\mathrm{O}}=0.4$ to $\mathrm{V}_{C C}$ | -10 |  | 10 | $\mu \mathrm{A}$ |
| 1 $\times 1$ L | X1/CLK Low Input Current | $\mathrm{V}_{\mathrm{IN}}=0, \mathrm{X} 2$ Floated | -100 | $-30$ | 0.0 | $\mu \mathrm{A}$ |
| ${ }^{1} \times 1 \mathrm{H}$ | X1/CLK High Input Current | $\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{CC}}, \mathrm{X} 2$ Floated | 0.0 | +30 | 100 | $\mu \mathrm{A}$ |
| OSCILLATOR IN POWER DOWN MODE: |  |  |  |  |  |  |
| ${ }^{1} 1{ }^{1 H}$ | X1/CLK High input Current | $\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{CC}}, \mathrm{X} 2$ Floated |  |  | 10 | mA |
| 1 $\times 2$ L | X2 Low Output Current | $\mathrm{V}_{\text {OUT }}=0, \mathrm{X} 1 /$ CLK $=\mathrm{V}_{\text {CC }}$ |  |  | 100 | $\mu \mathrm{A}$ |
| $\mathrm{I} \times 2 \mathrm{H}$ $\mathrm{I} \mathrm{Cc}$ | X2 High Output Current Power Supply Current Standby | $\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\text {CC }}, \mathrm{X}_{1} / \mathrm{CLK}=0 \mathrm{~V}$ |  |  | $\begin{gathered} 100 \\ 20 \\ 500 \end{gathered}$ | $\mu \mathrm{A}$ <br> mA <br> $\mu \mathrm{A}$ |

NOTES: 1: This product includes circuitry specifically designed for the protection of its internal devices from damaging effects of excessive static charge. Nonetheless, it is suggested that conventional precautions be taken to avoid applying any voltages larger than the rated maximums.
2: For operating at elevated temperatures, the device must be derated based on $+150^{\circ} \mathrm{C}$ maximum junction temperature.
3: Parameters are valid over specified temperature range.
4: All voltage measurements are referenced to ground (GND). For testing, all input signals swing between 0.4 V and 2.4 V with a transition time of 20 ns maximum. For $\mathrm{X} 1 / \mathrm{CLK}$, this swing is between 0.4 V and 4.4 V . All time measurements are referenced at input voltages of 0.8 V and 2.0 V and output voltages of 0.8 V and 2.0 V as appropriate.
5: Typical values are at $+25^{\circ} \mathrm{C}$, typical supply voltages, and typical processing parameters.
6: Test condition for outputs: $C_{L}=150 \mathrm{pF}$, except interrupt outputs. Test conditions for interrupt outputs: $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=2.7 \mathrm{~K} \Omega$ to $\mathrm{V}_{\mathrm{CC}}$.
7: Timing is illustrated and referenced to the WRN and RDN inputs. The device may also be operated with CEN as the 'strobing' input. In this case, all timing specifications apply referenced to the falling and rising edges of CEN. CEN and RDN (aiso CEN and WRN) are OR'ed internally. As a consequence, the signal asserted last initiates the cycle and the signal negated first terminates the cycle.
8: If CEN is used as the 'strobing' input, this parameter defines the minimum high time between one CEN and the next. The RDN signal must be negated for $t_{\text {RWD }}$ to guarantee that any status register changes are valid.
9: Consecutive write operations to the same command require at least three edges of the X1 clock between writes.
INTERSIL'S SOLE AND EXCLUSIVE WARRANTY Obligation WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. the warranty shall be exclusive and shall be in lieu of all other warranties, express, implied or statutory, including the implied warranties of MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.
NOTE: All typical values have been characterized but are not tested.

AC ELECTRICAL CHARACTERISTICS $T_{A}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 10 \% 3,4,5,6$

| Symbol | Parameter | Tentative Limits |  |  | Units |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Typ | Max |  |
| RESET TIMING (Figure 3) |  |  |  |  |  |
| $t_{\text {RES }}$ | RESET Pulse Width | 1.0 |  |  | $\mu \mathrm{s}$ |
| BUS TIMING (Figure 4) (Note 7) |  |  |  |  |  |
| $t_{A S}$ | A0-A2 Set-Up Time to RDN, WRN Low | 10 |  |  | ns |
| $t_{\text {AH }}$ | A0-A2 Hold Time from RDN, WRN High | 0 |  |  | ns |
| $t_{\text {cs }}$ | CEN Set-Up Time to RDN, WRN Low | 0 |  |  | ns |
| $\mathrm{t}_{\mathrm{CH}}$ | CEN Hold Time from RDN, WRN High | 0 |  |  | ns |
| $t_{\text {RW }}$ | WRN, RDN Pulse Width | 225 |  |  | ns |
| $t_{\text {D }}$ | Data Valid after RDN Low |  |  | 175 | ns |
| $t_{\text {DF }}$ | Data Bus Floating after RDN High |  |  | 100 | ns |
| $t_{\text {DS }}$ | Data Set-Up Time before WRN High | 100 |  |  | ns |
| $t_{\text {DH }}$ | Data Hold Time after WRN High | 10 |  |  | ns |
| $t_{\text {RWD }}$ | Time Between READs and/or WRITEs (Note 9) | 200 |  |  | ns |
| MPI AND MPO TIMING (Figure 5) (Note 7) |  |  |  |  |  |
| $t_{\text {PS }}$ | MPI Input Set-Up Time before RDN Low | 0 |  |  | ns |
| $\mathrm{t}_{\mathrm{PH}}$ | MPI Input Hold Time after RDN High | 0 |  |  | ns |
| $t_{\text {PD }}$ | MPO Output Valid after WRN High |  |  | 370 | ns |

INTERRUPT TIMING (FIgure 6)

| $\mathrm{t}_{\mathrm{IR}}$ | INTRN Negated: <br> Read RHR (RXRDY/FFULL Interrupt) Write THR (TXRDY/TXEMT Interrupt) Reset Command (Break Change Interrupt) Reset Command (MPI Change interrupt) Stop C/T Command (Counter Interrupt) Write IMR (Clear of Interrupt Mask Bit) |  |  | $\begin{aligned} & 370 \\ & 370 \\ & 370 \\ & 370 \\ & 370 \\ & 270 \\ & \hline \end{aligned}$ | $\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| CLOCK TIMING (Figure 7) |  |  |  |  |  |
| tclk | X1/CLK High or Low Time | 100 |  |  | ns |
| fCLK | X1/CLK Frequency | 2.0 | 3.6864 | 4.0 | MHz |
| $\mathrm{t}_{\text {CTC }}$ | Counter/Timer Clock High or Low Time | 100 |  |  | ns |
| $\mathrm{f}_{\text {CTC }}$ | Counter/Timer Clock Frequency | 0 |  | 4.0 | MHz |
| $t_{\text {R }}$ | RXC High or Low Time | 220 |  |  | ns |
| $\mathrm{f}_{\mathrm{RX}}$ | $\begin{array}{cc} \text { RXC Frequency } & (16 \mathrm{X}) \\ & (1 \mathrm{X}) \\ \hline \end{array}$ | $\begin{aligned} & 0 \\ & 0 \\ & \hline \end{aligned}$ |  | $\begin{aligned} & 2.0 \\ & 1.0 \\ & \hline \end{aligned}$ | $\begin{aligned} & \mathrm{MHz} \\ & \mathrm{MHz} \\ & \hline \end{aligned}$ |
| ${ }_{t}{ }_{\text {T }}$ | TXC High or Low Time | 220 |  |  | ns |
| ${ }_{\text {f }} \mathrm{X}$ | $\begin{array}{ll} \hline \text { TXC Frequency } & (16 \mathrm{X}) \\ & (1 \mathrm{X}) \\ \hline \end{array}$ | $0$ |  | $\begin{aligned} & 2.0 \\ & 1.0 \end{aligned}$ | $\begin{aligned} & \mathrm{MHz} \\ & \mathrm{MHz} \end{aligned}$ |


| TRANSMITTER TIMING (Figure 8) |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| $\mathrm{t}_{\text {TXD }}$ | TXD Output Delay from TXC Low |  | 350 | ns |
| tTCS | TXC Output Delay from TXD Output Data | 0 | 150 | ns |
| RECEIVER TIMING (Figure 9) |  |  |  |  |
| $\mathrm{t}_{\text {RXS }}$ | RXD Data Set-Up Time to RXC High | 240 |  | ns |
| $t_{\text {RXH }}$ | RXD Data Hold Time from RXC High | 200 |  | ns |

INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL. BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.
NOTE: All typical values have been characterized but are not tested.
ren

## UNIVERSAL ASYNCHRONOUS RECEIVER/TRANSMITTER (UART) <br> PIN DESCRIPTION

| Mnemonic | DIP Pin No. | Type | Name and Function |
| :---: | :---: | :---: | :---: |
| D0-D7 | 22-15 | 1/0 | Data Bus: Active high 8-bit bidirectional three-state data bus. Bit 0 is the LSB and bit 7 is the MSB. Handles all data, command, and status transfers between the CPU and the UART. Transfer direction is controlled by the WRN and RDN inputs when the CEN input is low. When the CEN input is high, the data bus is in the three-state condition. |
| CEN | 14 | 1 | Chip Enable: Active low input. When low, data transfers between the CPU and the UART are enabled on D0-D7 as controlled by the WRN, RDN and A0-A2 inputs. When CEN is high, the UART is effectively isolated from the data bus and D0-D7 are placed in the three-state condition. |
| WRN | 23 | 1 | Write Strobe: Active low input. A low on this pin while CEN is low, causes the contents of the data bus to be transferred to the register selected by A0-A2. The transfer occurs on the trailing (rising) edge of the signal. |
| RDN | 1 | 1 | Read Strobe: Active low input. A low input, while CEN is low, causes the contents of the register selected by A0-A2 to be placed on the data bus. The read cycle begins on the leading (falling) edge of RDN. |
| A0-A2 | 8-6 | 1 | Address Inputs: Active high address inputs select the UART registers for read/write operations. |
| INTRN | 13 | 0 | Interrupt Request: This active low output is asserted by one or more of seven maskable interrupting conditions. The CPU can read the interrupt status register to determine the interrupting condition(s). |
| X1/CLK | 9 | 1 | Crystal 1: Crystal or external clock input. When using the crystal oscillator, this pin serves as the connection for one side of the crystal. If a crystal is not used, an external clock is supplied at this input. An external clock (or cyrstal) is required even if the internal baud rate generator is not utilized. This clock is used to drive the internal baud rate generator, as an optional input to the timer/counter, and to provide other clocking signals required by the chip. |
| X2 | 10 | 0 | Crystal 2: Connection for other side of crystal. If an external source is used instead of a crystal this connection should be open. |
| RXD | 2 | 1 | Receiver Serial Data Input: The least significant bit is received first. If external receiver clock is specified, this input is sampled on the rising edge of the clock. |

[^446](v) | N NTEFSTL

UNIVERSAL ASYNCHRONOUS RECEIVER/TRANSMITTER (UART)

## PIN DESCRIPTION (Continued)

| Mnemonic | DIP Pin No. | Type | Name and Function |
| :---: | :---: | :---: | :---: |
| TXD | 3 | 0 | Transmitter Serial Data Input: The least significant bit is transmitted first. This output is held in the marking (high) condition when the transmitter is idle or disabled and when the UART is operating in local loopback mode. If external transmitter clock is specified, the data is shifted on the falling edge of the transmitter clock. |
| MPO | 4 | 0 | Multi-Purpose Output: One of the following functions can be selected for this output pin by programming the auxiliary control register. <br> RTSN—Request to send active low output. This output is asserted and negated via the command register. By appropriate programming of the mode registers, RTSN can be programmed to be automatically reset after the character in the transmitter is completely shifted or when the receiver FIFO and shift register are full. <br> CXTO-The counter/timer output. <br> TXC1X—The $1 \times$ clock for the transmitter. <br> TXC16X -The $16 \times$ clock for the transmitter. <br> RXC1X-The $1 \times$ clock for the transmitter. <br> RXC16X-The $16 \times$ clock for the transmitter. <br> TXRDY—The transmitter holding register empty signal. Active low interrupt. <br> RXRDY/FFULL—The receiver FIFO not empty/full signal. Active low interrupt. |
| MPI | 5 | 1 | Multi-Purpose Input: This pin can be programmed to serve as an input for one of the following functions: <br> GPI-General purpose input. The current state of the pin can be determined by reading the ISR. <br> CTSN-Clear-to-Send active low input. <br> CTCLK—Counter/Timer external clock input. <br> RTCLK—Receiver and/or transmitter external clock input. This may be a $1 \times$ or $16 \times$ clock as programmed by CSR [3:0] or CSR [7:4]. |
| VCC | 24 | 1 | Power Supply: +5V supply input. |
| GND | 12 | 1 | Ground. |

## CIRCUIT DESCRIPTION

The IM26C91 UART is a full duplex asynchronous receiver/transmitter whose operating frequency can be selected from its internal baud rate generator or counter/timer, or from an external input.
The functional diagram of the IM26C91 UART is shown in Figure 1. It consists of the receiver and transmitter, a data bus buffer, an interrupt control, an operation control and a timing system. In addition, a multi-purpose input pin can be programmed to serve as an output for a variety of internal functions, including a request-to-send output, the counter/ timer output, the output for the 1X or 16X transmitter or receiver clocks, the TXRDY output or RXRDY/FFULL output (see pin description table).

Registers associated with the communications channel are the Mode Registers, (MR1 and MR2) , the Clock Select Register (CSR), the Command Register (CR), the Status Register (SR), the Transmit Holding Register (THR), and the Receiver Holding Register (RHR).

## TRANSMITTER

The transmitter accepts parallel data from the CPU and converts it to a serial bit stream on the Transmit Serial Data Output pin (TXD). It automatically sends a start bit followed by the programmed number of data bits, an optional parity bit, and the programmed number of stop bits. The least significant bit is sent first.
Following the transmission of the stop bits, if a new character is not available in the THR, the TXD output remains high and a TXEMT bit in the SR will be set to 1 .
Transmission resumes and the TXEMT bit is cleared when the CPU loads a new character into the THR. In the 16X clock mode, this also resynchronizes the internal 1X transmitter clock so that transmission of the new character begins with minimum delay.
The transmitter can be forced to send a break (continuous low condition) by issuing a start break command via the CR. The break is terminated by a stop break command.
If the transmitter is disabled, it continues operating until the character currently being transmitted and the character in the THR, if any, are completely sent out. Characters cannot be loaded into the THR while the transmitter is disabled.

## RECEIVER

The receiver accepts serial data on the RXD pin, converts it to parallel format, checks for start bit, stop bit, parity bit (if any), or break condition, and presents the assembled character to the CPU.
The receiver looks for a high-to-low (mark-to-space) transition of the start bit on the RXD input pin. If a transition is detected, the state of the RXD is sampled again each 16X clock for $71 / 2$ clocks ( 16 X clock mode) or at the next rising edge of the bit-time clock ( 1 X clock mode). If RXD is sampled high, the start bit is invalid and the search for a valid start bit is resumed. If RXD is still low, a valid start bit is assumed and the receiver continues to sample the input at one bit-time intervals until the proper number of data bits and the parity bit (if any) have been assembled, and one stop bit has been detected. The data is then transferred to the RHR and the RXRDY bit in the SR is set to a 1. If the character length is less than eight bits, the most significant unused bits in the RHR are set to zero.

After the stop bit is detected, the receiver will immediately look for the next start bit. However, if a non-zero character was received without a stop bit (i.e. framing error) and RXD remains low for one-half of the bit period after the stop bit was sampled, then the receiver operates as if a new start bit transition had been detected at that point. The parity error, framing error and overrun error (if any) are strobed into the SR at the received character boundary, before the RXRDY status bit is set.

If a break condition is detected, (RXD is low for the entire character including the stop bit) only one character consisting of all zeros will be loaded into the FIFO of the RHR and the received break bit in the SR is set to 1 . The RXD input must return to a high condition for two successive clock edges of the 1X clock (internal or external) before a search for the next start bit begins.

Data entering the RHR is stored in a first-in-first-out (FIFO) queue with a capacity of three characters. Data is loaded from the Receive Shift Register into the top-most empty position of the FIFO.

The RXRDY bit in the Status Register (SR) is set whenever one or more characters are available to be read, and a FFULL status bit is set if all three queue positions are filled with data. Either of these bits can be selected to cause an interrupt. A read of the RHR outputs the data at the top of the FIFO. After the read cycle, the data FIFO and its associated status bits are 'popped', thus emptying a FIFO position for new data.

In addition to the data word, three status bits (parity error, framing error, and received break) are appended to each data character in the FIFO. Status can be provided in two ways, as programmed by the error mode control bit in the mode register. In the character mode, status is provided on a character-by-character basis: the status applies only to the character at the top of the FIFO. In the block mode, the status provided in the SR for these three bits is the logical OR of the status for all characters coming to the top of the FIFO since the last reset error command was issued. In either mode, reading the SR does not affect the FIFO. The FIFO is 'popped' only when the RHR is read. Therefore, the SR should be read prior to reading the corresponding data character.

If the FIFO is full when a new character is received, that character is held in the Receive Shift Register until a FIFO position is available. If an additional character is received while this state exists, the contents of the FIFO are not affected: the character previously in the shift register is lost and the overrun error status bit (SR [4]) will be set upon receipt of the start bit of the new (overrunning) character.
Wake Up Mode-In addition to the normal transmitter and receiver operation described above, the UART incorporates a special mode which provides automatic wake-up of the receiver through address frame recognition for multiprocessor communications. This mode is selected by programming bits MR1[4:3] to ' 11 '.

In this mode, a 'master' station transmits an address character followed by data characters for the addressed 'slave' station. The slave stations, whose receivers are normally disabled, examine the received data stream and 'wake-up' the CPU (by setting RXRDY) only upon receipt of

## RECEIVER (Continued)

a received address character. The CPU compares the received address to its station address and enables the receiver if it wishes to receive the subsequent data characters. Upon receipt of another address character, the CPU may disable the receiver to initiate the process again.
A transmitted character consists of a start bit, the programmed number of data bits, an address/data (A/D) bit, and the programmed number of stop bits. The polarity of the transmitted A/D bit is selected by the CPU by programming bit MR1[2]. A zero transmitted in the A/D bit position identifies the corresponding data bits as data; A one in the A/D bit position identifies the corresponding data bits as an address. The CPU should program the Mode Register prior to loading the corresponding data bits into the THR.
While in this mode, the receiver (whether enabled or disabled) continuously looks at the received data stream. If the receiver is disabled, it sets the RXRDY status bit and loads the character into the RHR FIFO if the received A/D bit is a one, but discards the received character if the received A/D bit is a zero. If enabled, all received characters are transferred to the CPU via the RHR. In either case, the data bits are loaded into the data FIFO while the A/D bit is loaded into the status FIFO position normally used for parity error (SR[5]). Framing error, overrun error, and break detect operate normally whether or not the receiver is enabled.

## OPERATION CONTROL

The Operation Control logic receives operation commands from the CPU and generates appropriate signals to internal sections of the UART to control its operation. It contains address decoding and read and write circuits to permit communications with the microprocessor via the data bus buffer. The functions performed by the CPU read and write operations are shown in Table 1.

Table 1. Register Addressing

| A2 | A1 | A0 | READ <br> (RDN $=\mathbf{0})$ | WRITE <br> (WRN $=\mathbf{0})$ |
| :---: | :---: | :---: | :--- | :--- |
| 0 | 0 | 0 | MR1, MR2 | MR1, MR2 |
| 0 | 0 | 1 | SR | CSR |
| 0 | 1 | 0 | Reserved* | CR |
| 0 | 1 | 1 | RHR | THR |
| 1 | 0 | 0 | Reserved* | ACR |
| 1 | 0 | 1 | SR | IMR |
| 1 | 1 | 0 | CTU | CTUR |
| 1 | 1 | 1 | (CTL) | CTLR |

*Reserved registers should never be read during normal operation since they are reserved for internal diagnostics.
ACR - Auxiliary control register
CR - Command register
CSR - Clock select register
CTL - Counter/timer lower
CTLR- Counter/timer lower register
CTU - Counter/timer upper
CTUR - Counter/timer upper register
MR - Mode Register A
SR - Status register
THR - Transmit holding register
RHR - Receiver holding register

Mode registers 1 and 2 are accessed via an auxiliary pointer. The pointer is set to MR1 by RESET or by issuing a reset pointer command via the command register. Any read or write of the mode register while the pointer is at MR1 switches the pointer to MR2. The pointer then remains at MR2 so the subsequent accesses are to MR2, unless the pointer is reset to MR1 as described above.

## Interrupt Control

A single interrupt output (INTRN) is provided. It is asserted by any of the following internal events:
-Transmit holding register ready
-Transmit shift register empty
-Receive holding register ready or FIFO full
-Change in break received status
-Counter reached terminal count
-Change in MPI input
-High level at the MPI input
Associated with the interrupt system are the interrupt mask register (IMR) and the interrupt status register (ISR). The IMR can be programmed to select only certain of the above conditions to cause INTRN to be asserted. The ISR can be read by the CPU to determine all currently active interrupt conditions. However, the bits of the ISR are not masked by the IMR.

## Timing Circuits

The timing block consists of a crystal oscillator, a baud rate generator, a programmable 16-bit counter/timer, and two clock selectors.

The crystal oscillator operates directly from a 3.6864 MHz crystal connected across the X1/CLK and X2 inputs. An external clock of the appropriate frequency may be conneted to $\mathrm{X1} / \mathrm{CLK}$. If an external clock is used instead of a crystal, $\mathrm{X} 1 / \mathrm{CLK}$ is driven by a configuration similar to the one in Figure 5. However, the input-high voltage must be capable of attaining 4.4 V . The clock serves as the basic timing reference for the baud rate generator (BRG), the counter/timer and other internal circuits. A clock frequency, within the limits specified in the electrical specifications, must be supplied even if the internal BRG is not used.

The baud rate generator operates from the oscillator or external clock input and is capable of generating 18 commonly used data communications baud rates ranging from 50 to 38.4 k baud. Thirteen of these are available simultaneously for use by the receiver and transmitter. Eight are fixed, and one of two sets of five can be selected by programming ACR[7]. The clock outputs from the BRG are at 16X the actual baud rate. The counter/timer can be used as a timer to produce a 16X clock or any other baud rate by counting down the crystal clock or an external clock. The clock selectors allow the independent selection by the receiver and transmitter of any of these baud rates or an external timing signal.

The Counter/Timer operation is programmed by ACR[6:4]. One of eight timing sources can be used as the input to the C/T. The output of the C/T is available to the clock selectors and can also be programmed by ACR[2:0], to be output on the MPO pin.

## OPERATION CONTROL (Continued)

In the timer mode, the $\mathrm{C} / \mathrm{T}$ generates a square wave whose period is twice the number of clock periods loaded into the C/T upper and lower registers (CTUR and CTLR). The counter ready bit in the ISR is set once each cycle of the square wave. If the value of CTUR or CTLR is changed, the current half-period will not be affected, but subsequent half-periods will be affected. In this mode the C/T runs continuously and does not recognize the stop counter command (the command only resets the counter ready bit in the ISR). Receipt of a start C/T command cause the counter to terminate the current timing cycle and to begin a new cycle using the values in CTUR and CTLR.

In the counter mode, the C/T counts down the number of pulses loaded into CTUR and CTLR. Counting beings upon receipt of a start C/T command. Upon reaching terminal count, the counter ready bit in the ISR is set. The counter continues counting past the terminal count until stopped by the CPU. If MPO is programmed to be the output of the C/T, the output remains high until terminal count is reached, at which time it goes low. The output returns to the high state and the counter ready bit is cleared when the counter is stopped by a stop counter command. The CPU may change the values of CTUR and CTLR at any time, but the new count becomes effective only on the next start counter command following a stop counter command. If new values have not been loaded, the previous count values are preserved and used for the next count cycle.

In the counter mode, the current value of the upper and lower 8 bits of the counter may be read by the CPU. It is recommended that the counter be stopped when reading to prevent potential problems which may occur if a carry from the lower 8 bits to the upper 8 bits occurs between the times that both halves of the counter are read. However a subsequent start counter command causes the counter to begin a new count cycle using the values in CTUR and CTLR.

Multi-Purpose Input Pin-The MPI can be programmed as input to one of several UART circuits. The function of the pin is selected by programming the appropriate control register (MR2[4], ACR[6:4], CSR[7:4], 3:0]). Only one of the functions may be selected at any given time. If CTS pr GPI is selected, a change-of-state detector provided with the pin is activated. A high-to-low or low-to-high transition of the inputs lasting longer than $25-50 \mu \mathrm{sec}$ sets the MPI change-of-state bit in the interrupt status register. The bit is cleared via a command. The change-of-state can be programmed to generate an interrupt to the CPU by setting the corresponding bit in the interrupt mask register.

The input pin pulse detection circuitry uses a 38.4 kHz sampling clock derived from one of the baud rate generator taps. This produces a sampling period of slightly more than $25 \mu \mathrm{sec}$ (assuming a 3.6864 MHz oscillator input). The detection circuitry, in order to guarantee that a true change in level has occurred, requires that two successive samples at the new logic level be observed. Consequently, the minimum duration of the signal change is $25 \mu \mathrm{sec}$ if the transition occurs coincident with the first sample pulse. The $50 \mu \mathrm{sec}$ time refers to the condition where the change-ofstate is just missed and the first change-of-state is not detected until after an additional $25 \mu \mathrm{sec}$.

## REGISTERS

The operation of UART is programmed by writing control words into the appropriate register. Operational feedback is provided via status registers which can be read by the CPU. Addressing of the registers is as described in Table 1.

The contents of certain control registers are initialized to zero on RESET. Changing the contents of a register during operation may cause operation problems- e.g., changing the number of bits per character while the transmitter is active may cause the transmission of an incorrect character. The contents of the MR, the CSR, and the ACR should only be changed while the receiver(s) and transmitter(s) are disabled, and certain changes to the ACR should only be made while the C/T is stopped.
The bit formats of the UART registers are depicted in Table 2 and described below.

## MR1—Mode Register 1

MR1 is accessed when the MR pointer points to MR1. The pointer is set to MR1 by RESET or by a set pointer command applied via the CR. After reading or writing MR1, the pointers are set at MR2.

MR1[7]-Receiver Request-To-Send Control. This bit controls the deactivation of the RTSN output (MPO) by the receiver. This output is manually asserted and negated by commands applied via the Command Register. A "1" in MR1[7] causes RTSN to be automatically negated upon receipt of a valid start bit if the receiver FIFO is full. RTSN is reasserted when an empty FIFO position is available. The feature can be used to prevent overrun in the receiver by using the RTSN output signal to control the CTS input of the transmitting device.
MR1[6]-Receiver Interrupt Select. This bit selects either the receiver ready status (RXRDY) or the FIFO full status (FFULL) to be used for CPU interrupts.

MR1[5]-Error Mode Select. This bit selects the operating mode of the three FIFOed status bits (FE, PE, received break). In the character mode, status is provided on a char-acter-by-character basis (the status applies only to the character at the top of the FIFO). In the block mode, the status provided in the SR for these bits is the accumulation (logical OR) of the status for all characters coming to the top of the FIFO since the last reset error command was issued.

MR1[4:3]-Parity Mode Select. If "with parity" or "force parity" is selected, a parity bit is added to the transmitted character and the receiver performs a parity check on incoming data. If MR1[4:3] $=11$, the channel operates in the special wake-up mode.
MR1[2]-Parity Type Select. This bit selects the parity type (odd or even) if the "with parity" mode is programmed by MR1[4:3], and the polarity of the forced parity bit if the "force parity" mode is programmed. It has no effect if the "no parity" mode is programmed. In the special wake-up mode, it selects the polarity of the A/D bit.

MR1[1:0]-Bits-Per-Character Select. This field selects the number of data bits per character to be transmitted and received. The character length does not include the start, parity, and stop bits.

## REGISTERS (Continued)

## MR2-Mode Register 2

MR2 is accessed when the channel MR pointer points to MR2, which occurs after any access to MR1. Accesses to MR2 do not change the pointer.

MR2[7:6]-Mode Select. The UART can operate in one of four modes: MR2[7:6] = 00 is the normal mode, with the transmitter and receiver operating independently. MR2[7:6] $=01$ places the channel in the automatic echo mode, which automatically retransmits the received data. The following conditions are true while in automatic echo mode:

1. Received data is reclocked and retransmitted on the TXD output.
2. The receive clock is used for the transmitter.
3. The receiver must be enabled, but the transmitter need not be enabled.
4. The TXRDY and TXEMT status bits are inactive.
5. The received parity is checked, but is not regenerated for transmission, i.e., transmitted parity bit is as received.
6. Character framing is checked, but the stop bits are retransmitted as received.
7. A received break is echoed as received until the next valid start bit is detected.
8. CPU to receiver communication continues normally, but the CPU to transmitter link is disabled.
Two diagnostic modes can also be selected. A local loopback mode is selected if MR2[7:6] = 10. In this mode:
9. The transmitter output is internally connected to the receiver input.
10. The transmit clock is used for the receiver.
11. The TXD output is held high.
12. The RXD input is ignored.
13. The transmitter must be enabled, but the receiver need not be enabled.
14. CPU to transmitter and receiver communications continue normally.
The second diagnostic mode is the remote loopback mode, selected by MR2[7:6] $=11$. In this mode:
15. Received data is reclocked and retransmitted on the TXD output.
16. The receive clock is used for the transmitter.
17. Received data is not sent to the local CPU, and the error status conditions are inactive.
18. The received parity is not checked and is not regenerated for transmission, i.e., the transmitted parity bit is as received.
19. The receiver must be enabled, but the transmitter need not be enabled.
20. Character framing is not checked, and the stop bits are retransmitted as received.
21. A received break is echoed as received until the next valid start bit is detected.
When switching in and out of the various modes, the selected mode is activated immediately upon mode selection, even if this occurs in the middle of a received or transmitted character. Similarly, if a mode is deselected, the device will switch out of the mode immediately. An exception to this is switching out of auto echo or remote loopback modes; if the deselection occurs just after the receiver has sampled the stop bit (indicated to be in auto-echo by assertion of RXRDY), and the transmitter is enabled, the transmitter will remain in auto echo mode until one full stop bit has been retransmitted.

MR2[5]-Transmitter Request-to-Send Control. This bit controls the deactivation of the RTSN output (MPO) by the transmitter. This output is manually asserted and negated by appropriate commands issued via the command register. If MR2[5] = 1, RTSN is reset automatically one bit time after the character in the transmit shift register and in the THR (if any) are completely transmitted; includes the programmed number of stop bits if the transmitter is not enabled. This feature can be used to automatically terminate the transmission of a message as follows:

1. Program auto-reset mode (MR2[5] = 1).
2. Enable transmitter.
3. Assert RTSN via command.
4. Send message.
5. Verify the next-to-last character of the message is being sent by waiting until transmitter ready is asserted. Disable transmitter after the last character is loaded into the THR.
6. The last character will be transmitted and RTSN will be reset one bit-time after the last stop bit.
MR2[4]-Clear-to-Send Control. The state of this bit determines if the CTSN input (MPI) controls the operation of the transmitter. If this bit is 0, CTSN has no effect on the transmitter. If this bit is a 1 , the transmitter checks the state of CTSN each time it is ready to send a character. If it is asserted (low), the character is transmitted. If it is negated (high), the TXD output remains in the marking state and the transmission is delayed until CTSN goes low. Changes in CTSN while a character is being transmitted does not affect the transmission of that character. This feature can be used to prevent overrun of a remote receiver.

MR2[3:0]-Stop Bit Length Select. This field programs the length of the stop bit appended to the transmitted character. Stop bit lengths of $9 / 16$ to 1 and $19 / 16$ to 2 bits, in increments of $1 / 16$ bit, can be programmed for character lengths of 6,7 , and 8 bits. For a character length of 5 bits, $11 / 16$ to 2 stop bits can be programmed in increments of $1 / 16$ bit. In all cases, the receiver only checks for a mark condition at the center of the first stop-bit position (one bit-time after the last data bit, or after the parity bit if parity is enabled). If an external $1 \times$ clock is used for the transmitter, MR2[3] $=0$ selects one stop bit and MR2[3] $=1$ selects two stop bits to be transmitted.

Table 2. Register Bit Formats

| MR1 |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| BIT7 | BIT6 | BIT5 | BIT4 | BIT3 | BIT2 | BIT1 | BITO |
| RXRTS CONTROL | R/INT SELECT | ERROR MODE | PARITY MODE |  | PARITY TYPE | BITS PER CHAR |  |
| 0 = no | 0 = RXRDY | 0 = char | $00=$ | rity | 0 = even |  |  |
| 1 = yes | 1 = FFULL | 1 = blobk | $01=$ | arity | 1 = odd |  |  |
|  |  |  | 10 |  |  |  |  |
|  |  |  | $11=$ |  |  |  |  |


| MR2 |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| BIT7 BIT6 | BIT5 | BIT4 | BIT3 | BIT2 | BIT1 | BITO |
| CHANNEL MODE | Tx RTS CONTROL | CTS <br> ENABLE Tx |  | STIP BIT | NGTH* |  |
| $00=$ Normal | $0=$ no | $0=$ no | $0=0.563$ | $4=0.813$ | $8=1.563$ | $C=1.813$ |
| 01 = Auto Echo | 1 = yes | 1 = yes | $1=0.625$ | $5=0.875$ | $9=1.625$ | $D=1.875$ |
| 10 = Lock Loop |  |  | $2=0.688$ | $6=0.938$ | $\mathrm{A}=1.688$ | $E=1.938$ |
| 11 = Remote Loop |  |  | $3=0.750$ | $7=1.000$ | $B=1.750$ | $F=2.000$ |

*Add 0.5 to values shown for $0-7$, if channel is programmed for 5 bits/char.


[^447]Table 2. Register Bits Formats (Continued)

| SR |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| BIT7 | BIT6 | BIT5 | BIT4 | BIT3 | BIT2 | BIT1 | BITO |
| RECEIVED BREAK | FRAMING ERROR | PARITY ERROR | OVERRUN ERROR | TXEMT | TXRDY | FFULL | RXRDY |
| 0 = no | $0=$ no |
| 1 = yes | 1 = yes | $1=y e s$ | 1 = yes |

*These status bits are appended to the corresponding data character in the receive FIFO. A read of the status register provides these bits [7:5] from the top of the FIFO together with bits [4:0]. These bits are cleared by a reset error status command. In character mode they are reset when the corresponding data character is read from the FIFO.

| ACR |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| BIT7 | BIT6 | BIT5 BIT4 | BIT3 | BIT2 | BIT1 | BITO |
| BRG SET SELECT | COUNTER/TIMER MODE AND SOURCE |  | POWER DOWN MODE | MPO PIN <br> FUNCTION SELECT |  |  |
| $0=$ Set 1 |  |  | $0=0 n$ | $000=$ RTSN | 100 |  |
| 1 = Set 2 |  | See Text | 1 = off | $001=$ C/T0 | 101 |  |
|  |  |  |  | $\begin{aligned} & 010=\operatorname{TXC}(1 X) \\ & 011=\operatorname{TXC}(16 X) \end{aligned}$ | 110 | FFULL |


| ISR |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| BIT7 | BIT6 | BIT5 | BIT4 | BIT3 | BIT2 | BIT1 | BITO |
| MPI PIN | MPI PIN |  | COUNTER |  | RXRDY/ |  |  |
| CHANGE | CURRENT |  | READY | BREAK | FFULL | TXEMT | TXRDY |
| $0=$ no | $0=10 w$ | not | $0=$ no | 0 = no | 0 = no | $0=$ no | $0=$ no |
| 1 = yes | $1=$ high | used | 1 = yes |


| IMR |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| BIT7 | BIT6 | BIT5 | BIT4 | BIT3 | BIT2 | BIT1 | BITO |
| MPI | MPI |  | COUNTER | DELTA | RXRDY | TXEMT |  |
| CHANGE | LEVEL |  | READY | BREAK | FFULL | INT | INT |
| INT | INT |  | INT | INT | INT |  |  |
| $0=0 f f$ | $0=0 \mathrm{ff}$ | not | $0=0$ off | 0 = off | $0=0 \mathrm{ff}$ | $0=\mathrm{off}$ | $0=0 f f$ |
| $1=0 n$ | 1 = on | used | $1=$ on | 1 = on | 1 = on | $1=$ on | $1=$ on |


| CTUR |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| BIT7 | BIT6 | BIT5 | BIT4 | BIT3 | BIT2 | BIT1 | BITO |
| C/T[15] | C/T[14] | C/T[13] | C/T[12] | C/T[11] | C/T[10] | C/T[9] | C/T[8] |
| CTLR |  |  |  |  |  |  |  |
| BIT7 | BIT6 | BIT5 | BIT4 | BIT3 | BIT2 | BIT1 | BITO |
| C/T[7] | C/T[6] | C/T[5] | C/T[4] | C/T[4] | C/T[2] | C/T[1] | C/T[0] |

[^448]Table 3. Baud Rate

|  | CSR[3:0]/[7:4] |  |  | ACR[7] = 0 | ACR[7] = 1 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 0 | 50 | 75 |
| 0 | 0 | 0 | 1 | 110 | 110 |
| 0 | 0 | 1 | 0 | 134.5 | 134.5 |
| 0 | 0 | 1 | 1 | 200 | 150 |
| 0 | 1 | 0 | 0 | 300 | 300 |
| 0 | 1 | 0 | 1 | 600 | 600 |
| 0 | 1 | 1 | 0 | 1,200 | 1,200 |
| 0 | 1 | 1 | 1 | 1,050 | 2,000 |
| 1 | 0 | 0 | 0 | 2,400 | 2,400 |
| 1 | 0 | 0 | 1 | 4,800 | 4,800 |
| 1 | 0 | 1 | 0 | 7,200 | 1,800 |
| 1 | 0 | 1 | 1 | 9,600 | 9,600 |
| 1 | 1 | 0 | 0 | $38.4 k$ | $19.2 k$ |
| 1 | 1 | 0 | 1 | Timer | Timer |
| 1 | 1 | 1 | 0 | MPI-16x | MPI-16X |
| 1 | 1 | 1 | 1 | MPI-1X | MPI-1X |

The receiver clock is always a 16X clock, except for CSR[7:4] = 1111

## CSR-Select Register

CSR[7:4]-Receiver Clock Select. When using a 3.6864 MHz crystal or external clock input, this field selects the baud rate clock for the receiver as shown in Table 3.

CSR[3:0]-Transmitter Clock Select. This field selects the baud rate clock for the transmitter. The field definition is as shown in Table 3.

## CR-Command Register

CR is used to write commands to the UART. Multiple commands can be specified in a single write to CR as long as the commands are non-conflicting, e.g., the enable transmitter and reset transmitter commands cannot be specified in a single command word.

CR[7:4]-Miscellaneous Commands. The encoded value of this field may be used to specify a single command as follows:
0000 No command
0001 Reset MR pointer. Causes the MR pointer to point to MR1.
0010 Reset receiver. Resets the receiver as if a hardware reset had been applied. The receiver is disabled and the FIFO is flushed.
0011 Reset transmitter. Resets the transmitter as if a hardware reset had been applied.
0100 Reset error status. Clears the received break, parity error, framing error and overrun error bits in the status register (SR[7:4]). Used in character mode to clear OE status (although RB, PE, and FE bits will also be cleared), and in block mode to clear all error status after a block of data has been received.
0101 Reset break change interrupt. Causes the break detect change bit in the interrupt status register (SR[3]) to be cleared to zero.

0110 Start break. Forces the TXD output low (spacing). If the transmitter is empty, the start of the break condition will be delayed up to two bit-times. If the transmitter is active, the break begins when transmission of the character is completed. If a character is in the THR, the start of break is delayed until that character (or any others loaded after it) has been transmitted (TXEMT must be true before break begins). The transmitter must be enabled to start a break.
0111 Stop break. The TXD line will go high (marking) within two bit times. TXD will remain high for one bit time before the next character, if any, is transmitted.
1000 Start C/T. In counter or timer modes, causes the contents of CTUR/CTLR to be preset into the counter/timer and starts the counting cycle. In timer mode, any counting cycle in progress when the command is issued is terminated. In counter mode, has no effect unless a stop C/T command was issued previously.
1001 Stop counter. In counter mode, stops operation of the counter/timer, resets the counter-ready bit in the ISR, and forces the MPO output high if it is programmed to be the output of the C/T. In timer mode, resets the counter-ready bit in the ISR but has no affect on the counter/timer itself or on the MPO output.
1010 Assert RTSN. Causes the RTSN output to be asserted (low).
1011 Negate RTSN. Causes the RTSN output to be negated (high).
1100 Reset MPI change interrupt. Causes the MPI change bit in the interrupt status register (SR[7]) to be cleared to zero.
1101 Reserved.
111x Reserved.

## REGISTERS

## (Continued)

CR[3]-Disabled Transmitter. This command terminates transmitter operation and resets the TXRDY and TXEMT status bits. However, if a character is being transmitted or if a character is in the THR when the transmitter is disabled, the transmission of the character(s) is completed before assuming the inactive state.

CR[2]-Enable Transmitter. Enables operation of the channel A transmitter. The TXRDY status bit will be asserted.

CR[1]-Disable Receiver. This command terminates operation of the receiver immediately- a character being received will be lost. The command has no effect on the receiver status bits or any other control registers. If the special wakeup mode is programmed, the receiver operates even if it is disabled (see Wakeup Mode).

CR[0]- Enable Receiver. Enables operation of the receiver. If not in the special wakeup mode, this also forces the receiver into the search for start-bit state.

## SR-Channel Status Register

SR[7]-Receiver Break. This bit indicates that an all zero character of the programmed length has been received without a stop bit. Only a single FIFO position is occupied when a break is received; further entries to the FIFO are inhibited until the RXD line returns to the marking state for at least one half bit-time (two successive edges of the internal or external 1X clock).

When this bit is set, the change in break bit in the ISR (SR[3]) is set. ISR[3] is also set when the end of the break condition, as defined above, is detected.

The break detect circuitry is capable of detecting breaks that orginate in the middle of a received character. However, if a break begins in the middle of a character, it must last until the end of the next character time in order for it to be detected.

SR[6]-Framing Error (FE). This bit, when set, indicates that a stop bit was not detected when the corresponding data character in the FIFO was received. The stop bit check is made in the middle of the first stop bit position.

SR[5]-Parity Error (PE). This bit is set when the with parity or force parity mode is programmed and the corresponding character in the FIFO was received with incorrect parity.

In the special wakeup mode, the parity error bit stores the received A/D bit.

SR[4]-Overrun Error (OE). This bit, when set, indicates that one or more characters in the received data stream have been lost. It is set upon receipt of a new character
when the FIFO is full and a character is already in the receive shift register waiting for an empty FIFO position. When this occurs, the character in the receive shift register (and its break detect, parity error and framing error status, if any) is lost.

This bit is cleared by a reset error status command.
SR[3]-Transmitter Empty (TXEMT). This bit will be set when the transmitter underruns, i.e., both the transmit holding register (THR) and the transmit shift register are empty However, this bit is not set until one character has been transmitted. It is set after transmission of the last stop bit of a character, if no character is in the THR awaiting transmission. It is reset when the THR is loaded by the CPU, or when the transmitter is disabled.

SR[2]-Transmitter Ready (TXRDY). This bit, when set, indicates that the THR is empty and ready to be loaded with a character. This bit is cleared when the THR is loaded by the CPU and is set when the character is transferred to the transmit shift register. TXRDY is reset when the transmitter is disabled and is set when transmitter is first enabled, e.g. characters loaded in the THR while the transmitter is disabled will not be transmitted.

SR[1]-FIFO (FFULL). This bit is set when a character is transferred from the receive shift register to the receive FIFO and the transfer causes the FIFO to become full, i.e. all three FIFO positions are occupied. It is reset when the CPU reads the FIFO and there is no character in the receive shift register. If a character is waiting in the receive shift register because the FIFO is full, FFULL wil be reset by the CPU read and then set by the transfer of the character to the FIFO, which causes all three FIFO positions to be occupied.

SR[0]-Receiver Ready (RXRDY). This bit indicates that a character has been received and is waiting in the FIFO to be read by the CPU. It is set when the character is transferred from the receive shift register to the FIFO and reset when the CPU reads the RHR, and no more characters are in the FIFO.

## ACR-Auxiliary Control Register

ACR[7]-Baud Rate Generator Set. This bit selects one of two sets of baud rates generated by the BRG.

Set 1: $50,110,134.5,200,300,600,1.05 \mathrm{~K}, 1.2 \mathrm{~K}, 2.4 \mathrm{~K}$, $4.8 \mathrm{~K}, 7.2 \mathrm{~K}, 9.6 \mathrm{~K}$ and 38.4 K baud.
Set 2: $75,110,134.5,150,300,600,1.2 \mathrm{~K}, 1.8 \mathrm{~K}, 2.0 \mathrm{~K}$, $2.4 \mathrm{~K}, 4.8 \mathrm{~K}, 9.6 \mathrm{~K}$, and 19.2 K baud.
The selected set of rates is available for use by the receiver and transmitter.

ACR[6:4]-Counter/Timer Mode and Clock Source Select. This field selects the operating mode of the counter/timer and its clock source as follows:

REGISTERS (Continued)

| ACR[6:4] |  |  | Mode | Clock Source |
| :--- | :--- | :--- | :--- | :--- |
| 0 | 0 | 0 | Counter | MPI Pin |
| 0 | 0 | 1 | Counter | MPI pin divided by 16 |
| 0 | 1 | 0 | Counter | TXC-1 $\times$ clock of the transmitter |
| 0 | 1 | 1 | Counter | Crystal or external clock <br> $(\times 1 /$ CLK $)$ divided by 16 |
| 1 | 0 | 0 | Timer | MPI Pin |
| 1 | 0 | 1 | Timer | MPI Pin divided by 16 |
| 1 | 1 | 0 | Timer | Crystal or external <br> clock ( $\times 1 /$ CLK) |
| 1 | 1 | 1 | Timer | Crystal or external clock <br> $(\times 1 /$ CLK) divided by 16 |

ACR[3]-Power Down Mode Select. This bit, when set to zero, selects the power down mode. In this mode, the oscillator is stopped and all functions requiring this clock are suspended. The contents of all registers are saved. It is recommended that the transmitter and receiver be disabled prior to placing the UART in this mode. This bit must be set to a logic 1 after power up.

ACR[2:0]-MPO Output Select. This field programs the MPO output pin to provide one of the following:
000 Request to send active low output (RTSN). This output is asserted and negated via the command register. Mode RTSN can be programmed to be automatically reset after the character in the transmitter is completely shifted out or when the receiver FIFO and receiver shift register are full using MR2[5] and MR1 [7], respectively.
001 The counter/timer output. In the timer mode, this output is a square wave with a period of twice the value (in clock periods) of the contents of the CTUR and CTLR. In the counter mode, the output remains high until the terminal count is reached, at which time it goes low. The output returns to the high state when the counter is stopped by a stop counter command.
010 The $1 \times$ clock for the transmitter which is the clock that shifts the transmitted data. If data is not being transmitted, a non-synchronized $1 \times$ clock is output.
011 The $16 \times$ clock for the transmitter. This is the clock selected by CSR[3:0], and is a $1 \times$ clock if CSR[3:0] $=1111$.
100 The $1 \times$ clock for the receiver, which is the clock that samples the received data. If data is not being received, a non-synchronized $1 \times$ clock is output.
101 The $16 \times$ clock for the receiver. This is the clock selected by CSR[7:4], and is a $1 \times$ clock if CSR[7.4] $=$ 1111.

110 The transmitter register empty signal, which is the complement of SR[2]. Active low input.
111 The receiver ready or FIFO full signal (complement of ISR[2]). Active low output.

## ISR—Interrupt Status Register

This register provides the status of all potential interrupt sources. The contents of this register are masked by the interrupt mask register (IMR). If a bit in the ISR is a ' 1 ' and the corresponding bit in the IMR is also a ' 1 ', the INTRN output is asserted (low). If the corresponding bit in the IMR is a zero, the state of the bit in the ISR has no affect on the INTRN output. Note that the IMR does not mask the reading of the ISR-the true status is provided regardless of the contents of the IMR.

ISR[7]-MPI Change of State. This bit is set when a change of state occurs at the MPI input pin. It is reset by a reset MPI change interrupt command.
ISR[6]-MPI Current State. This bit provides the current state of the MPI pin. The information is unlatched and reflects the state of the pin at the time the ISR is read.
ISR[4]-Counter Ready. In the counter mode of operation, this bit is set when the counter reaches terminal count and is reset when the counter is stopped by a stop counter command. It is initialized to ' 0 ' when the chip is reset.

In the timer mode, this bit is set once each cycle of the generated square wave (every other time the C/T reaches zero count). The bit is reset by a stop counter command. The command, however, does not stop the C/T.
ISR[3]-Change in Break. This bit, when set, indicates that the receiver has detected the beginning or the end of a received break. It is reset when the CPU issues a reset break change interrupt command.
ISR[2]-Receiver Ready or FIFO Full. The function of this bit is programmed by MR1[6]. If programmed as receiver ready, it indicates that a character has been received and is waiting in the FIFO to be read by the CPU. It is set when the character is transferred from the receive shift register to the FIFO and reset when the CPU reads the receiver FIFO. If the FIFO contains more characters, the bit will be set again after the FIFO is read. If programmed as FIFO full, it is set when a character is transferred from the receive holding register to the receive FIFO and the transfer causes the FIFO to become full, i.e., all three FIFO positions are occupied. It is reset when FIFO is read and there is no character in the receive shift register. If there is a character waiting in the receiver shift register because the FIFO is full, the bit is set again when the waiting character is transferred into the FIFO.
ISR[1]-Transmitter Empty. This bit is a duplicate of TXEMT (SR[3]).
ISR[0]-Transmitter Ready. This bit is a duplicate of TXRDY (SR[2]).

## IMR—Interrupt Mask Register

The programming of this register selects which bits in the ISR cause an interrupt output. If a bit in the ISR is a ' 1 ' and the corresponding bit in the IMR is a ' 1 ', the INTRN output is asserted (low). If the corresponding bit in the IMR is a zero, the state of the bit in the ISR has no effect on the INTRN output. Note that the IMR does not mask reading of the ISR.

## CTUR and CTLR-Counter/Timer Register

The CTUR and CTLR hold the eight MSB's and eight LSB's respectively, the value to be used by the counter/tim-

[^449]NOTE: All typical values have been characterized but are not tested.

REGISTERS (Continued)
er in either the counter or timer modes of operation. The minimum value which may be loaded is $0002_{16}$.

In the Timer (programmable divider) mode, the C/T generates a square wave whose period is twice the value (in clock periods) of the CTUR and CTLR. If the value in CTUR or CTLR is changed, the current half-period will not be affected, but subsequent half-periods will be.
The counter ready status bit (SR[4]) is set once each cycle of the square wave. The bit is reset by a stop counter command. The command, however, does not stop the C/T. The generated square wave is output on MPO if it is programmed to be the C/T output.
In the counter mode, the C/T counts down the number of pulses loaded into CTUR and CTLR. Counting begins upon receipt of a start C/T command. Upon reaching the terminal count, the counter-ready interrrupt bit (SR[4]) is set. The counter continues counting past the terminal count until
stopped by the CPU. If MPO is programmed to be the output of the $\mathrm{C} / \mathrm{T}$, the output remains high until the terminal count is reached, at which time it goes low.

The output returns to the high state and ISR[4] is cleared when the counter is stopped by a stop counter command. The CPU may change the values of CTUR and CTLR at any time, but the new count becomes effective only on the next start-counter command. If new values have not been loaded, the previous count values are preserved and used for the next count cycle.


0104-3
Figure 3: Reset Timing


Figure 4: Bus Timing


Figure 5: I/O Timing

[^450]Figure 6: Interrupt Timing


0104-7
DRIVING
PROM EXERNAL SOURCE


0104-8
C1: $10-15 \mathrm{pF}+(\mathrm{STRAY}<5 \mathrm{pF})$
C2: 0-5 pF + (STRAY $<5 \mathrm{pF}$ )


CRYSTAL SERIES RESISTANCE SHOULD BE LESS THAN $130 \Omega$
Figure 7: Clock Timing


0104-10
Figure 8: Transmit Timing
intersil's sole and exclusive warranty obligation with respect to this product shall be that stated in the warranty article of the condition of sale. the warranty shall be exclusive and shall be in lieu of all other warranties, express, implied or statutory, including the implied warranties of MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.
NOTE: All typical values have been characterized but are not tested.


Figure 9: Receive Timing


NOTES:

1. Timing shown for MR2[4] $=1$.
2. Timing shown for MR2[5] $=1$.

Figure 10: Transmitter Timing


NOTES:

1. Timing shown for MR1[7] $=1$.
2. Shown for $\operatorname{ACR}[2: 0]=111$ and MR1[6] $=0$.

Figure 11: Receiver Timing


INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

NOTE: All typical values have been characterized but are not tested.

## IM4702/4712 Baud Rate Generator

IM4702/4712

## GENERAL DESCRIPTION

The IM4702/12 Baud Rate Generators provide necessary clock signals for digital data transmission systems, such as UARTs, using a 2.4576 MHz crystal oscillator as an input. They control up to 8 output channels and can be cascaded for output expansion.
Output rate is controlled by four digital input lines, and with the specified crystal, is selectable from "zero" through 9600 Baud. In addition, 19200 Baud is possible via hardwiring.

Multi-channel operation is facilitated by making the clock frequency and the $\div 8$ prescaler outputs available externally. This allows up to eight simultaneous Baud rates to be generated.
The IM4712 is identical to the IM4702 with the exception that the IM4712 integrates the oscillator feedback resistor and two load capacitors on-chip.

## ORDERING INFORMATION

| Order <br> Number | Temperature <br> Range | Package |
| :---: | :---: | :---: |
| IM4702IJE | $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ | 16 -pin CERDIP |
| IM4702IPE | $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ | 16 -pin PLASTIC |
| IM4712IJE | $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ | 16 -pin CERDIP |
| IM4712IPE | $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ | 16 -pin PLASTIC |

## FEATURES

- Provides 14 Most Commonly Used BAUD Rates - On-Chip Oscillator Requires Only One External Part (IM4712)
- Controls Up to Elght Transmission Channels
- TTL Compatible Outputs WIII Sink 1.6 mA
- Uses Standard 2.4576 MHz Crystal
- Low Power Consumption: 5.5mW Guaranteed Maximum Standby
- Pin and Function Compatible With 4702B and HD4702
- Inputs Feature Active Pull-Ups


## PIN DESCRIPTION

| Signal | Pin | Description |
| :---: | :---: | :--- |
| $Q_{0}-Q_{2}$ | $1,2,3$ | Prescaler Outputs |
| $\overline{E C P}$ | 4 | External Clock Enable Input |
| $C P$ | 5 | External Clock Input |
| $O_{X}$ | 6 | Crystal Output |
| $I_{X}$ | 7 | Crystal Input |
| $V_{S S}$ | 8 | Negative Supply |
| $C_{0}$ | 9 | Clock Output |
| $Z$ | 10 | Baud Rate Output |
| $S_{0}-S_{3}$ | $14-11$ | Baud Rate Select Inputs |
| $I_{M}$ | 15 | Multiplexed Input |
| $V_{D D}$ | 16 | Positive Supply |



[^451]
## ABSOLUTE MAXIMUM RATINGS

Supply Voltage（ $\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{SS}}$ ）．．．．．．．．．．．．．．．．．．．．．．．．．+8.0 V Input or Output Voltage $\ldots \ldots . . \mathrm{V}_{S S}-0.3 \mathrm{~V}$ to $\mathrm{V}_{D D}+0.3 \mathrm{~V}$ Storage Temperature Range ．．．．．．．．．．．$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ Operating Temperature Range $\ldots . . . . . .-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

NOTE：Stresses above those listed under＂Absolute Maximum Ratings＂ may cause permanent damage to the device．These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied．Exposure to absolute maximum rating conditions for extended peri－ od＇s may affect device reliability．

ELECTRICAL CHARACTERISTICS
DC CHARACTERISTICS $V_{D D}=+5 \mathrm{~V} \pm 10 \% \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

| Symbol | Parameter |  | Test Conditions | Limits |  | Units | |
|---|---|---|---|---|---|---|---|
|  |  |  | Min | Max |  |
| $\mathrm{V}_{\mathrm{IH}}$ | Input Voltage High |  |  |  | $70 \% \mathrm{~V}_{\mathrm{CC}}$ |  | V |
| $\mathrm{V}_{\text {IL }}$ | Input Voltage Low |  |  |  | $30 \% \mathrm{~V}_{\mathrm{CC}}$ |  |  |
| $\mathrm{IIH}^{\text {H}}$ | Input Current High | Other Inputs | $\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{DD}}$ <br> All other pins grounded |  | ＋1 |  |  |
|  |  | $\mathrm{I}_{\mathrm{X}} 4712$ |  |  | ＋10 |  |  |
| IIL | Input Current Low | $\mathrm{I}_{\mathrm{X}} 4702$ | Pin under test at ground All other Inputs at $V_{D D}$ |  | －1 | $\mu \mathrm{A}$ |  |
|  |  | $\mathrm{I}_{\mathrm{x}} 4712$ |  |  | ＋10 |  |  |
|  |  | Other Inputs |  | －15 | －100 |  |  |
| $\mathrm{V}_{\mathrm{OH}}$ | Output Voltage High |  | $\mathrm{I}_{\mathrm{OH}}<-1 \mu \mathrm{~A}$ ；Inputs at $\mathrm{V}_{\text {SS }}$ or $\mathrm{V}_{\mathrm{DD}}$ | $\mathrm{V}_{\mathrm{DD}}-.05$ |  | V |  |
| $\mathrm{V}_{\mathrm{OL}}$ | Output Voltage Low |  | $\mathrm{l}_{\mathrm{OL}}<+1 \mu \mathrm{~A}$ ；Inputs at $\mathrm{V}_{\text {SS }}$ or $\mathrm{V}_{\mathrm{DD}}$ |  | 0.05 |  |  |
| IOH | Output Current High | $\mathrm{O}_{\mathrm{x}}$ | Inputs at $V_{S S}$ or $V_{D D}$$\mathrm{V}_{0}=\mathrm{V}_{\mathrm{DD}}-.5$ | －0．1 |  | mA |  |
|  |  | All other Outputs |  | －0．3 |  |  |  |
|  |  |  | $\mathrm{V}_{0}=+2.5 \mathrm{~V}$ | －1．0 |  |  |  |
| lOL | Output Current Low | $\mathrm{O}_{\mathrm{x}}$ | $V_{0}=0.4$ ；Inputs at $V_{S S}$ or $V_{D D}$ | －0．1 |  |  |  |
|  |  | All other Outputs |  | 1.6 |  |  |  |
| Istby | Quiescent Supply Current |  | $\begin{aligned} & \overline{\mathrm{E}}_{\mathrm{CP}}=\mathrm{V}_{\mathrm{DD}} ; \mathrm{CP}=\mathrm{V}_{\mathrm{SS}} \\ & \text { All other Inputs }=\mathrm{V}_{\mathrm{SS}} \text { or } \mathrm{V}_{\mathrm{DD}} \text {, } \\ & \text { All outputs open } \end{aligned}$ |  | 1.0 |  |  |

AC CHARACTERISTICS
$V_{D D}=+5 V V_{S S}=0 V, T_{A}=25^{\circ} \mathrm{C}$

| Symbol | Parameter |  | Test Conditions | Limits |  | Units | |
|---|---|---|---|---|---|---|---|
|  |  |  | Min | Max |  |
| $t_{\text {plh }}(4702)$ | Propagation delay ${ }^{(1)}$, $\mathrm{I}_{\mathrm{x}}$ to CO |  |  | $\begin{aligned} & C_{L}\left(\text { except } O_{x}\right)=50 p F \\ & \left.C_{L(O x}\right)=7 p F \end{aligned}$ |  | 350 | ns |
| $\mathrm{t}_{\text {phI }}(4702)$ |  |  |  |  | 275 |  |  |
| $t_{\text {plh }}(4712)$ |  |  |  |  | 350 |  |  |
| $t_{\text {pl1 }}(4712)$ |  |  |  |  | 275 |  |  |
| $t_{\text {plh }}$ | Propagation delay ${ }^{(1), ~ C P ~ t o ~} \mathrm{CO}$ |  |  |  | 260 |  |  |
| $t_{\text {phl }}$ |  |  |  |  | 220 |  |  |
| tolh | Propagation delay(1), CO to $\mathrm{Q}_{\mathrm{n}}$ |  | $\mathrm{R}_{\mathrm{L}}=200 \mathrm{k}$, |  | (2) |  |  |
| $t_{\text {phl }}$ |  |  |  | (2) |  |  |
| $\mathrm{t}_{\text {plh }}$ | Propagation delay ${ }^{(1), ~} \mathrm{CO}$ to $\mathbf{Z}$ |  |  | Input <br> Transition times $\leq 20 \mathrm{~ns}$ <br> Input low $=1.0 \mathrm{~V}$ <br> input high $=\mathrm{V}_{\mathrm{CC}}-1.0 \mathrm{~V}$ |  | 85 |  |
| $t_{\text {phl }}$ |  |  |  |  | 75 |  |  |
| $t_{\text {th }}$ | Output Transition Time, (1) (except $\mathrm{O}_{\mathrm{x}}$ ) |  |  |  | 160 |  |  |
| $\mathrm{t}_{\text {thi }}$ |  |  |  |  | 75 |  |  |
| $\mathrm{t}_{s}$ | Set Up Time | Select to CO | 350 |  |  |  |  |
|  |  | 1 m to CO | 350 |  |  |  |  |
| $t_{h}$ | Hold Time | Select to CO | 0 |  |  |  |  |
|  |  | 1 m to CO | 0 |  |  |  |  |
| $t_{w} \mathrm{CP}(\mathrm{L})$ | Clock pulse width(3) |  | 120 |  |  |  |  |
| $t_{w} \mathrm{CP}(\mathrm{H})$ |  |  | 120 |  |  |  |  |
| $t_{w} l_{x}(L)(4702)$ |  |  | 160 |  |  |  |  |
| $t_{w} l_{x}(H)(4702)$ | Ix Pulse Width |  | 160 |  |  |  |  |
| $t_{w} l_{x}(L)(4712)$ |  |  | 190 |  |  |  |  |
| $t_{w} l_{x}(\mathrm{H})(4712)$ |  |  | 190 |  |  |  |  |

NOTES: 1. Propagation delays and output transition times will vary with output load capacitance.
2. For multichannel operation, propagation delay ( $C O$ to $Q_{n}$ ) plus set-up time (Select to $C O$ ) is guaranteed to be less than 367 ns for the $\mathrm{IM} 4702 / 12$.
3. The first high level clock pulse after $\bar{E}_{c p}$ goes low must be at least 200 ns wide to ensure reseting of all counters.
4. For design reference only, not $100 \%$ tested.

[^452]

Figure 3：Switching Waveforms

## FUNCTIONAL DESCRIPTION

Digital data transmission systems employ a wide range of standardized bit rates，ranging from 50 baud（for electrome－ chanical devices）to 9600 baud（for high speed modems）． Modern electronic systems commonly use Universal Asyn－ chronous Receiver and Transmitter circuits（UARTs）to con－ vert parallel data inputs into a serial bit stream（transmitter） and to reconvert the serial bit stream into parallel outputs （receiver）．In order to resynchronize the incoming serial data，the reciever requires a clock rate which is a multiple of the incoming bit rate．Popular MOSLSI UART circuits use a clock that is 16 times the transmitted bit rate．The IM4702／ 12 can generate 14 standard clock rates from one common high frequency input．

The IM4702／12 contains the following five function sub－ systems．
Oscillator－For conventional operation generating 16 out－ put clock pulses per bit period，the input clock frequency must be 2.4576 MHz （i．e． 9600 baud $\times 16 \times 16$ ，since the scan counter and the first flip－flop of the counter chain act as an internal $\div 16$ prescaler）．A lower input frequency will result in a proportionally lower output frequency．

The IM4702／12 can be driven from two alternate clock sources：（1）When the $\bar{E}_{c p}$（External Clock Enable）input is LOW，the CP input is the clock source．（2）When the $\mathrm{E}_{\mathrm{cp}}$ input is HIGH，a crystal connected between $I_{x}$ and $O_{x}$ ，or a signal applied to the $I_{x}$ input，is the clock source．
Prescaler（Scan Counter）－The clock frequency is made available on the CO（Clock Output）pin and is applied to the $\div 8$ prescaler with buffered outputs $Q_{0}, Q_{1}$ ，and $Q_{2}$ ．

Table 1：Clock Modes and Initialization

| $\mathrm{I}_{\mathrm{x}}$ | $\bar{E}_{C P}$ | CP | Operation |
| :---: | :---: | :---: | :---: |
| $\begin{gathered} \Omega \Omega \Omega \\ x \\ x \\ x \end{gathered}$ | H L $H$ L |  | Clocked from $\mathrm{I}_{\mathrm{x}}$ Clocked from CP Continuous Reset Reset During First CP＝HIGH Time |
| H | $=$ HIGH Level |  |  |
| L | ＝LOW Level |  |  |
| X | ＝Don＇t Care |  |  |
| $\Omega$ | $\begin{aligned} & =1 \text { st HIGH Level Clock Pulse After } \bar{E}_{\mathrm{CP}} \\ & \text { Goes LOW } \end{aligned}$ |  |  |
| 凹リ厂＝Clock Pulses |  |  |  |

Counter Network－The prescaler output $Q_{2}$ is a square wave of $1 / 8$ the input frequency，and is used to drive the frequency counter network generating 13 standardized fre－ quencies．Note that the frequencies are labeled in the block diagram and described in terms of the transmission bit rate． In a conventional system using a 2.4576 MHz clock input， the actual output frequencies are 16 times higher．
The output from the first frequency divider flip－flop is thus labeled 9600 ，since it is used to transmit or receive 9600 baud（bits per second）．The actual frequency at this node is $16 \times 9.6 \mathrm{kHz}=153.6 \mathrm{kHz}$ ．Seven more cascaded binaries generate the appropriate frequencies for bit rates 4800， $2400,1200,600,300,150$ ，and 75.

[^453]The other five bit rates are generated by individual counters:
bit rate 1200 is divided by 6 to generate bit rate 200, bit rate 200 is divided by 4 to generate bit rate 50 , bit rate 2400 is divided by 18 to generate bit rate 134.5 with a frequency error of $-0.87 \%$,
bit rate 2400 is also divided by 22 to generate bit rate 110 with a frequency error of $-0.83 \%$, and
bit rate 9600 is divided by $16 / 3$ to generate bit rate 1800.

The 16/3 division is accomplished by alternating the divide ratio between 5 (twice) and 6 (once). The result is an exact average output frequency with some frequency modulation. Taking advantage of the $\div 16$ feature of the UART, the resulting distortion is less than $0.78 \%$ regardless of the number of elements in a character, and therefore well within the timing accuracy specified for high speed communications equipment. All signals except 1800, have a $50 \%$ duty cycle.
Output Multiplexer - The outputs of the counter network are fed to a 16 -input multiplexer, which is controlled by the Rate Select inputs ( $\mathrm{S}_{0}-\mathrm{S}_{3}$ ). The multiplexer output is then resynchronized with the incoming clock in order to cancel all cumulative delays and to present an output signal at the buffered output ( $Z$ ) that is synchronous with the prescaler outputs $\left(Q_{0}-Q_{2}\right)$. Table 2 lists the correspondance between select code and output bit rate. Two of the 16 codes do not select an internally generated frequency, but select an input into which the user can feed either a different, nonstandardized frequency, or a static level (HIGH or LOW) to generate "zero baud".

The bit rates most commonly used in modern data terminals (110, 150, 300, 1200, 2400 baud) require that no more than one input be grounded, easily achieved with a single pole, 5-position switch. 2400 baud is selected by two different codes, so that the whole spectrum of modern digital communication rates has a common HIGH on the $\mathrm{S}_{3}$ input. Initialization (Reset) - The initialization circuit generates a common master reset signal for all flip-flops in the IM4702/ 12. This signal is derived from a digital differentiator that senses the first HIGH level on the CP input after the $\bar{E}_{\mathrm{CP}}$ input goes LOW. Upon initialization, all counters are reset and all outputs will be in the LOW state. When $\mathrm{E}_{\mathrm{CP}}$ is HIGH, selecting the Crystal input, CP must be LOW; a HIGH level on CP would apply a continuous reset.

All inputs to the 4702/12 except $I_{x}$ have on-chip pull-up circuits; the $\mathrm{I}_{\mathrm{x}}$ input of the 4712 has a high value resistor tied to $\mathrm{O}_{\mathrm{x}}$.

Table 2: Truth Table for Rate Select Inputs

| $\mathbf{S}_{\mathbf{3}}$ | $\mathbf{s}_{\mathbf{2}}$ | $\mathbf{S}_{\mathbf{1}}$ | $\mathbf{S}_{\mathbf{0}}$ | Output Rate (Z) <br> Note 1 |
| :---: | :---: | :---: | :---: | :---: |
| L | L | L | L | Multiplexed Input (IM) <br> L |
| L | L | H | Multiplexed Input (IM) |  |
| L | L | H | L | 50 Baud |
| L | L | H | H | 75 Baud |
| L | H | L | L | 134.5 Baud |
| L | H | L | H | 200 Baud |
| L | H | H | L | 600 Baud |
| L | H | H | H | 2400 Baud |
| H | L | L | L | 9600 Baud |
| H | L | L | H | 4800 Baud |
| H | L | H | L | 1800 Baud |
| H | L | H | H | 1200 Baud |
| H | H | L | L | 2400 Baud |
| H | H | L | H | 300 Baud |
| H | H | H | L | 150 Baud |
| H | H | H | H | 110 Baud |

L=LOW Level
H=HIGH Level
Note 1: Actual output frequency is 16 times the indicated output rate, assuming a clock frequency of 2.4576 MHz .

Table 3: Crystal Specifications

| Parameters | Typical Crystal Spec |
| :--- | :---: |
| Frequency | 2.4576 MHz "AT" Cut |
| Series Resistance (Max) | $250 \Omega$ |
| Unwanted Modes | $-6 \mathrm{~dB}(\mathrm{Min})$ |
| Type of Operation | Parallel |
| Load Capacitance | $32 \mathrm{pF} \pm 0.5 \mathrm{pF}$ |

## APPLICATIONS

## Single Channel Bit Rate Generator

Figure 4 shows the simplest application of the IM4702/ 12. This circuit generates one of five possible bit rates as determined by the setting of a single pole, 5 -position switch. The Bit Rate Output ( $Z$ ) drives one standard TTL load or four low power Schottky loads over the full temperature range. The possible output frequencies correspond to 100, $150,300,1200$, and 2400 or 3600 Baud. For many low cost terminals, these five bit rates are adequate.

This mode of operation is commonly chosen for applications using industry standard 1402/6402 UARTs.

[^454]

Figure 4: Switch Selectable Bit Rate Generator Configuration Providing Five Bit Rates

## Simultaneous Generation of Several Bit Rates

Figure 5 shows a simple scheme that generates eight bit rates on eight output lines, using one IM4702/12 and one 93L34 Bit Addressable Latch. This and the following applications take advantage of the built-in scan counter (prescaler) outputs. As shown in the block diagram, these outputs ( $Q_{0}$ to $Q_{2}$ ) go through a complete sequence of eight states for every half-period of the highest output frequency ( 9600 Baud). Feeding these Scan Counter Outputs back to the Select inputs of the multiplexer causes the IM4702/12 to sequentially interrogate the state of eight different frequency signals. The 93L34 Bit Addressable Latch, addressed by the same Scan Counter Outputs, reconverts the multiplexed single Output ( $Z$ ) into eight parallel output frequency signals. In the simple scheme of Figure 5, input $S_{3}$ is left open (HIGH) and the following bit rates are generated:

$$
\begin{array}{lll}
Q_{0}: 110 \text { Baud } & Q_{3}: 1800 \text { Baud } & Q_{6}: 300 \text { Baud } \\
Q_{1}: 9600 \text { Baud } & Q_{4}: 1200 \text { Baud } & Q_{7}: 150 \text { Baud } \\
Q_{2}: 4800 \text { Baud } & Q_{5}: 2400 \text { Baud } &
\end{array}
$$

Other bit rate combinations can be generated by changing the Scan Counter to Selector interconnection or by inserting logic gates into this path.


0373-5
Figure 5: Bit Rate Generator Configuration With Eight Simultaneous Frequencies

## 19200 Baud Operation

A 19200 baud signal is available on the $Q_{2}$ output, but is not internally connected to the multiplexer. This signal can be generated on the $Z$ output by connecting the $Q_{2}$ output to the $I_{M}$ input and applying select code. An additional 2 -input NOR gate can be used to retain the "Zero Baud" feature on select code 1 for the IM4702/12. (See Figure 6).


* The 4712 may replace the 4702 in the above applications with the standard 2.4576 MHz crystal. The two external capacitors and one resistor are not required when using the 4712.

[^455]

Figure 7: IM4712 Baud Rate Generator With IM6402 CMOS UART

## FEATURES

- Low Power - Less Than 10mW Typ. at 2MHz
- Operation Up to 4MHz Clock (IM6402A)
- Programmable Word Length, Stop Bits and Parity
- Automatic Data Formatting and Status Generation
- Compatible With Industry Standard UART's (IM6402)
- On-Chip Oscillator With External Crystal (IM6403)
- Operating Voltage -

IM6402-1/03-1: 5V
IM6402A/03A: 4-11V
IM6402/03: 5V

## GENERAL DESCRIPTION

The IM6402 and IM6403 are CMOS/LSI UART's for interfacing computers or microprocessors to asynchronous serial data channels. The receiver converts serial start, data, parity and stop bits to parallel data verifying proper code transmission, parity, and stop bits. The transmitter converts parallel data into serial form and automatically adds start, parity, and stop bits.
The data word length can be 5, 6, 7 or 8 bits. Parity may be odd or even, and parity checking and generation can be inhibited. The stop bits may be one or two (or one and onehalf when transmitting 5 bit code). Serial data format is shown in Figure 8.
The IM6402 and IM6403 can be used in a wide range of applications including modems, printers, peripherals and remote data acquisition systems. CMOS/LSI technology permits clock frequencies up to 4.0 MHz (250K Baud), an improvement of 10 to 1 over previous PMOS UART designs. Power requirements, by comparison, are reduced from 670 mW to 10 mW . Status logic increases flexibility and simplifies the user interface.
The IM6402 differs from the IM6403 in the use of five device pins as indicated in Table 1 and Figure 4.

## ORDERING INFORMATION

| ORDER CODE | IM6402-1/03-1 | IM6402A/03A | IM6402/03 |
| :--- | :--- | :--- | :--- |
| PLASTIC PKG | IM6402-1/03-IPL | IM6402/03AIPL | IM6402/03IPL |
| CERAMIC PKG | IM6402-1/03-1IJL | IM6402/03AIJL | IM6402/03IJL |
| MILITARY TEMP. | IM6402-1/03-1MJL | IM6402/03AMJL | - |
| MILITARY TEMP. <br> WITH /Hi-Rel processing | IM6402-1/03-1MJL/HR | IM6402/03AMJL/HR | - |



Figure 1: Functional Diagram

[^456]ABSOLUTE MAXIMUM RATINGS (IM6402/03)
Operating Temperature
IM6402/03 (I) ............................ . $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature Range $. \ldots . . . . . . .$.
Supply Voltage ( $V_{D D}-V_{S S}$ ) .......................... +8.0 V
Voltage On Any Input or Output Pin ......... (VSS -0.3 V )
to $\left(V_{D D}+0.3 V\right)$
Lead Temperature (Soldering, 10sec) ............... 300${ }^{\circ} \mathrm{C}$
NOTE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

TABLE 1

| PIN | IM6402 | IM6403 w/XTAL | IM6403 w/EXT TTL CLOCK | IM6402 w/EXT CMOS CLOCK |
| :---: | :---: | :---: | :---: | :---: |
| 2 | N/C | Divide Control | Divide Control | Divide Control |
| 17 | RRC | XTAL | External Clock Input | No Connection |
| 19 | Tri-State | Always Active | Always Active | Always Active |
| 22 | Tri-State | Always Active | Always Active | Always Active |
| 40 | TRC | XTAL | VSS $^{\text {External Clock Input }}$ |  |

DC ELECTRICAL CHARACTERISTICS $\quad\left(V_{D D}=5.0 \mathrm{~V} \pm 10 \% \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\right.$ Operating Temperature Range)

| SYMBOL | PARAMETER | TEST CONDITIONS | MIN | TYP2 | MAX | UNIT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{V}_{\text {IH }}$ | Input Voltage High |  | $\mathrm{V}_{\mathrm{DD}}-2.0$ |  |  | V |
| $\mathrm{V}_{\mathrm{IL}}$ | Input Voltage Low |  |  |  | 0.8 | V |
| IIL | Input Leakage [1] | $\mathrm{V}_{\mathrm{SS}} \leq \mathrm{V}_{\mathrm{IN}} \leq \mathrm{V}_{\mathrm{DD}}$ | -5.0 |  | 5.0 | $\mu \mathrm{A}$ |
| $\mathrm{V}_{\mathrm{OH}}$ | Output Voltage High | $\mathrm{IOH}=-0.2 \mathrm{~mA}$ | 2.4 |  |  | V |
| $\mathrm{V}_{\mathrm{OL}}$ | Output Voltage Low | $\mathrm{IOL}^{2}=1.6 \mathrm{~mA}$ |  |  | 0.45 | V |
| lolk | Output Leakage | $\mathrm{V}_{\text {SS }} \leq \mathrm{V}_{\text {OUT }} \leq \mathrm{V}_{\text {DD }}$ | -5.0 |  | 5.0 | $\mu \mathrm{A}$ |
| ISTBY | Power Supply Current Standby | $\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {SS }}$ or $\mathrm{V}_{\text {DD }}$ |  | 1.0 | 800 | $\mu \mathrm{A}$ |
| IDD | Power Supply Current IM6402 | $\mathrm{f}_{\mathrm{C}}=500 \mathrm{kHz}$ |  |  | 1.2 | mA |
| IDD | Power Supply Current IM6403 | $\mathrm{f}_{\text {crystal }}=2.46 \mathrm{MHz}$ |  |  | 3.7 | mA |
| $\mathrm{C}_{\text {IN }}$ | Input Capacitance [1] [3] | $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ |  | 7.0 | 8.0 | pF |
| $\mathrm{C}_{0}$ | Output Capacitance [1] [3] | $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ |  | 8.0 | 10.0 | pF |

NOTE: 1. Except IM6403 XTAL input pins (i.e. pins 17 and 40).
2. $\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
3. These parameters are guaranteed but not $100 \%$ tested.

INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. the warranty shall be exclusive and shall be in lieu of all other warranties, express, implied or statutory, including the implied warranties of MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.
NOTE: All typical values have been characterized but are not tested.

## AC ELECTRICAL CHARACTERISTICS $\quad\left(\mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V} \pm 10 \% \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{T}_{\mathrm{A}}=\right.$ Operating

Temperature Range）

| SYMBOL | PARAMETER | TEST CONDITIONS | MIN | TYP2 | MAX | UNIT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{f}_{\mathrm{c}}$ | Clock Frequency IM6402 | See Timing Diagrams <br> （Figures 4，5，6） | D．C． |  | 1.0 | MHz |
| $\mathrm{f}_{\text {crystal }}$ | Crystal Frequency IM6403 |  |  |  | 2.46 | MHz |
| $\mathrm{t}_{\mathrm{pw}}$ | Pulse Widths CRL，$\overline{\text { DRR，}}$ ，TBRL |  | 225 | 50 |  | ns |
| $t_{\text {mr }}$ | Pulse Width MR |  | 600 | 200 |  | ns |
| $t_{\text {ds }}$ | Input Data Setup Time |  | 75 | 20 |  | ns |
| $t_{\text {dh }}$ | Input Data Hold Time |  | 90 | 40 |  | ns |
| $t_{\text {en }}$ | Output Enable Time |  |  | 80 | 190 | ns |



The IM6403 differs from the IM6402 on three Inputs （RRC，TRC，pin 2）as shown in Figure 3．Two outputs （TBRE，DR）are not three－state as on the IM6402，but are always active．The on－chip divider and oscillator allow an inexpensive crystal to be used as a timing source rather than additional circuitry such as baud rate generators．For example，a color TV crystal at 3.579545 MHz results in a baud rate of 109.2 Hz for an easy teletype interface（Figure 12）．A 9600 baud interface may be implemented using a 2.4576 MHz crystal with the divider set to divide by 16.

[^457]
## ABSOLUTE MAXIMUM RATINGS

Supply Voltage (VDD $-V_{S S}$ ) ........................ +12.0 V
Voltage On Any Input or Output Pin ........... (VSS -0.3 V )
to $\left(V_{D D}+0.3 V\right)$

| Operating Temperature Range |  |
| :---: | :---: |
| IM6402AI/03AI |  |
| IM6402AM/03AM | $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ |
| Storage Temperature Range | $65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$ |
| Lead Temperature (Solde | $300^{\circ} \mathrm{C}$ |

NOTE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

DC ELECTRICAL CHARACTERISTICS $\quad\left(V_{D D}=4.0 \mathrm{~V}\right.$ to $11.0 \mathrm{~V} \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=$ Operating Temperature Range)

| SYMBOL | PARAMETER | TEST CONDITIONS | MIN | TYP2 | MAX | UNIT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{V}_{\mathrm{IH}}$ | Input Voltage High |  | 70\% V DD |  |  | V |
| $\mathrm{V}_{\text {IL }}$ | Input Voltage Low |  |  |  | $10 \% V_{D D}$ | V |
| IIL | Input Leakage [1] [3] | $\mathrm{V}_{\text {SS }} \leq \mathrm{V}_{\mathrm{IN}} \leq \mathrm{V}_{\text {DD }}$ | -1.0 |  | 1.0 | $\mu \mathrm{A}$ |
| V OH | Output Voltage High | $\mathrm{IOH}=0 \mathrm{~mA}$ |  | $V_{D D}-0.01$ |  | V |
| $\mathrm{V}_{\mathrm{OL}}$ | Output Voltage Low | $\mathrm{l}_{\mathrm{OL}}=0 \mathrm{~mA}$ |  | $\mathrm{V}_{\text {SS }}+0.01$ |  | V |
| lolk | Output Leakage | $\mathrm{V}_{\text {SS }} \leq \mathrm{V}_{\text {OUT }} \leq \mathrm{V}_{\text {DD }}$ | -1.0 |  | 1.0 | $\mu \mathrm{A}$ |
| ICC | Power Supply Current Standby | $\mathrm{V}_{\text {IN }}=\mathrm{V}_{S S}$ or $\mathrm{V}_{\text {DD }}$ |  | 5.0 | 500 | $\mu \mathrm{A}$ |
| ICC | Power Supply Current IM6402A | $\mathrm{f}_{\text {crystal }}=4 \mathrm{MHz}$ |  |  | 9.0 | mA |
| ICC | Power Supply Current IM6403A | $\mathrm{f}_{\text {crystal }}=3.58 \mathrm{MHz}$ |  |  | 13.0 | mA |
| $\mathrm{C}_{\text {IN }}$ | Input Capacitance [1] [3] | $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ |  | 7.0 | 8.0 | pF |
| $\mathrm{Co}_{0}$ | Output Capacitance [1] [3] | $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ |  | 8.0 | 10.0 | pF |

NOTE: 1. Except IM6403 XTAL input pins (i.e. pins 17 and 40).
2. $V_{D D}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
3. These parameters are guaranteed but not $100 \%$ tested.

AC ELECTRICAL CHARACTERISTICS $\quad V_{D D}=10.0 \mathrm{~V} \pm 5 \% \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{T}_{\mathrm{A}}=$ Operating
Temperature Range)

| SYMBOL | PARAMETER | TEST CONDITIONS | MIN | TYP2 | MAX | UNIT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{f}_{\mathrm{c}}$ | Clock Frequency IM6402A | See Timing Diagrams <br> (Figures 4,5,6) | D.C. |  | 4.0 | MHz |
| $\mathrm{f}_{\text {crystal }}$ | Crystal Frequency IM6403A |  |  |  | 6.0 | MHz |
| $t_{\text {pw }}$ | Pulse Widths CRL, $\overline{\text { DRR, }}$, TBRL |  | 100 | 40 |  | ns |
| $t_{\text {mr }}$ | Pulse Width MR |  | 400 | 200 |  | ns |
| $\mathrm{t}_{\mathrm{ds}}$ | Input Data Setup Time |  | 40 | 0 |  | ns |
| $t_{\text {dh }}$ | Input Data Hold Time |  | 30 | 30 |  | ns |
| $t_{\text {en }}$ | Output Enable Time |  |  | 40 | 70 | ns |

[^458](IM6402-1I/1M, IM6403-1I/1M)

ABSOLUTE MAXIMUM RATINGS
Supply Voltage ( $\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{SS}}$ ) ........................ +8.0 V
Voltage On Any Input or Output Pin $\ldots \ldots . .\left(V_{\text {SS }}-0.3 \mathrm{~V}\right)$
to $\left(V_{D D}+0.3 V\right)$
Operating Temperature Range
IM6402-1I/03-11 ..................... $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
IM6402-1M/03-1M ............. $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Storage Temperature Range ......... $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10sec) $\ldots \ldots . . . . .300^{\circ} \mathrm{C}$

Operating Temperature Range
IM6402-1M/03-1M .................... . $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Storage Temperature Range ........... $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10sec) ............... 300³

NOTE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
DC ELECTRICAL CHARACTERISTICS $\quad\left(V_{D D}=5.0 \pm 10 \% V_{S S}=0 V, T_{A}=\right.$ Operating Temperature Range)

| SYMBOL | PARAMETER | TEST CONDITIONS | MIN | TYP2 | MAX | UNIT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{V}_{\mathrm{IH}}$ | Input Voltage High |  | $\mathrm{V}_{\mathrm{DD}}-2.0$ |  |  | V |
| $\mathrm{V}_{\text {IL }}$ | Input Voltage Low |  |  |  | 0.8 | V |
| IIL | Input Leakage [1] [3] | $\mathrm{V}_{S S} \leq \mathrm{V}_{\mathrm{IN}} \leq \mathrm{V}_{\mathrm{DD}}$ | -1.0 |  | 1.0 | $\mu \mathrm{A}$ |
| V OH | Output Voltage High | $\mathrm{I}_{\mathrm{OH}}=-0.2 \mathrm{~mA}$ | 2.4 |  |  | V |
| $\mathrm{V}_{\mathrm{OL}}$ | Output Voltage Low | $\mathrm{l}_{\mathrm{OL}}=2.0 \mathrm{~mA}$ |  |  | 0.45 | V |
| loLk | Output Leakage | $\mathrm{V}_{\text {SS }} \leq \mathrm{V}_{\text {OUT }} \leq \mathrm{V}_{\text {DD }}$ | -1.0 |  | 1.0 | $\mu \mathrm{A}$ |
| ICC | Power Supply Current Standby | $\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {SS }}$ or $\mathrm{V}_{\text {DD }}$ |  | 1.0 | 100 | $\mu \mathrm{A}$ |
| ICC | Power Supply Current IM6402 Dynamic | $\mathrm{f}_{\mathrm{c}}=2 \mathrm{MHz}$ |  |  | 1.9 | mA |
| ICC | Power Supply Current IM6403 Dynamic | $\mathrm{f}_{\text {crystal }}=3.58 \mathrm{MHz}$ |  |  | 5.5 | mA |
| $\mathrm{CIN}_{\text {IN }}$ | Input Capacitance [1] [3] | $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ |  | 7.0 | 8.0 | pF |
| $\mathrm{C}_{0}$ | Output Capacitance [1] [3] | $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ |  | 8.0 | 10.0 | pF |

NOTE: 1. Except IM6403 XTAL input pins (i.e. pins 17 and 40).
2. $V_{D D}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
3. These parameters are guaranteed but not $100 \%$ tested.

AC ELECTRICAL CHARACTERISTICS $\quad V_{D D}=5.0 \mathrm{~V} \pm 10 \% \mathrm{v}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{PF}, \mathrm{T}_{\mathrm{A}}=$ Operating
Temperature Range)

| SYMBOL | PARAMETER | TEST CONDITIONS | MIN | TYP2 | MAX | UNIT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{f}_{\mathrm{c}}$ | Clock Frequency IM6402-1 | See Timing Diagrams <br> (Figures 4,5,6) | D.C. |  | 2.0 | MHz |
| $\mathrm{f}_{\text {crystal }}$ | Crystal Frequency IM6403-1 |  |  |  | 3.58 | MHz |
| $t_{\text {pw }}$ | Pulse Widths CRL, $\overline{\text { DRR, }}$, TBRL |  | 150 | 50 |  | ns |
| $t_{\text {mr }}$ | Pulse Width MR |  | 400 | 200 |  | ns |
| $t_{\text {ds }}$ | Input Data Setup Time |  | 50 | 20 |  | ns |
| $t_{\text {dh }}$ | Input Data Hold Time |  | 60 | 40 |  | ns |
| $t_{\text {en }}$ | Output Enable Time |  |  | 80 | 160 | ns |

[^459]Table 1：IM6402／3 Pin Description

| PIN | SYMBOL | DESCRIPTION |
| :---: | :---: | :---: |
| 1 | VDD | Positive Power Supply |
| 2 | IM6402－N／C IM6403－Control | No Connection Divide Control High： $2^{4}$（16）Divider Low： $2^{11}$（2048）Divider |
| 3 | $V_{S S}$ | Negative Supply |
| 4 | RRD | A high level on RECEIVER REG－ ISTER DISABLE forces the re－ ceiver holding register outputs RBR1－RBR8 to a high impedance state． |
| 5 | RBR8 | The contents of the RECEIVER BUFFER REGISTER appear on these three－state outputs．Word formats less than 8 characters are right justified to RBR1． |
| 6 | RBR7 | See Pin 5 －RBR8 |
| 7 | RBR6 | See Pin 5－RBR8 |
| 8 | RBR5 | See Pin 5 －RBR8 |
| 9 | RBR4 | See Pin 5－RBR8 |
| 10 | RBR3 | See Pin 5－RBR8 |
| 11 | RBR2 | See Pin 5－RBR8 |
| 12 | RBR1 | See Pin 5－RBR8 |
| 13 | PE | A high level on PARITY ERROR indicates that the received parity does not match parity pro－ grammed by control bits．The out－ put is active until parity matches on a succeeding character．When parity is inhibited，this output is low． |
| 14 | FE | A high level on FRAMING ER－ ROR indicates the first stop bit was invalid．FE will stay active un－ til the next valid character＇s stop bit is received． |
| 15 | OE | A high level on OVERRUN ER－ ROR indicates the data received flag was not cleared before the last character was transferred to the receiver buffer register．The Error is reset at the next charac－ ter＇s stop bit if $\overline{D R R}$ has been per－ formed（i．e．，$\overline{\mathrm{DRR}}$ ；active low）． |

Figure 4：Data Input Cycle


## TIMING DIAGRAMS



Table 1: IM6402/3 Pin Description (Continued)

| PIN | SYMBOL | DESCRIPTION |
| :---: | :---: | :---: |
| 16 | SFD | A high level on STATUS FLAGS DISABLE forces the outputs PE, FE, OE, DR*, TBRE* to a high impedance state. See Block Diagram and Figure 6. <br> * IM6402 only. |
| 17 | IM6402-RRC IM6403-XTAL | The RECEIVER REGISTER CLOCK is 16 X the receiver data rate. |
| 18 | $\overline{\text { DRR }}$ | A low level on DATA RECEIVED RESET clears the data received output (DR), to a low level. |
| 19 | DR | A high level on DATA RECEIVED indicates a character has been received and transferred to the receiver buffer register. |
| 20 | RRI | Serial data on RECEIVER REGISTER INPUT is clocked into the receiver register. |
| 21 | MR | A high level on MASTER RESET (MR) clears PE, FE, OE, DR, TRE and sets TBRE, TRO high. Less than 18 clocks after MR goes low, TRE returns high. MR does not clear the receiver buffer register, and is required after power-up. |
| 22 | TBRE | A high level on TRANSMITTER BUFFER REGISTER EMPTY indicates the transmitter buffer register has transferred its data to the transmitter register and is ready for new data. |
| 23 | TBRL | A low level on TRANSMITTER BUFFER REGISTER LOAD transfers data from inputs TBR1-TBR8 into the transmitter buffer register. A low to high transition on TBRL requests data transfer to the transmitter register. If the transmitter register is busy, transfer is automatically delayed so that the two characters are transmitted end to end. See Figure 4. |
| 24 | TRE | A high level on TRANSMITTER REGISTER EMPTY indicates completed transmission of a character including stop bits. |

Table 1: IM6402/3 Pin Description (Continued)

| PIN | SYMBOL | DESCRIPTION |
| :---: | :---: | :---: |
| 25 | TRO | Character data, start data and stop bits appear serially at the TRANSMITTER REGISTER OUTPUT. |
| 26 | TBR1 | Character data is loaded into the TRANSMITTER BUFFER REGISTER via inputs TBR1-TBR8. For character formats less than 8-bits, the TBR8, 7, and 6 Inputs are ignored corresponding to the programmed word length. |
| 27 | TBR2 | See Pin 26 - TBR1 |
| 28 | TBR3 | See Pin 26 - TBR1 |
| 29 | TBR4 | See Pin 26 - TBR1 |
| 30 | TBR5 | See Pin 26 - TBR1 |
| 31 | TBR6 | See Pin 26 - TBR1 |
| 32 | TBR7 | See Pin 26 - TBR1 |
| 33 | TBR8 | See Pin 26 - TBR1 |
| 34 | CRL | A high level on CONTROL REGISTER LOAD loads the control register. See Figure 5. |
| 35 | PI* | A high level on PARITY INHIBIT inhibits parity generation, parity checking and forces PE output low. |
| 36 | SBS* | A high level on STOP BIT SELECT selects 1.5 stop bits for a 5 character format and 2 stop bits for other lengths. |
| 37 | CLS2* | These inputs program the CHARACTER LENGTH SELECTED. (CLS1 low CLS2 low 5-bits)(CLS1 high CLS2 low 6-bits)(CLS1 low CLS2 high 7-bits)(CLS1 high CLS2 high 8-bits) |
| 38 | CLS1* | See Pin $37-\mathrm{CLS} 2$ |
| 39 | EPE* | When PI is low, a high level on EVEN PARITY ENABLE generates and checks even parity. A low level selects odd parity. |
| 40 | IM6402-TRC <br> IM6403-XTAL | The TRANSMITTER REGISTER CLOCK is 16 X the transmit data rate. |

*See Table 2 (Control Word Function)

Table 2: Control Word Function

| CONTROL WORD |  |  |  |  | DATA BITS | PARITY BIT | STOP BIT(S) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| CLS2 | CLS1 | PI | EPE | SBS |  |  |  |
| L | L | L | L | L | 5 | ODD | 1 |
| L | L | L | L | H | 5 | ODD | 1.5 |
| L | L | L | H | L | 5 | EVEN | 1 |
| L | L | L | H | H | 5 | EVEN | 1.5 |
| L | L | H | X | L | 5 | DISABLED | 1 |
| L | L | H | X | H | 5 | DISABLED | 1.5 |
| L | H | L | L | L | 6 | ODD | 1 |
| L | H | L | L | H | 6 | ODD | 2 |
| L | H | L | H | L | 6 | EVEN | 1 |
| L | H | L | H | H | 6 | EVEN | 2 |
| L | H | H | X | L | 6 | DISABLED | 1 |
| L | H | H | X | H | 6 | DISABLED | 2 |
| H | L | L | L | L | 7 | ODD | 1 |
| H | L | L | L | H | 7 | ODD | 2 |
| H | L | L | H | L | 7 | EVEN | 1 |
| H | - L | L | H | H | 7 | EVEN | 2 |
| H | L | H | X | L | 7 | DISABLED | 1 |
| H | L | H | X | H | 7 | DISABLED | 2 |
| H | H | L | L | L | 8 | ODD | 1 |
| H | H | L | L | H | 8 | ODD | 2 |
| H | H | L | H | L | 8 | EVEN | 1 |
| H | H | L | H | H | 8 | EVEN | 2 |
| H | H | H | X | L | 8 | DISABLED | 1 |
| H | H | H | X | H | 8 | DISABLED | 2 |

x = Don't Care

## TRANSMITTER OPERATION

The transmitter section accepts parallel data, formats it and transmits it in serial form (Figure 7) on the TROutput terminal.


Figure 7: Serial Data Format
Transmitter timing is shown in Figure 8. Data is loaded into the transmitter buffer register from the inputs TBR1 through TBR8 by a logic low on the TBRLoad input. Valid data must be present at least $t_{D S}$ prior to and $t_{D H}$ following the rising edge of TBRL. If words less than 8 bits are used, only the least significant bits are used. The character is right justified into the least significant bit, TBR1. The rising edge of TBRL clears TBREmpty. 0 to 1 clock cycles later, data is transferred to the transmitter register, TREmpty is cleared and transmission starts. TBREmpty is reset to a logic high.

Output data is clocked by TRClock, which is 16 times the data rate. A second pulse on TBRLoad loads data into the transmitter buffer register. Data transfer to the transmitter register is delayed until transmission of the current character is complete. Data is automatically transferred to the transmitter register and transmission of that character begins.


[^460]NOTE: All typical values have been characterized but are not tested.


Figure 9: Receiver Timing (Not to Scale)

## RECEIVER OPERATION

Data is received in serial form at the RI input. When no data is being received, RI input must remain high. The data is clocked by the RRClock, which is 16 times the data rate. Receiver timing is shown in Figure 9.

A low level on DRReset clears the DReady line. During the first stop bit, data is transferred from the receiver register to the RBRegister. If the word is less than 8 bits, the unused most significant bits will be a logic low. The output character is right justified to the least significant bit RBR1. A logic high on OError indicates an overrun which occurs when DReady has not been cleared before the present character was transferred to the RBRegister. A logic high on PError indicates a parity error. $1 / 2$ clock cycle later, DReady is set to a logic high and FError is evaluated. A logic high on FError indicates an invalid stop bit was received. The receiver will not begin searching for the next start bit until a stop bit is received.

## START BIT DETECTION

The receiver uses a 16X clock for timing. (See Figure 10.) The start bit (A) could have occurred as much as one clock cycle before it was detected, as indicated by the shaded portion. The center of the start bit is defined as clock count $71 / 2$. If the receiver clock is a symmetrical square wave, the center of the start bit will be located within $\pm 1 / 2$ clock cycle, $\pm 1 / 32$ bit or $\pm 3.125 \%$. The receiver begins searching for the next start bit at the center of the first stop bit.


Figure 10: Start Bit Timing

## TYPICAL APPLICATION

Microprocessor systems, which are inherently parallel in nature, often require an asynchronous serial interface. This function can be performed easily with the IM6402/03 UART. Figure 11 shows how the IM6402 can be interfaced to an IM80C48 microcomputer system.

In this example the characters to be received or transmitted will be eight bits long (CLS 1 and 2: both HIGH) and transmitted with no parity (PI:HIGH) and two stop bits (SBS:HIGH). Since these control bits will not be changed during operation, Control Register Load (CRL) can be tied high. Remember, since the IM6402/03 is a CMOS device, all unused inputs should be tied to either $V_{D D}$ or $V_{S S}$.
The baud rate at which the transmitter and receiver will operate is determined by the IM4702 Baud Rate Generator.
To ensure consistent and correct operation, the IM6402/ 03 must be reset after power-up. The Master Reset (MR) pin is active high, and can be driven reliably from a Schmitt trigger inverter and R-C delay. In this example, the IM80C48 is reset through still another inverter. The Schmitt trigger between the processor and R-C network is needed to assure that a slow rising capacitor voltage does not re-trigger RESET. A long reset pulse after power-up ( $\sim 20 \mathrm{~ms}$ ) is required by the processor to assure that the on-board crystal oscillator has sufficient time to start.

If parity is not inhibited, a parity error will cause the PE pin to go high until the next valid character is received.
A framing error is generated when an expected stop bit is not received. FE will stay high after the error until the next complete character's stop bit is received.
The overrun error flag is set if a received character is transferred to the RECEIVER BUFFER REGISTER when the previous character has not been read. The OE pin will stay high until the next received stop bit after a DRR is performed.


Figure 11: IM80C48 Interface to IM6402 + 5 Volt Powered Dual RS-232 Transmitter/Receiver

## GENERAL DESCRIPTION

The ICL232 is a dual RS-232 transmitter/receiver inter face circuit that meets all EIA RS-232C specifications. It requires a single +5 V power supply, and features two onboard charge pump voltage converters which generate +10 V and -10 V supplies from the 5 V supply.
The drivers feature true TTL/CMOS input compatibility, slew-rate-limited output, and 300 ohms power-off source impedance. The receivers can handle up to $\pm 30$ volts, and have a 3 to 7 kilohms input impedance. The receivers also have hysteresis to improve noise rejection.

## Typical Applications

Any System Requiring RS-232 Communications Port:

- Computers-Portable and Mainframe
- Peripherals-Printers and Terminals
- Portable Instrumentation
- Modems
- Dataloggers

ORDERING INFORMATION

| Part | Temperature <br> Range | Package |
| :--- | :---: | :--- |
| ICL232CPE | $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ | 16 Pin Plastic DIP |
|  |  | 16 Pin CERDIP |
| ICL232CJE |  | 16 Pin Plastic DIP |
| ICL232IPE | $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ | 16 Pin CERDIP |
| ICL232IJE |  | 16 Pin CERDIP |
| ICL232MJE | $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ | 16 |



Outline Drawing (PE, JE)
Figure 1: Pin Configuration

[^461]
## ABSOLUTE MAXIMUM RATINGS

| $V_{\text {cc }}$ to gro | Its |
| :---: | :---: |
| $\mathrm{V}+$ to ground | +12 Volts |
| V - to ground | -12 Volts |
| Input Voltages |  |
| T1 ${ }_{\text {in }}, \mathrm{T}_{2}{ }_{\text {in }}$ | -0.3 to ( $\left.\mathrm{V}_{\mathrm{CC}}+0.3 \mathrm{~V}\right)$ |
| R1 ${ }_{\text {in }}, \mathrm{R} 2_{\text {in }}$ | $\pm 30 \mathrm{~V}$ |
| Output Voltages |  |
| T1out, T2out | $\left(\mathrm{V}^{+}+0.3\right)$ to $\left(\mathrm{V}^{-}-0.3 \mathrm{~V}\right)$ |
| R1out, R2out | $\ldots-0.3$ to (VCC $+0.3 \mathrm{~V})$ |

Short Circuit Duration
T1out, T2OUT. . . . . . . . . . . . . . . . . . . . . . . . . . . . Continuous
Continuous Total Power Dissipation ( $\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$ )
CERDIP Package ................................... . 500 mW
derate $9.5 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $70^{\circ} \mathrm{C}$
Plastic Package .375mW
derate $7.0 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $70^{\circ} \mathrm{C}$

Storage Temperature Range . . . . . . . . . . . $-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec ) . . . . . . . . . . . . $+300^{\circ} \mathrm{C}$
Operating Temperature Range


NOTE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS Test Conditions: $\mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V}, \mathrm{~T}_{\mathrm{a}}=$ operating temperature range,
Test Circuit as in Figure 3 (unless otherwise specified)

| Symbol | Parameter | Test Conditions | Limits |  |  | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Min | Typ | Max |  |
| TOUT | Transmitter Output Voltage Swing | T1out, T2OUT loaded with $3 \mathrm{k} \Omega$ to ground | $\pm 5$ | $\pm 9$ | $\pm 10$ | V |
| ICC | Power Supply Current | Outputs Unloaded, $\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$ |  | 5 | 10 | mA |
| $\mathrm{V}_{\text {IL }}$ | Tin, Input Logic Low |  |  |  | 0.8 | V |
| $\mathrm{V}_{\text {IH }}$ | Tin, Input Logic High |  | 2.0 |  |  | V |
| $\mathrm{I}_{\mathrm{p}}$ | Logic Pullup Current | $\mathrm{T} 1_{\text {in },} \mathrm{T} 2_{\text {in }}=0 \mathrm{~V}$ |  | 15 | 200 | $\mu \mathrm{A}$ |
| $V_{\text {in }}$ | RS-232 Input Voltage Range |  | -30 |  | +30 | V |
| $\mathrm{R}_{\text {in }}$ | Receiver Input Impedance | $\mathrm{V}_{\text {in }}= \pm 3 \mathrm{~V}, \pm 25 \mathrm{~V}$ | 3.0 | 5.0 | 7.0 | $\mathrm{k} \Omega$ |
| $\mathrm{V}_{\mathrm{IHL}}$ | Receiver Input Low Threshold | $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$ | 0.8 | 1.2 |  | V |
| VILH | Receiver Input High Threshold | $\mathrm{V}_{\mathrm{cc}}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$ |  | 1.7 | 2.4 | V |
| $V_{\text {hyst }}$ | Receiver Input Hysteresis |  | 0.2 | 0.5 | 1.0 | V |
| $\mathrm{V}_{\mathrm{OL}}$ | TTL/CMOS Receiver Output Voltage Low | $\mathrm{l}_{\text {out }}=3.2 \mathrm{~mA}$ |  | 0.1 | 0.4 | V |
| VOH | TTL/CMOS Receiver Output Voltage High | $\mathrm{l}_{\text {out }}=-1.0 \mathrm{~mA}$ | 3.5 | 4.6 |  | V |
| $t_{\text {pd }}$ | Propagation Delay | RS-232 to TTL or TTL to RS-232 |  | 0.5 |  | $\mu \mathrm{s}$ |
| SR | Instantaneous Slew Rate | $\begin{aligned} & \mathrm{C}_{\mathrm{L}}=10 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=3 \mathrm{k} \Omega, \\ & \mathrm{~T}_{\mathrm{a}}=25^{\circ} \mathrm{C} \text { (Note 1, 2) } \end{aligned}$ |  |  | 30 | $\mathrm{V} / \mu \mathrm{s}$ |
| $\mathrm{SR}_{\mathrm{t}}$ | Transition Region Slew Rate | $\begin{aligned} & R_{L}=3 \mathrm{k} \Omega, C_{L}=2500 \mathrm{pF} \text { Measured } \\ & \text { from }+3 \mathrm{~V} \text { to }-3 \mathrm{~V} \text { or }-3 \mathrm{~V} \text { to }+3 \mathrm{~V} \end{aligned}$ |  | 3 |  | $\mathrm{V} / \mu \mathrm{s}$ |
| $\mathrm{R}_{\text {out }}$ | Output Resistance | $\mathrm{V}_{\mathrm{CC}}=\mathrm{V}+=\mathrm{V}-=0 \mathrm{~V}, \mathrm{~V}_{\text {Out }}=+2 \mathrm{~V}$ | 300 |  |  | $\Omega$ |
| ISC | RS-232 Output Short Circuit Current | T1 ${ }_{\text {out }}$, $\mathrm{T}^{\text {out }}$ shorted to GND |  | $\pm 10$ |  | mA |

NOTE 1: Guaranteed by design.
2: See Figure 5 for definition.

[^462]


TYPICAL PERFORMANCE CHARACTERISTICS



[^463]
## DETAILED DESCRIPTION

The ICL232 is a dual RS－232 transmitter／receiver pow－ ered by a single +5 V power supply which meets all EIA RS－ 232C specifications and features low power consumption． The functional diagram（Figure 2）illustrates the major ele－ ments of the ICL232．The circuit is divided into three sec－ tions：a voltage quadrupler，dual transmitters，and dual re－ ceivers．

## Voltage Converter

The voltage quadrupler contains two charge pumps which use two phases of an internally generated clock to generate +10 V and -10 V ．During phase one of the clock，capacitor C 1 is charged to $\mathrm{V}_{\mathrm{cc}}$ ．During phase two，the voltage on C1 is added to $\mathrm{V}_{\mathrm{cc}}$ ，producing a signal across C 2 equal to twice $\mathrm{V}_{\mathrm{cc}}$ ．At the same time， C 3 is also charged to $2 \mathrm{~V}_{\mathrm{cc}}$ ，and then during phase one，it is inverted with respect to ground to produce a signal across C 4 equal to $-2 \mathrm{~V}_{\mathrm{cc}}$ ．The voltage converter accepts input voltages up to 5.5 V ．The output im－ pedance of the doubler $\left(\mathrm{V}^{+}\right)$is approximately 200 ohms， and the output impedance of the inverter $\left(\mathrm{V}^{-}\right)$is approxi－ mately 450 ohms．The test circuit（Figure 3）uses 22 uF capacitors for C1－C4，however，the value is not critical．In－ creasing the values of C 1 and C 2 will lower the output im－ pedance of the voltage doubler and inverter，and increasing the values of the reservoir capacitors，C3 and C4，lowers the ripple on the $\mathrm{V}^{+}$and V －supplies．


## Transmitters

The transmitters are TTL／CMOS compatible inverters which translate the inputs to RS－232 outputs．The input log－ ic threshold is about $26 \%$ of $\mathrm{V}_{\mathrm{cc}}$ ，or 1.3 V for $\mathrm{V}_{\mathrm{cc}}=5 \mathrm{~V}$ ．A logic 1 at the input results in a voltage of between -5 V and $\mathrm{V}^{-}$at the output，and a logic 0 results in a voltage between +5 V and $(\mathrm{V}+-0.6 \mathrm{~V})$ ．Each transmitter input has an inter－ nal 400 kilohm pullup resistor so any unused input can be left unconnected and its output remains in its low state．The output voltage swing meets the RS－232C specification of $\pm 5 \mathrm{~V}$ minimum with the worst case conditions of：both trans－ mitters driving 3 kohm minimum load impedance， $\mathrm{V}_{\mathrm{cc}}=4.5 \mathrm{~V}$ ，and maximum allowable operating tempera－ ture．The transmitters have an internally limited output slew rate which is less than 30V／us．The outputs are short circuit protected and can be shorted to ground indefinitely．The powered down output impedance is a minimum of 300 ohms with $\pm 2 \mathrm{~V}$ applied to the outputs and $\mathrm{V}_{\mathrm{cc}}=0 \mathrm{~V}$ ．

## Receivers

The receiver inputs accept up to $\pm 30 \mathrm{~V}$ while presenting the required 3 to 7 kilohms input impedance even if the power is off $\left(\mathrm{V}_{\mathrm{cc}}=0 \mathrm{~V}\right)$ ．The receivers have a typical input threshold of 1.3 V which is within the $\pm 3 \mathrm{~V}$ limits，known as the transition region，of the RS－232 specification．The re－ ceiver output is $O V$ to $\mathrm{V}_{\mathrm{cc}}$ ．The output will be low whenever the input is greater than 2.4 V and high whenever the input is floating or driven between +0.8 V and -30 V ．The receivers feature 0.5 V hysteresis to improve noise rejection．


Flgure 6：Propagation Delay Definition

## APPLICATIONS

The ICL232 may be used for all RS-232 data terminal and communication links. It is particularly useful in applications where $\pm 12 \mathrm{~V}$ power supplies are not available for conventional RS-232 interface circuits. The applications presented represent typical interface configurations.

A simple duplex RS-232 port with CTS/RTS handshaking is illustrated in Figure 7. Fixed output signals such as DTR (data terminal ready) and DSRS (data signaling rate select) is generated by driving them through a $3 \mathrm{k} \Omega$ resistor connected to $\mathrm{V}+$.

In applications requiring four RS-232 inputs and outputs (Figure 8), note that each circuit requires two charge pump capacitors (C1 and C2) but can share common reservoir capacitors (C3 and C4). The benefit of sharing common reservoir capacitors is the elimination of two capacitors and the reduction of the charge pump source impedance which effectively increases the output swing of the transmitters.


[^464]

0100-10
Figure 8: Combining 2 ICL232 for 4 Pairs of RS-232 Inputs and Outputs

[^465]
## Section 12 - Digital Signal Processing

IM29C128<br>12-1<br>IM29C510<br>12-7<br>EVK-128<br>12-19

## GENERAL DESCRIPTION

The 16 bit FIR Filter Controller（FFC）provides all the data history， storage and programmable filter cycle control logic required to implement FIR filters of up to 128 filter points．When used in con－ junction with an external filter coefficient memory，of up to 128 words by 16 bits，and an industry standard 16 bit Multiplier Accumu－ lator（MAC），the FFC provides the system designer with the ability to implement a powertul FIR filter with only three ICs．The FFC pro－ vides all the control signals required to operate the MAC and the coefficient memory as tri－stateable devices，allowing multiplexed usage of these resources．The FFC＇s asynchronous interface enables easy integration of the FIR filter in any system environ－ ment．It incorporates a 16 bit data I／O path，a 128 word by 16 bit RAM memory，and programmable filter control logic capable of handling filter order lengths of up to 128 points．

## FEATURES

－FIR Filter Building Block
－Filter Orders from 1 to 128 Points
－ 128 Words by 16 Bit Data Memory
－Works with IM29C510 Multiplier－Accumulator（MAC）or Equivalent
－80ns Minimum Filter Cycle Period with 25 MHz Master Clock Input
－Low Power CMOS Technology
－Full TTL Compatiblity
－ 68 Pin PLCC and 64 Pin DIP

## ORDERING INFORMATION

| PARRT <br> NUMBER | TEMPERATURE <br> RANGE | PACKAGE |
| :---: | :---: | :---: |
| IM29C128CD64 | $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ |  |
| IM29C128MD64 | $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ | DIP |
| IM29C128CN68 | $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ | DIP |



Figure 1：Pin Configurations


Figure 2：Functional Diagram

[^466]
## ABSOLUTE MAXIMUM RATINGS

DC Supply Voltage ( $V_{D O}$ ) -0.5 to +7 Volts Input/Output Voltage $\left(V_{\text {IN }} N_{\text {OUT }}\right) \ldots . . . .-0.3$ to $V_{D D}+0.3$ Volts Storage Temperature ( $\mathrm{T}_{\mathrm{STG}}$ ) -65 to $+150^{\circ} \mathrm{C}$

Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specirications is not implied. Exposure to abso tute maximum rating conditions for extended periods may affect device rellability.

DC ELECTRICAL CHARACTERISTICS
$T_{A}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ MIL, $T_{A}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ IND, $T_{A}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ IND

| SYMBOL | PARAMETER | MIN | TYP | MAX | UNIT | CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{V}_{\mathrm{IL}}$ | Low Level Input Voltage |  |  | 0.8 | V | $\begin{aligned} & V_{\text {OUT }}=4.5 \\ & \mathrm{O}_{\mathrm{OH}}=0 \end{aligned}$ |
| $V_{\text {IH }}$ | High Level Input Voltage MCLK Only | $\begin{aligned} & 2 \\ & 3 \end{aligned}$ |  |  |  | $\begin{aligned} & V_{\text {OUT }}=0.5 \\ & \mathrm{OHH}^{2}=0 \end{aligned}$ |
| $\mathrm{V}_{\mathrm{OL}}$ | Low Level Output Voltage |  | 0.15 | 0.4 |  | $\begin{aligned} V_{I N} & =V_{p D} \\ O_{O L} & =3.2 \mathrm{~mA} \end{aligned}$ |
| $\mathrm{V}_{\mathrm{OH}}$ | High Level Output Voltage | 3.0 | 4.7 |  |  | $\mathrm{IOL}^{\mathrm{O}}=4.0 \mathrm{~mA}$ |
| $\mathrm{I}_{\text {IL }} \cdot \mathrm{I}_{\mathrm{H}}$ | Input Leakage Current | -1 |  | +1 | $\mu \mathrm{A}$ | $V_{1 N}=0$ or $V_{D D}$ |
| $\mathrm{l}_{02}$ | 3 State Output Leakage Current | -1 |  | +1 | ${ }^{\prime \prime}$ | $V_{\text {OUT }}=0$ or $V_{\text {DD }}$ |
| IDD | Operating Current |  | 40 | 50 | mA | $\mathrm{M}_{\text {CLK }}=25 \mathrm{MHz}$ |

See "Note", Paragraph 5.8.1 Timing Reference Inputs when they switch, either $V_{I L}$ or $V_{I H}$ Outputs 1.5 V .

## AC CHARACTERISTICS (See Figure 4)

 $V_{C C}=5.0 \mathrm{~V} \pm 10 \%$, Output Load Cap $=50 \mathrm{pF}$ Max.

| SYMBOL | DESCRIPTION | MIN | TYP | MAX | UNITS |
| :---: | :---: | :---: | :---: | :---: | :---: |
| TCLK | Master Clock (MCLK) Cycle Period | 40 |  |  | ns |
| TCH | MCLK High Period | 20 | 15 | TCLK-20 | ns |
| TCL | MCLK Low Period | 20 | 15 | TCLK-20 | ns |
| TFLH | FCLK High from MCLK |  | 9 |  | ns |
| TFHL | FCLK Low from MCLK |  | 9 |  | ns |
| TENS | STEN Set-Up Time Before Start | 10 | 2.5-5.0 |  | ns |
| TENH | STEN Hold Time Atter Start | 100\% |  |  | TCLK |
| TSTH | Start Hold Time | 100\% |  |  | TCLK |
| TDIS | Data Input (DIN) Set-Up Time Before Start | -5 | -10 |  | ns |
| TOIM | Data Input Hold Time After Start | 100\% |  |  | TCLK |
| TSSH | Status High from Start (MCLK High) |  | 27 | 40 | ns |
| TSMH | Status High from MCLK (Start High) |  | 32 | 50 | ns |
| TSHL | Status Low from MCLK (End of Cycle) |  | 32 | 50 | ns |
| TON | OEN Low to DOUT and CADD Outputs Active (On) |  | 15 | 30 | ns |
| Toff | OEN High to DOUT and CADD Outputs Off ( $\mathrm{Hi}-\mathrm{Z}$ ) |  | 25 | 35 | ns |
| TCON | OEN Low to CLKXY, CLKP and ACC Outputs Active |  | 15 | 25 | ns |
| TCOFF | OEN High to CLKXY, CLKP and ACC Outputs Off (Hi-Z) |  | 25 | 35 | ns |
| TLDA | MCLK to Data Out (DOUT) Valid: Latched Data In Selected (Cycle 1 Only) |  | 60 | 80 | ns |
| TRDA | MCLK to DOUT Valid: RAM Data Selected |  | 60 | 80 | ns |
| TCAD | MCLK to CADD 0-6 Address Valid |  | 35 | 50 | ns |
| TXHL, TPHL | MCLK to Clock-XY or CLKP Low |  | 28 | 40 | ns |
| TXLH. TPLH | MCLK to Clock-XY or CLKP High |  | 28 | 40 | ns |
| $T_{\text {AHL }}$ | MCLK to Acc High |  | 38 | 50 | ns |
| TALH | MCLK to Acc Low |  | 38 | 50 | ns |
| TRST | RESET Active Low Time | 200\% |  |  | TCLK |
| TLD | MCLK to CADD or DADD Loaded to FORD Value During Reset |  | 35 | 50 | ns |

INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE the warranty shall be exclusive and shall be in lieu of all other warranties, express, implied or statutory, including the implied warranties of MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.
NOTE: All typical values have been characterized but are not tested.

## DETAILED DESCRIPTION

Data samples are input to the FFC via a 16 bit data port (DINO-15), and are internally latched following the rising edge of a valid START command signal. The occurance of a valid START command also causes the control logic to execute a computational cycle for the selected filter order length ( 1 to 128) determined by the Filter Order control inputs (FORD 0-6). The timing for each of the filter point sub-cycles, is controlled by the master clock input (MCLK), which operates at twice the desired Filter clock (FCLK) frequency.
Each computational cycle begins at the first rising edge of FCLK following a valid START command. During the first filter point cycle, the new input data is stored in the FFC data RAM at the address corresponding to the current sample time period (Dn). The data value is also output to the Multiplier-Accumulator (MAC) via a 16 bit Tri-state output port (DOUT 0-15). The 7 bit address corresponding to the first filter coefficient value (C0) is simultaneously output to the coefficient memory via a tri-state output port (CADD 0-6). During the second half of this FCLK period (i.e., LOW), the FFC outputs a control signal to the MAC (CLKXY), which is used to latch both the sample data from the FFC and the coefficient data from the coefficient memory.
At the next rising edge of FCLK, both of the address counters within the FFC are incremented. The RAM data value corresponding to the previous sample time period $\left(\mathrm{D}_{\mathrm{n}-1}\right)$ is then fetched and output to the MAC via the data output port. The address for the sec-
ond coefficient value (C1) is output to the coefficient memory via the coefficient address output port. During this entire FCLK period, the FFC outputs a LOW value on the ACC control signal to the MAC which shall prepare it to store the product of the previous data and coefficient values. During the LOW period of FCLK, the FFC outputs both the CLKXY signal and a second signal, CLKP, which is used by the MAC to store the results of the previous multiplication. At the end of this FCLK period, ACC returns HIGH until the next computational cycle.

For each of the subsequent filter point sub-cycles, the FFC outputs the appropriate sample data and coefficient address following the rising edge of FCLK, and outputs both CLKXY and CLKP during the LOW period of the FCLK. This shall continue until the programmed number of filter point subcycles (filter order) has been executed.
During the FCLK period following the last filter point sub-cycle, a final CLKP signal is output to the MAC to cause it to store the results of the last filter point subcycle. The coefficient address counter is then reset to its initial value in preparation for the next computational cycle, at the next data sample input time. The RAM address counter however remains at its last value, which corresponds to the most ancient data sample in memory. At the next computational cycle, the new sample data shall replace the old data at this location and become the "current" data value (Dn). The sample data value input during this last cycle shall then be regarded as the "previous data sample" (i.e. Dn-1).


[^467]NOTE: All typical values have been characterized but are not tested.


Figure 4: AC Characteristics


Figure 5: Typical FIR Filter Application

## PIN DESCRIPTIONS

| $68 \mathrm{PL}$ | 64 DIP | NAME | DESCRIPTION |
| :---: | :---: | :---: | :---: |
| 1 | - | NC |  |
| 2 | - | NC |  |
| 3 | - | NC |  |
| 4 | - | NC |  |
| 5 | - | NC |  |
| 6 | - | NC |  |
| 7 | 4 | DOUT 15 | 16 bit non-inverting tri-state Data output. During the first period of the Filter control cycle, the data output value shall be the same as the input data value present at the rising edge of the START command. During subsequent periods of the control cycle, the data output values shall be those fetched from the data history RAM, beginning with the most recent "previous" sample. The Data output port shall be enabled whenever DEN is LOW. DOUT 15 is the MSB. |
| 8 | - | NC |  |
| 9 | - | NC |  |
| 10 | 6 | DOUT 14 | See DOUT 15. |
| 11 | 8 | DOUT 13 | See DOUT 15. |
| 12 | 11 | DOUT 12 | See DOUT 15. |
| 13 | 12 | DOUT 11 | See DOUT 15. |
| 14 | 13 | DOUT 10 | See DOUT 15. |
| 15 | 14 | DOUT 9 | See DOUT 15. |
| 16 | - | NC |  |
| 17 | - | NC | - |
| 18 | 15 | DOUT 8 | See DOUT 15. |
| 19 | 16 | DOUT 7 | See DOUT 15. |
| 20 | 17 | DOUT 6 | See DOUT 15. |

[^468]| $68 \text { PL }$ | $64 \text { DIP }$ | NAME | DESCRIPTION |
| :---: | :---: | :---: | :---: |
| 21 | 18 | DOUT5 | See DOUT 15. |
| 22 | 19 | DOUT 4 | See DOUT 15. |
| 23 | 20 | DOUT 3 | See DOUT 15. |
| 24 | 21 | DOUT 2 | See DOUT 15. |
| 25 | 22 | DOUT 1 | Soe DOUT 15. |
| 26 | 23 | DOUT 0 | Soe DOUT 15．LSB |
| 27 | 24 | DINO | 16 bit data input．Internally latched upon valid START command． |
| 28 | 25 | DIN 1 | See DIN 0. |
| 29 | 26 | DIN 2 | See DIN O． |
| 30 | 27 | DIN 3 | See din 0. |
| 31 | 28 | DIN 4 | See din 0. |
| 32 | 29 | DIN 5 | See din 0. |
| 33 | 30 | DIN 6 | See DINO． |
| 34 | 31 | DIN 7 | Soe din 0. |
| 35 | 32 | VSS | Ground |
| 36 | 33 | DIN 8 | See DIN 0. |
| 37 | 34 | DIN 9 | See DIN 0. |
| 38 | 35 | DIN 10 | See din 0. |
| 39 | 36 | DIN 11 | See din 0. |
| 40 | 37 | DIN 12 | See din 0. |
| 41 | 38 | DIN 13 | Soe din 0. |
| 42 | 39 | DIN 14 | See DIN O． |
| 43 | 40 | DIN 15 | Soe din 0. |
| 44 | 41 | MCLK | Master Clock |
| 45 | 42 | START | Asynchronous Start control input．Initiates fitter control cycle upon rising edge．Valid only if STEN is HIGH，and STATUS is LOW． Start is internally synchronized to the Filter Clock（FCLK），allowing for full asynchronous operation of the FFC with respect to the external Host or controller． |
| 46 | 43 | RESET | Active LOW Reset control input．Forces cycle control logic to standby mode，ready for valid START command．Forces both memory address counters to load the selected Filter Order value．Must be held LOW for at least two full periods of MCLK． |
| 47 | 44 | STATUS | Active HIGH FFC Status output．Output sel to HIGH upon reception of valid START command and reset to LOW at end of Filter control cycle．Falling edge of STATUS may be used by HOST TO latch valid result from MAC，and to initiate subsequent cycle． |
| 48 | 45 | ACC | Tri－state control output to Product register of MAC．LOW value forces MAC to load the multiplier product into the Product register． HIGH value forces MAC to load output of the accumulator into the Product register．ACC shall be enabled whenever OEN is LOW． |
| 4！） | 46 | CLKP | Tri－state control clock to Product register of MAC．Rising edge of CLKP used to latch product of multiplier or accumulator（as determined by ACC）into Product register．CLKP shall be enabled when OEN is LOW． |
| 50 | 47 | CLKXY | Tri－state control clock output to $X$ and $Y$ registers of MAC．Rising edge of CLKXY used by MAC to latch data from FFC into $X$ register and data from Coefficient memory into Y register．CLKXY output shall be enabled whenever OEN is LOW． |
| 51 | 48 | CADD 6 | 7 bit tri－state Coefficient Address output．During the Filter control cycle，the Coefficient Address begins at the selected Filter Order value and then counts down to zero．The Coefficient memory must therefore be organized such that the coefficient values C0，C1，C2，etc．shall be located at memory address $\mathrm{N}, \mathrm{N}-1, \mathrm{~N}-2$ ，etc．respectively．The Address output port shall be enabled whenever OEN is LOW． |
| 52 | 49 | CADD 5 | See CADD 6. |
| 53 | 50 | CADD 4 | See CADD 6. |
| 54 | 51 | CADD 3 | See CADD 6. |
| 55 | 52 | CADD 2 | See CADD 6. |
| 56 | 53 | CADD 1 | See CADD 6. |
| 57 | 54 | CADD 0 | See CADD 6. |
| 58 | 55 | FORD 6 | 7 Bit active HIGH Filter Order control inputs．Input value of magnitude $\mathbf{N}$ will result in execution of Filter Length of $\mathrm{N}+1$ ．Alows programmable selection of Filter lengths of 1 to 128 points．MSB |
| 59 | 56 | FORD 5 | Soe FORD 6. |
| 60 | 57 | FORD 4 | See FORD 6. |
| 61 | 58 | FORD 3 | See FORD 6. |
| 62 | 59 | FORD 2 | See FORD 6. |
| 63 | 60 | FORD 1 | See FORD 6. |
| 64 | 61 | FORD 0 | See FORD 6．LSB |
| 65 | 62 | OEN | Active LOW Output Enable control signal．Disables all outputs except STATUS when HIGH． |
| 66 | － | NC |  |
| 67 | 64 | STEN | Active HIGH Start Enable control．Enables START command input when HIGH． |
| 68 | 1 | VCC | ＋5 Volts． |

## GENERAL DESCRIPTION

The IM29C510 is a high-speed $16 \times 16$ Bit Parallel Multiplier/Accumulator which operates at a 65 ns clock rate (more than 15 MHz Multiply/Accumulate rate). The 2 input registers, $x$ and $y$, accept 16 bit twos complement or unsigned magnitude operands and produce a 32 bit product, with accumulation up to 35 bits.

To simplify bus interfacing and maximize system throughput, product outputs, $x$-inputs and $y$-inputs are individually and independently clocked. The Least Significant Product (the LSP) is multiplexed with the y-inputs, Most Significant Product (MSP), and Extended Product (XTP) are independently tri-stateable. These registers are positive edge-triggered D-type flip-flops.

Individual three-state output ports for the XTP and the MSP are provided. Preloading during tri-state is accomplished through the tri-stated output pins for the MSP and EXP, and through the y-input pins for the LSP. Operation of the Accumulator is controlled by the signals ACC (Accumulate), SUB (Subtract), and PREL (Preload).

The IM29C510 $16 \times 16$ Bit Multiplier/Accumulator is pin and function compatible with the industry standard TDC1010. Depending on the multiply-accumulate rate, the device operates with the same speed at one-sixth or less power dissipation than the bipolar versions. (Worst Case CMOS power consumption decreases with decreasing clock rate).

The IM29C510 can operate as a $16 \times 16$ Bit Multiplier only as well as a $16 \times 16$ Bit Multiplier/Accumulator.

APPLICATIONS<br>- Radar/Sonar Signal Processors<br>- Array Processors<br>- Video Processors<br>- FFT Processors<br>- General Purpose Digital Signal Processors<br>- Image Processors<br>- FIR Filters<br>\section*{FEATURES}<br>- Low Power CMOS<br>- 65 ns Multiply/Accumulate Time<br>- $16 \times 16$ Bit Parallel Multiplication with Accumulation to 35 Bits<br>- Selectable Accumulate, Subtract, Round, and Preload of Accumulator<br>- Fully TTL Compatible I/O<br>- Three-State Outputs<br>- Two's Complement or Unsigned Magnitude Arithmetic<br>- 64 Lead DIP, 68 Pin PLCC<br>- Pin Compatible with Industry Standard MACs<br>- Full Mil Screening Available

## ORDERING INFORMATION

| Part <br> Number | Clock <br> Speed | Temperature <br> Range | Package |
| :--- | :---: | :---: | :---: |
| Commercial: <br> IM29C510CP68-65 <br> IM29C510CP64-65 | 65 ns | $0^{\circ}$ to $+70^{\circ} \mathrm{C}$ <br> $0^{\circ}$ to $+70^{\circ} \mathrm{C}$ | 68 Lead PLCC <br> 64 Pin DIP |
| Industrial: <br> IM29C510ID64-70 | 70 ns | $-40^{\circ}$ to $+85^{\circ} \mathrm{C}$ | 64 Pin DIP, Ceramic |
| Military: <br> IM29C510MD64-75 | 75 ns | $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ | 64 Pin DIP, Ceramic |

[^469]

[^470]
## ABSOLUTE MAXIMUM RATINGS

beyond which the device will be damaged

| Supply Voltage | OV to +7.0 V |
| :---: | :---: |
| Input Voltage . | -0.3 V to ( $\left.\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}\right)$ |
| Output |  |
| Applied Voltag | -0.3 V to $\left(\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}\right)$ |

Short-circuit duration
(single output in high state to ground) ............... 1 sec
Temperature
Operating, Case ...................... $-60^{\circ} \mathrm{C}$ to $+130^{\circ} \mathrm{C}$
Junction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . $175^{\circ} \mathrm{C}$
Lead, soldering ( 10 seconds) . . . . . . . . . . . . . . . . . . . . $300^{\circ} \mathrm{C}$
Storage . . . . . . . . . . . . . . . . . . . . . . . . . . . . $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

NOTE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS
within specified operating conditions

| Symbol | Parameter | Test Conditions | Temperature Range |  |  |  |  |  | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Commercial |  | Industrial |  | Millitary |  |  |
|  |  |  | Min | Max | Min | Max | Min | Max |  |
| IDDQ | Supply Current, Quiescent | $\begin{aligned} & V_{D D}=M a x, V_{I N}=0 V \\ & T S L, T S M, T S X=5.0 \mathrm{~V} \end{aligned}$ |  | 5 |  | 10 |  | 10 | mA |
| IDDU | Supply Current Unloaded (Note 1) | $V_{D D}=M a x$, <br> F = Clock Cycle Time <br> TSL, TSM, TSX $=5.0 \mathrm{~V}$ |  | 120 |  | 130 |  | 130 | mA |
| IIL | Input Current, Logic LOW | $\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=\text { Max, } \mathrm{V}_{\mathrm{I}}=0.4 \mathrm{~V} \\ & \mathrm{X}_{\mathrm{IN}} \text { Controls, Clocks } \\ & \mathrm{Y}_{\mathrm{IN}} \\ & \hline \end{aligned}$ | $\begin{array}{r} -75 \\ -75 \\ \hline \end{array}$ | $\begin{array}{r} +75 \\ +75 \\ \hline \end{array}$ | $\begin{aligned} & -75 \\ & -75 \\ & \hline \end{aligned}$ | $\begin{array}{r} +75 \\ +75 \\ \hline \end{array}$ | $\begin{array}{r} -75 \\ -75 \\ \hline \end{array}$ | $\begin{array}{r} +75 \\ +75 \\ \hline \end{array}$ | $\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \\ & \hline \end{aligned}$ |
| ${ }_{1 / H}$ | Input Current, Logic HIGH | $\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=\text { Max, } \mathrm{V}_{1}=2.4 \mathrm{~V} \\ & \mathrm{X}_{\mathrm{IN}} \text { Controls, Clocks } \\ & \mathrm{Y}_{\mathrm{IN}} \\ & \hline \end{aligned}$ | $\begin{array}{r} -75 \\ -75 \\ \hline \end{array}$ | $\begin{array}{r} +75 \\ +75 \\ \hline \end{array}$ | $\begin{array}{r} -75 \\ -75 \\ \hline \end{array}$ | $\begin{array}{r} +75 \\ +75 \\ \hline \end{array}$ | $\begin{array}{r} -75 \\ -75 \\ \hline \end{array}$ | $\begin{array}{r} +75 \\ +75 \\ \hline \end{array}$ | $\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \\ & \hline \end{aligned}$ |
| 1 | Input Current, Max Input Voltage | $V_{D D}=M a x, V_{l}=V_{D D}$ |  | +75 |  | +75 |  | +75 | $\mu \mathrm{A}$ |
| $\mathrm{V}_{\text {OL }}$ | Output Voltage, Logic LOW | $\mathrm{V}_{\mathrm{DD}}=\mathrm{Min}, \mathrm{l}_{\mathrm{OL}}=\mathrm{Max}$ |  | 0.4 |  | 0.4 |  | 0.4 | V |
| $\mathrm{V}_{\mathrm{OH}}$ | Output Voltage, Logic HIGH | $\mathrm{V}_{\mathrm{DD}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OH}}=\mathrm{Max}$ | 2.4 |  | 2.4 |  | 2.4 |  | V |
| lozl | Hi-Z Output Leakage Current Output LOW | $V_{D D}=\operatorname{Max}, \mathrm{V}_{\mathrm{I}}=0.4 \mathrm{~V}$ | -75 | +75 | -75 | +75 | -75 | +75 | $\mu \mathrm{A}$ |
| lozh | Hi-Z Output Leakage Current Output HIGH | $\mathrm{V}_{\mathrm{DD}}=\mathrm{Max}, \mathrm{V}_{\mathrm{I}}=2.4 \mathrm{~V}$ | -75 | +75 | -75 | +75 | -75 | +75 | $\mu \mathrm{A}$ |
| los | Short-Circuit Output Current | $V_{D D}=$ Max, Output HIGH, One Pin to Ground One Second Duration Max |  | -100 |  | -100 |  | -100 | mA |
| $C_{1}$ | Input Capacitance (Note 3) | $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{F}=1 \mathrm{MHz}$ |  | 15 |  | 15 |  | 15 | pF |
| $\mathrm{Co}_{0}$ | Output Capacitance (Note 3) | $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{F}=1 \mathrm{MHz}$ |  | 15 |  | 15 |  | 15 | pF |

NOTE 1: Guaranteed to maximum clock rate.
2: Worst case, all inputs and outputs toggling at maximum rate.
3: Sampled and not $100 \%$ tested.

[^471]SWITCHING CHARACTERISTICS
within specified operating conditions (Note 1)

| Symbol | Parameter | Test Conditions | Temperature Range |  |  |  |  |  | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Commercial |  | Industrial |  | Millitary |  |  |
|  |  |  | Min | Max | Min | Max | Min | Max |  |
| $t_{\text {MA }}$ | Multiply-Accumulate Time | $V_{D D}=M i n$ |  | 65 |  | 70 |  | 75 | ns |
| $t_{D}$ | Output Delay | $\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=\text { Min, Test Load: } \\ & \mathrm{V}_{\text {LOAD }}=2.2 \mathrm{~V} \\ & \hline \end{aligned}$ |  | 35 |  | 35 |  | 40 | ns |
| tena | Three-State Output Enable Delay | $\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=\text { Min, Test Load: } \\ & \mathrm{V}_{\text {LOAD }}=1.5 \mathrm{~V} \\ & \hline \end{aligned}$ |  | 35 |  | 35 |  | 40 | ns |
| tDIS | Three-State Output Disable Delay | $\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=\text { Min, Test Load: } \\ & \mathrm{V}_{\text {LOAD }}=2.6 \mathrm{~V} \text { for } \\ & {\text { TDISO } 0.0 \mathrm{~V} \text { for } t_{\text {DIS1 }} \text { (Note 2) }}^{2} \end{aligned}$ |  | 35 |  | 35 |  | 40 | ns |

NOTE 1: All transitions are measured at a 1.5 V level except for $t_{D I S}$ and $t_{E N A}$ which are shown in Figure 5.
2: t ${ }_{\text {DIS } 1}$ denotes the transition from logical 1 to three-state toiso denotes the transition from logical 0 to three-state Transition is measured $\pm 500 \mathrm{mV}$ from steady state voltage.
DC CHARACTERISTICS over operating range unless otherwise specified

| Symbol | Description | Conditions | Min | Max | Units |
| :--- | :--- | :--- | :---: | :---: | :---: |
| $\mathrm{V}_{\mathrm{IH}}$ | Input High Level |  | 2.0 |  | V |
| $\mathrm{~V}_{\mathrm{IL}}$ | Input Low Level |  |  | 0.8 | V |
| $\mathrm{~V}_{\mathrm{OH}}$ | Output High Level | $\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{IOH}_{\mathrm{O}}=-0.4 \mathrm{~mA}$ | 2.4 |  | V |
| $\mathrm{~V}_{\mathrm{OL}}$ | Output Low Level | $\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{IOL}=4.0 \mathrm{~mA}$ |  | 0.4 | V |
| $\mathrm{I}_{\mathrm{IH}}$ | Input High Current | $\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}$ |  | 75 | $\mu \mathrm{~A}$ |
| $\mathrm{I}_{\mathrm{IL}}$ | Input Low Current | $\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}$ |  | 75 | $\mu \mathrm{~A}$ |

AC CHARACTERISTICS over operating range unless otherwise specified (Notes 3, 4)

| Symbol | Description | Commercial |  | Industrial |  | Military |  | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Max | Min | Max | Min | Max |  |
| $t_{\text {MA }}$ | Multiply/Accumulate Time |  | 65 |  | 70 |  | 75 | ns |
| $t_{D}$ | Output Delay |  | 35 |  | 40 |  | 40 | ns |
| tena | Three-State Output Enable Delay | 35 |  | 35 |  | 40 |  | ns |
| tois | Three-State Output Disable Delay | 35 |  | 35 |  | 40 |  | ns |
| $t_{\text {PWL }}$ | Clock Pulse Width (LOW) | 25 |  | 25 |  | 30 |  | ns |
| tpWH | Clock Pulse Width (HIGH) | 25 |  | 25 |  | 30 |  | ns |
| ts | Input Setup Time (Data, ACC,SUB,RND,TC) | 25 |  | 25 |  | 30 |  | ns |
| ${ }_{\text {t }}^{\text {H }}$ | Input Hold Time (Data, SUB,RND,TC) | 3 |  | 3 |  | 3 |  | ns |
| ts | Input Setup Time (PREL, TSX,TSM,TSL) | 25 |  | 25 |  | 30 |  | ns |
| $\mathrm{t}_{\mathrm{H}}$ | Input Hold Time (PREL, TSX,TSM,TSL) | 3 |  | 3 |  | 3 |  | ns |

NOTE 3: All transitions are measured at 1.5 V .

$$
\text { 4: } V_{I H}=2.4 \mathrm{~V} \text { and } V_{\mathrm{IL}}=0.4 \mathrm{~V}
$$

[^472]A set of control words supplied by the CPU programs the functional operation of the IM29C510 $16 \times 16$ Bit Multiplier/ Accumulator. These control words include the signals ACC (Accumulate), PREL (Preload), and SUB (Subtract).
OPERATING CONDITIONS

| Symbol | Parameter | Test Conditions | Temperature Range |  |  |  |  |  |  |  | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Commercial |  |  | Industrial |  | Military |  |  |  |
|  |  |  | Min | Nom | Max | Min | Max | Min | Nom | Max |  |
| $\mathrm{V}_{\mathrm{DD}}$ | Supply Voltage |  | 4.75 | 5.0 | 5.25 | 4.5 | 5.5 | 4.5 | 5.0 | 5.5 | V |
| $t_{\text {PWL }}$ | Clock Pulse Width, LOW |  | 25 |  |  | 25 |  | 30 |  |  | ns |
| $t_{\text {PWW }}$ | Clock Pulse Width, HIGH |  | 25 |  |  | 25 |  | 30 |  |  | ns |
| $\mathrm{t}_{5}$ | Input Setup Time |  | 25 |  |  | 25 |  | 30 |  |  | ns |
| $\mathrm{t}_{\mathrm{H}}$ | Input Hold Time |  | 3 |  |  | 3 |  | 3 |  |  | ns |
| $\mathrm{V}_{\mathrm{IL}}$ | Input Voltage Logic LOW |  |  |  | 0.8 |  | 0.8 |  |  | 0.8 | V |
| $\mathrm{V}_{\mathrm{IH}}$ | Input Voltage, Logic HIGH |  | 2.0 |  |  | 2.0 |  | 2.0 |  |  | V |
| loL | Output Current, Logic LOW |  |  |  | 4.0 |  | 4.0 |  |  | 4.0 | mA |
| lOH | Output Current, Logic HIGH |  |  |  | -0.4 | -0.4 |  |  |  | -0.4 | mA |
| $\mathrm{T}_{\mathrm{A}}$ | Ambient Temperature, Still Air |  | 0 |  | 70 | -40 | +85 | -55 |  | +125 | ${ }^{\circ} \mathrm{C}$ |

## OPERATING RANGES

Commercial Devices
Temperature $\ldots \ldots \ldots \ldots . . . . . . T_{A}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Supply Voltage $\ldots . . . . . . . . . . V_{C C}=+4.75 \mathrm{~V}$ to 5.25 V
Industrial Devices
Temperature $\ldots . . . . . . . . . . . . . . T_{A}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Supply Voltage..................... $\mathrm{V}_{\mathrm{CC}}=+4.5 \mathrm{~V}$ to 5.5 V
Military Devices
Temperature $\qquad$ $T_{C}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage...................... $\mathrm{V}_{\mathrm{CC}}=+4.5 \mathrm{~V}$ to 5.5 V

## POWER

The IM29C510 $16 \times 16$ Bit Multiplier/Accumulator operates from a single +5 V supply. All ground and power lines must be connected.

| Name | Function | Value | DIP Package | PLCC Package |
| :--- | :--- | :---: | :---: | :---: |
| $V_{D D}$ | Positive Supply Voltage | +5.0 V | Pin 49 | Pins 17, 18, 19, 20 |
| GND | Ground | 0.0 V | Pin 16 | Pins 53,54 |

## DATA INPUTS

The IM29C510 $16 \times 16$ Bit Multiplier/Accumulator has two 16-bit two's complement or unsigned magnitude data inputs, labeled $X$ and $Y$. The sign information for the two's complement notation is carried by the Most Significant Bits (MSBs), $X_{15}$ and $Y_{15}$. Bits remaining are designated $X_{14}$ through $X_{0}$ and $Y_{14}$ through $Y_{0}$. The Least Significant Bits are $X_{0}$ and $Y_{0}$.

When data are present at the $X$ and $Y$ inputs, they are clocked into the input registers at the rising edge of the appropriate clock. Table 3 shows the input and output formats for fractional two's complement notation, integer two's complement notation, fractional unsigned magnitude notation, and integer unsigned magnitude notation.

Table 1

| Name | Function | DIP Package | PLCC Package |
| :---: | :---: | :---: | :---: |
| $\mathrm{X}_{15}$ | X Data MSB | Pin 56 | Pin 10 |
| $\mathrm{X}_{14}$ |  | Pin 57 | Pin 9 |
| $\mathrm{X}_{13}$ |  | Pin 58 | Pin 8 |
| $\mathrm{X}_{12}$ |  | Pin 59 | Pin 7 |
| $\mathrm{X}_{11}$ |  | Pin 60 | Pin 6 |
| $\mathrm{X}_{10}$ |  | Pin 61 | Pin 5 |
| $\mathrm{X}_{9}$ |  | Pin 62 | Pin 4 |
| $\mathrm{X}_{8}$ |  | Pin 63 | Pin 3 |
| $\mathrm{X}_{7}$ |  | Pin 64 | Pin 2 |
| $\mathrm{X}_{6}$ |  | Pin 1 | Pin 1 |
| $\mathrm{X}_{5}$ |  | Pin 2 | Pin 68 |
| $\mathrm{X}_{4}$ |  | Pin 3 | Pin 67 |
| $\mathrm{X}_{3}$ |  | Pin 4 | Pin 66 |
| $\mathrm{X}_{2}$ |  | Pin 5 | Pin 65 |
| $\mathrm{X}_{1}$ |  | Pin 6 | Pin 64 |
| $\mathrm{X}_{0}$ | X Data LSB | Pin 7 | Pin 63 |
| $Y_{15}$ | Y Data MSB | Pin 24 | Pin 45 |
| $Y_{14}$ |  | Pin 23 | Pin 46 |
| $Y_{13}$ |  | Pin 22 | Pin 47 |
| $Y_{12}$ |  | Pin 21 | Pin 48 |
| $\mathrm{Y}_{11}$ |  | Pin 20 | Pin 49 |
| $Y_{10}$ |  | Pin 19 | Pin 50 |
| $Y_{9}$ |  | Pin 18 | Pin 51 |
| $Y_{8}$ |  | Pin 17 | Pin 52 |
| $Y_{7}$ |  | Pin 15 | Pin 55 |
| $Y_{6}$ |  | Pin 14 | Pin 56 |
| $Y_{5}$ |  | Pin 13 | Pin 57 |
| $Y_{4}$ |  | Pin 12 | Pin 58 |
| $Y_{3}$ |  | Pin 11 | Pin 59 |
| $\mathrm{Y}_{2}$ |  | Pin 10 | Pin 60 |
| $Y_{1}$ |  | Pin 9 | Pin 61 |
| $Y_{0}$ | Y Data LSB | Pin 8 | Pin 62 |

## DATA OUTPUTS

The IM29C510 $16 \times 16$ Bit Multiplier/Accumulator has a 35-bit two's complement or unsigned magnitude results that yields the sum of the products of the previous products which have been accumulated plus the two input data values. This output is expressed as two 16-bit output words: the Most Significant Product (MSP) and the Least Significant Product (LSP), and one 3-bit output word, the eXTended Product (XTP). If two's complement notation is used, the Most Significant Bit (MSB) of the XTP is the sign bit.

Table 2

| Name | Function | DIP Package | PLCC Package |
| :---: | :---: | :---: | :---: |
| P34 | Product MSB | Pin 43 | Pin 26 |
| P33 |  | Pin 42 | Pin 27 |
| P32 |  | Pin 41 | Pin 28 |
| P31 |  | Pin 40 | Pin 29 |
| P30 |  | Pin 39 | Pin 30 |
| P29 |  | Pin 38 | Pin 31 |
| P28 |  | Pin 37 | Pin 32 |
| P27 |  | Pin 36 | Pin 33 |
| P26 |  | Pin 35 | Pin 34 |
| P25 |  | Pin 34 | Pin 35 |
| P24 |  | Pin 33 | Pin 36 |
| P23 |  | Pin 32 | Pin 37 |
| P22 |  | Pin 31 | Pin 38 |
| P21 |  | Pin 30 | Pin 39 |
| P20 |  | Pin 29 | Pin 40 |
| P19 |  | Pin 28 | Pin 41 |
| P18 |  | Pin 27 | Pin 42 |
| P17 |  | Pin 26 | Pin 43 |
| P16 |  | Pin 25 | Pin 44 |
| P15 |  | Pin 24 | Pin 45 |
| P14 |  | Pin 23 | Pin 46 |
| P13 |  | Pin 22 | Pin 47 |
| P12 |  | Pin 21 | Pin 48 |
| P11 |  | Pin 20 | Pin 49 |
| P10 |  | Pin 19 | Pin 50 |
| P9 |  | Pin 18 | Pin 51 |
| P8 |  | Pin 17 | Pin 52 |
| P7 |  | Pin 15 | Pin 55 |
| P6 |  | Pin 14 | Pin 56 |
| P5 |  | Pin 13 | Pin 57 |
| P4 |  | Pin 12 | Pin 58 |
| P3 |  | Pin 11 | Pin 59 |
| P2 |  | Pin 10 | Pin 60 |
| P1 |  | Pin 9 | Pin 61 |
| P0 | Product LSB | Pin 8 | Pin 62 |

[^473]
## CLOCKS

The IM29C510 $16 \times 16$ Bit Multiplier/Accumulator has an individual clock line for each of the input registers plus one for the product register, for a total of three clock lines. Data present at the inputs of these registers are loaded into the registers at the rising edge of the appropriate clock. The RouND (RND), Two's Complement (TC), ACCumulate (ACC) and SUBtract (SUB) inputs are registered with all four bits clocked in at the rising edge of the logical OR of both CLK X and CLK Y. If normally HIGH clock signals are used, special attention to the clock signals is required. Loading problems with these four control signals can be avoided by the use of normally LOW clocks.

| Name | Function | DIP <br> Package | PLCC <br> Package |
| :--- | :--- | :---: | :---: |
| CLKX | Clock Input Data X | Pin 51 | Pin 15 |
| CLK Y | Clock Input Data Y | Pin 50 | Pin 16 |
| CLK P | Clock Product Register | Pin 44 | Pin 25 |

## CONTROLS

THE IM29C510 $16 \times 16$ Bit Multiplier/Accumulator has eight control lines. TSX, TSM, and TSL are three-state enable lines for the XTP, and MSP, and the LSP, respectively. The output driver is in the high-impedance state when TSX, TSM, or TSL is HIGH, and enabled when the appropriate control is LOW.

PRELoad (PREL) is an active-HIGH control which has several effects when active (see Preload Truth Table (Table 6 )). First, all output buffers are forced into the high-impedance state. Second, external data present at the output pins will be preloaded into the corresponding section of the output register on the rising edge of CLK $P$ when any or all of TSX, TSM, and TSL are also HIGH. Normal data setup and hold times apply to the logical AND of PREL as well as to the data being preloaded, and to the relevant three-state control (TSX, TSM, TSL). These setup and hold times are with respect to the rising edge of CLK $P$.

Addition of a " 1 " to the MSB of the LSP for rounding is controlled by the RouND (RND) controls. A " 1 " is added to the MSB of the LSP for rounding the product in the MSP and XTP (if appropriate) rather than truncating it, when RND is HIGH.

How the device interprets data on the $X$ and $Y$ inputs is controlled by the Two's Complement (TC) controls. TC HIGH make both inputs two's complement inputs. TC LOW makes both inputs magnitude only inputs.

The content of the output register is added to or subtracted from the next product generated when ACCumulate (ACC) is HIGH. Their sum is returned to the output registers at the next rising edge of clock P. Multiplication without accumulation is performed and the next product generated is stored into the output registers directly when ACC is LOW. To eliminate the need for a separate "clear" operation, this operation is used for the first term in a summation.

The SUBtract (SUB) control is used in conjunction with the ACC control. The content of the output register is subtracted from the next product generated and the difference is returned to the output register, when both the ACC and SUB controls are HIGH.
NOTE: The previous output is subtracted from the product, NOT the product from the previous output.

Table 3: Data Formats


Fractional Unsigned Magnitude Notation


Integer Two's Complement Notation



The RND, TC, ACC, and SUB inputs are registered with all four bits clocked in at the rising edge of the logical OR of both CLK X and CLK Y. If normally HIGH clock signals are
used, special attention to the clock signal is required. Loading problems of these four control signals can be avoided by the use of normally LOW clocks.

Table 4

| Name | Function | DIP Package | PLCC Package |
| :--- | :--- | :--- | :--- |
| TSX | XTP Three-State Control | Pin 47 | Pin 22 |
| TSM | MSP Three-State Control | Pin 45 | Pin 24 |
| TSL | LSP Three-State Control | Pin 55 | Pin 11 |
| PREL | Preload Control | Pin 46 | Pin 23 |
| RND | Round Control Bit | Pin 54 | Pin 12 |
| TC | Two's Complement Control | Pin 48 | Pin 21 |
| ACC | Accumulate Control | Pin 52 | Pin 14 |
| SUB | Subtract Control | Pin 53 | Pin 13 |

INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INGLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

NOTE: All typical values have been characterized but are not tested.

Table 5: Pin Assignments

| Pin Name | Function | Input/Output | DIP Package | PLCC Package |
| :---: | :---: | :---: | :---: | :---: |
| $\mathrm{X}_{6}$ |  | 1 | Pin 1 | Pin 1 |
| $\mathrm{X}_{5}$ |  | 1 | Pin 2 | Pin 68 |
| $\mathrm{X}_{4}$ |  | 1 | Pin 3 | Pin 67 |
| ${ }^{1}$ |  | 1 | Pin 4 | Pin 66 |
| $\mathrm{X}_{2}$ |  | 1 | Pin 5 | Pin 65 |
| $\mathrm{X}_{1}$ |  | 1 | Pin 6 | Pin 64 |
| $\mathrm{X}_{0}$ | X Input LSB | 1 | Pin 7 | Pin 63 |
| $\mathrm{P}_{0}-\mathrm{Y}_{0}$ | Product/Y Input LSB | $1 / 0$ | Pin 8 | Pin 62 |
| $\mathrm{P}_{1}-Y_{1}$ |  | $1 / 0$ | Pin 9 | Pin 61 |
| $\mathrm{P}_{2}-\mathrm{Y}_{2}$ |  | $1 / 0$ | Pin 10 | Pin 60 |
| $\mathrm{P}_{3}-Y_{3}$ |  | 1/0 | Pin 11 | Pin 59 |
| $\mathrm{P}_{4}-\mathrm{Y}_{4}$ |  | 1/0 | Pin 12 | Pin 58 |
| $\mathrm{P}_{5}-Y_{5}$ |  | 1/0 | Pin 13 | Pin 57 |
| $\mathrm{P}_{6}-\mathrm{Y}_{6}$ |  | $1 / 0$ | Pin 14 | Pin 56 |
| $\mathrm{P}_{7}-\mathrm{Y}_{7}$ |  | 1/0 | Pin 15 | Pin 55 |
| GND |  | Ground | Pin 16 | Pin 53, 54 |
| $\mathrm{P}_{8}-\mathrm{Y}_{8}$ |  | 1/0 | Pin 17 | Pin 52 |
| $\mathrm{Pg}_{\mathrm{g}}-\mathrm{Y}_{9}$ |  | 1/0 | Pin 18 | Pin 51 |
| $\mathrm{P}_{10}-Y_{10}$ |  | 1/0 | Pin 19 | Pin 50 |
| $\mathrm{P}_{11}-Y_{11}$ |  | 1/0 | Pin 20 | Pin 49 |
| $\mathrm{P}_{12}-Y_{12}$ |  | $1 / 0$ | Pin 21 | Pin 48 |
| $\mathrm{P}_{13}-\mathrm{Y}_{13}$ |  | $1 / 0$ | Pin 22 | Pin 47 |
| $\mathrm{P}_{14}-\mathrm{Y}_{14}$ |  | 1/0 | Pin 23 | Pin 46 |
| $\mathrm{P}_{15} \mathrm{Y}_{15}$ | Product/Y Input MSB | 1/0 | Pin 24 | Pin 45 |
| $\mathrm{P}_{16}$ |  | 0 | Pin 25 | Pin 44 |
| $\mathrm{P}_{17}$ |  | 0 | Pin 26 | Pin 43 |
| $\mathrm{P}_{18}$ |  | $\bigcirc$ | Pin 27 | Pin 42 |
| $\mathrm{P}_{19}$ |  | 0 | Pin 28 | Pin 41 |
| $\mathrm{P}_{20}$ |  | 0 | Pin 29 | Pin 40 |
| $\mathrm{P}_{21}$ |  | $\bigcirc$ | Pin 30 | Pin 39 |
| $\mathrm{P}_{22}$ |  | 0 | Pin 31 | Pin 38 |
| $\mathrm{P}_{23}$ |  | 0 | Pin 32 | Pin 37 |
| $\mathrm{P}_{24}$ |  | $\bigcirc$ | Pin 33 | Pin 36 |
| $\mathrm{P}_{25}$ |  | $\bigcirc$ | Pin 34 | Pin 35 |
| $\mathrm{P}_{26}$ |  | $\bigcirc$ | Pin 35 | Pin 34 |
| $\mathrm{P}_{27}$ |  | $\bigcirc$ | Pin 36 | Pin 33 |
| $\mathrm{P}_{28}$ |  | $\bigcirc$ | Pin 37 | Pin 32 |
| $\mathrm{P}_{29}$ |  | 0 | Pin 38 | Pin 31 |
| $\mathrm{P}_{30}$ |  | $\bigcirc$ | Pin 39 | Pin 30 |
| $\mathrm{P}_{31}$ |  | 0 | Pin 40 | Pin 29 |
| $\mathrm{P}_{32}$ |  | $\bigcirc$ | Pin 41 | Pin 28 |
| $\mathrm{P}_{33}$ |  | 0 | Pin 42 | Pin 27 |
| P34 | Product MSB | 0 | Pin 43 | Pin 26 |
| CLKP | Clock Product Register | 1 | Pin 44 | Pin 25 |
| TSM | MSP Three-State Control | 1 | Pin 45 | Pin 24 |
| PREL | Preload Control | 1 | Pin 46 | Pin 23 |
| TSX | XTP Three-State Control | 1 | Pin 47 | Pin 22 |
| TC | Two's Complement Control | 1 | Pin 48 | Pin 21 |
| $V_{D D}$ | Positive Supply Voltage | $V_{D D}$ | Pin 49 | Pin 17, 18, 19, 20 |

[^474]Table 5: Pin Assignments (Continued)

| Pin Name | Function | Input/Output | DIP Package | PLCC Package |
| :---: | :---: | :---: | :---: | :---: |
| CLKY | Clock Input Data Y | 1 | Pin 50 | Pin 16 |
| CLKX | Clock Input Data X | 1 | Pin 51 | Pin 15 |
| ACC | Accumulate Control | 1 | Pin 52 | Pin 14 |
| SUB | Subtract Control | 1 | Pin 53 | Pin 13 |
| RND | Round Control Bit | 1 | Pin 54 | Pin 12 |
| TSL | LSP Three-State Control | 1 | Pin 55 | Pin 11 |
| $\mathrm{X}_{15}$ | X Input MSB | 1 | Pin 56 | Pin 10 |
| $\mathrm{X}_{14}$ |  | 1 | Pin 57 | Pin 9 |
| $\mathrm{X}_{13}$ |  | 1 | Pin 58 | Pin 8 |
| $\mathrm{X}_{12}$ |  | 1 | Pin 59 | Pin 7 |
| $\mathrm{X}_{11}$ |  | 1 | Pin 60 | Pin 6 |
| $\mathrm{X}_{10}$ |  | 1 | Pin 61 | Pin 5 |
| $\mathrm{X}_{9}$ |  | 1 | Pin 62 | Pin 4 |
| $\mathrm{X}_{8}$ |  | 1 | Pin 63 | Pin 3 |
| $\mathrm{X}_{7}$ |  | 1 | Pin 64 | Pin 2 |



0085-6
Figure 5: Timing Diagram

[^475]NOTE: All typical values have been characterized but are not tested.

Table 6: Preload Truth Table

| PREL <br> (Note 1) | TSX <br> (Note 1) | TSM (Note 1) | TSL (Note 1) | XTP | MSP | LSP |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| L | L | L | L | Register $\rightarrow$ Output Pin | Register $\rightarrow$ Output Pin | Register $\rightarrow$ Output Pin |
| L | L | L | H | Register $\rightarrow$ Output Pin | Register $\rightarrow$ Output Pin | Hiz |
| L | L | H | L | Register $\rightarrow$ Output Pin | HiZ | Register $\rightarrow$ Output Pin |
| L | L | H | H | Register $\rightarrow$ Output Pin | Hiz | Hiz |
| L | H | L | L | Hiz | Register $\rightarrow$ Output Pin | Register $\rightarrow$ Output Pin |
| L | H | L | H | HiZ | Register $\rightarrow$ Output Pin | Hiz |
| L | H | H | L | Hiz | Hi Z | Register $\rightarrow$ Output Pin |
| L | H | H | H | Hiz | Hiz | HiZ |
| $\mathrm{H}^{2}$ | L | L | L | Hiz | Hiz | Hiz |
| $\mathrm{H}^{2}$ | L | L | H | Hiz | HiZ | Hi $Z$ Preload |
| $\mathrm{H}^{2}$ | L | H | L | Hiz | Hi $Z$ Preload | Hiz |
| $\mathrm{H}^{2}$ | L | H | H | Hiz | Hi $Z$ Preload | Hi $Z$ Preload |
| $\mathrm{H}^{2}$ | H | L | L | Hi $Z$ Preload | HiZ | HiZ |
| $\mathrm{H}^{2}$ | H | L | H | Hi $Z$ Preload | Hiz | Hi $Z$ Preload |
| $\mathrm{H}^{2}$ | H | H | L | Hi $Z$ Preload | Hi $Z$ Preload | HiZ |
| $\mathrm{H}^{2}$ | H | H | H | Hi Z Preload | Hi $Z$ Preload | Hi $Z$ Preload |

NOTE 1: PREL, TSX, TSM, and TSL are not registered.
2: PREL HIGH inhibits any change of output register for those outputs in which the three-state control is LOW.

## AC TEST CONDITIONS

| Input Pulse Levels | GND to 3.0 V |
| :--- | ---: |
| Input Rise and Fall Times | 5 ns |
| Input Timing Reference Levels | 1.5 V |
| Output Reference Levels | 1.5 V |
| Output Load | See Figures 6 and 7 |



[^476]

0085-9
NOTE: Extra address lines can be used to select various sets of filter coefficient high pass; low pass; band pass; etc.
Figure 8: Typical FIR Filter Application

## Data Conversion and FIR Filtering System

## GENERAL DESCRIPTION

The Intersil EVK-128 provides a moderate speed data acquisition, conversion, and digital filtering system for the IBM PC and most compatibles. Consisting of a board which plugs into and occupies a single slot on the PC, the card digitally filters data with a filter length of 0 (unfiltered) to 128 taps, utilizing the Intersil IM29C128 Finite Impulse Response Filter Controller (FFC) and 29C510 16 bit MultiplierAccumulator (MAC). Throughput is a function of required filter length, with an 80 nS per tap processing rate.

The ICL7115 converts analog signals to 14 bit words at up to 32.727 KHz rate, while the ICL7121 converts a 16 bit digital data stream to analog. Edge mounted connectors allow simple analog I/O. The A/D and/or D/A converters may be bypassed for processing of digital data, input or output via externally accessible edge mounted connectors or the PC bus. This also allows nonreal time processing or storage of data to or from a disk, for example.

Also included is a floppy disk with an easy-to-use menu driven FIR filter design program for the PC, including coefficient calculations, time and frequency calculations and plotting capabilities, and prompts for controlling the different modes of operation of the board. The package contains complete documentation, including detailed schematics, printed circuit layout, parts list, timing diagrams, and applications literature. The user may copy any of this for his own system design, if desired.

## FEATURES

- Occupies Single IBM PC Slot
- On Board 14 Blt ICL7115 A/D Converter
- On Board 16 Blt ICL7121 D/A Converter
- All Necessary Software Provided
- Digital Filters of 1 to 128 Taps
- Versatile I/O Options
- On Board Digital Noise Generator
- Complete Documentation Package
- Fully Tested, Ready to Plug In and Use
- S/N > 84 dB


Figure 1: Functional Diagram

[^477]
## DETAILED DESCRIPTION

The EVK-128 is designed to be mapped into a 16-byte block of addresses in the I/O space of the PC. The base address is set by means of a DIP switch so as not to conflict with other boards. An expansion decoding scheme is used to map these 16 addresses into a 1 K block. The first 512 locations are used to address the coefficient RAM, and the rest are available for control, test, and data transfer functions. The address translation from 16 to 1 K is handled by the provided software.

There are two registers which determine the configuration of the board: the Filter Order Register (FOR), and the Mode Register (MR). Bits 0 to 6 of the FOR hold the filter order (number of taps). Bit 7 is used to give a software reset to the board. Bits 1 to 3 of the MR are used to select between the A/D, digital noise generator, or external digital inputs. This scheme gives the flexibility to mix analog and digital I/O. Bit 0 is used to enable the external digital output, and bit 4 is used to select between 1 of 2 possible banks of coefficient RAM memory. Table 1 shows the addresses for the various control functions.

The analog sample rate is set internally at 32.727 kHz . An external clock may be provided through the back connectors in lieu of the internal one, as long as the logic swing is between 0 to 5 volts. The external digital connection is via a

20-pin header and uses 16 bits of parallel data and a nonoverlapping clock scheme to manage data over the bidirectional bus.
The control pattern for the sample/hold, A/D, and D/A is downloaded under software control from the PC, as is the seed value for the Digital Noise Generator (DNG). Since the DNG shift register is 20 bits long, the resulting sequence will exhibit a high degree of randomness.

Table 1: PC Address Map

| Relative <br> Address | Description |
| :--- | :--- |
| $000-1$ FE | Load Coefficient RAM |
| 200,201 | Write Data Word to FFC |
| 202,203 | Write Filter Order Register |
| 204,205 | Read Data Word from MAC |
| 206,207 | Read A/D into PC |
| 206,207 | Write PC into D/A |
| 208,209 | Write Mode Register |
| $20 A, 20 B$ | Load Digital Noise Seed |
| $20 \mathrm{C}, 20 \mathrm{D}$ | Read/Write A/D Control Pattern |
| 20 E | Start all Operations Except FFC |
| $20 F$ | Start all Operations Including FFC |

Table 2: Mode Register Bit Map

| Bit \# | 4 | 3 | 2 | 1 | 0 |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | FN | ADM | DNGM | DIM | DOM |
|  | Filter | A/D | Digital | Digital | Digital |
|  | Number | Output | Noise | Input | Output |
|  | $A=0, B=1$ | Enable | Enable | Enable | Enable |
|  |  | Mask | Mask | Mask | Mask |
|  |  | $0=$ Disab |  |  |  |

Table 3: Filter Order Register Bit Map


[^478]NOTE: All typical values have been characterized but are not tested.

Sample plot from filter design software. The plot itself is from the program run on a COMPAQ II and plotted on an OKIDATA 193, but most common dot matrix printers, like the EPSON, are supported.

## SPECIFICATIONS FOR A BANDPASS EQUIRIPPLE FIR FILTER OF LENGTH 125

End of Lower Stopband (Hz) ............................... . 19
Beginning of Passband (Hz) . . . . . . . . . . . . . . . . . . . . . . . . . . 21
End of Passband (Hz) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Beginning of Upper Stopband (Hz) ........................ 31
Maximum Passband Attenuation (dB) . . . . . . . . . . . . . . . . . 0.6
Minimum Stopband Attenuation (dB) ..................... . 72
Although the above plot shows the kind of response possible with less than 128 taps, longer filters can be implemented if non-realtime processing is allowed. Data could be stored on the computer (e.g., floppy or Winchester) and cycled through the filter board, processing up to 128 taps with each pass. Furthermore, data recorded offline somewhere else could be loaded and processed easily via the backplane. The board could also function as a powerful development tool, a pedagogical tool, or, more obviously, as a system for actual data conversion and filtering.


[^479]
## Section 13 - Display Drivers

ICM721113-1ICM7212 ..... 13-1
ICM7218 ..... 13-12
ICM7228 ..... 13-23
ICM7231 ..... 13-36
ICM7232 ..... 13-36
ICM7233 ..... 13-36
ICM7243 ..... 13-55

## ICM7211／12 <br> 4－Digit LCD／LED <br> Display Driver

## GENERAL DESCRIPTION

The ICM7211（LCD）and ICM7212（LED）devices consti－ tute a family of non－multiplexed four－digit seven－segment CMOS display decoder－drivers．

The ICM7211 devices are configured to drive convention－ al LCD displays by providing a complete RC oscillator，divid－ er chain，backplane driver，and 28 segment outputs．

The ICM7212 devices are configured to drive common－ anode LED displays，providing 28 current－controlled，low leakage，open－drain n－channel outputs．These devices pro－ vide a BRighTness input，which may be used at normal logic levels as a display enable，or with a potentiometer as a continuous display brightness control．

Both the LCD and LED devices are available with multi－ plexed or microprocessor input configurations．The multi－ plexed versions provide four data inputs and four Digit Se－ lect inputs．This configuration is suitable for interfacing with multiplexed BCD or binary output devices，such as the ICM7217，ICM7226 and ICL7135．The microprocessor ver－ sions provide data input latches and Digit Address latches under control of high－speed Chip Select inputs．These de－ vices simplify the task of implementing a cost－effective al－ phanumeric seven－segment display for microprocessor sys－ tems，without requiring extensive ROM or CPU time for de－ coding and display updating．

The standard devices will provide two different decoder configurations．The basic device will decode the four bit bi－ nary inputs into a seven－segment alphanumeric hexadeci－ mal output．The＂$A$＂versions will provide the＂Code $B$＂out－ put code，i．e．，0－9，dash，E，H，L，P，blank．Either device will correctly decode true BCD to seven－segment decimal out－ puts．

Devices in the ICM7211／7212 family are packaged in a standard 40 pin plastic dual－in－line package and all inputs are fully protected against static discharge．
ORDERING INFORMATION

| Part Number | Temperature <br> Range | Package |
| :--- | :---: | :--- |
| ICM7211AMIJL | $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ | 40 Pin CERDIP |
| ICM7211IPL | $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ | 40 Pin PLASTIC |
| ICM7211AIPL | $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ | 40 Pin PLASTIC |
| ICM7211AMIPL | $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ | 40 Pin PLASTIC |
| ICM7211MIPL | $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ | 40 Pin PLASTIC |
| ICM7211AEV／KIT | - | EVALUATION KIT |

## ICM7211（LCD）FEATURES

－Four Digit Non－Multiplexed 7 Segment LCD Display Outputs With Backplane Driver
－Complete Onboard RC Oscillator to Generate Backplane Frequency
－Backplane Input／Output Allows Simple Synchronization of Slave－Devices to a Master
－ICM7211 Devices Provide Separate Digit Select Inputs to Accept Multiplexed BCD Input（Pinout and Functionally Compatible With Siliconix DF411）
－ICM7211M Devices Provide Data and Digit Address Latches Controlled by Chip Select Inputs to Provide a Direct High Speed Processor Interface
－ICM7211 Decodes Binary Hexadecimal；ICM7211A Decodes Binary to Code B（0－9，Dash，E，H，L，P， Blank）

## ICM7212（LED）FEATURES

－ 28 Current－Limited Segment Outputs Provide 4－Digit Non－Multiplexed Direct LED Drive at $>5 \mathrm{~mA}$ Per Segment
－Brightness Input Allows Direct Control of LED Segment Current With a Single Potentiometer or Digitally as a Display Enable
－ICM7212M and ICM7212A Devices Provide Same Input Configuration and Output Decoding Options as the ICM7211


INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

NOTE: All typical values have been characterized but are not tested.


INTERSIL＇S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE． THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES，EXPRESS，IMPLIED OR STATUTORY，INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE．

NOTE：All typical values have been characterized but are not tested．

## ABSOLUTE MAXIMUM RATINGS

Power Dissipation（Note 1）．．．．．．．．．．．．．．．．．．．．．0．5W＠70ㅇ․
Supply Voltage（ $\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{SS}}$ ）．．．．．．．．．．．．．．．．．．．．．．．．．．．．6．5V
Input Voltage（Any Terminal）（Note 2）
．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．$V_{S S}-0.3 V$ to $V_{D D}+0.3 V$

NOTE 1：This limit refers to that of the package and will not be realized during normal operation．
NOTE 2：Due to the SCR structure inherent in the CMOS process，connecting any terminal to voltages greater than $V_{D D}$ or less than $V_{S S}$ may cause destructive device latchup．For this reason，it is recommended that no inputs from external sources not operating on the same power supply be applied to the device before its supply is established，and that in multiple supply systems，the supply to the ICM7211／ICM7212 be turned on first．
NOTE：Stresses above those listed under＂Absolute Maximum Ratings＂may cause permanent damage to the device．These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied．Exposure to absolute maximum rating conditions for extended periods may affect device reliability．


Figure 2：Pin Configurations（Outline Drawing PL）

## ELECTRICAL CHARACTERISTICS

ICM7211 CHARACTERISTICS（LCD） $\mathrm{V}_{D D}=5 \mathrm{~V} \pm 10 \%, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{S S}=0 \mathrm{~V}$ unless otherwise specified．

| Symbol | Parameter | Test Conditions | Min | Typ | Max | Units |
| :---: | :--- | :--- | :---: | :---: | :---: | :---: |
| $V_{\text {SUPPLY }}$ | Operating Supply Voltage Range $\left(V_{D D}-V_{S S}\right)$ |  | 3 | 5 | 6 | V |
| $\mathrm{I}_{\mathrm{DD}}$ | Operating Current | Test circuit，Display blank |  | 10 | 50 | NA |
| $\mathrm{l}_{\mathrm{OSCl}}$ | Oscillator Input Current | Pin 36 |  | $\pm 2$ | $\pm 10$ |  |
| $\mathrm{t}_{\mathrm{R}}, \mathrm{t}_{\mathrm{F}}$ | Segment Rise／Fall Time | $\mathrm{C}_{\mathrm{L}}=200 \mathrm{pF}$ |  | 0.5 |  | m |
| $\mathrm{t}_{\mathrm{R}}, \mathrm{t}_{\mathrm{F}}$ | Backplane Rise／Fall Time | $\mathrm{C}_{\mathrm{L}}=5000 \mathrm{pF}$ |  | 1.5 |  |  |
| $\mathrm{f}_{\mathrm{OSC}}$ | Oscillator Frequency | Pin 36 Floating |  | 19 |  | kHz |
| $\mathrm{f}_{\mathrm{BP}}$ | Backplane Frequency | Pin 36 Floating |  | 150 |  | Hz |

ICM7212 CHARACTERISTICS（COMMON ANODE LED）

| Symbol | Parameter | Test Conditions | Min | Typ | Max | Units |
| :---: | :--- | :--- | :---: | :---: | :---: | :---: |
| $V_{\text {SUPPLY }}$ | Operating Supply Voltage Range $\left(V_{D D}-V_{S S}\right)$ |  | 4 | 5 | 6 | V |
| $I_{\text {STBY }}$ | Operating Current <br> Display Off | Pin 5（Brightness）， <br> Pins 27－34－$V_{S S}$ |  | 10 | 50 | $\mu \mathrm{~A}$ |
| IDD | Operating Current | Pin 5 at $\mathrm{V}_{\mathrm{DD}}$, Display all 8＇s |  | 200 |  | mA |
| ISLK | Segment Leakage Current | Segment Off |  | $\pm 0.01$ | $\pm 1$ | $\mu \mathrm{~A}$ |
| ISEG | Segment On Current | Segment On，$V_{O}=+3 \mathrm{~V}$ | 5 | 8 |  | mA |

[^480]INPUT CHARACTERISTICS (ICM7211 AND ICM7212)

| Symbol | Parameter | Test Conditions | Min | Typ | Max | Units |
| :---: | :--- | :--- | :---: | :---: | :---: | :---: |
| $\mathrm{V}_{\text {IH }}$ | Logical "1" inpút voltage |  | 4 |  |  | V |
| $\mathrm{~V}_{\mathrm{IL}}$ | Logical ' 0 "' input voltage |  |  |  | 1 |  |
| $\mathrm{I}_{\text {ILK }}$ | Input leakage current | Pins 27-34 |  | $\pm .01$ | $\pm 1$ | $\mu \mathrm{~A}$ |
| $\mathrm{C}_{\mathrm{IN}}$ | Input capacitance | Pins 27-34 |  | 5 |  | pF |
| $\mathrm{I}_{\mathrm{BPLK}}$ | BP/Brightness input leakage | Measured at Pin 5 with Pin 36 at $\mathrm{V}_{\mathrm{SS}}$ |  | $\pm .01$ | $\pm 1$ | $\mu \mathrm{~A}$ |
| $\mathrm{C}_{\mathrm{BPI}}$ | BP/Brightness input capacitance | All Devices |  | 200 |  | pF |

AC CHARACTERISTICS - MULTIPLEXED INPUT CONFIGURATION

| $t_{W H}$ | Digit Select Active Pulse Width | Refer to Timing Diagrams | 1 |  |  | $\mu \mathrm{~s}$ |
| :---: | :--- | :--- | :--- | :--- | :---: | :---: |
| $t_{D S}$ | Data Setup Time |  | 500 |  |  | ns |
| $t_{D H}$ | Data Hold Time |  | 200 |  |  |  |
| $t_{\text {IDS }}$ | Inter-Digit Select Time |  | 2 |  |  | $\mu \mathrm{~s}$ |


| AC CHARACTERISTICS - MICROPROCESSOR INTERFACE |  |  |  |  |  |  |
| :---: | :--- | :--- | :---: | :---: | :---: | :---: |
| $t_{\text {WL }}$ | Chip Select Active Pulse Width | other Chip Select either held active, or <br> both driven together | 200 |  |  |  |



TYPICAL PERFORMANCE CHARACTERISTICS

ICM7211 OPERATING SUPPLY CURRENT AS A FUNCTION OF SUPPLY VOLTAGE


ICM7211 BACKPLANE FREQUENCY AS A FUNCTION OF SUPPLY VOLTAGE


0364-10
ICM7212 LED SEGMENT CURRENT AS A
FUNCTION OF OUTPUT VOLTAGE


0364-12

TYPICAL PERFORMANCE CHARACTERISTICS

ICM7212 LED SEGMENT CURRENT AS A
FUNCTION OF BRIGHTNESS CONTROL VOLTAGE


ICM7212 OPERATING POWER (LED DISPLAY) AS A FUNCTION OF SUPPLY VOLTAGE


0364-13

## INPUT DEFINITIONS

In this table, $\mathrm{V}_{\mathrm{DD}}$ and $\mathrm{V}_{\mathrm{SS}}$ are considered to be normal operating input logic levels. Actual input low and high levels are specified under Operating Characteristics. For lowest power consumption, input signals should swing over the full supply.

| Input | Terminal | Test Conditions |  |  |
| :---: | :---: | :---: | :---: | :---: |
| B0 | 27 | $\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=\text { Logical One } \\ & \mathrm{V}_{\mathrm{SS}}=\text { Logical Zero } \end{aligned}$ | Ones (Least Significant) | Data Input Bits |
| B1 | 28 | $\begin{aligned} & V_{D D}=\text { Logical One } \\ & V_{S S}=\text { Logical Zero } \end{aligned}$ | Twos |  |
| B2 | 29 | $\begin{aligned} & V_{D D}=\text { Logical One } \\ & V_{S S}=\text { Logical Zero } \end{aligned}$ | Fours |  |
| B3 | 30 | $\begin{aligned} & V_{D D}=\text { Logical One } \\ & V_{S S}=\text { Logical Zero } \end{aligned}$ | Eights (Most significant) |  |
| OSC <br> (LCD Devices Only) | 36 | Floating or with external capacitor to $V_{D D}$ $\mathrm{V}_{\mathrm{SS}}$ | Oscillator input <br> Disables BP output devices, allowing segments to be synchronized to an external signal input at the BP terminal (Pin 5) |  |

[^481]ICM7211／ICM7212 MULTIPLEXED－BINARY INPUT CONFIGURATION

| Input | Terminal | Test Conditions | Function |
| :---: | :---: | :---: | :---: |
| D1 | 31 | $\mathrm{~V}_{\mathrm{DD}}=$ Active |  |
| D2 | 32 |  | D1 Digit Select（Least significant） |
|  |  |  | Inactive |

ICM7211M／ICM7212M MICROPROCESSOR INTERFACE INPUT CONFIGURATION

| Input | Description | Terminal | Test Conditions | Function |
| :---: | :---: | :---: | :---: | :---: |
| DA1 | Digit Address Bit 1 （LSB） | 31 | $\begin{aligned} & V_{\mathrm{DD}}=\text { Logical One } \\ & \mathrm{V}_{\mathrm{SS}}=\text { Logical Zero } \end{aligned}$ | DA1 \＆DA2 serve as a two bit Digit Address Input DA2，DA1 $=00$ selects D4 <br> DA2，DA1 $=01$ selects D3 <br> DA2，DA1 $=10$ selects D2 <br> DA2，DA1 $=11$ selects D1 |
| DA2 | Digit Address <br> Bit 2 （MSB） | 32 |  |  |
| $\overline{\text { CS1 }}$ | Chip Select 1 | 33 | $\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=\text { Inactive } \\ & \mathrm{V}_{\mathrm{SS}}=\text { Active } \end{aligned}$ | When both $\overline{\mathrm{CS} 1}$ and $\overline{\mathrm{CS} 2}$ are taken low，the data at the Data and Digit Select code inputs are written into the input latches． On the rising edge of either Chip Select，the data is decoded and written into the output latches． |
| $\overline{\text { CS2 }}$ | Chip Select 2 | 34 |  |  |



Figure 4：Multiplexed Input Timing Diagram


[^482]
## DESCRIPTION OF OPERATION LCD DEVICES

The LCD devices in the family (ICM7211, 7211A, 7211M, 7211AM) provide outputs suitable for driving conventional four-digit, seven-segment LCD displays. These devices include 28 individual segment drivers, backplane driver, and a self-contained oscillator and divider chain to generate the backplane frequency.
The segment and backplane drivers each consist of a CMOS inverter, with the $n$ - and $p$-channel devices ratioed to provide identical on resistances, and thus equal rise and fall times. This eliminates any DC component, which could arise from differing rise and fall times, and ensures maximum display life.
The backplane output devices can be disabled by connecting the OSCillator input (pin 36) to $\mathrm{V}_{\text {SS }}$. This allows the 28 segment outputs to be synchronized directly to a signal input at the BP terminal (pin 5). In this manner, several slave devices may be cascaded to the backplane output of one master device, or the backplane may be derived from an external source. This allows the use of displays with characters in multiples of four and a single backplane. A slave device represents a load of approximately 200pF (comparable to one additional segment). Thus the limitation of the number of devices that can be slaved to one master device backplane driver is the additional load represented by the larger backplane of displays of more than four digits. A good rule of thumb to observe in order to minimize power consumption is to keep the backplane rise and fall times less than about 5 microseconds. The backplane output driver should handle the backplane to a display of 16 one-halfinch characters. It is recommended that if more than four devices are to be slaved together, that the backplane signal be derived externally and all the ICM7211 devices be slaved to it. This external signal should be capable of driving very large capacitive loads with short $(1-2 \mu \mathrm{~s})$ rise and fall times. The maximum frequency for a backplane signal should be about 150 Hz although this may be too fast for optimum display response at lower display temperatures, depending on the display used.


Figure 6: Display Waveforms

The onboard oscillator is designed to free run at approximately 19 kHz at microampere power levels. The oscillator frequency is divided by 128 to provide the backplane frequency, which will be approximately 150 Hz with the oscillator free-running; the oscillator frequency may be reduced by connecting an external capacitor between the OSCillator terminal and $\mathrm{V}_{\mathrm{DD}}$.

The oscillator may also be overdriven if desired, although care must be taken to ensure that the backplane driver is not disabled during the negative portion of the overdriving signal (which could cause a D.C. component to the display). This can be done by driving the OSCillator input between the positive supply and a level out of the range where the backplane disable is sensed (about one fifth of the supply voltage above $\mathrm{V}_{\mathrm{SS}}$ ). Another technique for overdriving the oscillator (with a signal swinging the full supply) is to skew the duty cycle of the overdriving signal such that the negative portion has a duration shorter than about one microsecond. The backplane disable sensing circuit will not respond to signals of this duration.

## LED DEVICES

The LED devices in the family (ICM7212, 7212A, 7212M, 7212AM) provide outputs suitable for directly driving fourdigit, seven-segment common-anode LED displays. These devices include 28 individual segment drivers, each consisting of a low-leakage, current-controlled, open-drain, n-channel transistor.

The drain current of these transistors can be controlled by varying the voltage at the BRighTness input (pin 5). The voltage at this pin is transferred to the gates of the output devices for "on" segments, and thus directly modulates the transistor's "on" resistance. A brightness control can be easily implemented with a single potentiometer controlling the voltage at pin 5, connected as in Figure 7. The potentiometer should be a high value ( $100 \mathrm{~K} \Omega$ to $1 \mathrm{M} \Omega$ ) to minimize power consumption, which can be significant when the display is off.

The BRighTness input may also be operated digitally as a display enable; when high, the display is fully on, and low fully off. The display brightness may also be controlled by varying the duty cycle of a signal swinging between the two voltages at the BRighTness input.

Note that the LED devices have two connections for $V_{S S}$; both of these pins should be connected. The double connection is necessary to minimize effects of bond wire resistance with the large total display currents possible.

When operating LED devices at higher temperatures and/or higher supply voltages, the device power dissipation may need to be reduced to prevent excessive chip temperatures. The maximum power dissipation is 1 watt at $25^{\circ} \mathrm{C}$, derated linearly above $35^{\circ} \mathrm{C}$ to 500 mW at $70^{\circ} \mathrm{C}\left(-15 \mathrm{~mW} /{ }^{\circ} \mathrm{C}\right.$ above $35^{\circ} \mathrm{C}$ ). Power dissipation for the device is given by:

$$
P=\left(V_{S U P P}-V_{F L E D}\right)\left(I_{S E G}\right)\left(n_{S E G}\right)
$$

where $\mathrm{V}_{\text {FLED }}$ is the LED forward voltage drop, $\mathrm{I}_{\text {SEG }}$ is segment current, and $n_{\text {SEG }}$ is the number of "on" segments. It is recommended that if the device is to be operated at elevated temperatures the segment current be limited by use of the BRighTness input to keep power dissipation within the limits described above.

[^483]NOTE: All typical values have been characterized but are not tested.


0364-18
Figure 7: Brightness control

## INPUT CONFIGURATIONS AND OUTPUT CODES

The standard devices in the ICM7211/12 family accept a four-bit true binary (ie, positive level=logical one) input at pins 27 thru 30, least significant bit at pin 27 ascending to the most significant bit at pin 30. The ICM7211, ICM7211M, ICM7212, and ICM7212M devices decode this binary input into a seven-segment alphanumeric hexadecimal output, while the ICM7211A, ICM7211AM, ICM7212A, and ICM7212AM decode the binary input into the same sevensegment output as in the ICM7218 "Code B", ie 0-9, dash, E. H, L, P, blank. These codes are shown explicitly in Table 1. Either decoder option will correctly decode true BCD to a seven-segment decimal output.

TABLE 1: Output Codes

| BINARY |  |  |  | HEXADECIMALICM7211ICM7211M | CODE B ICM7211A ICM7212AM |
| :---: | :---: | :---: | :---: | :---: | :---: |
| B3 | B2 | B1 | B 0 |  |  |
| 0 | 0 | 0 | 0 | $\square$ | ? |
| 0 | 0 | 0 | 1 | ' | ' |
| 0 | 0 | 1 | 0 | 2 | - |
| 0 | 0 | 1 | 1 | I' | 3 |
| 0 | 1 | 0 | 0 | -1 | '-' |
| 0 | 1 | 0 | 1 | 5 | ' |
| 0 | 1 | 1 | 0 | E | $E$ |
| 0 | 1 | 1 | 1 | 7 | 7 |
| 1 | 0 | 0 | 0 | 8 | 8 |
| 1 | 0 | 0 | 1 | O | 9 |
| 1 | 0 | 1 | 0 | F | - |
| 1 | 0 | 1 | 1 | $\square$ | $E$ |
| 1 | 1 | 0 | 0 | - | if |
| 1 | 1 | 0 | 1 | - | i- |
| 1 | 1 | 1 | 0. | $E$ | F |
| 1 | 1 | 1 | 1 | : | (BLANK) |

0364-19
These devices are actually mask-programmable to provide any 16 combinations of the seven segment outputs decoded from the four input bits. For large quantity orders custom decoder options can be arranged. Contact the factory for details.

The ICM7211, ICM7211A, ICM7212, and ICM7212A devices are designed to accept multiplexed binary or BCD input. These devices provide four separate digit lines (least
significant digit at pin 31 ascending to most significant digit at pin 34), each of which when taken to a positive level decodes and stores in the output latches of its respective digit the character corresponding to the data at the input port, pins 27 through 30.
The ICM7211M, ICM7211AM, ICM7212M, and ICM7212AM devices are intended to accept data from a data bus under processor control.
In these devices, the four data input bits and the two-bit digit address (DA1 pin 31, DA2 pin 32) are written into input buffer latches when both chip select inputs ( $\overline{\mathrm{CS} 1} \mathrm{pin} 33$, CS2 pin 34) are taken low. On the rising edge of either chip select input, the content of the data input latches is decoded and stored in the output latches of the digit selected by the contents of the digit address latches.

An address of 00 writes into D4, DA2 = 0, DA1 = 1 writes into D3, DA2 $=1$, DA1 $=0$ writes into D2, and 11 writes into D1. The timing relationships for inputting data are shown in Figure 5, and the chip select pulse widths and data setup and hold times are specified under Operating Characteristics.


APPLICATIONS



Figure 10：IM80C48 Microprocessor Interface

## GENERAL DESCRIPTION

The ICM7218 series of universal LED driver systems provide, in a single package, all the circuitry necessary to interface most common microprocessors or digital systems to an LED display. Included on chip are an 8-byte static display memory, 2 types of 7 -segment decoders, multiplex scan circuitry, and high current digit and segment drivers for either common-cathode or common-anode displays.

The ICM7218A and ICM7218B feature 2 control lines (WRITE and MODE) which write either 4 bits of control information (DATA COMING, SHUTDOWN,DECODE, and HEXA/ $\overline{\text { CODE }}$ B) or 8 bits of display input data. Display data is automatically sequenced into the 8 -byte internal memory on successive positive going WRITE pulses. Data may be displayed either directly or decoded in Hexadecimal or Code B formats.

The ICM7218C and ICM7218D feature 2 control lines (WRITE and HEXA/CODE B/SHUTDOWN), 4 separate display data input lines, and 3 digit address lines. Display data is written into the internal memory by setting up a digit address and strobing the WRITE line low. Only Hexadecimal and Code B formats are available for display outputs.

The ICM7218E provides 4 input lines for control information (WRITE, HEXA/CODE B, DECODE and SHUTDOWN), 8 separate display data input lines, and 3 digit address lines. Display data is written into the internal memory by setting up a digit address and strobing the WRITE line. Data may be displayed either directly or decoded in Hexadecimal or Code B formats.

## FEATURES

- Microprocessor Compatible - C, D, E Versions
- Total Circult Integration On Chip Includes:
a) Digit and Segment Drivers
b) All Multiplex Scan Circuitry
c) 8 Byte Static Display Memory
d) 7 Segment Hexadecimal and Code B Decoders (Pin Selectable)
- Output Drive Suitable for Large LED Displays
- Common Anode and Common Cathode Versions
- Single 5 Volt Supply Required
- Data Retention to 2 Volts Supply
- Shutdown Feature - Turns Off Display and Puts Chip Into Low Power Dissipation Mode
- Sequential and Random Access Versions
- Decimal Point Drive On Each Digit

ORDERING INFORMATION

| Part <br> Number | Temperature <br> Range | Package |
| :---: | :---: | :---: |
| ICM7218AIJI | $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ | 28 -PIN CERDIP |
| ICM7218BIJI | $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ | 28 -PIN CERDIP |
| ICM7218CIJI | $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ | 28 -PIN CERDIP |
| ICM7218DIJI | $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ | 28 -PIN CERDIP |
| ICM7218EIJL | $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ | 40 -PIN CERDIP |

## ABSOLUTE MAXIMUM RATINGS

Supply Voltage ( $\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{SS}}$ ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 300 mA
Digit Output Current . . . . . . . . . . . . . . . . . . . . . .
Segment Output Current . . . . . . . . . . . . . . . . . . . . . . . . . . 50mA
Input Voltage
(any terminal) $\ldots \ldots . . . . . . . . V_{S S}-0.3 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$
(Note 1)
NOTE 1: Due to the SCR structure inherent in the CMOS process used to fabricate these devices, connecting any terminal to a voltage greater than $V_{D D}$ or less than $V_{S S}$ may cause destructive device latchup. For this reason it is recommended that no inputs from sources operating on a different power supply be applied to the device before its own supply is established, and when using multiple supply systems the supply to the ICM7218 should be turned on first.
2: These limits refer to the package and will not be obtained during normal operation. Derate above $50^{\circ} \mathrm{C}$ by 25 mW per ${ }^{\circ} \mathrm{C}$.
NOTE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.


0365-4
0365-5
(OUTLINE DRAWING DL)


0365-6

* Note: Pins 5,6,7,10 are under control of Mode pin 9.

Figure 2: Pin Configurations

[^484]| Symbol | Parameter | Test Conditions |  | Min | Typ | Max | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| VSUPPLY | Supply Voltage Range | Operating <br> Power Down Mode |  | $\begin{aligned} & 4 \\ & 2 \end{aligned}$ |  | $\begin{aligned} & 6 \\ & 6 \end{aligned}$ | $\begin{aligned} & v \\ & v \end{aligned}$ |
| 10 | Quiescent Supply Current | Shutdown (Note 3) |  | 6 | 10 | 300 | $\mu \mathrm{A}$ |
| IDD | Operating Supply Current | Common Anode SEGS On SEGS Off Common Cathode SEGS On SEGS Off Note 4 | Outputs Open Circuit |  |  | $\begin{aligned} & 2.5 \\ & 500 \\ & 700 \\ & 500 \end{aligned}$ | mA $\mu \mathrm{A}$ $\mu \mathrm{A}$ $\mu \mathrm{A}$ |
| ${ }^{\text {I DIG }}$ | Digit Drive Current | Common Anode $\mathrm{V}_{\text {out }}=\mathrm{V}_{\mathrm{DD}}-2.0 \mathrm{~V}$ <br> Common Cathode $\mathrm{V}_{\text {out }}=\mathrm{V}_{\mathrm{SS}}+1.0 \mathrm{~V}$ |  | $\begin{gathered} 140 \\ 50 \\ \hline \end{gathered}$ | $\begin{aligned} & 200 \\ & 100 \\ & \hline \end{aligned}$ |  | $\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$ |
| IdLK | Digit Leakage Current | Shutdown Mode <br> Common Anode $\mathrm{V}_{\text {out }}=2 \mathrm{~V}$ <br> Common Cathode $V_{\text {out }}=5 \mathrm{~V}$ |  |  |  | $\begin{array}{r} 100 \\ 100 \end{array}$ | $\mu \mathrm{A}$ <br> $\mu \mathrm{A}$ |
| ISEG | Peak Segment Drive Current | Common Anode $\mathrm{V}_{\text {out }}=\mathrm{V}_{\mathrm{SS}}+1.0 \mathrm{~V}$ Common Cathode $\mathrm{V}_{\text {out }}=\mathrm{V}_{\mathrm{DD}}-2.0 \mathrm{~V}$ |  | $\begin{gathered} 20 \\ -10 \\ \hline \end{gathered}$ | $\begin{gathered} 40 \\ -20 \end{gathered}$ |  | $\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$ |
| IsLK | Segment Leakage Current | Shutdown Mode <br> Common Anode $\mathrm{V}_{\text {out }}=\mathrm{V}_{\mathrm{DD}}$ <br> Common Cathode $\mathrm{V}_{\text {out }}=\mathrm{V}_{\text {SS }}$ |  |  |  | $\begin{aligned} & 100 \\ & 100 \end{aligned}$ | $\mu \mathrm{A}$ <br> $\mu \mathrm{A}$ |
| $\mathrm{f}_{\text {MUX }}$ | Display Scan Rate | Per Digit |  |  | 250 |  | Hz |
| $\begin{aligned} & \mathrm{V}_{\mathrm{IH}} \\ & \mathrm{~V}_{\mathrm{IF}} \\ & \mathrm{~V}_{\mathrm{IL}} \\ & \mathrm{Z}_{\mathrm{IN}} \end{aligned}$ | Three Level Input: Pin 9 ICM7218C/D <br> Logical "1" Input Voltage <br> Floating Input <br> Logical "0" Input Voltage <br> Three Level Input Impedance | Hexadecimal <br> Code B <br> Shutdown <br> Note 3 |  | $\begin{aligned} & 4.5 \\ & 2.0 \end{aligned}$ | 100 | 3.0 0.4 | $\begin{gathered} \mathrm{V} \\ \mathrm{~V} \\ \mathrm{~V} \\ \mathrm{k} \Omega \end{gathered}$ |
| $\begin{aligned} & \mathrm{V}_{\mathrm{IH}} \\ & \mathrm{~V}_{\mathrm{IL}} \end{aligned}$ | Logical "1" Input Voltage Logical "0" Input Voltage |  |  | 3.5 |  | 0.8 | $\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$ |
| ${ }_{\text {twL }}$ | Write Pulse Width (Low) | 7218A, B |  | 550 | 400 |  | ns |
| twL | Write Puise Width (Low) | 7218C, D, E |  | 400 | 250 |  | ns |
| $t_{\text {MH }}$ | Mode Hold Time | 7218A, B |  | 150 |  |  | ns |
| $t_{\text {MS }}$ | Mode Set Up Time | 7218A, B |  | 500 |  |  | ns |
| tos | Data Set Up Time | $\begin{array}{\|l\|} \hline 7218 \text { A,B } \\ 7218 \mathrm{C}, \mathrm{D}, \mathrm{E} \\ \hline \end{array}$ |  | 500 |  |  | ns |
| $t_{\text {DH }}$ | Data Hold Time |  |  | $\begin{gathered} 50 \\ 125 \\ \hline \end{gathered}$ |  |  | ns <br> ns |
| $t_{A S}$ $t_{A H}$ | Digit Address Set Up Time Digital Address Hold Time | ICM7218C, D, E ICM7218C, D, E |  | $\begin{gathered} 500 \\ 0 \\ \hline \end{gathered}$ |  |  | $\begin{aligned} & \text { ns } \\ & \text { ns } \\ & \hline \end{aligned}$ |
| $Z_{\text {IN }}$ | Data Input Impedance | 5-10 pF Gate Capacitance |  |  | $10^{10}$ |  | Ohms |

[^485]
## TABLE 1: INPUT DEFINITIONS ICM7218A and B

| Input |  | Terminal | Logic Level | Function |
| :---: | :---: | :---: | :---: | :---: |
| WRITE |  | 8 | High Low | Input Not Loaded Into Memory Input Loaded Into Memory |
| MODE |  | 9 | High <br> Low | Load Control bits on Write Pulse Load Input Data on Write Pulse |
| ID4 SHUTDOWN | MODE <br> High | 10 | High Low | Normal Operation <br> Shutdown (Oscillator, Decoder and Display Disabled) |
| ID5 ( $\overline{\mathrm{DECODE}})$ |  | 6 | High Low | No Decode Decode |
| ID6 (HEXA/CODE B |  | 5 | High Low | Hexadecimal Decoding Code B Decoding |
| ID7 (DATA COMING) |  | 7 | High <br> Low | $\left.\begin{array}{l}\text { Data Coming } \\ \text { No Data Coming }\end{array}\right\}$ Control Word |
| ID0-ID7 | MODE <br> Low | $\begin{gathered} 11,12,13,14 \\ 5,6,10,7 \end{gathered}$ |  | Display Data Inputs (Notes 4, 5) |

TABLE 2: INPUT DEFINITIONS ICM7218C and D

| Input | Terminal | Logic <br> Level | Function |
| :--- | :---: | :---: | :--- |
| WRITE | 8 | High <br> Low | Input Not Loaded Into Memory <br> Input Loaded Into Memory |
| HEXA/CODE B/SHUTDOWN | 9 | High <br> Floating <br> Low | Hexadecimal Decoding <br> Code B Decoding <br> Shutdown (Oscillator, Decoder and Display Disabled) |
| DAO -DA2 | $10,6,5$ |  | Digit Address Inputs |
| IDO -ID3 <br> ID (INPUT D.P.) | $14,13,11,12$ <br> 7 |  | Display Data Inputs <br> Decimal Point Input |

NOTE 3: In the ICM7218C and D (random access versions) the HEXA/CODE B/SHUTDOWN Input (Pin 9) has internal biasing resistors to hold it at $V_{D D} / 2$ when Pin 9 is open circuited. These resistors consume power and result in a quiscent supply current ( $\mathrm{l}_{\mathrm{Q}}$ ) of typically $50 \mu \mathrm{~A}$.
The ICM7218A, B, and E devices do not have these biasing resistors and thus are not subject to this condition.
4: ID0-ID3 = Don't care when writing control data
ID4-ID6 = Don't care when writing Hex/Code B data ID7 = Decimal Point data
(The display blanks on ICM7218A/B versions when writing in data)
5: In the No Decode format, "Ones" represents "on" segments for all inputs except for the Decimal Point, where "Zero" represents an "on" segment, (i.e. segments are positive true, decimal point is negative true).
6: Common Anode segment drivers and Common Cathode Digit Drivers have 20k $\Omega$ pullup resistors.

[^486]TABLE 3: INPUT DEFINITIONS ICM7218E

| Input | Terminal | Logic Level | Function |
| :---: | :---: | :---: | :---: |
| WRITE | 9 | High <br> Low | Input Latches Not Updated Input Latches Updated |
| SHUTDOWN | 10 | High <br> Low | Normal Operation <br> Shutdown (Oscillator, Decoder and Displays Disabled) |
| $\overline{\text { DECODE }}$ | 33 | High Low | No Decode Decode |
| HEXA/CODE B | 32 | High Low | Code B Decoding Hexadecimal Decoding |
| DAO - DA2 <br> Digit Address $(0,1,2)$ | 13,14,12 |  | Digit Address Inputs |
| $\begin{aligned} & \text { ID0 - ID6 } \\ & \text { ID7 (INPUT D.P.) } \end{aligned}$ | $\begin{gathered} 17,16,18,19,11,7,6 \\ 8 \\ \hline \end{gathered}$ |  | Display Data Inputs (Note 5) Display Data/Decimal Point Input |



## Figure 3: Multiplex Timing

## DETAILED DESCRIPTION



Figure 4: Segment Assignments

## DECODE Operation

For the ICM7218A/B/E products, there are 3 input data formats possible; either direct segment and decimal point information ( 8 bits per digit) or two Binary code plus decimal point information (Hexadecimal/Code $B$ formats with 5 bits per digit).

[^487]The 7 segment decoder on chip is disabled when direct segment information is to be written. In this format, the inputs directly control the outputs as follows:
Input Data:
ID7 ID6 ID5 ID4 ID3 ID2 ID1 ID0

Output Segments: D.P. a b c e g f d
Here, "Ones" represent "on" segments for all inputs except the Decimal Point. For the Decimal Point "zero" represents an "on" segment.

## HEXAdecimal/CODE B Decoding

For all products, a choice of either HEXA or Code B decoding may be made, HEXA decoding provides 7 segment numeric plus six alpha characters while Code B provides a negative sign ( - ), a blank (for leading zero blanking), certain useful alpha characters and all numeric formats.

The four bit binary code is set up on inputs ID3-ID0, and decimal point data is set up on ID7.

| Decimal | 0123456789101112131415 |
| :---: | :---: |
| HEXA CODE | 0123456789 A b C d E F |
| CODE B | 0123456789-E H L P (BLANK) |

## SHUTDOWN

SHUTDOWN performs several functions: it puts the device into a very low dissipation mode (typically $10 \mu \mathrm{~A}$ at $V_{D D}=5 \mathrm{~V}$ ), turns off both the digit and segment drivers, and stops the multiplex scan oscillator (this is the only way the scan oscillator can be disabled). However, it is still possible to input data to the memory during shutdown - only the display output sections of the device are disabled in this mode.

## Powerdown

In the Shutdown Mode, the supply voltage may be reduced to 2 volts without data in memory being lost. However, data should not be written into memory if the supply voltage is less than 4 volts.

## Output Drive

The common anode output drive is approximately 200 mA per digit at a $12 \%$ duty cycle. With segment peak drive current of 40 mA typically, this results in 5 mA average drive. The common cathode drive capability is approximately one half that of the common anode drive. If high impedance LED displays are used, the drive current will be correspondingly less.

## Inter Digit Blanking

A blanking time of approximately $10 \mu \mathrm{~s}$ occurs between digit strobes. This ensures that the segment information is correct before the next digit drive, thereby avoiding display ghosting.

## Driving Larger Displays

If a higher average drive current per digit is required, it is possible to connect digit drive outputs together. For example, by paralleling pairs of digit drives together to drive a 4 digit display, 5 mA average segment drive current can be obtained.

## Power Dissipation Considerations

Assuming common anode drive at $\mathrm{V}_{\mathrm{DD}}=5$ volts and all digits on with an average of 5 segments driven per digit, the average current would be approximately 200 mA . Assuming a 1.8 volt drop across the LED display, there will be a 3.2 volt drop across the ICM7218. The device power dissipation will therefore be 640 mW , rising to about 900 mW , for all ' 8 ' 's displayed. Caution: Position device in system such that air can flow freely to provide maximum cooling. The common cathode dissipation is approximately one half that of the common anode dissipation.

## Sequential Addressing Considerations (ICM7218A/B)

The control instructions are read from the input bus lines if MODE is high and WRITE low. The instructions occur on 4 lines and are - $\overline{\mathrm{DECODE}} / \mathrm{no}$ Decode, type of Decode (if desired), SHUTDOWN/no Shutdown and DATA COMING/ not Coming. After the control word has been written (with the Data Coming instruction), display data can be written into memory with each successive negative going WRITE pulse. After all 8 digit memory locations have been written to, additional transitions of the WRITE input are ignored until a new control word is written. It is not possible to change one individual digit without refreshing the data for all the other digits.

## Random Access Input Drive Considerations (ICM7218C/D/E)

Control instructions are provided to the ICM7218C/D by a single three level input terminal (Pin 9), which operates independently of the WRITE pulse. The ICM7218E control instructions are also independent but are on three separate pins ( $10,32,33$ ).
Data can be written into memory on the ICM7218C/D/E by setting up a 3 bit binary code (one of eight) on the digit address inputs and applying a low level to the WRITE pin. For example, it is possible to change only digit 7 without altering the data for the other digits. (See Figure 7).

## Supply Capacitor

A $0.1 \mu \mathrm{~F}$ capacitor is recommended between $\mathrm{V}_{\mathrm{DD}}$ and $\mathrm{V}_{\mathrm{SS}}$ to bypass multiplex noise.


Figure 5: Timing Diagram for ICM7218A/B


Figure 6: Load Sequence ICM7218A/B



Figure 8: Test Circuits (\#1)


INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. the warranty shall be exclusive and shall be in lieu of all other warranties, express, implied or statutory, including the implied warranties of MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.
NOTE: All typical values have been characterized but are not tested.


COMMON CATHODE DIGIT DRIVER


COMMON ANODE SEG. DRIVER
ISEG. vs. Vout


COMMON CATHODE SEG. DRIVER


COMMON ANODE DIGIT DRIVER


0365-16
COMMON CATHODE DIGIT DRIVER


0365-18


Figure 10: 8 Digit Microprocessor Display

[^488]APPLICATION EXAMPLES 8 DIGIT MICROPROCESSOR DISPLAY APPLICATION

Figure 10 shows a display interface using the ICM7218A/ B with an 8048 family microcontroller. The 8 bit data bus (DB0/DB7-ID0/ID7) transfers control and data information to the 7218 display interface on successive WRITE pulses. The MODE input to the 7218 is connected to one of the I/O port pins on the microcontroller. When MODE is high a control word is transferred; when MODE is low data is transfered. Sequential locations in the 8-byte static memory are automatically loaded on each successive WRITE pulse. After eight WRITE pulses have occurred, further pulses are ignored until a new control word is transferred. (See Figure 6). This also allows writing to other peripheral devices without disturbing the ICM7218A/B.

## 16 DIGIT MICROPROCESSOR DISPLAY

In this application (see Figure 11), both ICM7218's are addressed simultaneously with a 3 bit word, DA2-DAO. Dis-
play data from the 8048 I/O bus (DB7-DBO) is transferred to both ICM7218's simultaneously.

The display digits from both ICM7218's are interleaved to allow adjacent pairs of digits to be loaded simultaneously from a single 8 bit data bus.

Decimal point information is supplied to the ICM7218's from the processor on port lines P26 and P27.

## NO DECODE APPLICATION

The ICM7218 can also be used as a microprocessor based LED status panel driver. The microprocessor selected control word must include "No Decode" and "Data Coming". The processor writes "Ones" and "Zeroes" into the ICM7218 which in turn directly drives appropriate discrete LEDs. LED indicators can be red or green ( 8 segments $\times 8$ digits $=64$ dots $\div 2$ per red or green $=32$ channels).


0365-21
Figure 11: 16 Digit Display

[^489]
## GENERAL DESCRIPTION

The ICM7228 series of universal LED driver systems provide, in a single package, all the circuitry necessary to interface most common microprocessors or digital systems to an LED display. Included on chip are an 8-byte static display memory, 2 types of 7 -segment decoders, multiplex scan circuitry, and high current digit and segment drivers for either common-cathode or common-anode displays.
The ICM7228A and ICM7228B feature 2 control lines (WRITE and MODE) which write either 4 bits of control information (DATA COMING, SHUTDOWN, DECODE, and HEXA/ $\overline{C O D E ~ B}$ ) or 8 bits of display input data. Display data is automatically sequenced into the 8 -byte internal memory on successive positive going WRITE pulses. Data may be displayed either directly or decoded in Hexadecimal or Code B formats.
The ICM7228C and ICM7228D feature 2 control lines (WRITE and HEXA/CODE B/SHUTDOWN), 4 separate display data input lines, and 3 digit address lines. Display data is written into the internal memory by setting up a digit address and strobing the WRITE line low. Only Hexadecimal and Code B formats are available for display outputs.

## FEATURES

- Microprocessor Compatible
- Total Circuit Integration On Chip Includes:
(a) Digit and Segment Drivers
(b) All Multiplex Scan Circuitry
(c) 8 Byte Static Display Memory
(d) 7 Segment Hexadecimal and Code B Decoders (Pin Selectable)
- Output Drive Suitable for Large LED Displays
- Common Anode and Common Cathode Versions
- Single 5V Supply Required
- Data Retention to 2V Supply
- Shutdown Feature-Turns Off Display and Puts Chip into Low Power Dissipation Mode
- Sequential and Random Access Versions
- Decimal Point Drive On Each Digit
- Non-Overlapping Digit Strobe


## ORDERING INFORMATION

| Part <br> Number | Temperature <br> Range | Package |
| :---: | :---: | :---: |
| ICM7228AIJI | $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ | 28 -Pin CERDIP |
| ICM7228BIJI | $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ | 28 -Pin CERDIP |
| ICM7228CIJI | $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ | 28 -Pin CERDIP |
| ICM7228DIJI | $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ | 28 -Pin CERDIP |
| ICM7228AIPI | $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ | 28 -Pin Plastic DIP |
| ICM7228BIPI | $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ | 28 -Pin Plastic DIP |
| ICM7228CIPI | $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ | 28 -Pin Plastic DIP |
| ICM7228DIPI | $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ | 28 -Pin Plastic DIP |ABSOLUTE MAXIMUM RATINGSSupply Voltage ( $\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{SS}}$ ) . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 V

Digit Output Current ..... 500 mA
Segment Output Current ..... 100 mA
Input Voltage
(any terminal) $\ldots\left(\mathrm{V}_{\mathrm{SS}}-0.3 \mathrm{~V}\right)$ to $\left(\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}\right)($ Note 1)
Power Dissipation n. .1.5W (Note 2)
Operating Temperature Range

$\qquad$

        \(-40^{\circ} \mathrm{C}\) to \(+85^{\circ} \mathrm{C}\)
    Storage Temperature Range . . . . . . . . . . . $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec )
$300^{\circ} \mathrm{C}$

NOTE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

NOTE 1: Due to the SCR structure inherent in the CMOS process used to fabricate these devices, connecting any terminal to a voltage greater than $V_{D D}$ or less than $V_{S S}$ may cause destructive device latchup. For this reason it is recommended that no inputs from sources operating on a different power supply be applied to the device before its own supply is established, and when using multiple supply systems the supply to the ICM728 should be turned on first.

2: These limits refer to the package and will not be obtained during normal operation. Derate above $50^{\circ} \mathrm{C}$ by 25 mW per ${ }^{\circ} \mathrm{C}$.


[^490]

ELECTRICAL CHARACTERISTICS $\quad V_{D D}=5.0 \mathrm{~V} \pm 10 \%, V_{S S}=0 \mathrm{~V}$

| Symbol | Parameter | Test Conditions | $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ |  |  | $-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}$ |  |  | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Min | Typ | Max | Min | Typ | Max |  |
| V SUPPLY | Supply Voltage Range | Operating | 4 |  | 6 | 4 |  | 6 | V |
|  |  | Power Down Mode | 2 |  |  | 2 |  |  |  |
| $\mathrm{I}_{0}$ | Quiescent Supply Current | Shutdown, 7228A, 7228B |  | 1 | 100 |  | 1 | 100 | $\mu \mathrm{A}$ |
|  |  | Shutdown, 7228C, 7228D |  | 2.5 | 100 |  | 2.5 | 100 |  |
| IDD | Operating Supply Current | Common Anode <br> Segments = ON <br> Outputs = OPEN |  | 200 | 450 |  | 200 | 450 | $\mu \mathrm{A}$ |
|  |  | Common Anode <br> Segments = OFF <br> Outputs = OPEN |  | 100 | 450 |  | 100 | 450 |  |
|  |  | Common Cathode <br> Segments $=$ ON <br> Outputs = OPEN |  | 250 | 450 |  | 250 | 450 |  |
|  |  | Common Cathode <br> Segments = OFF <br> Outputs = OPEN |  | 175 | 450 |  | 175 | 450 |  |
| IJIG | Digit Drive Current | Common Anode $V_{O U T}=V_{D D}-2.0 V$ | 200 |  |  | 175 |  |  | mA |
|  |  | Common Cathode $V_{\mathrm{OUT}}=\mathrm{V}_{\mathrm{SS}}+1.0 \mathrm{~V}$ | 50 |  |  | 40 |  |  |  |
| IDLK | Digit Leakage Current | Shutdown Mode <br> Common Anode $\mathrm{V}_{\text {OUT }}=2.0 \mathrm{~V}$ |  | 1 | 100 |  | 1 | 100 | $\mu \mathrm{A}$ |
|  |  | Shutdown Mode <br> Common Cathode $\mathrm{V}_{\text {OUT }}=5.0 \mathrm{~V}$ |  | 1 | 100 |  | 1 | 100 |  |
| ISEG | Peak Segment Drive Current | Common Anode $\mathrm{V}_{\mathrm{OUT}}=\mathrm{V}_{\mathrm{SS}}+1.0 \mathrm{~V}$ | 20 | 25 |  | 20 |  |  | mA |
|  |  | Common Cathode $V_{O U T}=V_{D D}-2.0 \mathrm{~V}$ | 10 | 12 |  | 10 |  |  |  |
| ISLK | Segment Leakage Current | Shutdown Mode Common Anode $\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\mathrm{DD}}$ |  | 1 | 50 |  | 1 | 50 | $\mu \mathrm{A}$ |
|  |  | Shutdown Mode <br> Common Cathode $\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\text {SS }}$ |  | 1 | 50 |  | 1 | 50 |  |
| IIL | Input Leakage Current | All Inputs Except Pin 9 7228C, 7228D $\mathrm{V}_{\text {IN }}=\mathrm{V}_{\mathrm{SS}}$ |  |  | 1 |  |  | 1 | $\mu \mathrm{A}$ |
|  |  | All Inputs Except Pin 9 7228C, 7228D VIN $=5.0 \mathrm{~V}$ |  |  | -1 |  |  | -1 |  |
| $\mathrm{f}_{\text {MUX }}$ | Display Scan Rate | Per Digit | 125 | 150 |  | 80 |  |  | Hz |
| $\mathrm{t}_{\text {IDB }}$ | Inter-Digit Blanking Time |  | 2 | 10 |  | 2 |  |  | $\mu \mathrm{S}$ |
| $\mathrm{V}_{\text {INH }}$ | Logical "1" Input Voltage | Three Level Input: Pin 9 7228C, 7228D Hexadecimal $V_{D D}=5 \mathrm{~V}$ | 4.2 |  |  | 4.2 |  |  | V |

[^491]| Symbol | Parameter | Test Conditions | $\mathrm{T}_{A}=25^{\circ} \mathrm{C}$ |  |  | $-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}$ |  |  | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Min | Typ | Max | Min | Typ | Max |  |
| $\mathrm{V}_{\text {INF }}$ | Floating Input | Three Level Input: Pin 9 7228C, 7228D Code B $V_{D D}=5 \mathrm{~V}$ | 2.0 |  | 3.0 | 2.0 |  | 3.0 | V |
| $\mathrm{V}_{\text {INL }}$ | Logical "0" Input Voltage | Three Level Input: Pin 9 7228C, 7228D Shutdown $V_{D D}=5 \mathrm{~V}$ |  |  | 0.8 |  |  | 0.8 | V |
| $\mathrm{Z}_{\mathrm{IN}}$ | Three Level Input Impedance | $\begin{aligned} & V_{C C}=5 \mathrm{~V} \\ & \text { Pin } 9 \text { of } 7228 \mathrm{C} \& 7228 \mathrm{D} \end{aligned}$ | 50 |  |  | 50 |  |  | k $\Omega$ |
| $\mathrm{V}_{\mathrm{IH}}$ | Logical "1" Input Voltage | All Inputs Except <br> Pin 9 of 7228C, 7228D $V_{D D}=5 V$ | 2.0 |  |  | 2.0 |  |  | V |
| $\mathrm{V}_{\text {IL }}$ | Logical "0" Input Voltage |  |  |  | 0.8 |  |  | 0.8 |  |

AC ELECTRICAL CHARACTERISTICS $\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{IL}}=0.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{IH}}=2.4 \mathrm{~V}$

| Symbol | Parameter | Test Conditions | $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ |  |  | $-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}$ |  |  | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Min | Typ | Max | Min | Typ | Max |  |
| twL | Write Pulsewidth (Low) |  | 200 | 100 |  | 250 |  |  | ns |
| $t_{\text {WH }}$ | Write Pulsewidth (High) |  | 850 | 540 |  | 1200 |  |  | ns |
| $\mathrm{t}_{\mathrm{MH}}$ | Mode Hold Time | 7228A, 7228B | 0 | -65 |  | 0 |  |  | ns |
| $t_{\text {MS }}$ | Mode Setup Time | 7228A, 7228B | 250 | 150 |  | 250 |  |  | ns |
| $t_{\text {DS }}$ | Data Setup Time |  | 250 | 160 |  | 250 |  |  | ns |
| $\mathrm{t}_{\mathrm{DH}}$ | Data Hold Time | 72.28A, 7228B | 0 | -60 |  | 0 |  |  | ns |
|  |  | 7228C, 7228D | 0 | -60 |  | 0 |  |  | ns |
| $t_{\text {AS }}$ | Digit Address Setup Time | 7228C, 7228D | 250 | 110 |  | 250 |  |  | ns |
| $t_{\text {AH }}$ | Digit Address Hold Time | 7228C, 7228D | 0 | -60 |  | 0 |  |  | ns |

[^492]TABLE 1：INPUT DEFINITIONS ICM7228A AND B

| Input |  | Terminal | Logic Level | Function |
| :---: | :---: | :---: | :---: | :---: |
| WRITE |  | 8 | High Low | Input Not Loaded into Memory Input Loaded into Memory |
| MODE |  | 9 | High Low | Load Control Bits on Write Pulse Load Input Data on Write Pulse |
| ID4 SHUTDOWN | MODE High | 10 | High <br> Low | Normal Operation <br> Shutdown（Oscillator，Decoder and Display Disabled） |
| ID5（ $\overline{\text { DECODE }}$ ） |  | 6 | High Low | No Decode Decode |
| ID6（HEXA／$\overline{\text { CODE }}$ ） |  | 5 | High Low | Hexadecimal Decoding Code B Decoding |
| ID7（DATA COMING） |  | 7 | High <br> Low |  |
| ID0－ID7 | $\begin{gathered} \text { MODE } \\ \text { Low } \end{gathered}$ | $\begin{gathered} 11,12,13,14 \\ 5,6,10,7 \\ \hline \end{gathered}$ |  | Display Data Inputs（Notes 4，5） |

TABLE 2：INPUT DEFINITIONS ICM7228C AND D

| Input | Terminal | Logic <br> Level | Function |
| :--- | :---: | :---: | :--- |
| WRITE | 8 | High <br> Low | Input Not Loaded into Memory <br> Input Loaded into Memory |
| HEXA／CODE B／SHUTDOWN | 9 | High <br> Floating <br> Low | Hexadecimal Decoding <br> Code B Decoding <br> Shutdown（Oscillator，Decoder and Display Disabled） |
| DA0－DA2 | （Note 3） | $10,6,5$ |  |
| Digit Address Inputs <br> ID0－ID3 <br> ID7（Input D．P．） | $14,13,11,12$ <br> 7 |  | Display Data Inputs <br> Decimal Point Input |

NOTE 3：In the ICM7228C and D（random access versions）the HEXA／CODE B／SHUTDOWN Input（Pin 9）has internal biasing resistors to hold it at $\mathrm{V}_{\mathrm{DD}} / 2$ when Pin 9 is open circuited．These resistors consume power and result in a quiescent supply current（ $\mathrm{l}_{\mathrm{Q}}$ ）of typically $50 \mu \mathrm{~A}$ ． The ICM7228A，B devices do not have these biasing resistors and thus are not subject to this condition．

4：ID0－ID3＝Don＇t care when writing control data
ID4－ID6 $=$ Don＇t care when writing Hex／Code B data
ID7＝Decimal point data
（The display blanks on ICM7228A／B versions when writing in data）
5：In the No Decode format，＂Ones＂represent＂on＂segments for all inputs except for the Decimal Point where＂Zero＂represents an＂on＂segment（i．e．， segments are positive true，decimal point is negative true）．



0086－7
Figure 4：Segment Assignments

## DETAILED DESCRIPTION

## DECODE Operation

For the ICM7228A／B products，there are 3 input data for－ mats possible；either direct segment and decimal point in－ formation（ 8 bits per digit）or two Binary code plus decimal point information（Hexadecimal／Code B formats with 5 bits per digit）．

The 7 segment decoder on chip is disabled when direct segment information is to be written．In this format，the in－ puts directly control the outputs as follows：

Input Data：ID7 ID6 ID5 ID4 ID3 ID2 ID1 ID0
Output Segments：D．P．a b c e g f d
Here，＂Ones＂represent＂on＂segments for all inputs ex－ cept the Decimal Point．For the Decimal Point＂Zero＂repre－ sents an＂on＂segment．

## HEXAdecimal／CODE B Decoding

For all products，a choice of either HEXA or Code B de－ coding may be made，HEXA decoding provides 7 segment numeric plus six alpha characters while Code B provides a negative sign（ - ），a blank（for leading zero blanking），cer－ tain useful alpha characters and all numeric formats．

The four bit binary code is set up on inputs ID3－ID0，and decimal point data is set up on ID7．

| Deci－ <br> mal | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| HEXA <br> CODE | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | $A$ | $b$ | $C$ | $d$ | $E$ |  | $F$ |
| CODE <br> $B$ | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | - | $E$ | $H$ | $L$ | $P$ | （Blank） |  |

## SHUTDOWN

SHUTDOWN performs several functions：it puts the de－ vice into a very low dissipation mode（typically $1 \mu \mathrm{~A}$ at $V_{D D}=5 \mathrm{~V}$ ），turns off both the digit and segment drivers， and stops the multiplex scan oscillator（this is the only way the scan oscillator can be disabled）．However，it is still pos－ sible to input data to the memory during shutdown－only the display output sections of the device are disabled in this mode．

## Powerdown

In the Shutdown Mode，the supply voltage may be re－ duced to 2 volts without data in memory being lost．Howev－ er，data should not be written into memory if the supply voltage is less than 4 volts．

## Output Drive

The common anode output drive is approximately 200 mA per digit at a $12 \%$ duty cycle．With segment peak drive cur－ rent of 40 mA typically，this results in 5 mA average drive． The common cathode drive capability is approximately one half that of the common anode drive．If high impedance LED displays are used，the drive current will be correspond－ ingly less．

## Inter Digit Blanking

A blanking time of $2 \mu \mathrm{~s}$ minimum, $10 \mu \mathrm{~s}$ typical occurs between digit strobes. This ensures that the segment information is correct before the next digit drive, thereby avoiding display ghosting.

## Driving Larger Displays

If a higher average drive current per digit is required, it is possible to connect digit drive outputs together. For example, by paralleling pairs of digit drives together to drive a 4 digit display.

## Power Dissipation Considerations

Assuming common anode drive at $\mathrm{V}_{\mathrm{DD}}=5$ volts and all digits on with an average of 5 segments driven per digit, the average current would be approximately 200 mA . Assuming a 1.8 volt drop across the LED display, there will be a 3.2 volt drop across the ICM7228. The device power dissipation will therefore be 640 mW , rising to about 900 mW , for all " 8 "s displayed. Caution: Position device in system such that air can flow freely to provide maximum cooling. The common cathode dissipation is approximately one half that of the common anode dissipation.

## Sequential Addressing Considerations (ICM7228A/B)

The control instructions are read from the input bus lines if MODE is high and WRITE low. The instructions occur on 4 lines and are - $\overline{\mathrm{DECODE}} / \mathrm{no}$ Decode, type of Decode (if desired), SHUTDOWN/no Shutdown and DATA COMING/ not Coming. After the control word has been written (with the Data Coming instruction), display data can be written into memory with each successive negative going WRITE pulse. After all 8 digit memory locations have been written to, additional transitions of the WRITE input are ignored until a new control word is written. It is not possible to change one individual digit without refreshing the data for all the other digits.

## Random Access Input Drive Considerations (ICM7228C/D)

Control instructions are provided to the ICM7228C/D by a single three level input terminal (Pin 9), which operates independently of the WRITE pulse.

Data can be written into memory on the ICM7228C/D by setting up a 3 bit binary code (one of eight) on the digit address inputs and applying a low level to the WRITE pin. For example, it is possible to change only digit 7 without altering the data for the other digits. (See Figure 7.)

## Supply Capacitor

A $0.1 \mu \mathrm{~F}$ capacitor is recommended between $\mathrm{V}_{\mathrm{DD}}$ and $V_{S S}$ to bypass multiplex noise.



Figure 7: Timing Diagram for ICM7228C/D


[^493]

[^494]TYPICAL PERFORMANCE CHARACTERISTICS



0086-17
Figure 10: 8 Digit Microprocessor Display

## APPLICATION EXAMPLES

## 8 Digit Microprocessor Display Application

Figure 10 shows a display interface using the ICM7228A/ B with an 8048 family microcontroller. The 8 bit data bus (DB0/DB7-ID0/ID7) transfers control and data information to the 7228 display interface on successive WRITE pulses. The MODE input to the 7228 is connected to one of the I/O port pins on the microcontroller. When MODE is high a control word is transferred; when MODE is low data is transferred. Sequential locations in the 8-byte static memory are automatically loaded on each successive WRITE pulse. After eight WRITE pulses have occurred, further pulses are ignored until a new control word is transferred (see Figure 6 ). This also allows writing to other peripheral devices without disturbing the ICM7228A/B.

## 16 Digit Microprocessor Display

In this application (see Figure 11), both ICM7228's are addressed simultaneously with a 3 bit word, DA2-DAO.

Display data from the 8048 I/O bus (DB7-DB0) is transferred to both ICM7228's simultaneously.

The display digits from both ICM7228's are interleaved to allow adjacent pairs of digits to be loaded simultaneously from a single 8 bit data bus.

Decimal point information is supplied to the ICM7228's from the processor on port lines P26 and P27.

## No Decode Application

The ICM7228 can also be used as a microprocessor based LED status panel driver. The microprocessor selected control word must include "No Decode" and "Data Coming". The processor writes "Ones" and "Zeroes" into the ICM7228 which in turn directly drives appropriate discrete LEDs. LED indicators can be red or green ( 8 segments $\times 8$ digits $=64$ dots $\div 2$ per red or green $=32$ channels).

[^495][^496]
# ICM7231-ICM7233 <br> Numeric/Alphanumeric Triplexed LCD Display Driver 

## GENERAL DESCRIPTION

The ICM7231-7233 family of integrated circuits are designed to generate the voltage levels and switching waveforms required to drive triplexed liquid-crystal displays. These chips aiso include input buffer and digit address decoding circuitry allowing six bits of input data to be decoded into 64 independent combinations of the output segments of the selected digit.

The family is designed to interface to modern high performance microprocessors and microcomputers and ease system requirements for ROM space and CPU time needed to service a display.

## FEATURES

- ICM7231: Drives 8 Digits of 7 Segments With Two Independent Annunciators Per Digit Address and Data Input in Parallel Format
- ICM7232: Drives 10 Digits of 7 Segments With Two Independent Annunciators Per Digit Address and Data Input in Serial Format
- ICM7233: Drives 4 Characters of 18 Segments Address and Data Input in Parallel Format
- All Signals Required to Drive Rows and Columns of Triplexed LCD Display Are Provided
- Display Voltage Independent of Power Supply
- On-Chip Oscillator Provides All Display Timing
- Total Power Consumption Typically $200 \mu \mathrm{~W}$, Maximum $500 \mu \mathrm{~W}$ at 5 V
- Low-Power Shutdown Mode Retains Data With $5 \mu$ W Typical Power Consumption at $5 \mathrm{~V}, 1 \mu \mathrm{~W}$ at 2 V
- Direct Interface to High-Speed Microprocessors

| Part Number | Temperature <br> Range | Package |
| :--- | :--- | :--- |
| ICM7232CRIJL | $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ | 40 pin CERDIP |
| ICM7232CRIPL | $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ | 40 pin PLASTIC Dip |
| ICM7233AEV/KIT |  | Evaluation Kit. |
| ICM7233AFIJL | $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ | 40 pin CERDIP |
| ICM7233AFIPL | $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ | 40 pin PLASTIC Dip |
| ICM7233BFIPL | $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ | 40 pin PLASTIC Dip |
| ICM7233BFIJL | $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ | 40 pin CERDIP |



Figure 1：ICM7231 Functional Diagram


0366－2
Figure 2：ICM7232 Functional Diagram

[^497]NOTE：All typical values have been characterized but are not tested．


[^498]
## ABSOLUTE MAXIMUM RATINGS



Power Dissipation[1]
0.5 W @ $70^{\circ} \mathrm{C}$

Operating Temperature Range $\ldots . . . . .-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature Range $\ldots \ldots \ldots . .-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10sec)
Notes: 1. This limit refers to that of the package and will not be obtained during normal operation.
2. Due to the SCR structure inherent in these devices, connecting any display terminal or the display voltage terminal to a voltage outside the power supply to the chip may cause destructive device latchup. The digital inputs should never be connected to a voltage less than - 0.3 volts below ground, but may be connected to voltages above $\mathrm{V}_{\mathrm{DD}}$ but not more than 6.5 volts above $\mathrm{V}_{\mathrm{SS}}$.
NOTE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.


## ELECTRICAL CHARACTERISTICS $\quad\left(\mathrm{V}^{+}=5 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{SS}}=\mathrm{OV}, \mathrm{T}_{\mathrm{A}}=-25^{\circ} \mathrm{C}\right.$ to $+85^{\circ} \mathrm{C}$ unless otherwise

 specified)| Symbol | Parameter | Test Conditions/Description | Min | Typ | Max | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $V_{D D}$ | Power Supply Voltage |  | 4.5 | >4 | 5.5 | V |
| $V_{D D}$ | Data Retention Supply Voltage | Guaranteed Retention at 2V | 2 | 1.6 |  | V |
| ID | Logic Supply Current | Current from $V_{D D}$ to Ground excluding Display. $\mathrm{V}_{\mathrm{DISP}}=2 \mathrm{~V}$ |  | 30 | 100 | $\mu \mathrm{A}$ |
| Is | Shutdown Total Current | $V_{\text {DISP }}$ Pin 2 Open |  | 1 | 10 | $\mu \mathrm{A}$ |
| $\mathrm{V}_{\text {DISP }}$ | Display Voltage Range | $\mathrm{V}_{\text {SS }} \leq \mathrm{V}_{\text {DISP }} \leq \mathrm{V}_{\text {DD }}$ | 0 |  | $\mathrm{V}_{\mathrm{DD}}$ | V |
| ${ }^{\text {DISP }}$ | Display Voltage Setup Current | $\begin{aligned} & V_{\text {DISP }}=2 V \text { Current from } V_{D D} \text { to } \\ & V_{\text {DISP }} \text { On-Chip } \end{aligned}$ |  | 15 | 30 | $\mu \mathrm{A}$ |
| R ${ }_{\text {DISP }}$ | Display Voltage Setup Resistor Value | One of Three Identical Resistors in String | 40 | 75 |  | k $\Omega$ |
|  | DC Component of Display Signals | (Sample Test only) |  | $1 / 4$ | 1 | $\%\left(V_{D D}-V_{\text {DISP }}\right)$ |
| foISP | Display Frame Rate | See Figure 6 | 60 | 90 | 120 | Hz |
| $\mathrm{V}_{\mathrm{IL}}$ | Input Low Level | ICM7231, ICM7233 Pins 30-35, 37-39, 1 <br> ICM7232, Pins 1, 38, 39 (Note 1) |  |  | 0.8 | V |
| $\mathrm{V}_{\mathrm{IH}}$ | Input High Level |  | 2.0 |  |  | V |
| IILK | Input Leakage |  |  | 0.1 | 1 | $\mu \mathrm{A}$ |
| $\mathrm{C}_{\mathrm{IN}}$ | Input Capacitance |  |  | 5 |  | pF |
| $\mathrm{V}_{\text {OL }}$ | Output Low Level | Pin 37, 1 ICM 7232 , $\mathrm{I}_{\mathrm{OL}}=1 \mathrm{~mA}$,$\mathrm{V}_{\mathrm{DD}}=4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{OH}}=-500 \mu \mathrm{~A}$ |  |  | 0.4 | V |
| $\mathrm{V}_{\mathrm{OH}}$ | Output High Level |  | 4.1 |  |  | V |
| TOP | Operating Temperature Range | Industrial Range | -25 |  | +85 | ${ }^{\circ} \mathrm{C}$ |

[^499]AC CHARACTERISTICS $\quad\left(V_{D D}=5 \mathrm{~V} \pm 10 \% \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V},-20^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}\right)$
PARALLEL INPUT (ICM7231, ICM7233) See Figure 14

| Symbol | Parameter | Test Conditions | Min | Typ | Max | Units |
| :--- | :--- | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{t}_{\mathrm{cs}}$ | Chip Select Pulse Width | (Note 1) | 500 | 350 |  | ns |
| $\mathrm{t}_{\mathrm{ds}}$ | Address/Data Setup Time | (Note 1) | 200 |  |  | ns |
| $\mathrm{t}_{\mathrm{dh}}$ | Address/Data Hold Time | (Note 1) | 0 | -20 |  | ns |
| $\mathrm{t}_{\mathrm{ics}}$ | Inter-Chip Select Time | (Note 1) | 3 |  |  | $\mu \mathrm{~s}$ |

SERIAL INPUT (ICM7232) See Figures 15,16

| Symbol | Parameter | Test Conditions | Min | Typ | Max | Units |
| :--- | :--- | :--- | :---: | :---: | :---: | :---: |
| $t_{\mathrm{cl}}$ | Data Clock Low Time | (Note 1) | 350 |  |  | ns |
| $\mathrm{t}_{\mathrm{cl}}$ | Data Clock High Time | (Note 1) | 350 |  |  | ns |
| $\mathrm{t}_{\mathrm{ds}}$ | Data Setup Time | (Note 1) | 200 |  |  | ns |
| $\mathrm{t}_{\mathrm{dh}}$ | Data Hold Time | (Note 1) | 0 | -20 |  | ns |
| $\mathrm{t}_{\mathrm{wp}}$ | $\overline{\text { Write }}$ Pulse Width | (Note 1) | 500 | 350 |  | ns |
| $\mathrm{t}_{\mathrm{wll}}$ | $\overline{\text { Write Pulse to Clock at Initialization }}$ | (Note 1) | 1.5 |  |  | $\mu \mathrm{~s}$ |
| $\mathrm{t}_{\text {odl }}$ | Data Accepted Low Output Delay | (Note 1) |  | 200 | 400 | ns |
| $\mathrm{t}_{\text {odh }}$ | Data Accepted High Output Delay | (Note 1) |  | 1.5 | 3 | $\mu \mathrm{~s}$ |
| $\mathrm{t}_{\mathrm{cws}}$ | Write Delay After Last Clock | (Note 1) | 350 |  |  | ns |

NOTE 1: For design reference only, not 100\% tested.
TABLE OF FEATURES

| Type Number | Output Code | Annunciator Locations | Input | Output |
| :---: | :---: | :---: | :---: | :---: |
| ICM7231AF | Hexadecimal | Both Annunciators on COM3 | Parallel Entry 4 bit Data 2 bit Annunciators 3 bit Address | 8 Digits plus <br> 16 Annunciators |
| ICM7231BF | Code B |  |  |  |
| ICM7231CF | Code B | 1 Annunciator COM1 <br> 1 Annunciator COM3 |  |  |
| ICM7232AF | Hexadecimal | Both Annunciators on COM3 | Serial Entry <br> 4 bit Data <br> 2 bit Annunciators <br> 4 bit Address | 10 Digits plus 20 Annunciators |
| ICM7232B | Code B |  |  |  |
| ICM7232CR | Code B | 1 Annunciator COM1 <br> 1 Annunciator COM3 |  |  |
| ICM7233AF | 64 Character (ASCII) 18 Segment (Half width numbers) | No Independent Annunciators | Parallel Entry 6 bit (ASCII) Data <br> 2 bit Address | Four Characters |
| ICM7233BF | 64 Character (ASCII) 18 Segment (Full width numbers) | No Independent Annunciators | Parallel Entry 6 bit (ASCII) Data <br> 2 bit Address | Four Characters |

[^500]
## TERMINAL DEFINITIONS <br> ICM7231 PARALLEL INPUT NUMERIC DISPLAY

| Terminal | Pin <br> No. | Description | Function |  |
| :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { AN1 } \\ & \text { AN2 } \end{aligned}$ | $\begin{aligned} & 30 \\ & 31 \end{aligned}$ | Annunciator 1 Control Bit Annunciator 2 Control Bit | $\begin{aligned} & \text { High }=\mathrm{ON} \\ & \text { Low }=\text { OFF } \end{aligned}$ | See Table 3 |
| $\begin{aligned} & \text { BD0 } \\ & \text { BD1 } \\ & \text { BD2 } \\ & \text { BD3 } \end{aligned}$ | $\begin{aligned} & 32 \\ & 33 \\ & 34 \\ & 35 \end{aligned}$ | $\left.\begin{array}{l}\text { Least Significant } \\ \text { Most Significant }\end{array}\right\}$4 Bit Binary <br> Data Inputs | Input <br> Data <br> (See Table 1) | $\begin{aligned} & \text { HIGH = Logical One (1) } \\ & \text { LOW = Logical Zero (0) } \end{aligned}$ |
| $\begin{aligned} & \text { A0 } \\ & \text { A1 } \\ & \text { A2 } \end{aligned}$ | $\begin{aligned} & 37 \\ & 38 \\ & 39 \end{aligned}$ | $\left.\begin{array}{l}\text { Least Significant } \\ \text { Most Significant }\end{array}\right\} \quad$3 Bit Digit <br> Address Inputs | Input <br> Address <br> (See Table 2) |  |
| $\overline{C S}$ | 1 | Data Input Strobe/Chip Select (Note 3) | Trailing (Positive going) edge latches data, causes data input to be decoded and sent out to addressed digit |  |

NOTE: 3. $\overline{C S}$ has a special " mid-level" sense circuit that establishes a test mode if it is held near 3V for several msec. Inadvertent triggering of this mode can be avoided by pulling it high when inactive, or ensuring frequent activity.
ICM7233 PARALLEL INPUT ALPHA DISPLAY

| Terminal | Pin No. | Description | Function |
| :---: | :---: | :---: | :---: |
| D0 D1 D2 D3 D4 D5 | $\begin{aligned} & 30 \\ & 31 \\ & 32 \\ & 33 \\ & 34 \\ & 35 \end{aligned}$ | $\left.\begin{array}{c}\text { Least Significant } \\ \\ \text { Most Significant }\end{array}\right\}$ <br> 6 Bit (ASCII) <br> Data Inputs | Input <br> Data  <br> See HIGH=Logical One (1) <br> Table 4 LOW = Logical Zero (0) |
| $\begin{aligned} & \text { AO } \\ & \text { A1 } \end{aligned}$ | $\begin{aligned} & 37 \\ & 38 \end{aligned}$ | $\left.\begin{array}{l}\text { Least Significant } \\ \text { Most Significant }\end{array}\right\} \quad$ Address Inputs | Input Add. See Table 5 |
| $\overline{\overline{\mathrm{CS} 1}}$ | $\begin{gathered} 39 \\ 1 \end{gathered}$ | Chip Select Inputs (Note 4) | Both inputs LOW load data into input latches. Rising edge of either input causes data to be latched, decoded and sent out to addressed character. |

NOTE 4: $\overline{\mathrm{CS1}}$ has a special "mid-level" sense circuit that establishes a test mode if it is held near 3 V for several msec. Inadvertent triggering of this mode can be avoided either by pulling it high when inactive, or ensuring frequent activity.

## ICM7232 SERIAL DATA AND ADDRESS INPUT

| Terminal | Pin <br> No. | Description | Function |
| :--- | :---: | :--- | :--- |
| Data Input | 38 | Data + Address Shift Register Input | HIGH = Logical One (1) <br> LOW = Logical Zero (0) |
| WRITE Input | 39 | Decode, Output, and Reset Strobe | When DATA ACCEPTED Output is LOW, positive <br> going edge of WRITE causes data in shift register <br> to be decoded and sent to addressed digit, then <br> shift register and control logic to be reset. When <br> DATA ACCEPTED Output is HIGH, positive going <br> edgw of WRITE triggers reset only. |
| Data Clock <br> Input | 1 | Data Shift Register and Control <br> Logic Clock | Positive going edge advances data in shift register. <br> ICM7232: Eleventh edge resets shift register and <br> control logic. |
| DATA <br> ACCEPTED <br> Output | 37 | Handshake Output | Output LOW when correct number of bits entered <br> into shift register; ICM7232 8, 9 or 10 bits |

[^501]
## ALL DEVICES

| Terminal | Pin <br> No. | Description | Function |
| :--- | :---: | :--- | :--- |
| Display <br> Voltage $V_{\text {DISP }}$ | 2 | Negative end of on-chip resistor <br> string used to generate intermediate <br> voltage levels for display. Shutdown Input. | Display voltage control. When open (or less than <br> $1 V$ from $V_{D D}$ chip is shutdown; oscillator stops, all <br> display pins to $V_{D D}$ |
| Common <br> Line Driver <br> Outputs | $3,4,5$ |  | Drive display commons, or rows. |
| Segment <br> Line Driver | $6-29$ <br> Outputs | (On ICM7231/33) <br> (On ICM7232) | Drive display segments, or columns. |
| $V_{\text {DD }}$ | 40 | Chip Positive Supply |  |
| $V_{S S}$ | 36 | Chip Negative Supply |  |

## ICM7231 FAMILY DESCRIPTION

The ICM7231 drives displays with 8 seven-segment digits with two independent annunciators per digit, accepting six data bits and three digit address bits from parallel inputs controlled by a chip select input. The data bits are subdivided into four binary code bits and two annunciator control bits.
The ICM7232 drives 10 seven-segment digits with two independent annunciators per digit. To write into the display, six bits of data and four bits of digit address are clocked serially into a shift register, then decoded and written to the display.

The ICM7233 has a parallel input structure similar to the ICM7231, but the decoding and the outputs are organized to drive four 18 -segment alphanumeric characters. The six data bits represent a 6-bit ASCII code.

Input levels are TTL compatible, and the DATA ACCEPTED output on the serial input devices will drive one LSTTL load. The intermediate voltage levels necessary to drive the display properly are generated by an on-chip resistor string, and the output of a totally self-contained on-chip oscillator is used to generate all display timing. All devices in this family have been fabricated using Intersil's MAXCMOS ${ }^{\circledR}$ process and all inputs are protected against static discharge.

## TRIPLEXED (1/3 MULTIPLEXED) LIQUID CRYSTAL DISPLAYS

Figure 5 shows the connection diagram for a typical 7segment display font with two annunciators such as would be used with an ICM7231 or ICM7232 numeric display driver. Figure 6 shows the voltage waveforms of the common lines and one segment line, chosen for this example to be the " Y " segment line. This line intersects with COM1 to form the " $a$ " segment, COM2 to form the " $g$ " segment and COM3 to form the " $d$ " segment. Figure 6 also shows the waveform of the " Y " segment line for four different ON/ OFF combinations of the " $a$ ", " $g$ " and " $d$ " segments. Each intersection (segment or annunciator) acts as a capacitance from segment line to common line, shown schematically in Figure 7. Figure 8 shows the voltage across the " $g$ " seg-
ment for the same four combinations of ON/OFF segments in Figure 6.

The degree of polarization of the liquid crystal material and thus the contrast of any intersection depends on the RMS voltage across the intersection capacitance. Note from Figure 8 that the RMS OFF voltage is always $V_{p} / 3$ and that the RMS ON voltage is always $1.92 \mathrm{~V}_{\mathrm{p}} / 3$.

For a $1 / 3$ multiplexed LCD, the ratio of RMS ON to OFF voltages is fixed at 1.92, achieving adequate display contrast with this ratio of applied RMS voltage makes some demands on the liquid crystal material used.

Figure 9 shows the curve of contrast versus applied RMS voltage for a liquid crystal material tailored for $\mathrm{V}_{\mathrm{P}}=3.1 \mathrm{~V}$, a typical value for $1 / 3$-multiplexed displays in calculators. Note that the RMS OFF voltage $V_{p} / 3 \approx 1 \mathrm{~V}$ is just below the "threshold" voltage where contrast begins to increase. This places the RMS ON voltage at 2.1V, which provides about $85 \%$ contrast when viewed straight on.

All members of the ICM7231/ICM7233 family use an internal resistor string of three equal value resistors to generate the voltages used to drive the display. One end of the string is connected on the chip to $V_{D D}$ and the other end (user input) is available at pin $2\left(V_{\text {DISP }}\right)$ on each chip. This allows the display voltage input ( $\mathrm{V}_{\text {DISP }}$ ) to be optimized for the particular liquid crystal material used. Remember that $V_{P}=V_{D D}-V_{\text {DISP }}$ and should be three times the threshold voltage of the liquid crystal material used. Also it is very important that pin 2 never be driven below $\mathrm{V}_{\text {SS }}$. This can cause device latchup and destruction of the chip.



0366-10
Figure 6: Display Voltage Waveforms
NOTE: $\phi_{1}, \phi_{2}, \phi_{3}$-COMMON HIGH WITH RESPECT TO SEGMENT.
$\phi_{1}, \phi_{2}, \phi_{3}$-COMMON LOW WITH RESPECT TO SEGMENT.

COM 1 ACTIVE DURING $\phi_{1}$ AND $\phi_{1}$, COM 2 ACTIVE DURING $\phi_{2}$ AND $\phi_{2}{ }^{\prime}$ COM 3 ACTIVE DURING $\phi_{3}$ AND $\phi_{3}$,



0366-12
Figure 8: Voltage Waveforms on Segment $\mathbf{g}\left(\mathbf{V}_{\mathbf{g}}\right)$

VOLTAGE CONTRAST RATIO $=\frac{V_{\text {RMS }} \text { ON }}{V_{\text {RMS }} \text { OFF }}=\frac{\sqrt{11}}{\sqrt{3}}=1.92$
NOTE: $\phi_{1}, \phi_{2}, \phi_{3}$-COMMON HIGH WITH RESPECT TO SEGMENT.
$\phi_{1}$, $\phi_{2}{ }^{\prime}, \phi_{3}$ - COMMON LOW WITH RESPECT TO SEGMENT.
COM 1 ACTIVE DURING $\phi_{1}$ AND $\phi_{1}$, COM 2 ACTIVE DURING $\phi_{2}$ AND $\phi_{2}{ }^{\prime}$ COM 3 ACTIVE DURING $\phi_{3}$ AND $\phi_{3}{ }^{\prime}$

[^502]


0366－13
Figure 9：Contrast vs．Applied RMS Voltage


0366－14
Figure 10：Temperature Dependence of LC Threshold

## TEMPERATURE EFFECTS AND TEMPERATURE COMPENSATION

The performance of the IC material is affected by temper－ ature in two ways．The response time of the display to changes in applied RMS voltage gets longer as the display temperature drops．At very low temperatures $\left(-20^{\circ} \mathrm{C}\right)$ some displays may take several seconds to change a new char－ acter after the new information appears at the outputs． However，for most applications above $0^{\circ} \mathrm{C}$ this will not be a problem with available multiplexed LCD materials，and for low－temperature applications，high－speed liquid crystal ma－ terials are available．One high temperature effect to consid－ er deals with plastic materials used to make the polarizer．

Some polarizers become soft at high temperatures and per－ manently lose their polarizing ability，thereby seriously de－ grading display contrast．Some displays also use sealing materials unsuitable for high temperature use．Thus，when specifying displays the following must be kept in mind：liquid crystal material，polarizer，and seal materials．

A more important effect of temperature is the variation of threshold voltage．For typical liquid crystal materials suit－ able for multiplexing，the peak voltage has a temperature coefficient of -7 to $-14 \mathrm{mV} /{ }^{\circ} \mathrm{C}$ ．This means that as tem－ perature rises，the threshold voltage goes down．Assuming a fixed value for $V_{p}$ ，when the threshold voltage drops be－ low $V_{p} / 3$ OFF segments begin to be visible．Figure 10 shows the temperature dependence of peak voltage for the same liquid crystal material of Figure 9.

For applications where the display temperature does not vary widely，$V_{P}$ may be set at a fixed voltage chosen to make the RMS OFF voltage， $\mathrm{V}_{\mathrm{p}} / 3$ ，just below the threshold voltage at the highest temperature expected．This will pre－ vent OFF segments turning ON at high temperature（this at the cost of reduced contrast for ON segments at low tem－ peratures）．

For applications where the display temperature may vary to wider extremes，the display voltage $V_{\text {DISP }}$（and thus $V_{P}$ ） may require temperature compensation to maintain suffi－ cient contrast without OFF segments becoming visible．

## DISPLAY VOLTAGE AND TEMPERATURE COMPENSATION

These circuits allow control of the display peak voltage by bringing the bottom of the voltage divider resistor string out at pin 2 ．The simplest means for generating a display volt－ age suitable to a particular display is to connect a potenti－ ometer from pin 2 to $\mathrm{V}_{\mathrm{SS}}$ as shown in Figure 11．A potenti－ ometer with a maximum value of $200 \mathrm{k} \Omega$ should give suffi－ cient range of adjustment to suit most displays．This method for generating display voltage should be used only in appli－ cations where the temperature of the chip and display won＇t vary more than $\pm 5^{\circ} \mathrm{C}\left( \pm 9^{\circ} \mathrm{F}\right)$ ，as the resistors on the chip have a positive temperature coefficient，which will tend to increase the display peak voltage with an increase in tem－ perature．The display voltage also depends on the power supply voltage，leading to tighter tolerances for wider tem－ perature ranges．


0366－15
Figure 11：Simple Display Voltage Adjustment

Figure 12(a) shows another method of setting up a display voltage using five silicon diodes in series. These diodes, 1N914 or equivalent, will each have a forward drop of approximately 0.65 V , with approximately $20 \mu \mathrm{~A}$ flowing through them at room temperature. Thus, 5 diodes will give 3.25 V , suitable for a 3 V display using the material properties shown in Figures 9 and 10. For higher voltage displays, more diodes may be added. This circuit provides reasonable temperature compensation, as each diode has a negative temperature coefficient of $-2 \mathrm{mV} /{ }^{\circ} \mathrm{C}$; five in series gives $-10 \mathrm{mV} /{ }^{\circ} \mathrm{C}$, not far from optimum for the material described.

The disadvantage of the diodes in series is that only integral multiples of the diode voltage can be achieved. The diode voltage multiplier circuit shown in Figure 12(b) allows fine-tuning the display voltage by means of the potentiometer; it likewise provides temperature compensation since the temperature coefficient of the transistor base-emitter junction (about $-2 \mathrm{mV} /{ }^{\circ} \mathrm{C}$ ) is also multipled. The transistor should have a beta of at least 100 with a collector current of $10 \mu \mathrm{~A}$. The inexpensive 2 N 2222 shown in the figure is a suitable device.


Figure 12(a): String of Diodes



0366-18
Figure 13: Flexible Temperature Compensation

Figure 12(b): Transistor-Multiplier
Figure 12: Diode-based Temperature Compensation

[^503]

For battery operation, where the display voltage is generally the same as the battery voltage (usually $3-4.5 \mathrm{~V}$ ), the chip may be operated at the display voltage, with V DISP connected to $\mathrm{V}_{\mathrm{SS}}$. The inputs of the chip are designed such that they may be driven above $V_{D D}$ without damaging the chip. This allows, for example, the chip and display to operate at a regulated 3V, and a microprocessor driving its inputs to operate with a less well controlled 5 V supply. (The inputs should not be driven more than 6.5 V above GND under any circumstances.) This also allows temperature compensation with the ICL7663, as shown in Figure 13. This circuit allows independent adjustment of both voltage and temperature compensation.

## DESCRIPTION OF OPERATION PARALLEL INPUT OF DATA AND ADDRESS (ICM7231, ICM7233)

The parallel input structure of the ICM7231 and ICM7233 devices is organized to allow simple, direct interfacing to all microprocessors, (see functional diagrams Figures 1 and 3). In the ICM7231, address and data bits are written into the input latches on the rising edge of the Chip Select input. In the ICM7233, the two Chip Selects are equivalent; when both are low, the latches are transparent and the data is latched on the rising edge of either Chip Select.

INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

NOTE: All typical values have been characterized but are not tested.

Figure 16: ICM7232 Input Timing Diagram, Leaving Both Annunciators Off
0366-21

The rising edge of the Chip Select also triggers an onchip pulse which enables the address decoder and latches the decoded data into the addressed digit/character outputs. The timing requirements for the parallel input devices are shown in Figure 14, with the values for setup, hold, and pulse width times shown in the AC Characteristics section. Note that there is a minimum time between Chip Select pulses; this is to allow sufficient time for the on-chip enable pulse to decay, and ensures that new data doesn't appear at the decoder inputs before the decoded data is written to the outputs.

## SERIAL INPUT OF DATA AND ADDRESS (ICM7232)

The ICM7232 trades six pins used as data inputs on the ICM7231 and ICM7233 for six more segment lines, allowing two more 9 -segment digits. This is done at the cost of ease in interfacing, and requires that data and address information be entered serially. Refer to functional diagram, Figure 2 and timing diagrams, Figures 15 and 16. The interface consists of four pins: DATA Input, DATA CLOCK Input, WRITE Input and DATA ACCEPTED Output. The data present at the DATA Input is clocked into a shift register on the rising edge of the DATA CLOCK Input signal, and when the correct number of bits has been shifted into the shift register ( 8 in the ICM7232), the DATA ACCEPTED Output goes low. Following this, a low-going pulse at the WRITE input will trigger the chip to decode the data and store it in the output latches of the addressed digit/character. After the data is latched at the outputs, the shift register and the control logic are reset, returning the DATA ACCEPTED Output high. After this occurs, a pulse at the WRITE input will not
change the outputs, but will reset the control logic and shift register, assuring that each data bit will be entered into the correct position in the shift register depending on subsequent DATA CLOCK inputs.
The shift register and control logic will also be reset if too many DATA CLOCK INPUT edges are received; this prevents incorrect data from being decoded. In the ICM7232, the eleventh clock resets the shift register and control logic.
The recommended procedure for entering data is shown in the serial input timing diagram, Figure 15. First, when DATA ACCEPTED is high, send a WRITE pulse. This resets the shift register and control logic and initializes the chip for the data input sequence. Next clock in the appropriate number of correct data and address bits. The DATA ACCEPTED Output may be monitored if desired, to determine when the chip is ready to output the decoded data. When the correct number of bits has been entered, and the DATA ACCEPTED Output is low, a pulse at WRITE will cause the data to be decoded and stored in the latches of the addressed digit/character. The shift register and control logic are reset, causing DATA ACCEPTED to return high, and leaving the chip ready to accept data for the next digit/character.
Note that for the ICM7232 the eleventh clock resets the shift register and control logic, but the DATA ACCEPTED Output goes low after the eighth clock. This allows the user to abbreviate the data to eight bits, which will write the correct character to the 7 -segment display, but will leave the annunciators off, as shown in Figure 16.

If only AN2 is to be turned on, nine bits are clocked in; if AN1 is to be turned on, all ten bits are used.

The DATA ACCEPTED Output will drive one low-power Schottky TTL input, and has equal current drive capability pulling high or low.

Note that in the serial input devices, it is possible to address digits/characters which don't exist. As shown in Tables 2 and 5 , when an incorrect address is applied together with a WRITE pulse, none of the outputs will be changed.
DISPLAY FONTS AND OUTPUT CODES
The standard versions of the ICM7231 and ICM7232 chips are programmed to drive a 7 -segment display plus two annunciators per digit. See Table 3 for annunciator input controls.

The " $A$ " and " $B$ " suffix chips place both annunciators on COM3. The display connections for one digit of this display are shown in Figure 17. The " A " devices decode the input data into a hexadecimal 7 -segment output, while the " $B$ " devices supply Code B outputs (see Table 1).

The " $C$ " devices place the left hand annunciator on COM1 (AN2) and the right hand annunciator (usually a decimal point) on COM3 (AN1). (See Figure 18). The " C " devices provide only a "Code $B$ " output for the 7 -segments.

The ICM7233 is supplied in " $A$ " and " $B$ " versions. Both versions decode an ASCII 6-bit subset to an 18-segment display, with 16 "flag" segments and two "dots". The " $A$ " devices have numbers which are half width and the "B" devices have full width numbers. The layout for a single character is shown in Figure 19 with output decoding shown in Table 4.

TABLE 1. BINARY DATA DECODING (ICM7231/32)

| $\begin{aligned} & \text { CODE } \\ & \text { INPUT } \end{aligned}$ |  |  |  | DISPLAY OUTPUT |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{gathered} B D \\ 3 \end{gathered}$ | $\begin{array}{\|c\|} \hline \text { BD } \\ \hline \end{array}$ | $\begin{array}{\|c} B D \\ 1 \end{array}$ | $\begin{array}{\|c} \text { BD } \\ 0 \end{array}$ | HEX | $\underset{B}{C O D E}$ |
| 0 | 0 | 0 | 0 | İ1 | İ |
| 0 | 0 | 0 | 1 | 1 | 1 |
| 0 | 0 | 1 | 0 | ご | I |
| 0 | 0 | 1 | 1 | I'1 | I |
| 0 | 1 | 0 | 0 | Hi | 14 |
| 0 | 1 | 0 | 1 | E | E |
| 0 | 1 | 1 | 0 | E | E |
| 0 | 1 | 1 | 1 | 1 | 7 |
| 1 | 0 | 0 | 0 | E | E1 |
| 1 | 0 | 0 | 1 | E1 | -1 |
| 1 | 0 | 1 | 0 | F1 | - |
| 1 | 0 | 1 | 1 | İ | E |
| 1 | 1 | 0 | 0 | - | 1-1 |
| 1 | 1 | 0 | 1 | -1 | 1 |
| 1 | 1 | 1 | 0 | $E$ | I-1 |
| 1 | 1 | 1 | 1 | $F$ | BLANK |

TABLE 2. ADDRESS DECODING (ICM7231/32)

| Code Input |  |  |  | Display <br> Output |
| :---: | :---: | :---: | :---: | :---: |
| ICM7232 <br> Only <br> A3 | A2 | A1 | A0 | Digit <br> Selected |
| 0 | 0 | 0 | 0 | D1 |
| 0 | 0 | 0 | 1 | D2 |
| 0 | 0 | 1 | 0 | D3 |
| 0 | 0 | 1 | 1 | D4 |
| 0 | 1 | 0 | 0 | D5 |
| 0 | 1 | 0 | 1 | D6 |
| 0 | 1 | 1 | 0 | D7 |
| 0 | 1 | 1 | 1 | D8 |
| 1 | 0 | 0 | 0 | D9 |
| 1 | 0 | 0 | 1 | D10 |
| 1 | 0 | 1 | 0 | NONE |
| 1 | 0 | 1 | 1 | NONE |
| 1 | 1 | 0 | 0 | NONE |
| 1 | 1 | 0 | 1 | NONE |
| 1 | 1 | 1 | 0 | NONE |
| 1 | 1 | 1 | 1 | NONE |

TABLE 3. ANNUNCIATOR DECODING

| CODEINPUT |  | DISPLAY OUTPUT |  |
| :---: | :---: | :---: | :---: |
| $\begin{gathered} \text { AN } \\ 2 \end{gathered}$ | $\begin{gathered} \text { AN } \\ 1 \end{gathered}$ | ICM7231 A/B ICM7232 A/B BOTH ANNUNCIATORS ON COM 3 | ICM7231C ICM7232C LH ANNUNCIATOR COM 1 RH ANNUNCIATOR COM 3 |
| 0 | 0 | F | EI |
| 0 | 1 | I | i |
| 1 | 0 | E! | -1 |
| 1 | 1 | E! | E |

0366-23

EVALUATION KITS
After purchasing a sample of the ICM7231／32／33，the majority of users will want to build a sample display．The parts can then be evaluated against the data sheet specifi－ cations，and tried out in the intended application．However， locating and purchasing even the small number of addition－ al components required，then wiring a breadboard，can of－ ten cause delays of days or sometimes weeks．To avoid this problem and facilitate evaluation of these unique circuits， Intersil is offering kits which contain all the necessary com－ ponents to build 8 character displays．With the help of such a kit，an engineer or technician can have the system＂up and running＂in about half an hour．
The ICM7233EV／KIT contains the appropriate ICs，a cir－ cuit board，a Multiplexed LCD display 16／18 segment，pas－ sive components，and miscellaneous hardware．


SEGMENT LINE CONNECTIONS


COMMON LINE CONNECTIONS BOTH ANNUNCIATORS ON COMMON \＃3
（AT BOTTOM OF CHARACTER） （＂A＂AND＂$B$＂SUFFIX VERSIONS）

Figure 17：ICM7231 and ICM7232 Display Fonts（＂A＂and＂B＂Suffix Versions）


LH ANNUNCIATOR ON COMMON \＃ 1 （TOP）（AN 2）
RH ANNUNCIATOR ON COMMON \＃3（BOTTOM）（AN 1） ＂C＂SUFFIX DEVICES
－ANNUNCIATORS CAN BE：STOP，GO，$\triangle, 4$－ARROWS
THAT POINT TO INFORMATION PRINTED AROUND THE DISPLAY
OPENING，ETC．，WHATEVER THE DESIGNER CHOOSES TO INCORPORATE
IN THE LIQUID CRYSTAL DISPLAY

0366－26
Figure 18：ICM7231 and ICM7232 Display Fonts（＂C＂Suffix Versions）


Figure 19：ICM7233 Display Font（18－Segment Alphanumeric）

[^504]COMPATIBLE DISPLAYS
Compatible displays are manufactured by:
G.E. Displays Inc., Beechwood, Ohio
(216)831-8100 (\#356E3R99HJ)

Epson America Inc., Torrance CA
(Model Numbers LDB726/7/8).
Seiko Instruments USA Inc., Torrance CA
(Custom Displays)
Crystaioid, Hudson, OH
TABLE 4. DATA DECODING 6-BIT ASCII $\rightarrow 18$ SEGMENT (ICM7233)

| CODE INPUT |  |  |  | DISPLAY OUTPUT |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | D5, D4 |  |  | A | B |
| D3 | D2 | 01 | D0 | 0,0 | 0,1 | 1,0 | 1,1 |  |
| 0 | 0 | 0 | 0 | $\square$ | $\square$ |  |  |  |
| 0 | 0 | 0 | 1 | $\square$ | $\square$ | ! | I | 1 |
| 0 | 0 | 1 | 0 | B | $\square$ | 11 | $\square$ |  |
| 0 | 0 | 1 | 1 |  | $\square$ | I |  |  |
| 0 | 1 | 0 | 0 | $\pm$ |  | $\square$ | 4 | L |
| 0 | 1 | 0 | 1 | $E$ | $\square$ | 4 |  |  |
| 0 | 1 | 1 | 0 | $F$ | $V$ | 7 | $\square$ |  |
| 0 | 1 | 1 | 1 | $\square$ | $W$ | 1 |  |  |
| 1 | 0 | 0 | 0 | $H$ | X | < | $\square$ | $\square$ |
| 1 | 0 | 0 | 1 | $I$ | $Y$ | $\rangle$ |  |  |
| 1 | 0 | 1 | 0 | $\pm$ | $7$ | 年 |  |  |
| 1 | 0 | 1 | 1 | H | [ | $+$ |  |  |
| 1 | 1 | 0 | 0 |  |  | 1 |  |  |
| 1 | 1 | 0 | 1 | M | $]$ | - |  |  |
| 1 | 1 | 1 | 0 | $N$ | $7$ | - |  |  |
| 1 | 1 | 1 | 1 | $\Gamma$ | $\leqslant$ |  |  |  |

TABLE 5. ADDRESS DECODING (ICM7233)

| Code <br> Input |  | Digit <br> Selected |
| :---: | :---: | :---: |
| A1 | A0 |  |
| 0 | 0 | D1 |
| 0 | 1 | D2 |
| 1 | 0 | D3 |
| 1 | 1 | D4 |
| 0 | 0 | D5 |
| 0 | 1 | NONE |
| 1 | 0 | NONE |
| 1 | 1 | NONE |

0366-28

[^505]TYPICAL APPLICATIONS


0366-29
Figure 20: 8048/IM80C48 Microcomputer with 8 Character 16 Segment ASCII Triplex Liquid Crystal Display.
The two bit character address is merged with the data and written to the display driver under the control of the WR line. Port lines are used to either select the target driver, or deselect all of them for other bus operations.


Figure 21: MC6802 Microprocessor with 16 Character 16 Segment ASCII Liquid Crystal Display.
The peripheral device provides ROM and Timer functions in addition to port line control of the display bank. Individual character locations are addressed via the address bus. Note that VMA is not decoded on these lines, which could cause problems with the TST instruction.

[^506]

0366－31
Figure 22：EPROM－Coded Message System．
This circuit cycles through a message coded in the EPROM，pausing at the end of each line， or whenever coded on $\mathbf{Q}_{6}$ ．


Figure 23: 10MHz Frequency/Period Pointer with LCD Display.
The annunciators show function and the decimal points indicate the range of the current operation. The system can be efficiently battery operated.



0366-34
Figure 25: "Reverse" Pin Orientation and Display Connections


[^507]
## GENERAL DESCRIPTION

The ICM7243 is an 8－character alphanumeric display driv－ er and controller which provides all the circuitry required to interface a microprocessor or digital system to a 14－or 16－ segment display．It is primarily intended for use in micro－ processor systems，where it minimizes hardware and soft－ ware overhead．Incorporated on－chip are a 64－character ASCII decoder， $8 \times 6$ memory，high power character and segment drivers，and the multiplex scan circuitry．

Six－bit ASCII data to be displayed is written into the mem－ ory directly from the microprocessor data bus．Data location depends upon the selection of either Serial（MODE $=1$ ）or Random（MODE $=0$ ）．In the Serial Access mode the first entry is stored in the lowest location and displayed in the ＂left－most＂character position．Each subsequent entry is au－ tomatically stored in the next higher location and displayed to the immediate＂right＂of the previous entry．A DISPlay FULL signal is provided after 8 entries；this signal can be used for cascading．A CLeaR pin is provided to clear the memory and reset the location counter．The Random Ac－ cess mode allows the processor to select the memory ad－ dress and display digit for each input word．

The character multiplex scan runs whenever data is not being entered．It scans the memory and CHARacter drivers， and ensures that the decoding from memory to display is done in the proper sequence．Intercharacter blanking is pro－ vided to avoid display ghosting．

FEATURES
－14－and 16－Segment Fonts With Decimal Point
－Mask Programmable For Other Font－Sets Up to 64 Characters
－Microprocessor Compatible
－Directly Drives Small Common Cathode Displays
－Cascadable Without Additional Hardware
－Standby Feature Turns Display Off；Puts Chip in Low Power Mode
－Serial Entry or Random Entry of Data Into Display
－Single＋5V Operation
－Character and Segment Drivers，All MUX Scan Circuitry， $8 \times 6$ Static Memory and 64 －Character ASCII Font Generator Included On－Chip
ORDERING INFORMATION

| Part <br> Number | Temperature Range | Package |
| :--- | :---: | :--- |
| ICM7243AIJL | $-20^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ | CERDIP |
| ICM7243BIJL | $-20^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ | CERDIP |
| ICM7243B EV／KIT |  |  |
| ICM7243AIPL | $-20^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ | PLASTIC |
| ICM7243BIPL | $-20^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ | PLASTIC |



## 0368－1

Figure 1：Pin Configurations

## ABSOLUTE MAXIMUM RATINGS



NOTE：Stresses above those listed under＂Absolute Maximum Ratings＂may cause permanent damage to the device．These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied．Exposure to absolute maximum rating conditions for extended periods may affect device reliability．


Figure 2：Functional Diagram

## DC ELECTRICAL CHARACTERISTICS $\quad\left(V_{D D}=5 \mathrm{~V}, \mathrm{~V}_{S S}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right.$ unless otherwise stated）

| Symbol | Parameter | Test Conditions | Limits |  |  | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Min | Typ | Max |  |
| V SUPP | Supply Voltage（ $\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\text {SS }}$ ） |  | 4.75 | 5.0 | 5.25 | V |
| IDD | Operating Supply Current | $\mathrm{V}_{\text {SUPP }}=5.25 \mathrm{~V}, 10$ Segments ON，All 8 Characters |  | 180 |  | mA |
| ISTBY | Quiescent Supply Current | $\mathrm{V}_{\text {SUPP }}=5.25 \mathrm{~V}, \mathrm{OSC} / \overline{\text { OFF }}$ Pin $<0.5 \mathrm{~V}, \mathrm{CS}=\mathrm{V}_{\text {SS }}$ |  | 30 | 250 | $\mu \mathrm{A}$ |
| $\mathrm{V}_{\mathrm{IH}}$ | Input High Voltage |  | 2 |  |  | V |
| $\mathrm{V}_{\text {IL }}$ | Input Low Voltage |  |  |  | 0.8 | V |
| IN | Input Current |  | －10 |  | ＋10 | $\mu \mathrm{A}$ |

[^508]DC ELECTRICAL CHARACTERISTICS $\left(V_{D D}=5 \mathrm{~V}, \mathrm{~V}_{S S}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right.$ unless otherwise stated)
(Continued)

| Symbol | Parameter | Test Conditions | Limits |  |  | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Min | Typ | Max |  |
| ICHAR | CHARacter Drive Current | $\mathrm{V}_{\text {SUPP }}=5 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=1 \mathrm{~V}$ | 140 | 190 |  | mA |
| ICHLK | CHARacter Leakage Current |  |  |  | 100 | $\mu \mathrm{A}$ |
| ISEG | SEGment Drive Current | $\mathrm{V}_{\text {SUPP }}=5 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=2.5 \mathrm{~V}$ | 14 | 19 |  | mA |
| ISLK | SEGment Leakage Current |  |  | 0.01 | 10 | $\mu \mathrm{A}$ |
| $\mathrm{V}_{\mathrm{OL}}$ | DISPlay FULL Output Low | $\mathrm{IOL}=1.6 \mathrm{~mA}$ |  |  | 0.4 | V |
| $\mathrm{V}_{\mathrm{OH}}$ | DISPlay FULL Output High | $\mathrm{I}_{1 \mathrm{H}}=100 \mu \mathrm{~A}$ | 2.4 |  |  | V |
| $\mathrm{f}_{\mathrm{ds}}$ | Display Scan Rate |  |  | 400 |  | Hz |

AC ELECTRICAL CHARACTERISTICS (Drive levels 0.4 V and 2.4 V , timing measured at 0.8 V and 2.0 V .
$V_{D D}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise stated).

| Symbol | Parameter | Test Conditions | Min | Typ | Max | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $t_{\text {WPI }}$ | $\overline{\text { WR, }}$ CLeaR Pulse Width Low |  | 300 | 250 |  | ns |
| $t_{\text {WPH }}$ | $\overline{\text { WR, }}$, CLeaR Pulse Width High (Note 1) |  |  | 250 |  |  |
| $t_{\text {DH }}$ | Data Hold Time |  | 0 | -100 |  |  |
| $\mathrm{t}_{\mathrm{DS}}$ | Data Setup Time |  | 250 | 150 |  |  |
| $t_{\text {AH }}$ | Address Hold Time |  | 125 |  |  |  |
| $t_{\text {AS }}$ | Address Setup Time |  | 40 | 15 |  |  |
| $\mathrm{t}_{\mathrm{CS}}$ | CS, $\overline{C S}$ Setup Time |  | 0 |  |  |  |
| ${ }_{\text {t }}$ | Pulse Transition Time |  |  |  | 100 |  |
| tsen | SEN Setup Time |  | 0 | -25 |  |  |
| twDF | Display Full Delay |  | 700 | 480 |  |  |

## CAPACITANCE

| Symbol | Test | Min | Typ | Max | Units |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{C}_{\mathbb{N}}$ | Input Capacitance (Note 2) |  | 5 |  | pF |
| $\mathrm{C}_{\mathrm{O}}$ | Output Capacitance (Note 2) |  | 5 |  | pF |

NOTES: 1. In Serial mode $\overline{W R}$ high must be $\geq T_{\text {SEN }}+T_{\text {WDF }}$.
*Not tested. (Guaranteed) 2. For design reference only, not $100 \%$ tested.

## TYPICAL PERFORMANCE CHARACTERISTICS



CHARacter Current vs Output Voltage


## ICM7243A／B DISPLAY FONT AND SEGMENT ASSIGNMENTS

Note：Some display manufacturers use different designations for some of the segments．Check data sheets carefully．


Figure 3：ICM7243A 16－Segment Character Font with Decimal Point


0368－7
NOTE：Segments a and d appear as 2 segnents sact，butboth haves are driven together．

Figure 4：ICM7243B 14－Segment Character Font with Decimal Point



0368－9
Figure 6：Random Access Timing

[^509]NOTE：All typical values have been characterized but are not tested．

TABLE 1: PIN DESCRIPTIONS, ICM7243A(B)

| Signal | Pin | Function |
| :---: | :---: | :---: |
| $\mathrm{D}_{0}-\mathrm{D}_{5}$ | $\begin{aligned} & 10-15 \\ & (8-13) \end{aligned}$ | Six-Bit ASCII Data input pins (active high). |
| $\mathrm{CS}, \overline{\mathrm{CS}}$ | $\begin{gathered} 16 \\ (14-16) \\ \hline \end{gathered}$ | Chip Select for decoding from $\mu \mathrm{P}$ address bus, etc. |
| $\overline{W R}$ | 17 | WRite pulse input pin (active low). For an active high write pulse, CS can be used, and $\overline{W R}$ can be used as $\overline{\mathrm{CS}}$. |
| MODE | 31 | Selects data entry MODE. High selects Serial Access (SA) mode where first entry is displayed in "leftmost" character and subsequent entries appear to the "right". Low selects the Random Access (RA) mode where data is displayed on the character addressed via $A_{0}-A_{2}$ Address pins. |
| $\mathrm{A}_{0} /$ SEN | 30 | In RA mode it is the LSB of the character Address. In SA mode it is used for cascading display driver/controllers for displays of more than 8 characters (active high enables driver controller). |
| $\mathrm{A}_{1} / \overline{\mathrm{CLeaR}}$ | 29 | In RA mode this is the second bit of the address. In SA mode, a low input will CLeaR the Serial Address Counter, the Data Memory and the display. |
| $\mathrm{A}_{2}$ /DISPlay FULL | 28 | In RA mode this is the MSB of the Address. In SA mode, the output goes high after eight entries, indicating DISPlay FULL. |
| OSC/OFF | 27 | OSCillator input pin. Adding capacitance to $V_{D D}$ will lower the internal oscillator frequency. An external oscillator is also applied to this pin. A low puts the display controller/driver into a quiescent mode, shutting OFF the display and oscillator but retaining data stored in memory. |
| $S E G G^{\text {a }}$-SEG ${ }_{\mathrm{m}}$, D.P. | $\begin{gathered} 2-9(7) \\ 32-40 \end{gathered}$ | SEGment driver outputs. |
| CHARacter 1-8 | $\begin{aligned} & 18-21, \\ & 23-26 \end{aligned}$ | CHARacter driver outputs. |

[^510]

## DETAILED DESCRIPTION

$\overline{\mathbf{W R}}, \overline{\mathbf{C S}}, \mathbf{C S}$. These pins are immediately functionally ANDed, so all actions described as occurring on an edge of $\overline{W R}$, with CS and $\overline{C S}$ enabled, will occur on the equivalent (last) enabling or (first) disabling edge of any of these inputs. The delays from CS pins are slightly (about 5 ns ) greater than from $\overline{W R}$ or $\overline{C S}$ due to the additional inverter required on the former.

MODE. The MODE pin input is latched on the falling edge of $\overline{W R}$ (or its equivalent, see above). The location in Data Memory where incoming data will be placed is determined either from the Address pins or the Serial Address Counter, under control of this latch, which also controls the function of $A_{0} / S E N, A_{1} / \overline{C L R}$, and $A_{2} /$ DISPlay FULL.

Random Access Mode. When the internal mode latch is set for Random Access (RA) (MODE latched low), the Address input on $A_{0}, A_{1}$ and $A_{2}$ will be latched by the falling
edge of $\overline{W R}$ (or its equivalent). Subsequent changes on the Address lines will not affect device operation. This allows use of a multiplexed 6-bit bus controlling both address and data, with timing controlled by WR.

Serial Access Mode. If the internal latch is set for Serial Access (SA), (MODE latched high), the Serial ENable input on SEN will be latched on the falling edge of $\overline{W R}$ (or its equivalent). The $\overline{C L R}$ input is asynchronous, and will forceclear the Serial Address Counter to address 000 (CHARacter 1), and set all Data Memory contents to 100000 (blank) at any time. The DISPlay FULL output is always active in SA mode also, and indicates the overflow status of the Serial Address Counter. If this output is low, and SEN is (latched as) high, the contents of the Counter will be used to establish the Data Memory location for the Data input. The Counter is then incremented on the rising edge of WR. If SEN is low, or DISPlay FULL is high, no action will occur. This allows easy "daisy-chaining" of display drivers for multiple character displays in a Serial Access mode.

[^511]ICM7243

Changing Modes. Care must be exercised in any application involving changing from one mode to another. The change will occur only on a falling edge of $\overline{\mathrm{WR}}$ (or its equivalent). When changing mode from Serial Access to Random Access, note that $A_{2}$ /DISPlay FULL will be an output until $\overline{\text { WR }}$ has fallen low, and an Address drive here could cause a conflict. When changing from Random Access to Serial Access, $A_{1} / \overline{\text { CLR }}$ should be high to avoid inadvertent clearing of the Data Memory and Serial Address Counter. DISPlay FULL will become active immediately after the falling edge of $\overline{W R}$.

Data Entry. The input Data is latched on the rising edge of WR (or its equivalent) and then stored in the Data Memory location determined as described above. The six Data bits can be multiplexed with the Address information on the same lines in Random Access mode. Timing is controlled by the $\overline{W R}$ input.

OSC/OFF. The device includes a one-pin relaxation oscillator with an internal capacitor and a nominal frequency of 200 kHz . By adding external capacitance to $\mathrm{V}_{\mathrm{DD}}$ at the OSC/OFF pin, this frequency can be reduced as far as desired. Alternatively, an external signal can be injected on this pin. The oscillator (or external) frequency is pre-divided by 64, and then further divided by 8 in the Multiplex Counter, to drive the CHARacter strobe lines (see Display Output). An intercharacter blanking signal is derived from the pre-divider. An additional comparator on the OSC/ $\overline{O F F}$ input detects a level lower than the relaxation oscillator's range, and
blanks the display, disables the DISPlay FULL output (if active), and clears the pre-divider and Mutliplex Counter. This puts the circuit in a low-power-dissipation mode in which all outputs are effectively open circuits, except for parasitic diodes to the supply lines. Thus a display connected to the output may be driven by another circuit (including another ICM7243) without driver conflicts.

Display Output. The address output of the Multiplex Counter is multiplexed into the address input of the Data Memory, except during WR operations (in Serial Access mode, with SEN high and DISPlay FULL low), to control display operations. The address decoder also drives the CHARacter outputs, except during the inter-character blanking interval (nominally about $5 \mu \mathrm{~s}$ ). Each CHARacter output lasts nominally about $300 \mu \mathrm{~s}$, and is repeated nominally every 2.5 ms , i.e., at a 400 Hz rate (times are based on internal oscillator without external capacitor).

The 6 bits read from the Data Memory are decoded in the ROM to the 17 ( 15 for ICM7243B) segment signals, which drive the SEGment outputs. Both CHARacter and SEGment outputs are disabled during WR operations (with SEN high and DISPlay FULL Low for Serial Access mode). The outputs may also be disabled by pulling OSC/ $\overline{\mathrm{OFF}}$ low.

The decode pattern from 6 bits to 17 (15) segments is done by a ROM pattern according to the ASCII font shown. Custom decode patterns can be arranged, within these limitations, by consultation with the factory.

## APPLICATIONS



[^512]
## APPLICATIONS (Continued)



Figure 10: Driving Two Rows of Characters from a Serial Input.
UART converts data stream to parallel bytes. Bit 7 of each word sets which row data will be entered into. Bit 8 will blank and reset whole display if low. Each MODE pin should be tied high. ICM7243A can also be used, with inverter on RBR7 for one row.

## COMPONENT SELECTION

Displays suitable for use with the ICM7243 may be obtained from the following manufacturers; among others:
Hewlett Packard Components, Palo Alto, California (415) 857-6620 (part \# HDSP6508, HDSP6300)

General Instruments Inc., Palo Alto, California (415) 4930400 (part \#MAN2815)

Texas Instruments Inc., Dallas, Texas (214) 995-6611 (part \# HDSP6508)
A.N.D., Burlingame, California (415) 347-9916 (part \#AND370R)
IEE Inc., Van Nuys, 'California (213) 787-0311 (part \#LR3784R)

[^513]Figure 11: Random Access 32-Character Display in IM80C48 system.
One port line controls $A_{2}$, other two are CS lines. 8-bit data bus drives $\mathbf{6}$ data and 2 address lines. MODE should be GrouNDed on each part.


Figure 12: Driving Large Displays.
The circuits of Figures 12a and 12b can be used to drive $0.5^{\prime \prime}$ or larger alphanumeric displays, either common cathode (12a) or common anode (12b).

[^514]
## Section 14 - Timers/Clocks/ Counters with Display Drivers

| 70 | 14-1 |
| :---: | :---: |
| ICM7207/A | .14-14 |
| ICM7208 | 14-19 |
| ICM7209 | 14-26 |
| ICM7215 | .14-29 |
| ICM7216A | .14-36 |
| ICM7216B | .14-36 |
| ICM7216C. | .14-36 |
| ICM7216D | .14-36 |
| ICM7217 | . 14-54 |
| ICM7227 | .14-54 |
| ICM7224 | .14-72 |
| ICM7225 | .14-72 |
| ICM7226A/B | .14-80 |
| ICM7236 | .14-93 |
| ICM7240 | .14-98 |
| ICM7250 | .14-98 |
| ICM7242 | 14-108 |
| ICM7249 | 14-114 |
| ICM7555 | 14-123 |
| ICM7556 | 14-123 |

## ICM7470

$\mu \mathrm{P}$-Compatible
Real-Time Clock

## GENERAL DESCRIPTION

The ICM7170 real time clock is a microprocessor bus compatible peripheral, fabricated using Intersil's silicon gate CMOS LSI process. An 8-bit bidirectional bus is used for the data I/O circuitry. The clock is set or read by accessing the 8 internal separately addressable and programmable counters from 1/100 seconds to years. The counters are controlled by a pulse train divided down from a crystal oscillator circuit, and the frequency of the crystal is selectable with the on-chip command register. An extremely stable oscillator frequency is achieved through the use of an on-chip regulated power supply.

The device access time ( $t_{a c c}$ ) of 300 ns eliminates the need for any microprocessor wait states or software overhead. Furthermore, the ALE (Address Latch Enable) input is provided for interfacing to microprocessors with a multiplexed address/data bus. With these two special features, the ICM7170 can be easily interfaced to any available microprocessor.
The ICM7170 generates two types of interrupts. The first type is the periodic interrupt (i.e., $100 \mathrm{~Hz}, 10 \mathrm{~Hz}$, etc.) which can be programmed by the internal interrupt control register to provide 7 different output signals. The second type is the alarm interrupt. The alarm time is set by loading an on-chip 51-bit RAM that activates an interrupt output through a comparator. The alarm interrupt occurs when the real time counter and alarm RAM time are equal. A status register is available to indicate the interrupt source.
An on-chip Power-Down Detector eliminates the need for external components to support the battery back-up function. When a power-down or power failure occurs, internal logic switches the on-chip counters to battery back-up operation. Read/write functions become disabled and operation is limited to time-keeping and interrupt generation, resulting in low power consumption.

Internal latches prevent clock roll-over during a read cycle. Counter data is latched on the chip by reading the 100th-seconds counter and is held indefinitely until the counter is read again, assuring a stable and reliable time value.

## ORDERING INFORMATION

| Part <br> Number | Temperature <br> Range | Package |
| :--- | :--- | :--- |
| ICM7170IPG | $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ | 24-Pin Plastic Dip |
| ICM7170IDG | $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ | 24-Pin Ceramic |
| ICM7170IBG | $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ | 24-Pin S.O.I.C. <br> (Surface Mount) |
| ICM7170MDG | $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ | 24-Pin Ceramic |
| ICM7170MDG $/ 883 \mathrm{C}$ | $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ | 24-Pin Ceramic |
| ICM7170AIPG | $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ | 24-Pin Plastic Dip |
| ICM7170AIBG | $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ | 24-Pin S.O.I.C. |

"A" Parts Screened to <4 $\mu \mathrm{A}$ ISTBY @ 32 KHz

## FEATURES

- 883B-Rev C Compliant
- 8-Bit $\mu$ P Bus Compatible
-Multiplexed or Direct Addressing
- Regulated Oscillator Supply Ensures Frequency Stability and Low Power
- Time From 1/100 Seconds to 99 Years
- Software Selectable 12/24 Hour Format
- Latched Time Data Ensures No Roll-Over During Read
- Full Calendar With Automatic Leap Year Correction
- On-Chip Battery Backup Switchover Circuit
- Access Time Less Than 300ns
- 4 Programmable Crystal Oscillator Frequencies over Industrial Temp Range
- 3 Programmable Crystal Oscillator Frequencies over Military Temp Range
- On-Chip Alarm Comparator and RAM
- Interrupts from Alarm and 6 Selectable Periodic Intervals
- Standby Micro-Power Operation: $2 \mu \mathrm{~A}$ Typ. at 3.0V and $\mathbf{3 2 k H z}$ Crystal


## APPLICATIONS

- Portable and Personal Computers • Data Logging
- Industrial Control Systems - Point Of Sale


```
ABSOLUTE MAXIMUM RATINGS
Supply Voltage 8V
Power Dissipation (Note 1) . 500mW
Input Voltage (Any Terminal)
(Note 2)
```

$\qquad$

```
VDD +0.3V to V}\mp@subsup{V}{SS}{}-0.3\textrm{V
NOTE 1: }\mp@subsup{T}{A}{}=2\mp@subsup{5}{}{\circ}\textrm{C}
```

Operating Temperature $. \ldots . . . . . . . . . .-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature ................... $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10sec) ............... 300${ }^{\circ} \mathrm{C}$

NOTE 2: Due to the SCR structure inherent in the CMOS process, connecting any terminal at voltages greater than $V_{D D}$ or less than $V_{S S}$ may cause destructive device latchup. For this reason, it is recommended that no inputs from external sources not operating on the same power supply be applied to the device before its supply is established, and that in multiple supply systems, the supply to the ICM7170 be turned on first.
NOTE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.


Figure 2: Functional Diagram

## ELECTRICAL CHARACTERISTICS

DC CHARACTERISTICS
( $T_{A}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=+5 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{BACKUP}}=\mathrm{V}_{\mathrm{DD}}, \mathrm{V}_{S S}=0 \mathrm{~V}$ unless otherwise specified)

| Symbol | Parameter | Test Conditions |  | Specification |  |  | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Min | Typ | Max |  |
| $V_{D D}$ | $V_{D D}$ Supply Range | Fosc $=32 \mathrm{kHz}$ |  | 1.9 |  | 5.5 | V |
|  |  | $\begin{aligned} & \text { FOSC }=32 \mathrm{kHz} \\ & \text { Pins } 1-8,15-22 \& 24=V_{D D} \\ & V_{D D}=V_{S S} ; V_{B A C K U P}=V_{D D}-3.0 V \end{aligned}$ |  | 2.6 |  | 5.5 |  |
| ISTBY(1) | Standby Current |  | 7170 |  | 2.0 | 20.0 | $\mu \mathrm{A}$ |
|  |  |  | 7170A |  | 2.0 | 5.0 |  |
| ISTBY(2) | Standby Current | $\begin{aligned} & \text { FosC }=4 \mathrm{MHz} \\ & \text { Pins } 1-8,15-22 \& 24=V_{D D} \\ & V_{D D}=V_{S S} ; V_{B A C K U P}=V_{D D}-3.0 \mathrm{~V} \end{aligned}$ |  |  | 20 | 150 | $\mu \mathrm{A}$ |
| $I_{\text {DD(1) }}$ | Operating Supply Current | $\begin{aligned} & \text { Fosc }=32 \mathrm{kHz} \\ & \text { Read/Write Operation at } 100 \mathrm{~Hz} \end{aligned}$ |  |  | 0.3 | 1.2 | mA |
| IDD(2) | Operating Supply Current | $\begin{aligned} & \text { Fosc }=32 \mathrm{kHz} \\ & \text { Read/Write Operation at } 1 \mathrm{MHz} \end{aligned}$ |  |  | 1.0 | 2.0 | mA |
| $\mathrm{V}_{\text {IL }}$ | Input low voltage (Except Osc.) | $\mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$ |  |  |  | 0.8 | V |

INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. the warranty shall be exclusive and shall be in lieu of all other warranties, express, implied or statutory, including the implied warranties of MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.
NOTE: All typical values have been characterized but are not tested.

## ELECTRICAL CHARACTERISTICS

DC CHARACTERISTICS
( $T_{A}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=+5 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{BACKUP}}=\mathrm{V}_{\mathrm{DD}}, \mathrm{V}_{S S}=0 \mathrm{~V}$ unless otherwise specified) (Continued)

| Symbol | Parameter | Test Conditions |  | Specification |  |  | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Min | Typ | Max |  |
| $\mathrm{V}_{\mathrm{IH}}$ | Input high voltage (Except Osc.) | $\mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$ |  | 2.4 |  |  | V |
| $\mathrm{V}_{\mathrm{OL}}$ | Output low voltage (Except Osc.) | $\mathrm{I}_{\mathrm{OL}}=1.6 \mathrm{~mA}$ |  |  |  | 0.4 | V |
| $\mathrm{VOH}^{\text {O }}$ | Output high voltage except INTERRUPT (Except Osc.) | $\mathrm{l}_{\mathrm{OH}}=-400 \mu \mathrm{~A}$ |  | 2.4 |  |  | V |
| I/L | Input leakage current | $\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {DD }}$ or $\mathrm{V}_{\text {SS }}$ |  | -10 | 0.5 | +10 | $\mu \mathrm{A}$ |
| loL | Tristate leakage current ( $\mathrm{D}_{0}-\mathrm{D}_{7}$ ) | $\mathrm{V}_{0}=\mathrm{V}_{\text {DD }}$ or $\mathrm{V}_{\text {SS }}$ |  | -10 | 0.5 | +10 | $\mu \mathrm{A}$ |
| $\mathrm{V}_{\text {BATTERY }}$ | Backup Battery Voltage | $\mathrm{F}_{\text {OSC }}=1,2,4 \mathrm{MHz}$ |  | 2.6 |  | $\mathrm{V}_{\mathrm{DD}}-1.3$ | V |
| $\mathrm{V}_{\text {BATtery }}$ | Backup Battery Voltage | $\mathrm{F}_{\text {OSC }}=32 \mathrm{kHz}$ |  | 1.9 |  | $\mathrm{V}_{\mathrm{DD}}-1.3$ | V |
| lol | Leakage current INTERRUPT | $\mathrm{V}_{0}=\mathrm{V}_{\mathrm{DD}}$ | INT SOURCE connected to $\mathrm{V}_{\mathrm{SS}}$ |  | 0.5 | 10 | $\mu \mathrm{A}$ |
| $\mathrm{C}_{1 / 0}$ | CAPACITANCE $\mathrm{D}_{0}-\mathrm{D}_{7}$ |  |  |  |  | 8 | pF |
| CADDRESS | CAPACITANCE $\mathrm{A}_{0}-\mathrm{A}_{4}$ |  |  |  |  | 6 | pF |
| $\mathrm{C}_{\text {CONTROL }}$ | CAP. $\overline{\mathrm{RD}}, \overline{\mathrm{WR}}, \overline{\mathrm{CS}}$ ALE |  |  |  |  | 6 | pF |
| $\mathrm{C}_{\text {IN }}$ Osc. | Total Osc. Input Cap. |  |  |  |  | 3 | pF |

AC CHARACTERISTICS $\quad\left(T_{A}=-40^{\circ} \mathrm{C}\right.$ to $+85^{\circ} \mathrm{C}, \mathrm{V}_{D D}=+5 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{B A C K U P}=V_{D D}, D_{0}-D_{7}$ Load
Capacitance $=150 \mathrm{pF}, \mathrm{V}_{\mathrm{IL}}=0.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{IH}}=2.8 \mathrm{~V}$ unless otherwise specified)

| Symbol | Parameter | Min | Max | Units |
| :---: | :---: | :---: | :---: | :---: |
| READ CYCLE TIMING |  |  |  |  |
| $t_{\text {rd }}$ | READ to DATA valid |  | 250 | ns |
| $t_{\text {acc }}$ | ADDRESS valid to DATA valid |  | 300 | ns |
| $\mathrm{t}_{\text {cyc }}$ | READ cycle time | 400 |  | ns |
| $t_{\text {r }}$ | $\overline{\mathrm{RD}}$ high to bus tristate* |  | 25* | ns |
| $\mathrm{t}_{\text {as }}$ | ADDRESS to READ set up time* | 50 |  | ns |
| $\mathrm{tar}_{\text {ar }}$ | ADDRESS HOLD time after READ* | 0 |  | ns |
| *Guaranteed Parameter by Design |  |  |  |  |
| WRITE CYCLE TIMING |  |  |  |  |
| $t_{\text {ad }}$ | ADDRESS valid to WRITE strobe | 50 |  | ns |
| $t_{\text {wa }}$ | ADDRESS hold time for WRITE | 0 |  | ns |
| $t_{\text {wl }}$ | WRITE pulse width, low | 100 |  | ns |
| $t_{\text {wh }}$ | WRITE high time | 300 |  | ns |
| $t_{\text {r }}$ | Read high time | 150 |  | ns |
| $t_{\text {dw }}$ | DATA IN to WRITE set up time | 100 |  | ns |
| $t_{\text {wd }}$ | DATA IN hold time after WRITE | 30 |  | ns |
| $\mathrm{t}_{\text {cyc }}$ | WRITE cycle time | 400 |  | ns |
| MULTIPLEXED MODE TIMING |  |  |  |  |
| $t_{11}$ | ALE Pulse Width, High | 50 |  | ns |
| $\mathrm{tal}^{\text {a }}$ | ADDRESS to ALE set up time | 30 |  | ns |
| $t_{\text {la }}$ | ADDRESS hold time after ALE | 30 |  | ns |

Capacitance values are maximum values and are sample tested only.

## ICM 7170 ELECTRICAL CHARACTERISTICS (TEST SPECIFICATION) FOR MIL-STD-883 COMPLIANCE

## ABSOLUTE MAXIMUM RATINGS

Supply Voltage $\qquad$8 V Power Dissipation (Note 1) . . . . . . . . . . . . . . . . . . . . . . . 500mW Input Voltage (Any Terminal)

| $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots . .$. <br> Operating Temperature $\ldots \ldots . . . . . . . .-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ <br> Storage Temperature $\ldots \ldots . \ldots \ldots . .-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ <br> Lead Temperature (Soldering, 10 sec ) .............. $300^{\circ} \mathrm{C}$ |
| :---: |
|  |  |
|  |  |

Storage Temperature $. \ldots . . . . . . . . . . .-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec ) ............... $300^{\circ} \mathrm{C}$

NOTE 1: $T_{A}=25^{\circ} \mathrm{C}$.

## ELECTRICAL CHARACTERISTICS

DC CHARACTERISTICS ( $V_{D D}=5 \mathrm{~V} \pm 10 \%, V_{B A C K U P}=V_{D D}, T_{A}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$, unless otherwise specified)

| Symbol | Parameter | Test Conditions |  | Specification |  |  | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Min | Typ | Max |  |
| $V_{D D}$ | $V_{\text {DD }}$ Supply Range | FOSC $=32 \mathrm{kHz}$$\mathrm{F}_{\text {OSC }}=1,2 \mathrm{MHz}$ |  | 1.9 |  | 5.5 | V |
|  |  |  |  | 2.6 |  | 5.5 |  |
| ISTBY(1) | Standby Current | $\begin{aligned} & \text { FOSC }=32 \mathrm{kHz} \\ & \text { All chip I/O to } \mathrm{V}_{\mathrm{DD}} \\ & \mathrm{~V}_{\mathrm{DD}}=\mathrm{V}_{\mathrm{SS}}: \mathrm{V}_{\mathrm{BACK}} \\ & \hline \end{aligned}$ | $\mathrm{JP}=\mathrm{V}_{\mathrm{DD}}-3.0 \mathrm{~V}$ |  | 2.0 | 40 | $\mu \mathrm{A}$ |
| Istby(2) | Standby Current | $\begin{aligned} & \text { FOSC }=1,2 \mathrm{MHz} \\ & \text { All chip } 1 / O \text { to } V_{D D} \\ & 7170 A \\ & V_{D D}=V S S B A C K \end{aligned}$ | $K U P=V D D^{\circ}-3.0 V$ |  | 30 | $\begin{aligned} & 200 \\ & 5.0 \\ & \hline \end{aligned}$ | $\mu \mathrm{A}$ |
| ${ }^{\text {ID }}$ (1) | Operating Supply Current | $\begin{aligned} & \text { Fosc } 32 \mathrm{kHz} \\ & \text { Read/write Opera } \end{aligned}$ | on at 100 Hz |  | 0.3 | 1.2 | mA |
| ${ }^{\prime} \mathrm{DD}(2)$ | Operating Supply Current | Fosc $=32 \mathrm{kHz}$ <br> Read/Write Ope | ion at 1 MHz |  | 1.0 | 2.0 | mA |
| $\mathrm{V}_{\text {IL }}$ | Input Low Voltage (Except Osc.) | $\mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$ |  |  |  | 0.8 | V |
| $\mathrm{V}_{\text {IH }}$ | Input High Voltage (Except Osc.) | $\mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$ |  | 2.8 |  |  |  |
| $\mathrm{V}_{\mathrm{OL}}$ | Output Low Voltage (Except Osc.) | $\mathrm{l}_{\mathrm{OL}}=1.6 \mathrm{~mA}$ |  |  |  | 0.5 | V |
| $\mathrm{V}_{\mathrm{OH}}$ | Output High Voltage Except INTERRUPT (Except Osc.) | $\mathrm{lOH}^{\prime}=400 \mu \mathrm{~A}$ |  | 2.5 |  |  | V |
| ILL | Input Leakage Current | $\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {DD }}$ or $\mathrm{V}_{\text {SS }}$ |  | -10 | 0.5 | +10 | $\mu \mathrm{A}$ |
| lOL | Tristate Leakage Current ( $\mathrm{D}_{0}-\mathrm{D}_{7}$ ) | $\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{DD}}$ or $\mathrm{V}_{S S}$ |  | -10 | 0.5 | +10 | $\mu \mathrm{A}$ |
| $\mathrm{V}_{\text {BATTERY }}$ | Backup Battery Voltage | OSG $=32 \mathrm{kHz}$ |  | 1.9 |  | $V_{D D}-1.5$ | V |
| lol | Leakage Current INTERRUPT | $\mathrm{V}_{0}=\mathrm{V}_{\mathrm{DD}}$ or $\mathrm{V}_{S S}$ | INT SOURCE connected to $\mathrm{V}_{\mathrm{SS}}$ |  | 0.5 | 10 | $\mu \mathrm{A}$ |

[^515]AC CHARACTERISTICS $\left(T_{A}=-55^{\circ} \mathrm{C}\right.$ to $+125^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{BACK}} \mathrm{CJP}=\mathrm{V}_{\mathrm{DD}}, \mathrm{D}_{0}-\mathrm{D}_{7}$ Load
Capacitance $=150 \mathrm{pF}, \mathrm{V}_{\mathrm{IL}}=0.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{IH}}=3.20 \mathrm{~V}$ unless otherwise specified)

| Symbol | Parameter | Min | Max | Units |
| :---: | :---: | :---: | :---: | :---: |
| READ CYCLE TIMING |  |  |  |  |
| $\mathrm{t}_{\text {rd }}$ | READ to DATA Valid |  | 250 | ns |
| $t_{\text {ACC }}$ | ADDRESS Valid to DATA Valid |  | 350 | ns |
| $\mathrm{t}_{\text {cyc }}$ | READ Cycle Time | 450 |  | ns |
| $t_{1 \times}$ | $\overline{\mathrm{RD}}$ High to Bus Tristate |  | 100 | ns |
| $t_{\text {as }}$ | ADDRESS to READ Set Up Time | 100 |  | ns |
| $\mathrm{tar}_{\text {ar }}$ | ADDRESS HOLD Time after READ |  |  | ns |
| $\mathrm{t}_{\mathrm{r}}$ | READ High Time | 20 |  | ns |


| WRITE CYCLE TIMING |  |  |  |  |
| :---: | :--- | :---: | :---: | :---: |
| $\mathrm{t}_{\mathrm{ad}}$ | ADDRESS Validto Strobero | 100 |  | ns |
| $\mathrm{t}_{\mathrm{wa}}$ | ADDRESS Hold Time forwRITE | 50 |  | ns |
| $\mathrm{t}_{\mathrm{wl}}$ | WRITE Pulse Low Width | 125 |  | ns |
| $\mathrm{t}_{\mathrm{wh}}$ | WRITE Pulse Width High | 325 |  | ns |
| $\mathrm{t}_{\mathrm{dw}}$ | DATA IN to WRITE Set Up Time | 125 |  | ns |
| $\mathrm{t}_{\mathrm{wd}}$ | DATA IN Hold Time after WRITE | 50 |  | ns |
| $\mathrm{t}_{\text {cyc }}$ | WRITE Cycle Time | 450 |  | ns |

MULTIPLEXED MODE TIMING

| $t_{\\|}$ | ALE Width | 50 |  | ns |
| :---: | :--- | :--- | :--- | :---: |
| $\mathrm{t}_{\mathrm{al}}$ | ADDRESS to ALE Set Up Time | 30 |  | ns |
| $\mathrm{t}_{\mathrm{la}}$ | ADDRESS Hold Time after ALE | 40 |  | ns |



READ CYCLE TIMING FOR MULTIPLEXED BUS ( $\overline{\mathbf{W R}}=\mathbf{V}_{\mathbf{I H}}$ )


0372-5
WRITE CYCLE TIMING FOR MULTIPLEXED BUS ( $\overline{\mathrm{RD}}=\mathbf{V}_{\mathbf{I H}}$ )


NOTE: The A0 to A4 address inputs may be connected to the D0 to D4 data lines when a multiplexed bus is used.
Figure 4: Timing Diagrams - Multiplexed Bus
Table 1

| Signal | Pin | Description |
| :---: | :---: | :---: |
| $\overline{W R}$ | 1 | Write input |
| ALE | 2 | Address latch enable input |
| $\overline{\mathrm{CS}}$ | 3 | Chip select input |
| A4-A0 | 4-8 | Address inputs |
| OSC OUT | 9 | Oscillator output |
| OSC IN | 10 | Oscillator input |
| INT SOURCE | 11 | Interrupt source |
| INTERRUPT | 12 | Interrupt output |
| $\mathrm{V}_{\text {SS }}$ (GND) | 13 | Digital common |
| $V_{\text {BACKUP }}$ | 14 | Battery negative side |
| D0-D7 | 15-22 | Data 1/O |
| $V_{D D}$ | 23 | Positive digital supply |
| $\overline{\mathrm{RD}}$ | 24 | Read input |

## DETAILED DESCRIPTION Oscillator

This circuit uses a regulated CMOS Pierce oscillator, for maximum accuracy, stability, and low-power consumption. Externally, one crystal and two capacitors are required. One of the capacitors is variable and is used to trim or tune the oscillator output. Typical values for these capacitors are $\mathrm{C}_{\mathrm{IN}}=15 \mathrm{pF}$ and $\mathrm{C}_{\mathrm{OUT}}=10-35 \mathrm{pF}$, or approximately double the recommended CLOAD for the crystal being used. Both capacitors must be connected from the respective oscillator pins to $V_{D D}$ for maximum stability.
The oscillator output is divided down to 4000 Hz by one of four selected ratios, via a variable prescaler. The ICM7170 can use any one of four different low-cost crystals: $4.194304 \mathrm{MHz}, 2.097152 \mathrm{MHz}, 1.048576 \mathrm{MHz}$, or 32.768 kHz . The ICM7170MDG is available with 3 crystal frequency options only. (4.194304 MHz is not avail. with military version.) The command register must be programmed for the frequency of the crystal chosen, and this in turn will determine the prescaler's divide ratio.

Command Register frequency selection is written to the D0 and D1 bits at address 11H and the 12 or 24 hour format is determined by bit D2, as shown in Table 4.

The 4000 Hz signal is divided down further to 100 Hz , which is used as the clock for the counters. Time and calendar information is provided by 8 consecutive addressable, programmable counters: 100ths of seconds, seconds, minutes, hours, day of week, date, month, and year. The data is in binary format and is configured into 8 bits per digit. See Table 4 for address information. Any unused bits are held at logic " 0 " during a read and ignored during a write operation.

## Alarm Compare RAM

On the chip are 51 bits of Alarm Compare RAM grouped into words of different lengths. These are used to store the time, ranging from 100ths of seconds to years, for comparison to the real-time counters. Each counter has a corresponding RAM word. In the Alarm Mode an interrupt is generated when the current time is equal to the alarm time. The RAM contents are compared to the counters on a word by word basis. If a comparison to a particular counter is unnecessary, then the appropriate ' $M$ ' bit in Compare RAM should be set to logic " 1 ".
The 'M' bit, referring to Mask bit, causes a particular RAM word to be masked off or ignored during a compare. Table 4 shows addresses and Mask bit information.

## Periodic Interrupts

The interrupt output can be programmed for 6 periodic signals: $100 \mathrm{~Hz}, 10 \mathrm{~Hz}$, once per second, once per minute, once per hour, or once per day. The 100 Hz and 10 Hz interrupts have instantaneous errors of $\pm 2.5 \%$ and $\pm 0.15 \%$ respectively. This is because non-integer divider circuitry is used to generate these signals from the crystal frequency, which is a power of 2 . The time average of these errors over a 1 second period, however, is zero. Consequently, the 100 Hz or 10 Hz interrupts are not suitable as an aid in tuning the oscillator; the 1 second interrupt must be used instead.

Table 2: Command Register Format

| COMMAND REGISTER ADDRESS (10001b, 11h) WRITE-ONLY |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| D 7 | D 6 | D5 | D4 | D3 | D2 | D1 | D0 |
| $\mathrm{n} / \mathrm{a}$ | $\mathrm{n} / \mathrm{a}$ | Test | Int. | Run | $12 / 24$ | Freq | Freq |

Table 3: Command Register Bit Assignments

| D1 | D0 | Crystal <br> Frequency | D2 | 24/12 Hour <br> Format | D3 | Run/Stop | D4 | Interrupt <br> Enable | D5 | Test Bit |
| :---: | :---: | :---: | :---: | :---: | :---: | :--- | :--- | :--- | :--- | :---: |
| 0 | 0 | 32.768 kHz | 0 | 12 hour mode | 0 | Stop | 0 | Interrupt disabled | 0 | Normal Mode |
| 0 | 1 | 1.048576 MHz | 1 | 24 hour mode | 1 | Run | 1 | Interrupt enable | 1 | Test Mode |
| 1 | 0 | 2.097152 MHz |  |  |  |  |  |  |  |  |
| 1 | 1 | 4.194304 MHz |  |  |  |  |  |  |  |  | MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

NOTE: All typical values have been characterized but are not tested.

Table 4: Address Codes and Functions

| Address |  |  |  |  |  | Function | DATA |  |  |  |  |  |  |  | Value |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| A4 | A3 | A2 | A1 | AO | HEX |  | D7 | D6 | D5 | D4 | D3 | D2 | D1 | D0 |  |
| 0 | 0 | 0 | 0 | 0 | 00 | Counter-1/100 seconds | - | . | . | . | . | . | . | . | 0-99 |
| 0 | 0 | 0 | 0 | 1 | 01 | Counter-hours | - | - | - | . | . | . | . | . | 0-23 |
|  |  |  |  |  |  | 12 Hour Mode | * | - | - | - | . | . | . | . | 1-12 |
| 0 | 0 | 0 | 1 | 0 | 02 | Counter-minutes | - | - | . | . | . | . | . | . | 0-59 |
| 0 | 0 | 0 | 1 | 1 | 03 | Counter-seconds | - | - | . | . | . | . | . | . | 0-59 |
| 0 | 0 | 1 | 0 | 0 | 04 | Counter-month | - | - | - | - | . | . | . | . | 1-12 |
| 0 | 0 | 1 | 0 | 1 | 05 | Counter-date | - | - | - | . | . | . | . | . | 1-31 |
| 0 | 0 | 1 | 1 | 0 | 06 | Counter-year | - | . | . | . | . | . | . | . | 0-99 |
| 0 | 0 | 1 | 1 | 1 | 07 | Counter-day of week | - | - | - | - | - | . | . | . | 0-6 |
| 0 | 1 | 0 | 0 | 0 | 08 | RAM-1/100 seconds | M | . | . | . | . | . | . | . | 0-99 |
| 0 | 1 | 0 | 0 | 1 | 09 | RAM-hours | - | M | - | . | . | . | . | . | 0-23 |
|  |  |  |  |  |  | 12 hour Mode | * | M | - | - | . | . | . | . | 1-12 |
| 0 | 1 | 0 | 1 | 0 | OA | RAM-minutes | M | - | . | . | . | . | . | . | 0-59 |
| 0 | 1 | 0 | 1 | 1 | OB | RAM-seconds | M | - | . | . | . | . | . | . | 0-59 |
| 0 | 1 | 1 | 0 | 0 | OC | RAM-month | M | - | - | - | . | . | . | . | -12 |
| 0 | 1 | 1 | 0 | 1 | OD | RAM-date | M | - | - | . | . | . | . | . | 1-31 |
| 0 | 1 | 1 | 1 | 0 | OE | RAM-year | M | . | . | . | . | . | . | . | 0-99 |
| 0 | 1 | 1 | 1 | 1 | OF | RAM-day of week | M | - | - | - | - | . | . | . | 0-6 |
| 1 | 0 | 0 | 0 | 0 | 10 | Interrupt Status | + | . | . | . | . |  | . | . |  |
| 1 | 0 | 0 | 0 | 1 | 11 | and Mask Register | - | - | . | . |  |  | . | . |  |

NOTES: Address 10010 to 11111 ( 12 h to 1 Fh ) are unused.
'+' Unused bit for Interrupt Mask Register, MSB bit for Interrupt Status Register.
'--' Indicates unused bits.
'*' AM/PM indicator bit in 12 hour format. Logic " 0 " indicates AM, logic " 1 " indicates PM.
' $M$ ' Alarm compare for particular counter will be enabled if bit is set to logic " 0 ".
Table 5: Interrupt and Status Registers Format

| INTERRUPT MASK REGISTER ADDRESS (10000b, 10h) WRITE-ONLY |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| D7 | D6 | D5 | D4 | D3 | D2 | D1 | D0 |
| Not Used | Day | Hour | Min. | Sec. | $1 / 10 \mathrm{sec}$. | $1 / 100 \mathrm{sec}$. | Alarm |


| INTERRUPT STATUS REGISTER ADDRESS (10000b, 10h) READ-ONLY |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| D7 | D6 | D5 | D4 | D3 | D2 | D1 | D0 |
| Global <br> Interrupt | Day | Hour | Min. | Sec. | $1 / 10 \mathrm{sec}$. | $1 / 100 \mathrm{sec}$. | Alarm |

[^516]
## Interrupt Operation

The interrupt output N -channel MOSFET is active at all times when the Interrupt Enable bit is set (bit 4 of the Command Register), and operates in both the standby and battery backup modes.

Since system power is usually applied between $V_{D D}$ and $V_{\text {SS }}$, the user can connect the Interrupt Source (pin \#11) to VSS. This allows the Interrupt Output to turn on only while system power is applied and will not be pulled to $V_{\text {SS }}$ during standby operation. If interrupts are required only during standby operation, then the interrupt source pin should be connected to the battery's negative side (VBACKUP). In this configuration, for example, the interrupt could be used to turn on power for a cold boot.

## Power-Down Detector

The ICM7170 contains an on-chip power-down detector that eliminates the need for external components to support
the battery-backup switchover function, as shown in Figure 6. Whenever the voltage from the $V_{S S}$ pin to the $V_{B A C K U P}$ pin is less than approximately 1.0 V (the $\mathrm{V}_{\text {th }}$ of the N -channel MOSFET), the data bus I/O buffers in the 7170 are automatically disabled and the chip cannot be read or written to. This prevents random data from the microprocessor being written to the clock registers as the power supply is going down.

Actual switchover to battery operation occurs when the voltage on the $V_{\text {BACKUP }}$ pin is within $\pm 50 \mathrm{mV}$ of $\mathrm{V}_{\text {Ss }}$. This switchover uncertainty is due to the offset voltage of the CMOS comparator that is used to sense the battery voltage. During battery backup, device operation is limited to timekeeping and interrupt generation only, thus achieving micropower current drain. If an external battery-backup switchover circuit is being used with the 7170, the $V_{\text {BACKUP }}$ pin should be tied to the $V_{D D}$ pin. The same also applies if standby battery operation is not required.


Figure 5: Interrupt Output Circuit

[^517]
## Time Synchronization

Time synchronization is achieved through bit D3 of the Command Register, which is used to enable or disable the 100 Hz clock from the counters. A logic " 1 " allows the counters to function and a logic " 0 " disables the counters. To accurately set the time, a logic " 0 " should be written into D3 and then the desired times entered into the appropriate counters. The clock is then started at the proper time by writing a logic " 1 " into D3 of the Command Register.

## Latched Data

To prevent ambiguity while the processor is gathering data from the registers, the ICM7170 incorporates data latches and a transparent transition delay circuit.
By accessing the 100ths of seconds counter an internal store signal is generated and data from all the counters is stored into a 36 -bit latch. A transition delay circuit will delay a 100 Hz transition during a READ cycle. The data stored by the latches is then available for further processing until the 100ths of seconds counter is read again.

## Control Lines

The $\overline{R D}, \overline{W R}$, and $\overline{C S}$ signals are active low inputs. Data is placed on the bus from counters or registers when $\overline{R D}$ is a logic " 0 ". Data is transferred to counters or registers when WR is a logic " 0 ". $\overline{\mathrm{RD}}$ and $\overline{\mathrm{WR}}$ must be accompanied
by a logical "0" $\overline{\mathrm{CS}}$ as shown in Figures 3 and 4. The 7170 will also work satisfactorily with $\overline{\mathrm{CS}}$ grounded. This access also to be controlled by $\overline{\mathrm{RD}}$ and $\overline{\mathrm{WR}}$ only.
With the ALE (Address Latch Enable) input, the ICM7170 can be interfaced directly to microprocessors that use a multiplexed address/data bus by connecting the address lines A0-A4 to the data lines D0-D4. To address the chip, the address is placed on the bus and ALE is strobed. On the falling edge, the address and $\overline{C S}$ information is read into the address latch and buffer. $\overline{\mathrm{RD}}$ and $\overline{\mathrm{WR}}$ are used in the same way as on a non-multiplexed bus. If a non-multiplexed bus is used, ALE should be connected to $\mathrm{V}_{\mathrm{DD}}$.

## Test Mode

The test mode is entered by setting D5 of the Command Register to a logic " 1 ". This connects the 100 Hz counter to the oscillator's output. The peak-to-peak voltage used to drive osc. out should not be greater than the oscillator's regulated voltage. The signal must be referenced to $\mathrm{V}_{\mathrm{DD}}$.

## Oscillator Tuning

Oscillator tuning should not be attempted by direct monitoring of the oscillator pins, unless very specialized equipment is used. External connections to the oscillator pins cause capacitive loading of the crystal, and shift the oscillator frequency. As a result, the precision setting being at-


[^518]tempted is corrupted. One indirect method of determining the oscillator frequency is to measure the period between interrupts on the Interrupt Output pin (\#12). This measurement must be relative to the falling edges of the INTER$\overline{R U P T}$ pin. The oscillator set-up and tuning can be performed as follows:

1) Select one of 4, readily-available oscillator frequencies and place the crystal between OSC IN (pin \#10) and OSC OUT (pin \#9).
2) Connect a fixed capacitor from $O S C I N$ to $V_{D D}$.
3) Connect a variable capacitor from OSC OUT to $\mathrm{V}_{\mathrm{DD}}$. In cases where the crystal selected is a 32 kHz Statek type $\left(C_{L}=9 p F\right)$, the typical value of $\mathrm{C}_{\mathrm{IN}}=15 \mathrm{pF}$ and $\mathrm{C}_{\mathrm{OUT}}=5 \mathrm{pf}-35 \mathrm{pF}$.
4) Place a $4.7 \mathrm{~K} \Omega$ resistor from the INTERRUPT pin to $V_{D D}$, and connect the INT SOURCE pin to $V_{S S}$.
5) Apply 5 V power and insure the clock is not in standby mode.
6) Write all O's to the Interrupt Mask Register, disabling all interrupts.
7) Write to the Command Register with the desired oscillator frequency, Hours mode ( 12 hour or 24 hour), Run = "1", Interrupt Enable="1", and Test = " 0 ".
8) Write to the Interrupt Mask Register, enabling onesecond interrupts only.
9) Monitor the INTERRUPT output pin with a precision period counter and trim the OSC OUT capacitor for a reading of 1.000000 seconds. The period counter must be triggered on the falling edge of the interrupt output for this measurement to be accurate.
10) Read the Interrupt Status Register. This action resets the interrupt output back to a logic "1" level.
11) Repeat steps 9 and 10 with a software loop. A suitable computer should be used.

## PCB DESIGN CONSIDERATION

1) Layout Quartz Crystal traces as short as possible.
2) Keep Crystal traces as far as possible from other traces.
3) PCB must accept both Saronix and Statek 32.768 kHz Crystals.
4) Completely surround crystal traces with $V_{D D}$ trace.
5) Try to keep oscillator traces on one side of the PCB.
6) Trimmer capacitor must be accessible from the top of the PCB after it is inserted into the appropriate connector.
7) The fixed and variable oscillator capacitors must be referenced to $V_{D D} . V_{S S}$ is not an $A C$ ground for the oscillator.

## APPLICATION NOTES

## Digital Input Termination During Backup

To ensure low current drain during battery backup operation, none of the digital inputs to the 7170 should be allowed to float. This keeps the input logic gates out of their transition region, and prevents crossover current from flowing which will shorten battery life. The address, data, $\overline{\mathrm{CS}}$, and ALE pins should be pulled to either $V_{D D}$ or $V_{S S}$, and the $\overline{\mathrm{RD}}$ and $\overline{\mathrm{WR}}$ inputs should be pulled to $\mathrm{V}_{\mathrm{DD}}$. This is necessary whether the internal battery switchover circuit is used or not.

## IBM/PC Evaluation Circuit

Figure 7 shows the schematic of a board that has been designed to plug into an IBM PC or compatible computer. It features full buffering of all 7170 address and data lines, and switch selectable I/O block select. A provision for setting the priority level of the 7170 periodic interrupt has also been added.

| Batteries | Crystals |
| :--- | :--- |
| Panasonic | Statek 32kHz CX-IV |
| Rayovac | SARONIX 32kHz NTF3238 |



Figure 7: IBM PC Interface for ICM7170

[^519]
## ICM7207/A

 CMOS Timebase Generator
## GENERAL DESCRIPTION

The ICM7207/A consist of a high stability oscillator and frequency divider providing 4 control outputs suitable for frequency counter timebases. Specifically, when used as a frequency counter timebase in conjunction with the ICM7208 frequency counter, the four outputs provide the gating signals for the count window, store function, reset function and multiplex frequency reference. Additionally, the duration of the count window may be changed by a factor of 10 to provide a 2 decade range counting system.
The normal operating voltage of the ICM7207/A is 5 volts. The typical power dissipation is less than 2 mW when using an oscillator frequency of 6.5536 MHz with the 7207 and 5.24288 MHz with the 7207A.
In the 7207/A the GATING OUTput, ReSeT, and the MULTIPLEX output provide both pull up and pull down, eliminating the need for 3 external resistors; although, buffering must be provided if interfacing with TTL is required.
ORDERING INFORMATION

| Order <br> Number | Temperature <br> Range | Package |
| :--- | :---: | :---: |
| ICM7207/JD | $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ | 14-Pin CERDIP |
| ICM7207IPD |  |  |
| ICM7207EV/Kit | $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ | 14-Pin PLASTIC DIP |
| ICM7207AIJD | $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ | 14-Pin CERDIP |
| ICM7207AIPD | $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ | 14-Pin PLASTIC DIP |
| ICM7207AEV $/$ Kit | - | EV/Kit* |

*These EV/Kits contain just the IC and the corresponding crystal. The ICM7207A is also used in the $41 / 2$-Digit Counter/Driver kits, the ICM7224 EV/Kit, ICM7225 EV/Kit, and ICM7236 EV/Kit, which include several ICs, a crystal, PC board, and some passive components.

## FEATURES

- Stable HF Oscillator
- Low Power Dissipation $\leq 2 \mathrm{~mW}$ With 5 Volt Supply
- Counter Chain Has Outputs at $\div \mathbf{2}^{12}$ and $\div \mathbf{2 n}^{n}$ or $\div\left(2^{n} \times 10\right) ; n=17$ for 7207, and 20 for 7207A
- Low Impedance Output Drivers $\leq 100$ Ohms
- Count Windows of $10 / 100 \mathrm{~ms}$ ( 7207 With 6.5536 MHz Crystal) or $0.1 / 1 \mathrm{Sec}$. (7207A With 5.24288 MHz Crystal)


## APPLICATIONS

- System Timebases
- Oscilloscope Calibration Generators
- Marker Generator Strobes
- Frequency Counter Controllers


0348-1
Figure 1: Pin Configuration (Outline dwg PD)


0348-2
Figure 2: Functional Diagram


Output Currents ........................................ . . 25mA
Power Dissipation @ $25^{\circ} \mathrm{C}$ Note 1 . . . . . . . . . . . . . . . 200 mW
Operating Temperature Range.........$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature Range ........... $-65^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10sec) ............... 300${ }^{\circ} \mathrm{C}$

NOTE 1: Derate by $2 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $25^{\circ} \mathrm{C}$.
Absolute maximum ratings refer to values which if exceeded may permanently change or destroy the device.
NOTE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

## ELECTRICAL CHARACTERISTICS

$\mathrm{f}_{\mathrm{OSC}}=6.5536 \mathrm{MHz}(7207), 5.24288 \mathrm{MHz}(7207 \mathrm{~A}), \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$, test circuit unless otherwise specified.

| Symbol | Parameter | Test Conditions | Min | Typ | Max | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $V_{D D}$ | Operating Voltage Range | $-20^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ | 4 |  | 5.5 | V |
| IDD | Supply Current | All outputs open circuit |  | 260 | 1000 | $\mu \mathrm{A}$ |
| $\mathrm{R}_{\mathrm{ds}}(\mathrm{on})$ | Output on Resistances | Output current $=5 \mathrm{~mA}$ All outputs |  | 50 | 120 | $\Omega$ |
| loLk | Output Leakage Currents | All outputs (डTORE only) |  |  | 50 | $\mu \mathrm{A}$ |
| (ROUT) | (Output Resistance <br> Terminals 12,13,14) | Output current $=50 \mu \mathrm{~A}, 7207 \mathrm{~A}$ only |  |  | 33K | $\Omega$ |
| $\mathrm{l}_{\mathrm{pd}}$ | Input Pulldown Current | Terminal 11 connected to $\mathrm{V}_{\text {DD }}$ |  | 50 | 200 | $\mu \mathrm{A}$ |
|  | Input Noise Immunity |  | 25 |  |  | \% supply voltage |
| $\mathrm{f}_{\text {osc }}$ | Oscillator Frequency Range | Note 2 | 2 |  | 10 | MHz |
| $\mathrm{f}_{\text {STAB }}$ | Oscillator Stability | $\mathrm{C}_{\text {IN }}=\mathrm{C}_{\text {OUT }}=22 \mathrm{pF}$ |  | 0.2 | 1.0 | ppm/V |
| rosc | Oscillator Feedback Resistance | Quartz crystal open circuit Note 3 | 3 |  |  | $\mathrm{M} \Omega$ |

NOTES: 2. Dynamic dividers are used in the initial stages of the divider chain. These dividers have a lower frequency of operation determined by transistor sizes, threshold voltages and leakage currents.
3. The feedback resistor has a non-linear value determined by the oscillator instantaneous input and output voltage voltages and the supply voltage.

[^520]

0348-3
SWITCHES $\mathrm{S}_{1}, \mathrm{~S}_{2}, \mathrm{~S}_{3}, \mathrm{~S}_{4}$ OPEN CIRCUIT FOR SUPPLY CURRENT MEASUREMENT.
SWITCH $S_{5}$ OPEN CIRCUIT FOR SLOW GATING PERIOD.
$\dagger$ SWITCHES $\mathrm{S}_{2}, \mathrm{~S}_{3}, \mathrm{~S}_{4}$ and 50k RESISTORS ARE NOT NEEDED WHEN USING THE ICM7207A.
Figure 3: Test Circuit

## TYPICAL PERFORMANCE CHARACTERISTICS



OUTPUT SATURATION RESISTANCES AS A FUNCTION OF SUPPLY VOLTAGE


[^521]
## TYPICAL PERFORMANCE CHARACTERISTICS (Continued)

OSCILLATOR STABILITY AS A
FUNCTION OF SUPPLY VOLTAGE


SUPPLY CURRENT AS A FUNCTION OF SUPPLY VOLTAGE


0348-6
OUTPUT TIMING WAVEFORMS 7207 (7207A)

## Crystal Frequency $=6.5536(5.24288) \mathrm{MHz}$



0348-8
Figure 4: Output Waveform

## DETAILED DESCRIPTION

Referring to the Test Circuit, Figure 3, the crystal oscillator frequency is divided by $2^{12}$ to provide both the multiplex frequency and generate the output pulse widths. The GATING OUTPUT provides a $50 \%$ duty cycle signal whose period depends upon whether the RANGE CONTROL terminal is connected to $V_{D D}$ or $V_{S S}$ (open circuit).

## OSCILLATOR CONSIDERATIONS

The oscillator consists of a CMOS inverter with a non-linear resistor connected between the input and output terminals to provide biasing. Oscillator stabilities of approximately 0.1 ppm per 0.1 volt change are achievable at a supply voltage of 5 volts, using low cost crystals. The crystal specifications are shown in the TEST CIRCUIT.

It is recommended that the crystal load capacitance ( $\mathrm{C}_{\mathrm{L}}$ ) be no greater than 15 pF for a crystal having a series resistance equal to or less than $75 \Omega$, otherwise the output amplitude of the oscillator may be too low to drive the divider reliably.

If a very high quality oscillator is desired, it is recommended that a quartz crystal be used having a tight tuning tolerance $\pm 10 \mathrm{ppm}$, a low series resistance (less than $25 \Omega$ ), a low motional capacitance of 5 mpF and a load capacitance of 15 pF . The fixed capacitor $\mathrm{C}_{\mathrm{IN}}$ should be 39 pF and the oscillator tuning capacitor should range between approximately 8 and 60 pF .

Use of a high quality crystal will result in typical oscillator stabilities of 0.05 ppm per 0.1 volt change of supply voltage.

[^522]
## FREQUENCY LIMITATIONS

The ICM7207/A uses dynamic frequency counters in the initial divider sections. Dynamic frequency counters are faster and consume less power than static dividers but suffer from the disadvantage that there is a minimum operating frequency at a given supply voltage.


0348-9
Figure 5
For example, if instead of 6.5 MHz , a 1 MHz oscillator is required, it is recommended that the supply voltage be reduced to between 2 and 2.5 volts. This may be realized by using a series resistor in series with the 5 V positive supply line plus a decoupling capacitor. The quartz crystal parameters, etc., will determine the value of this resistor. NOTE: Except for the output open drain n-channel transistors no other terminal is permitted to exceed the supply voltage limits.

## APPLICATION <br> A PRACTICAL FREQUENCY COUNTER

A complete frequency counter using the ICM7207/A together with the ICM7208 Frequency Counter is described in the ICM7208 data sheet. Other frequency counters using the ICM7207/A can be constructed using the ICM7224, ICM7225, and ICM7236, for LCD, LED and VF displays. The latter are available as EV/Kits also.

## QUARTZ CRYSTAL MANUFACTURERS

The following list of possible suppliers is intended to be of assistance in putting a design into production. It should not be interpreted as a comprehensive list of suppliers, nor does it constitute an endorsement by Intersil.
a) CTS Knights, Sandwich, Illinois, (815) 786-8411
b) Motorola Inc., Franklin Park, Illinois (312) 451-1000
c) Sentry Manufacturing Co., Chickasaw, Oklahoma (405) 224-6780
d) Tyco Filters Division, Phoenix, Arizona (602) 2727945
e) M-Tron Inds., Yankton, South Dakota (605) 6659321
f) Saronix, Palo Alto, California (415) 856-6900

## ICM7208 <br> 7－Digit LED Display Counter

## GENERAL DESCRIPTION

The ICM7208 is a fully integrated seven decade counter－ decoder－driver and is manufactured using Intersil＇s low volt－ age metal gate CMOS process．

Specifically the ICM7208 provides the following on chip functions：a 7 decade counter，multiplexer， 7 segment de－ coder，digit \＆segment driver，plus additional logic for dis－ play blanking，reset，input inhibit，and display on／off．

For unit counter applications the only additional compo－ nents are a 7 digit common cathode display， 3 resistors and a capacitor to generate the multiplex frequency reference， and the control switches．

The ICM7208 is intended to operate over a supply volt－ age of 2 to 6 volts as a medium speed counter，or over a more restricted voltage range for high frequency applica－ tions．

As a frequency counter it is recommended that the ICM7208 be used in conjunction with the ICM7207 Oscilla－ tor Controller，which provides a stable HF oscillator，and output signal gating．

## FEATURES

－Low Operating Power Dissipation＜10mW
－Low Quiescent Power Dissipation＜5mW
－Counts and Displays 7 Decades
－Wide Operating Supply Voltage Range $\mathbf{2 V} \leq \mathbf{V}_{\mathrm{DD}} \leq 6 \mathrm{~V}$
－Drives Directly 7 Decade Multiplexed Common Cathode LED Display
－Internal Store Capability
－Internal Inhibit to Counter Input
－Test Speedup Point
ORDERING INFORMATION

| Part Number | Temperature <br> Range | Package |
| :---: | :---: | :---: |
| ICM7208IPI | $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ | 28 Lead Plastic DIP |



[^523]
## ABSOLUTE MAXIMUM RATINGS

Supply Voltage (Note 2) ( $\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{SS}}$ ) .................... 6 V Input Voltage Range (any input terminal)
(Note 2) $\ldots \ldots \ldots \ldots \ldots . . . V_{S S}-0.3 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$ Output Digit Drive Current (Note 3) . . . . . . . . . . . . . . . 150mA Output Segment Drive Current . . . . . . . . . . . . . . . . . . . . . 30mA
Power Dissipation (Note 1) ............................... 1W
Operating Temperature Range $\ldots \ldots . . .-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature Range ........... $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10sec) $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
....... $.300^{\circ} \mathrm{C}$

NOTE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS $\quad\left(V_{D D}=5 \mathrm{~V}, \mathrm{~V}_{S S}=0 \mathrm{~V}, T_{A}=25^{\circ} \mathrm{C}\right.$, display off, unless otherwise specified)

| Symbol | Parameter | Test Conditions | Min | Typ | Max | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{l}_{\text {Q1 }}$ | Quiescent Current | All controls plus terminal 19 connected to $V_{D D}$ No multiplex oscillator |  | 30 | 300 | $\mu \mathrm{A}$ |
| $\mathrm{I}_{\text {Q2 }}$ | Quiescent Current | All control inputs plus terminal 19 connected to $V_{D D}$ except $S T O R E$ which is connected to $V_{S S}$ |  | 70 | 350 |  |
| IDD1 | Operating Supply Current | All inputs connected to $\mathrm{V}_{\mathrm{DD}}, \mathrm{RC}$ multiplexer osc operating $\mathrm{f}_{\text {in }}<25 \mathrm{kHz}$ |  | 210 | 500 |  |
| IDD2 | Operating Supply Current | $\mathrm{f}_{\text {in }}=2 \mathrm{MHz}$ |  |  | 700 |  |
| $V_{\text {SUPPLY }}$ | Supply Voltage Range | $\mathrm{f}_{\text {in }} \leq 2 \mathrm{MHz}$ | 3.5 |  | 5.5 | V |
| R DIG | Digit Driver On Resistance |  |  | 4 | 12 | $\Omega$ |
| $\mathrm{I}_{\text {DIG }}$ | Digit Driver Leakage Current |  |  |  | 500 | $\mu \mathrm{A}$ |
| rSEG | Segment Driver On Resistance |  |  | 40 |  | $\Omega$ |
| ISLK | Segment Driver Leakage Current |  |  |  | 500 | $\mu \mathrm{A}$ |
| $\mathrm{R}_{\mathrm{p}}$ | Pullup Resistance of RESET or STORE Inputs |  | 100 | 400 |  | k $\Omega$ |
| $\mathrm{R}_{\text {IN }}$ | COUNTER INPUT Resistance | Terminal 12 either at $\mathrm{V}_{D D}$ or $\mathrm{V}_{S S}$ |  |  | 100 |  |
| $\mathrm{V}_{\mathrm{HIN}}$ | COUNTER INPUT Hysteresis Voltage |  |  | 25 | 50 | mV |

NOTES: 1. This value of power dissipation refers to that of the package and will not be obtained under normal operating conditions.
2. The supply voltage must be applied before or at the same time as any input voltage. This poses no problems with a single power supply system. If a multiple power supply system is used, it is mandatory that the supply for the ICM7208 is switched on before the other supplies otherwise the device may be permanently damaged.
3. The output digit drive current must be limited to 150 mA or less under steady state conditions. (Short term transients up to 250 mA will not damage the device.) Therefore, depending upon the LED display and the supply voltage to be used it may be necessary to include additional segment series resistors to limit the digit currents.


## TYPICAL PERFORMANCE CHARACTERISTICS

MAXIMUM COUNTER INPUT FREQUENCY AS A
FUNCTION OF SUPPLY VOLTAGE


0349-4


0349-5

## TYPICAL PERFORMANCE CHARACTERISTICS

(Continued)

SUPPLY CURRENT AS A FUNCTION OF SUPPLY VOLTAGE


0349-6

## TEST PROCEDURES

The ICM7208 is provided with three input terminals 7, 23, 27 which may be used to accelerate testing. The least two significant decade counters may be tested by applying an input to the 'COUNTER INPUT' terminal 12. 'TEST POINT' terminal 23 provides an input which bypasses the 2 least significant decade counters"and permits an injection of a signal into the third decade counter. Similarly terminals 7 and 27 permit rapid counter advancing at two points further along the string of decade counters.

## CONTROL INPUT DEFINITIONS

| Input | Terminal | Voltage | Function |
| :---: | :---: | :---: | :--- |
| 1. DISPLAY | 9 | $V_{D D}$ <br> $V_{S S}$ | Display On <br> Display Off |
| 2. STORE | 11 | $V_{D D}$ | Counter Information <br> Latched <br> Counter Information <br> Transferring |
| 3. ENABLE | 13 | $V_{D D}$ | Input to Counter <br> Blocked <br> Normal Operation |
| 4. RESET | 14 | $V_{S S}$ <br> $V_{S S}$ | Normal Operation <br> Counters Reset |

## COUNTER INPUT DEFINITION

The internal counters of the ICM7208 index on the negative edge of the input signal at terminal \#12.


## 0349-7

## DETAILED DESCRIPTION

## Format of Signal to be Counted

The noise immunity of the COUNTER INPUT Terminal is approximately $1 / 3$ the supply voltage. Consequently, the input signal should be at least $50 \%$ of the supply in peak to peak amplitude and preferably equal to the supply

The optimum input signal is a $50 \%$ duty cycle square wave equal in amplitude to the supply. However, as long as the rate of change of voltage is not less than approximately $10^{-4} \mathrm{~V} / \mu \mathrm{s}$, at $50 \%$ of the power supply voltage, the input waveshape can be sinusoidal, triangular, etc.

When driving the input of the ICM7208 from TTL, a 1 k $5 \mathrm{k} \Omega$ pull-up resistor to the positive supply must be used to increase peak to peak input signal amplitude.

## Display Considerations

Any common cathode multiplexable LED display may be used. However, if the peak digit current could exceed 150 mA for any prolonged time, it is recommended that resistors be included in series with the segment outputs to limit digit current to 150 mA .

The ICM7208 is specified with $500 \mu \mathrm{~A}$ of possible digit leakage current. With certain new LED displays that are extremely efficient at low currents, it may be necessary to include resistors between the cathode outputs and the positive supply to bleed off this leakage current.

## Display Multiplex Rate

The ICM7208 has approximately $0.5 \mu$ s overlap between output drive signals. Therefore, if the multiplex rate is very fast, digit ghosting will occur. The ghosting determines the upper limit for the multiplex frequency. At very low multiplex rates flicker becomes visible.

[^524]NOTE: All typical values have been characterized but are not tested.


It is recommended that the display multiplex rate be within the range of 50 Hz to 200 Hz , which corresponds to 400 Hz to 1600 Hz for the multiplex frequency input. For stand alone systems, two inverters are provided so that a simple but stable RC oscillator may be built using only 2 resistors and a capacitor.
The multiplex oscillator is eight times the multiplex rate. The frequency is given using the following formulii:

$$
f=\frac{1}{2.2 R_{x} C_{x}}
$$

$R_{S}$ should always be $\leq 1 M \Omega$ and $R_{s}=k R_{x}$ where $k$ is in the range 2-10.
An external generator may be used to provide the multiplex frequency input. This signal, applied to terminal 19 (terminals 16 and 20 open circuit), should be approximately equal to the supply voltage, and should be a square wave for minimum of power dissipation.

## Unit Counter

Figure 4 shows the schematic of an extremely simple unit counter that can be used for remote traffic counting, to name one application. The power cell stack should consist of 3 or 4 nickel cadmium rechargeable cells (nominal 3.6 or 4.8 volts). If $4 \times 1.5$ volt cells are used it is recommended that a diode be placed in series with the stack to guarantee that the supply voltage does not exceed 6 volts.
The input switch is shown to be a single pole double throw switch (SPDT). A single pole single throw switch (SPST) could also be used (with a pullup resistor), however, anti-bounce circuitry must be included in series with the counter input. In order to avoid contact bounce problems
due to the SPDT switch the ICM7208 contains an input latch on chip.

The unit counter updates the display for each negative transition of the input signal. The information on the display will count, after reset, from 00 to 9,999,999 and then reset to 0000000 and begin to count up again. To blank leading zeros, actuate reset at the beginning of a count. Leading zero blanking affects two digits at a time.

For battery operated systems the display may be switched off to conserve power.

## Frequency Counter

The ICM7208 may be used as a frequency counter when used with an external frequency reference and gating logic. This can be achieved using the ICM7207 Oscillator Controller (Figure 5). The ICM7207 uses a crystal controlled oscillator to provide the store and reset pulses together with the counting window. Figure 6 shows the recommended input gating waveforms to the ICM7208. At the end of a counting period ( $50 \%$ duty cycle) the counter input is inhibited. The counter information is then transferred and stored in latches, and can be displayed. Immediately after this information is stored, the counters are cleared and are ready to start a new count when the counter input is enabled.
Using a 6.5536 MHz quartz crystal and the ICM7207 driving the ICM7208, two ranges of counting may be obtained, using either 0.01 sec or 0.1 sec counter enable windows.

Previous comments on leading zero blanking, etc., apply as per the unit counter.
The ICM7207 provides the multiplex frequency reference of 1.6 kHz .


0349-9
Figure 5: Frequency Counter

Note: For a 1 sec count window which allows all 7 digits to be used with a resolution of 1 Hz , the ICM7207 can be replaced with the ICM7207A. Circuit details are given on the 7207A data sheet.


[^525]
## Period Counter

For this application, as opposed to the frequency counter, the gating and the input signal to be measured are reversed to the frequency counter. The input period is multiplied by two to produce a single polarity signal ( $50 \%$ duty cycle) equal to the input period, which is used to gate into the counter the frequency reference ( 1 MHz in this case). Figure

8 shows a block schematic of the input waveform generator. The 1 MHz frequency reference is generated by the ICM7209 Clock Generator using an 8 MHz oscillator frequency and internally dividing this frequency by 8 . Alternatively, a 1 MHz signal could be applied directly to COUNTER INPUT. Waveforms are shown in Figure 7.


Figure 7: Period Counter Input Waveforms


0349-12
Figure 8: Period Counter Input Generator

[^526]
## GENERAL DESCRIPTION

The Intersil ICM7209 is a versatile CMOS clock generator capable of driving a number of 5 volt systems with a variety of input requirements. When used to drive up to 5 TTL gates, the typical rise and fall times are 10 ns .
The ICM7209 consists of an oscillator, a buffered output equal to the oscillator frequency and a second buffered output having an output frequency one-eighth that of the oscillator. The guaranteed maximum oscillator frequency is 10 MHz . Connecting the DISABLE terminal to the negative supply forces the $\div 8$ output into the ' 0 ' state and the output 1 into the ' 1 ' state.

## FEATURES

- High Frequency Operation - 10MHz Guaranteed
- Requires Only A Quartz Crystal and Two Capacitors
- Bipolar, CMOS Compatibility
- High Output Drive Capability - $5 \times$ TTL Fanout With 10ns Rise and Fall Times
- Low Power - 50 mW at 10 MHz
- Choice of Two Output Frequencies - Osc., and Osc. $\div 8$ Frequencies
- Disable Control for Both Outputs
- Wide Industrial Temperature Range $-\mathbf{2 0}{ }^{\circ} \mathrm{C}$ to $+\mathbf{8 5}{ }^{\circ} \mathrm{C}$


## ORDERING INFORMATION

| Part <br> Number | Temperature <br> Range | Package |
| :---: | :---: | :---: |
| ICM7209IJA | $-20^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ | 8 pin CERDIP |
| ICM7209IPA | $-20^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ | 8 pin PLASTIC |



## ABSOLUTE MAXIMUM RATINGS

| Supply Voltage |  |
| :---: | :---: |
| Output Voltages | $\mathrm{V}_{\mathrm{SS}}-0.3 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$ |
| Input Voltages | $\mathrm{V}_{S S}-0.3 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$ |

Power Dissipation ( $25^{\circ} \mathrm{C}$ ) . . . . . . . . . . . . . . . . . . . . . . . 300 30 mW
Storage Temperature . ................. $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Operating Temperature Range $\ldots \ldots \ldots . .-20^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10sec)

NOTE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

## ELECTRICAL CHARACTERISTICS

( $\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{S S}=5 \mathrm{~V}$, test circuit, $\mathrm{f}_{\mathrm{OSC}}=10 \mathrm{MHz}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise specified.)

| Symbol | Parameter | Test Conditions | Min | Typ | Max | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| IDD | Supply Current | Note 1 <br> No Load |  | 11 | 20 | mA |
| $C_{D}$ | Disable Input Capacitance |  |  | 5 |  | pF |
| IILK | Disable Input Leakage | Either '1' or '0' state |  |  | $\pm 10$ | $\mu \mathrm{A}$ |
| VOL | Output Low State | Either OUT 1 or OUT $\div 8$ simulated $5 \times$ TTL loads |  |  | 0.4 | V |
| $\mathrm{V}_{\mathrm{OH}}$ | Output High State | Either OUT 1 or OUT $\div 8$ simulated $5 \times$ TTL loads | 4.0 | 4.9 |  |  |
| $\mathrm{t}_{\mathrm{R}}$ | Output Rise Time (Note 3) | Either OUT 1 or OUT $\div 8$ simulated $5 \times$ TTL loads |  | 10 |  | ns |
| $\mathrm{t}_{\mathrm{F}}$ | Output Fall Time (Note 3) | Either OUT 1 or OUT $\div 8$ simulated $5 \times$ TTL loads |  | 10 |  |  |
| fosc | Minimum OSC Frequency for $\div 8$ Output | Note 2 | 2 |  |  | MHz |
|  | Output $\div 8$ duty cycle | Any operating frequency Low state : High state |  | 7:9 |  |  |
| GM | Oscillator Transconductance |  | 80 | 200 |  | $\mu \mathrm{S}$ |

NOTES: 1. The power dissipation is a function of the oscillator frequency (1st ORDER EFFECT see curve) but is also effected to a small extent by the oscillator tank components.
2. The $\div 8$ circuitry uses a dynamic scheme. As with any dynamic system, information or data is stored on very small nodal capacitances instead of latches (static systems) and there is a lower cutoff frequency of operation. Dynamic dividers are used in the ICM7209 to significantly improve high frequency performance and to decrease power consumption.
3 Rise and fall times are defined between the output levels of 0.5 and 2.4 volts.


## SUPPLY CURRENT AS A FUNCTION

 OF OSCILLATOR FREQUENCY

TYPICAL OUT 1 RISE AND FALL TIMES


SUPPLY VOLTAGE RANGE FOR CORRECT OPERATION OF $\div 8$ COUNTER AS A FUNCTION OF OSCILLATOR FREQUENCY.


## DETAILED DESCRIPTION OSCILLATOR CONSIDERATIONS

The oscillator consists of a CMOS inverter with a non-linear resistor connected between the oscillator input and output to provide D.C. biasing. Using commercially obtainable quartz crystals the oscillator will operate from low frequencies $(10 \mathrm{kHz})$ to 10 MHz .

The oscillator circuit consumes about $500 \mu \mathrm{~A}$ of current using a 10 MHz crystal with a 5 volt supply, and is designed to operate with a high impedance tank circuit. It is therefore necessary that the quartz crystal be specified with a load capacitance $\left(\mathrm{C}_{\mathrm{L}}\right)$ of 10 pF instead of the standard 30 pF . To maximize the stability of the oscillator as a function of supply voltage and temperature, the motional capacitance of the crystal should be low ( 5 mpF or less). Using a fixed input capacitor of 18 pF and a variable capacitor of nominal value of 18 pF on the output will result in oscillator stabilities of typically 1 ppm per volt change in supply voltage.

## THE $\div 8$ OUTPUT

A dynamic divider is used to divide the oscillator frequency by 8 . Dynamic dividers use small nodal capacitances to
store voltage levels instead of latches (which are used in static dividers). The dynamic divider has advantages in high speed operation and low power but suffers from limited low frequency operation. This results in a window of operation for any oscillator frequency (see TYPICAL PERFORMANCE CHARACTERISTICS).

## OUTPUT DRIVERS

The output drivers consist of CMOS inverters having active pullups and pulldowns. Thus the outputs can be used to directly drive TTL gates, other CMOS gates operating with a 5 volt supply, or TTL compatible MOS gates. The guaranteed fanout is 5 TTL loads although typical fanout capability is at least 10 TTL loads with slightly increased output rise and fall times.

## DEVICE POWER CONSUMPTION

At low frequencies the principal component of the power consumption is the oscillator. At high oscillator frequencies the major portion of the power is consumed by the output drivers, thus by disabling the outputs (activating the DISABLE INPUT) the device power consumption can be dramatically reduced.

[^527]
# ICM7215 <br> 6-Digit LED Display 4-Function Stopwatch 

## GENERAL DESCRIPTION

The ICM7215 is a fully integrated six digit LED stopwatch circuit fabricated with Intersil's low threshold metal gate CMOS process. The circuit interfaces directly with a six digit/seven segment common cathode LED display. The low battery indicator can be connected to the decimal point anode or to a separate LED. The only components required for a complete stopwatch are the display, three SPST switches, a 3.2768 MHz crystal, a trimming capacitor, three AA batteries and an ON-OFF switch. For a two function stopwatch, or to add a display off feature, one additional slide switch is required. The circuit divides the oscillator frequency by $2^{15}$ to obtain 100 Hz , which is fed to the fractional seconds, seconds and minutes counters, while an intermediate frequency is used to obtain the $1 / 6$ duty cycle 1.07 kHz multiplex waveforms. The blanking logic provides leading zero blanking for seconds and minutes independently of the clock. The ICM7215 is packaged in a 24 -lead plastic DIP.

## ORDERING INFORMATION

| Part Number | Temp. Range | Package |
| :---: | :---: | :---: |
| ICM7215IPG | $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ | 24-Pin PLASTIC DIP |
| ICM7215/D | - | DICE |

## FEATURES

- Four Functions: Start/Stop/Reset, Split, Taylor, Time Out
- Six Digit Display: Ranges Up to 59 Minutes 59.99 Seconds
- High LED Drive Current: 13mA Peak Per Segment at 16.7\% Duty Cycle With 4.0 Volt Supply
- Requires Only Three Low Cost SPST Switches Without Loss of Accuracy: Start/Stop, Reset, Display Unlock
- Chip Enable Pin Turns Off Both Segment and Digit Outputs; Can Be Used for Multiple Circuits Driving One Display
- Low Battery Indicator
- Digit Blanking On Seconds and Minutes
- Wide Operating Range: 2.0 to $\mathbf{5 . 0}$ Volts
- 1kHz Multiplex Rate Prevents Flickering Display
- Can Be Used Easily In Four Different Single Function Stopwatches or Two Two-Function Stopwatches: Start/Stop/Reset With Time-out, Split With Taylor. The Component Count for A Three- or Four-Function Stopwatch Will Be Slightly Greater
- Retrofit to ICM7205 for Split and/or Taylor Applications


[^528]
## ABSOLUTE MAXIMUM RATINGS

Supply Voltage (VDD to $\mathrm{V}_{\mathrm{SS}}$ ) . . . . . . . . . . . . . . . . . . . . . . . 5.5 V
Power Dissipation (Note 1) . . . . . . . . . . . . . . . . . . . . . . 0.75W
Operating Temperature . . . . . . . . . . . . . . . . . . . . . $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

Storage Temperature .................. $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ Input Voltage $\ldots \ldots \ldots \ldots . . .\left(V_{S S}-0.3 V\right)$ to $\left(V_{D D}+0.3 V\right)$ Output Voltage .................................. V $_{S S}$ to $\mathrm{V}_{\mathrm{DD}}$

NOTE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
ELECTRICAL CHARACTERISTICS: $\quad T_{A}=+25^{\circ} \mathrm{C}$, stopwatch circuit, $\mathrm{V}_{\mathrm{DD}}=4.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}$, unless otherwise specified.)

| Symbol | Parameter | Test Conditions | Min | Typ | Max | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| V SUPPLY | Supply Voltage ( $\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{SS}}$ ) | $-20^{\circ} \mathrm{C} \leq \mathrm{T}_{A} \leq+70^{\circ} \mathrm{C}$ | 2.0 |  | 5.0 | V |
| IDD | Supply Current | Display off |  | 0.6 | 1.5 | mA |
| ISEG | Segment Current Peak Average | 5 segments lit <br> 1.8 Volts across display | 9.0 | $\begin{gathered} 13.2 \\ 2.2 \end{gathered}$ |  |  |
| Isw | Switch Actuation Current | All inputs except CHIP ENABLE |  | 20 | 50 | $\mu \mathrm{A}$ |
|  | Switch Actuation Current | Chip enable |  | 50 | 200 |  |
| IDLK | Digit Leakage Current | $\mathrm{V}_{\text {DIG }}=2.0 \mathrm{~V}$ |  |  | 50 |  |
| ISLK | Segment Leakage Current | $\mathrm{V}_{\text {SEG }}=2.0 \mathrm{~V}$ |  |  | 100 |  |
| $\mathrm{V}_{\text {LBI }}$ | Low Battery Indicator Trigger Voltage |  | 2.2 |  | 2.8 | V |
| LLBI | LBI Output Current | $\mathrm{V}_{\mathrm{DD}}=2.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{LBI}}=1.6 \mathrm{~V}$ |  | 2.0 |  | mA |
| $\mathrm{f}_{\text {STAB }}$ | Oscillator Stability | $\mathrm{V}_{\mathrm{DD}}=2.0 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$ |  | 6 |  | ppm |
| $\mathrm{gm}_{\mathrm{m}}$ | Oscillator Transconductance | $V_{D D}=2.0 \mathrm{~V}$ | 120 |  |  | $\mu \mathrm{S}$ |
| $\mathrm{C}_{\mathrm{OSCl}}$ | Oscillator Input Capacitance |  |  | 30 |  | pF |

NOTE: 1. The output devices on the ICM7215 have very low impedence characteristics, especially the digit cathode drivers. If these devices are shorted to a low impedance power supply, the current could be as high as 300 mA

[^529]

## TYPICAL PERFORMANCE CHARACTERISTICS



0352-4

SEGMENT CURRENT VS SUPPLY VOLTAGE


0352-5

[^530]TYPICAL PERFORMANCE CHARACTERISTICS
OSC. STABILITY VS SUPPLY VOLTAGE


0352-6
(Continued)
LOW BATTERY INDICATOR (LBI) TRIGGER VOLTAGE VS TEMPERATURE


0352-7


0352-8
Figure 4: Start/Stop/Reset Mode

## DETAILED DESCRIPTION FUNCTIONAL OPERATION

Turning on the stopwatch will bring up the reset state with the fractional seconds displaying 00 and the other digits blanked. This display always indicates that the stopwatch is ready to go.

The display can be turned off in any mode by connecting the CHIP ENABLE input to $V_{D D}$.

## START/STOP/RESET MODE

When the MODE input is floating and the DISPLAY input is floating or connected to $V_{D D}$ the circuit is in the Start/ Stop/Reset mode. (Figure 4).

The Start/Stop/Reset mode can be used for single event timing in a one-button stopwatch; an additional switch can be used to provide an instant reset. To time another event, the display must be reset before the start of the event. Seconds will be displayed after one second, minutes after one minute. The range of the stopwatch is 59 minutes 59.99 seconds, and if an event exceeds one hour, the number of hours must be remembered by the user. Leading zeroes are not blanked after one hour.

## TAYLOR OR SEQUENTIAL MODE

When the MODE input is connected to $V_{S S}$, the stopwatch is in the Taylor or Sequential mode. (Figure 5).

Each split time is measured from zero in the Taylor mode; i.e., after stopping the watch, the counters reset momentarily and start counting the next interval. The time displayed is that elapsed since the last activation of START/STOP. The display is stationary after the first interval unless the display unlock is used, by connecting the DISPLAY input to $V_{S S}$, to show the running clock. RESET can be used at any time.

## SPLIT MODE

When the MODE input is connected to $V_{D D}$ the stopwatch is in the Split mode. (Figure 6).
The Split mode differs from the Taylor in that the lap times are cumulative in the Split mode. The counters do not reset or stop after the first start until RESET is activated. Time displayed is the cumulative time elapsed since the first start after reset. Display unlock can be used, by connecting the DISPLAY input to $V_{S S}$, to let the display 'catch up' with the clock, and RESET can be used at any time.

## TIME OUT MODE

When the MODE input is floating and the DISPLAY input is tied to $V_{S S}$, the stopwatch is in the Time-out mode. (Figure 7).
In the Time-out mode the clock and display alternately start and stop with activations of the START/STOP switch. RESET can be used at any time. The display unlock button is bypassed in this mode.

[^531]

[^532]

0352-11
Figure 7: Time-Out Mode

## APPLICATION NOTES <br> LOW BATTERY INDICATOR

The on-chip low battery indicator is intended for use with a small LED or the decimal points on a standard LED display. The output is the drain of a p-channel transistor twothirds the size of the segment drivers which will typically source 2 mA of current. The threshold voltage is approximately 2.5 volts at room temperature. Normal AA type batteries will provide many hours of accurate timekeeping after the indicator comes on, however the wide voltage spread between the LBI threshold voltage and minimum operating voltage is required to guarantee low battery indication under worst case conditions.

## CHIP ENABLE

The CHIP ENABLE input is used to disable both segment and digit drivers without affecting any of the functions of the device. When the CHIP ENABLE input is floating or connected to $\mathrm{V}_{\text {SS }}$, the display is enabled, and when the tied to $V_{D D}$ the display is turned off. One example of the many possible uses of this feature is driving one display from two ICM7215 devices, one in the split mode and the other in the Taylor mode. The circuit, Figure 8, shows how the user can obtain lap and cumulative readings of the same event.

## SWITCH CHARACTERISTICS

The ICM7215 is designed for use with SPST switches throughout. On the DISPLAY and RESET inputs the characteristics of the switches are unimportant, since the circuit responds to a logic level held for any length of time however short. Switch bounce on these inputs does not need to be specified. The START/STOP input, however, responds to an edge and so requires a switch with less than 15 ms of switch bounce. The bounce protection circuitry has been specifically designed to let the circuit respond to the first edge of the signal, so as to preserve the full accuracy of the system.


ALL OTHER SWITCHES COMMON TO BOTH DEVICES
Figure 8

## LATCHUP CONSIDERATIONS

Due to the inherent structure of junction isolated CMOS devices, the circuit can be put in a latchup mode if large currents are injected into device inputs or outputs. For this reason special care should be taken in a system with multiple power supplies to prevent voltages being applied to inputs and/or outputs before power is applied to the 7215 . If only inputs are affected, latchup can also be prevented by limiting the current into the input terminal to less than 1mA.

## OSCILLATOR DESIGN

The oscillator of the ICM7215 includes all components on chip except the 3.2768 MHz crystal and the trimming capacitor. The oscillator input capacitance has a nominal value of 30 pF , and the circuit is designed to work with a crystal with a load capacitance of approximately 15 pF . If the crystal has

[^533]characteristics as shown in the Typical Performance Characteristics, an $8-40 \mathrm{pF}$ trimming capacitor will be adequate for a tuning tolerance of $\pm 30$ PPM on the crystal. If the crystal's static capacitance is significantly lower, a narrower trimming range may be selected.

After deciding on a crystal and a nominal load capacitance, take the worst case values of $\mathrm{C}_{\mathrm{in}}, \mathrm{C}_{\text {out }}$ and $\mathrm{R}_{\mathrm{S}}$ and calculate the $g_{m}$ required by:
$\mathrm{g}_{\mathrm{m}}=\omega^{2} \mathrm{C}_{\text {in }} \mathrm{C}_{\text {out }} \mathrm{R}_{\mathrm{S}}\left[1+\frac{\mathrm{C}_{0}\left(\mathrm{C}_{\text {in }}+\mathrm{C}_{\text {out }}\right)}{\mathrm{C}_{\text {in }} \mathrm{C}_{\text {out }}}\right]^{2}$
$\mathrm{C}_{\mathrm{o}}=$ static capacitance
$\mathbf{R}_{\mathbf{S}}=$ series resistance
$\mathrm{C}_{\text {in }}=$ input capacitance
$\mathrm{C}_{\text {out }}=$ output capacitance
$\omega=2 \pi \times$ crystal frequency
The resulting $g_{m}$ should be less than half the $g_{m}$ specified for the device. If it is not, a lower value of crystal series resistance and/or load capacitance should be specified.

## OSCILLATOR TUNING

Tuning can be accomplished by using the 10th or 100th seconds with the device reset. The frequency on the cath-
ode should be tuned to 1066.667 Hz , which is equivalent to a period of 937.5 microseconds. Note that a frequency counter cannot be connected directly to the oscillator because of possible loading.

## TEST

The TEST input is used for high speed testing of the device. When the input is pulsed low, a latch is set which speeds up counting by a factor of 32; each pulse on the TEST input rapidly advances both minutes and seconds in a parallel mode. To accurately rapid advance the signal applied to the TEST input must be free of switch bounce. The circuit is taken out of the test mode by using either RESET or START/STOP.

## REPLACING THE ICM7205 WITH THE ICM7215

The ICM7215 is designed to be compatible with circuits using the ICM7205. If the 7205 is used only in the Split mode no changes are required. If the 7205 is used in the Taylor mode and the Split-Taylor input (pin 21) is left open, a jumper from pin 21 to $V_{S S}$ must be added when converting to the 7215. A jumper may also be needed if the 7205 is used with a Split/Taylor switch. Once the jumper has been added the board can be used with either device.

## GENERAL DESCRIPTION

The ICM7216A and B are fully integrated Timer Counters with LED display drivers. They combine a high frequency oscillator, a decade timebase counter, an 8-decade data counter and latches, a 7 -segment decoder, digit multiplexers and 8 segment and 8 digit drivers which directly drive large multiplexed LED displays. The counter inputs have a maximum frequency of 10 MHz in frequency and unit counter modes and 2 MHz in the other modes. Both inputs are digital inputs. In many applications, amplification and level shifting will be required to obtain proper digital signals for these inputs.
The ICM7216A and B can function as a frequency counter, period counter, frequency ratio ( $f_{A} / f_{B}$ ) counter, time interval counter or as a totalizing counter. The counter uses either a 10 MHz or 1 MHz quartz crystal timebase. For period and time interval, the 10 MHz timebase gives a $0.1 \mu \mathrm{~s}$ resolution. In period average and time interval average, the resolution can be in the nanosecond range. In the frequency mode, the user can select accumulation times of 0.01 sec , $0.1 \mathrm{sec}, 1 \mathrm{sec}$ and 10 sec . With a 10 sec accumulation time, the frequency can be displayed to a resolution of 0.1 Hz in the least significant digit. There is 0.2 seconds between measurements in all ranges.
The ICM7216C and D function as frequency counters only, as described above.
All versions of the ICM7216 incorporate leading zero blanking. Frequency is displayed in kHz. In the ICM7216A and B , time is displayed in $\mu \mathrm{s}$. The display is multiplexed at 500 Hz with a $12.2 \%$ duty cycle for each digit. The ICM7216A and C are designed for common anode display with typical peak segment currents of 25 mA . The ICM7216B and $D$ are designed for common cathode displays with typical peak segment currents of 12 mA . In the display off mode, both digit and segment drivers are turned off, enabling the display to be used for other functions.

## FEATURES

## ALL VERSIONS:

- Functions as a Frequency Counter (DC to 10 MHz )
- Four Internal Gate Times: $0.01 \mathrm{Sec}, 0.1 \mathrm{Sec}$, $1 \mathrm{Sec}, 10 \mathrm{Sec}$ in Frequency Counter Mode
- Directly Drives Digits and Segments of Large Multiplexed LED Displays (Common Anode and Common Cathode Versions)
- Single Nominal 5V Supply Required
- Highly Stable Oscillator, Uses $1 \mathbf{M H z}$ or 10 MHz Crystal
- Internally Generated Decimal Points, Interdigit Blanking, Leading Zero Blanking and Overflow Indication
- Display Off Mode Turns Off Display and Puts Chip Into Low Power Mode
- Hold and Reset Inputs for Additional Flexibility


## ICM7216A AND ICM7216B

- Functions Also as a Period Counter, Unit Counter, Frequency Ratio Counter or Time Interval Counter
- 1 Cycle, 10 Cycles, 100 Cycles, 1000 Cycles in Period, Frequency Ratio and Time Interval Modes
- Measures Period From $0.5 \mu$ s to 10 s

ICM7216C AND ICM7216D

- Decimal Point and Leading Zero Blanking May Be Externally Selected


## ORDERING INFORMATION

| Part Number | Temperature Range | Package |
| :---: | :---: | :---: |
| ICM7216AIJI | $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ | 28 pin CERDIP |
| ICM7216BIPI | $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ | 28 pin PLASTIC DIP |
| ICM7216BIJI | $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ | 28 pin CERDIP |
| ICM7216CIJI | $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ | 28 pin CERDIP |
| ICM7216DIPI | $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ | 28 pin PLASTIC DIP |
| ICM7216DIJI | $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ | 28 pin CERDIP |

[^534]

[^535]

NOTE：Stresses above those listed under＂Absolute Maximum Ratings＂ may cause permanent damage to the device．These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied．Exposure to absolute maximum rating conditions for extended peri－ ods may affect device reliability．

Note：1．The ICM7216 may be triggered into a destructive latchup mode if either input signals are applied before the power supply is applied or if input or outputs are forced to voltages exceeding $V_{D D}$ to $V_{S S}$ by more than 0.3 volts．


## EVALUATION KIT

The ICM7226 Universal Counter System has all of the features of the ICM7216 plus a number of additional fea－ tures．The ICM7226 Evaluation Kit consists of the ICM7226AIJL（Common Anode LED Display），a 10 MHz
quartz crystal，eight 7 segment $0.3^{\prime \prime}$ LED＇s，P．C．board，re－ sistors，capacitors，diodes，switches，socket：everything needed to quickly assemble a functioning ICM7226 Univer－ sal Counter System．

[^536]ELECTRICAL CHARACTERISTICS (ICM7216A/B)
( $V_{D D}=5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=0, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise specified.)

| Symbol | Parameter | Test Conditions | Min | Typ | Max | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ICM7216A/B |  |  |  |  |  |  |
| IDD | Operating Supply Current | Display Off, Unused Inputs to $\mathrm{V}_{\text {SS }}$ |  | 2 | 5 | mA |
| $V_{\text {SUPPLY }}$ | Supply Voltage Range ( $\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{SS}}$ ) | INPUT A, INPUT B Frequency at $f_{\text {max }}$ | 4.75 |  | 6.0 | V |
| $\mathrm{f}_{\text {( } \text { (max) }}$ | Maximum Frequency INPUT A, Pin 28 | Figure 3, <br> Function = Frequency, Ratio, Unit <br> Counter <br> Function = Period, Time Interval | $\begin{aligned} & 10 \\ & 2.5 \end{aligned}$ |  |  | $\begin{aligned} & \mathrm{MHz} \\ & \mathrm{MHz} \end{aligned}$ |
| $\mathrm{f}_{\mathrm{B}(\text { max })}$ | Maximum Frequency INPUT B, Pin 2 | Figure 4 | 2.5 |  |  | MHz |
|  | Minimum Separation INPUT A to INPUT B Time Interval Function | Figure 5 | 250 |  |  | ns |
| $\mathrm{f}_{\text {osc }}$ | Maximum Osc. Freq. and Ext. Osc. Frequency |  | 10 |  |  | MHz |
| $\mathrm{f}_{\text {osc }}$ | Minimum Ext. Osc. Freq. |  |  |  | 100 | kHz |
| $\mathrm{gm}_{\mathrm{m}}$ | Oscillator Transconductance | $\mathrm{V}_{\mathrm{DD}}=4.75 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+85^{\circ} \mathrm{C}$ | 2000 |  |  | $\mu \mathrm{s}$ |
| $f_{\text {mux }}$ | Multiplex Frequency | $\mathrm{f}_{\text {OSC }}=10 \mathrm{MHz}$ |  | 500 |  | Hz |
|  | Time Between Measurements | $\mathrm{f}_{\mathrm{osc}}=10 \mathrm{MHz}$ |  | 200 |  | ms |
| $\mathrm{V}_{\text {INL }}$ VINH | Input Voltages: <br> Pins 2,13,25,27,28 Input Low Voltage Input High Voltage |  | 3.5 |  | 1.0 | $\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$ |
| $\mathrm{R}_{\text {IN }}$ | Input Resistance to $V_{D D}$ Pins 13,24 | $\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{DD}}-1.0 \mathrm{~V}$ | 100 | 400 |  | k $\Omega$ |
| Illk | Input Leakage Pin 27,28,2 |  |  |  | 20 | $\mu \mathrm{A}$ |
| $\mathrm{dV}_{\text {IN }} / \mathrm{dt}$ | Input Range of Change | Supplies Well Bypassed |  | 15 |  | $\mathrm{mV} / \mu \mathrm{s}$ |
| ICM7216A |  |  |  |  |  |  |
| $\begin{aligned} & \mathrm{IOH} \\ & \mathrm{IOL} \end{aligned}$ | Digit Driver: <br> Pins 15,16,17,19,20,21,22,23 <br> High Output Current <br> Low Output Current | $\begin{aligned} & V_{O U T}=V_{D D}-2.0 \mathrm{~V} \\ & V_{O U T}=V_{S S}+1.0 \mathrm{~V} \end{aligned}$ | -140 | $\begin{gathered} -180 \\ 0.3 \end{gathered}$ |  | $\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$ |
| $\begin{aligned} & \mathrm{lOL} \\ & \mathrm{IOH} \\ & \hline \end{aligned}$ | Segment Driver: <br> Pins 4,5,6,7,9,10,11,12 <br> Low Output Current High Output Current | $\begin{aligned} & V_{O U T}=V_{S S}+1.5 \mathrm{~V} \\ & V_{\text {OUT }}=V_{D D}-2.5 \mathrm{~V} \end{aligned}$ | 20 | $\begin{gathered} 35 \\ -100 \\ \hline \end{gathered}$ |  | $\begin{aligned} & \mathrm{mA} \\ & \mu \mathrm{~A} \end{aligned}$ |
| $\mathrm{V}_{\mathrm{INL}}$ <br> $\mathrm{V}_{\text {INH }}$ <br> RIN | Multiplex Inputs: <br> Pins 1,3,14 Input Low Voltage Input High Voltage Input Resistance to $V_{S S}$ | $\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {SS }}+1.0 \mathrm{~V}$ | $\begin{aligned} & 2.0 \\ & 50 \end{aligned}$ | 100 | 0.8 | $\begin{gathered} \mathrm{V} \\ \mathrm{~V} \\ \mathrm{k} \Omega \end{gathered}$ |

[^537]ICM7216A/B/C/D

ELECTRICAL CHARACTERISTICS (ICM7216A/B)
$\left(V_{D D}=5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=0, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right.$, unless otherwise specified.) (Continued)

| Symbol | Parameter | Test Conditions | Min | Typ | Max | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ICM7216B |  |  |  |  |  |  |
| $\begin{aligned} & \mathrm{IOL} \\ & \mathrm{IOH} \\ & \hline \end{aligned}$ | Digit Driver: <br> Pins 4,5,6,7,9,10,11,12 <br> Low Output Current High Output Current | $\begin{aligned} & V_{O U T}=V_{S S}+1.3 \mathrm{~V} \\ & V_{\text {OUT }}=V_{D D}-2.5 \mathrm{~V} \end{aligned}$ | 50 | $\begin{gathered} 75 \\ -100 \end{gathered}$ |  | $\begin{aligned} & \mathrm{mA} \\ & \mu \mathrm{~A} \end{aligned}$ |
| $\begin{aligned} & \mathrm{I}_{\mathrm{OH}} \\ & \mathrm{I}_{\mathrm{SLK}} \end{aligned}$ | Segment Driver: <br> Pins $15,16,17,19,20,21,22,23$ <br> High Output Current <br> Leakage Current | $\begin{aligned} & V_{O U T}=V_{D D}-2.0 \mathrm{~V} \\ & V_{\text {OUT }}=V_{D D}-2.5 \mathrm{~V} \end{aligned}$ | -10 |  | 10 | $\begin{aligned} & \mathrm{mA} \\ & \mu \mathrm{~A} \end{aligned}$ |
| $V_{\text {INL }}$ <br> Vinh <br> $\mathrm{R}_{\mathrm{I}}$ | Multiplex Inputs: <br> Pins 1,3,14 Input Low Voltage Input High Voltage Input Resistance to $V_{D D}$ | $\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{DD}}-2.5 \mathrm{~V}$ | $\begin{gathered} \mathrm{V}_{\mathrm{DD}}-0.8 \\ 100 \end{gathered}$ | 360 | $V_{D D}-2.0$ | $\begin{gathered} \mathrm{V} \\ \mathrm{~V} \\ \mathrm{k} \Omega \end{gathered}$ |

## ELECTRICAL CHARACTERISTICS (ICM7216C/D)

( $\mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=0, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise specified.)

| Symbol | Parameter | Test Conditions | Min | Typ | Max | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ICM7216C/D |  |  |  |  |  |  |
| IDD | Operating Supply Current | Display Off, Unused Inputs to $\mathrm{V}_{\text {SS }}$ |  | 2 | 5 | mA |
| V SUPPLY | Supply Voltage Range ( $\mathrm{VDD}^{-} \mathrm{V}_{\mathrm{SS}}$ ) | INPUT A <br> Frequency at $\mathrm{f}_{\text {max }}$ | 4.75 |  | 6.0 | V |
| $\mathrm{f}_{\text {A(max) }}$ | Maximum Frequency INPUT A, Pin 28 | Figure 3 | 10 |  |  | MHz |
| $\mathrm{f}_{\text {osc }}$ | Maximum Osc. Freq. and Ext. Osc. Frequency |  | 10 |  |  | MHz |
| $\mathrm{f}_{\text {osc }}$ | Minimum Ext. Osc. Freq. |  |  |  | 100 | kHz |
| gm | Oscillator Transconductance | $\mathrm{V}_{\mathrm{DD}}=4.75 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+85^{\circ} \mathrm{C}$ | 2000 |  |  | $\mu \mathrm{S}$ |
| $\mathrm{f}_{\text {mux }}$ | Multiplex Frequency | $\mathrm{f}_{\text {OSC }}=10 \mathrm{MHz}$ |  | 500 |  | Hz |
|  | Time Between Measurements | $\mathrm{f}_{\text {OSC }}=10 \mathrm{MHz}$ |  | 200 |  | ms |
| $V_{\text {INL }}$ <br> $V_{\text {INH }}$ | Input Voltages: <br> Pins 12,27,28 Input Low Voltage Input High Voltage |  | 3.5 |  | 1.0 | $\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$ |
| $\mathrm{R}_{\text {IN }}$ | Input Resistance to $V_{D D}$ Pins 12,24 | $\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{DD}}-1.0 \mathrm{~V}$ | 100 | 400 |  | $\mathrm{k} \Omega$ |
| IILK | Input Leakage Pin 27, Pin 28 |  |  |  | 20 | $\mu \mathrm{A}$ |
| lol | Output Current | $\mathrm{V}_{\mathrm{OL}}=+.4 \mathrm{~V}$ | 0.36 |  |  | mA |
| IOH | Pin 2 | $\mathrm{V}_{\mathrm{OH}}=\mathrm{V}_{\mathrm{DD}}-0.8 \mathrm{~V}$ | 265 |  |  | $\mu \mathrm{A}$ |
| $\mathrm{dV}_{1 \mathrm{IN}} / \mathrm{dt}$ | Input Rate of Change | Supplies Well Bypassed |  | 15 |  | $\mathrm{mV} / \mu \mathrm{s}$ |

INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. the warranty shall be exclusive and shall be in lieu of all other warranties, express, implied or statutory, including the implied warranties of MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.
NOTE: All typical values have been characterized but are not tested.

## ELECTRICAL CHARACTERISTICS（ICM7216C／D）

（ $\mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{SS}}=0, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ ，unless otherwise specified．）（Continued）

| Symbol | Parameter | Test Conditions | Min | Typ | Max | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ICM7216C |  |  |  |  |  |  |
| $\begin{aligned} & \mathrm{IOH} \\ & \mathrm{IOL} \\ & \hline \end{aligned}$ | Digit Driver： <br> Pins 15，16，17，19，20，21，22，23 <br> High Output Current <br> Low Output Current | $\begin{aligned} & V_{O U T}=V_{D D}-2.0 \mathrm{~V} \\ & V_{O U T}=V_{S S}+1.0 \mathrm{~V} \end{aligned}$ | －140 | $\begin{gathered} -180 \\ 0.3 \\ \hline \end{gathered}$ |  | $\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \\ & \hline \end{aligned}$ |
| $\begin{aligned} & \mathrm{lOL} \\ & \mathrm{IOH} \\ & \hline \end{aligned}$ | Segment Driver： <br> Pins 3，4，5，6，8，9，10，11 <br> Low Output Current High Output Current | $\begin{aligned} & V_{O U T}=V_{S S}+1.5 \mathrm{~V} \\ & V_{O U T}=V_{D D}-2.5 \mathrm{~V} \end{aligned}$ | 20 | $\begin{gathered} 30 \\ -100 \\ \hline \end{gathered}$ |  | $\begin{aligned} & \mathrm{mA} \\ & \mu \mathrm{~A} \end{aligned}$ |
| $V_{\text {INL }}$ <br> $V_{\text {INH }}$ <br> RIN | Multiplex Inputs： <br> Pins 1，13，14 Input Low Voltage Input High Voltage Input Resistance to $V_{S S}$ | $\mathrm{V}_{1 \mathrm{~N}}=+1.0 \mathrm{~V}$ | $\begin{aligned} & 2.0 \\ & 50 \end{aligned}$ | 100 | 0.8 | $\begin{gathered} \mathrm{V} \\ \mathrm{~V} \\ \mathrm{k} \Omega \end{gathered}$ |
| ICM7216D |  |  |  |  |  |  |
| $\begin{aligned} & \mathrm{loL} \\ & \mathrm{lOH} \end{aligned}$ | Digit Driver： <br> Pins 3，4，5，6，8，9，10，11 <br> Low Output Current High Output Current | $\begin{aligned} & \mathrm{V}_{\text {OUT }}=+1.3 \mathrm{~V} \\ & \mathrm{~V}_{\text {OUT }}=\mathrm{V}_{\text {DD }}-2.5 \mathrm{~V} \end{aligned}$ | 50 | $\begin{gathered} 75 \\ 100 \\ \hline \end{gathered}$ |  | $\begin{aligned} & \mathrm{mA} \\ & \mu \mathrm{~A} \end{aligned}$ |
| $\begin{aligned} & \mathrm{I}_{\mathrm{OH}} \\ & \mathrm{I}_{\mathrm{SLK}} \end{aligned}$ | Segment Driver： <br> Pins $15,16,17,19,20,21,22,23$ <br> High Output Current <br> Leakage Current | $\begin{aligned} & V_{O U T}=V_{D D}-2.0 \mathrm{~V} \\ & V_{O U T}=V_{D D}-2.5 \mathrm{~V} \end{aligned}$ | 10 | 15 | 10 | $\begin{aligned} & \mathrm{mA} \\ & \mu \mathrm{~A} \end{aligned}$ |
| $V_{\text {INL }}$ <br> $V_{\text {INH }}$ <br> $\mathrm{R}_{\mathrm{IN}}$ | Multiplex Inputs： <br> Pins 1，13，14 Input Low Voltage Input High Voltage Input Resistance to $V_{D D}$ | $\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{DD}}-1.0 \mathrm{~V}$ | $\begin{gathered} V_{D D}-0.8 \\ 100 \end{gathered}$ | 360 | $V_{D D}-2.0$ | $\begin{gathered} \mathrm{V} \\ \mathrm{~V} \\ \mathrm{k} \Omega \end{gathered}$ |

[^538]
## TYPICAL PERFORMANCE CHARACTERISTICS

ICM7216A \& C Typical IDIG vs. VDD - Vout $4.5 \leq V_{D D} \leq 6.0 \mathrm{~V}$


0353-6


0353-8


ICM7216B \& D Typical IsEG Vs. VDD - Vout, $4.5 \leq V_{D D} \leq 6.0 \mathrm{~V}$


0353-7
ICM7216B \& D Typical I IIGIT vs. Vout

(a)

(b)

0353-9
INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

NOTE: All typical values have been characterized but are not tested.

INPUT A


0353－11
Figure 3：Waveform for Guaranteed Minimum $f_{A}(\max )$ Function $=$ Frequency， Frequency Ratio，Unit Counter．

INPUT A OR
INPUT B


0353－12
Figure 4：Waveform for Guaranteed Minimum $f_{B}(\max )$ and $f_{A}(\max )$ for Function $=$ Period and Time Interval．

## TIME INTERVAL MEASUREMENT

The ICM7216A／B can be used to accurately measure the time interval between two events．With a 10 MHz time－base crystal，the time between the two events can be as long as ten seconds．Accurate resolution in time interval measure－ ment is 100 ns ．
The feature operates with Channel A going low at the start of the event to be measured，followed by Channel B going low at the end of the event．
When in the time interval mode and measuring a single event，the ICM7216A／B must first be＂primed＂prior to mea－ suring the event of interest．This is done by first generating a negative going edge on Channel $A$ followed by a negative going edge on Channel B to start the＂measurement inter－ val．＂The inputs are then primed ready for the measure－ ment．Positive going edges on A and B ，before or after the priming，will be needed to restore the original condition．

This can be easily accomplished with the following circuit： （Figure 5）．


Following the priming procedure（when in single event or 1 cycle range input）the device is ready to measure one （only）event．

When timing repetitive signals，it is not necessary to ＂prime＂the ICM7216A／B as the first alternating signal states automatically prime the device．See Figure 5.
During any time interval measurement cycle，the ICM7216A／B requires 200 ms following $B$ going low to up－ date all internal logic．A new measurement cycle will not take place until completion of this internal update time．

[^539]

INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. the warranty shall be exclusive and shall be in lieu of all other warranties, express, implied or statutory, including the implied warranties of MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.
NOTE: All typical values have been characterized but are not tested.

## DETAILED DESCRIPTION

## INPUTS A and B

INPUTS $A$ and $B$ are digital inputs with a typical switching threshold of 2.0 V at $\mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$. For optimum performance the peak-to-peak input signal should be at least $50 \%$ of the supply voltage and centered about the switching voltage. When these inputs are being driven from TTL logic, it is desirable to use a pullup resistor. The circuit counts high to low transitions at both inputs. (INPUT $B$ is available only on ICM7216A/B).

Note: The amplitude of the input should not exceed the supply, otherwise, the circuit may be damaged.

## Multiplexed Inputs

The FUNCTION, RANGE, CONTROL and EXTERNAL DECIMAL POINT inputs are time multiplexed to select the input function desired. This is achieved by connecting the appropriate Digit driver output to the inputs. The input function, range and control inputs must be stable during the last half of each digit output, (typically $125 \mu \mathrm{~s}$ ). The multiplex inputs are active high for the common anode ICM7216A and C and active low for the common cathode ICM7216B and D.
Noise on the multiplex inputs can cause improper operation. This is particularly true when the unit counter mode of operation is selected, since changes in voltage on the digit drivers can be capacitively coupled through the LED diodes to the multiplex inputs. For maximum noise immunity, a $10 \mathrm{k} \Omega$ resistor should be placed in series with the multiplex inputs as shown in the application circuits.
Table 1 shows the functions selected by each digit for these inputs.

## CONTROL INPUT Functions

Display Test - All segments are enabled continuously, giving a display of all 8's with decimal points. The display will be blanked if Blank Display is selected at the same time.

Display Off - To disable the drivers, it is necessary to tie $D_{4}$ to the CONTROL INPUT and have the HOLD input at $V_{D D}$. The chip will remain in this "Display Off" mode until HOLD is switched back to $V_{\text {SS }}$. While in the "Display Off" mode, the segment and digit driver outputs are open, the oscillator continues to run with a typical supply current of 1.5 mA with a 10 MHz crystal, and no measurements are made. In addition, inputs to the multiplexed inputs will have no effect. A new measurement is initiated when the HOLD input is switched to $V_{\text {SS }}$. Segment and Digit Drive outputs may thus be bussed to drive a common display (up to 6 circuits).

1 MHz Select - The 1 MHz select mode allows use of a 1 MHz crystal with the same digit multiplex rate and time between measurements as with a 10 MHz crystal. The decimal point is also shifted one digit to the right in Period and Time Interval, since the least significant digit will be in $\mu \mathrm{s}$ increments rather than $0.1 \mu \mathrm{~s}$ increments.

External Oscillator Enable - In this mode the EXTERNAL OSCILLATOR INPUT is used instead of the on-chip oscillator for Timebase input and Main Counter input in period and time interval modes. The on-chip oscillator will continue to function when the external oscillator is selected. The external oscillator input frequency must be greater than 100 kHz or the chip will reset itself to enable the on-chip oscillator. OSCillator INPUT (pin 25) must also be connected to EXT.OSC. input when using EXT.OSC. input.

External Decimal Point Enable - When external decimal point is enabled a decimal point will be displayed whenever the digit driver connected to EXTERNAL DECIMAL POINT input is active. Leading Zero Blanking will be disabled for all digits following the decimal point (7216C/D only).

[^540]
## RANGE INPUT

The RANGE INPUT selects whether the measurement is made for $1,10,100,1000$ counts of the reference counter. In all functional modes except unit counter a change in the RANGE INPUT will stop the measurement in progress without updating the display and then initiate a new measurement. This prevents an erroneous first reading after the RANGE INPUT is changed.

Table 1: Multiplexed Input Functions

|  | Function | Digit |
| :---: | :---: | :---: |
| FUNCTION INPUT <br> Pin 3 <br> (ICM7216A \& B Only) | Frequency <br> Period <br> Frequency Ratio <br> Time Interval <br> Unit Counter <br> Oscillator <br> Frequency | $\begin{aligned} & D_{1} \\ & D_{8} \\ & D_{2} \\ & D_{5} \\ & D_{4} \\ & D_{3} \end{aligned}$ |
| RANGE INPUT Pin 14 | $.01 \mathrm{sec} / 1$ Cycle $.1 \mathrm{sec} / 10$ Cycles $1 \mathrm{sec} / 100$ Cycles $10 \mathrm{sec} / 1 \mathrm{~K}$ Cycles | $\begin{aligned} & \mathrm{D}_{1} \\ & \mathrm{D}_{2} \\ & \mathrm{D}_{3} \\ & \mathrm{D}_{4} \end{aligned}$ |
| CONTROL INPUT Pin 1 | Blank Display <br> Display Test <br> 1 MHz Select <br> External Oscillator <br> Enable <br> External Decimal <br> Point Enable | $\begin{gathered} \mathrm{D}_{4} \text { and Hold } \\ \mathrm{D}_{8} \\ \mathrm{D}_{2} \\ \mathrm{D}_{1} \\ \\ \mathrm{D}_{3} \end{gathered}$ |
| EXT. D.P. INPUT <br> Pin 13, ICM7216C <br> \& D Only | Decimal point is output for same digit that is connected to this input |  |

## FUNCTION INPUT

The six functions that can be selected are: Frequency, Period, Time Interval, Unit Counter, Frequency Ratio and Oscillator Frequency. This input is available on the ICM7216A and B only.
These functions select which signal is counted into the Main Counter and which signal is counted by the Reference Counter, as shown in Table 2. In all cases, only $1 \rightarrow 0$ transitions are counted or timed. In time interval, a flip-flop is toggled first by a $1 \rightarrow 0$ transition of INPUT A and then by a $1 \rightarrow 0$ transition of INPUT B. The oscillator is gated into the Main Counter from the time INPUT A toggles the flip-flop until INPUT B toggles it. In unit counter mode, the main counter contents are continuously displayed. A change in the FUNCTION INPUT will stop the measurement in progress without updating the display and then initiate a new measurement. This prevents an erroneous first reading after the FUNCTION INPUT is changed.

Table 2: 7216A/B Input Routing

| Description | Main Counter | Reference <br> Counter |
| :--- | :--- | :--- |
| Frequency $\left(\mathrm{f}_{\mathrm{A}}\right)$ | Input A | $100 \mathrm{~Hz}($ Oscillator <br> $\div 10^{5}$ or $\left.10^{4}\right)$ |
| Period $\left(\mathrm{t}_{\mathrm{A}}\right)$ | Oscillator | Input A |
| Ratio $\left(\mathrm{f}_{\mathrm{A}} / \mathrm{f}_{\mathrm{B}}\right)$ | Input A | Input B |
| Time Interval <br> $(\mathrm{A} \rightarrow \mathrm{B})$ | Osce(Time <br> Interval FF) | Time Interval FF |
| Unit Counter <br> $($ Count A$)$ | Input A | Not Applicable |
| Osc. Freq. <br> $\left(\mathrm{f}_{\text {osc }}\right)$ | Oscillator | $100 \mathrm{~Hz}($ Oscillator <br> $\div 10^{5}$ or $\left.10^{4}\right)$ |

## EXTernal DECimal Point INput

When the external decimal point is selected this input is active. Any of the digits, except $D_{8}$, can be connected to this point. $\mathrm{D}_{8}$ should not be used since it will override the overflow output and leading zeros will remain unblanked after the decimal point. This input is available on the ICM7216C and D only.

HOLD Input - Except in the unit counter mode, when the HOLD Input is at $\mathrm{V}_{\mathrm{DD}}$, any measurement in progress (before STORE goes low) is stopped, the main counter is reset and the chip is held ready to initiate a new measurement as soon as HOLD goes low. The latches which hold the main counter data are not updated, so the last complete measurement is displayed. In unit counter mode when HOLD input is at $V_{D D}$, the counter is not stopped or reset, but the display is frozen at that instantaneous value. When HOLD goes low the count continues from the new value in the counter.

RESET Input - The RESET input resets the main counter, stops any measurement in progress, and enables the main counter latches, resulting in an all zero output. A capacitor to ground will prevent any hang-ups on power-up.

## DISPLAY CONSIDERATIONS

The display is multiplexed at a 500 Hz rate with a digit time of $244 \mu \mathrm{~s}$. An interdigit blanking time of $6 \mu \mathrm{~s}$ is used to prevent ghosting between digits. The decimal point and leading zero blanking assume right hand decimal point displays, and zeros following the decimal point will not be blanked. Also, the leading zero blanking will be disabled when the Main Counter overflows. Overflow is indicated by the decimal point on digit 7 turning on.

The ICM7216A and $C$ are designed to drive common anode LED displays at peak current of $25 \mathrm{~mA} /$ segment, using displays with $\mathrm{V}_{\mathrm{F}}=1.8 \mathrm{~V}$ at 25 mA . The average DC current will be over 3mA under these conditions. The ICM7216B and $D$ are designed to drive common cathode displays at peak current of $15 \mathrm{~mA} /$ segment using displays with $\mathrm{V}_{\mathrm{F}}=1.8 \mathrm{~V}$ at 15 mA . Resistors can be added in series with the segment drivers to limit the display current in very efficient displays, if required. The Typical Performance Characteristics curves show the digit and segment currents as a function of output voltage.

[^541]To get additional brightness out of the displays, $V_{D D}$ may be increased up to 6.0 V . However, care should be taken to see that maximum power and current ratings are not exceeded.

The segment and digit outputs in ICM7216's are not directly compatible with either TTL or CMOS logic when driving LEDs. Therefore, level shifting with discrete transistors may be required to use these outputs as logic signals.

## ACCURACY

In a Universal Counter crystal drift and quantization effects cause errors. In frequency, period and time interval modes, a signal derived from the oscillator is used in either the Reference Counter or Main Counter. Therefore, in these modes an error in the oscillator frequency will cause an identical error in the measurement. For instance, an oscillator temperature coefficient of $20 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ will cause a measurement error of $20 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$.

In addition, there is a quantization error inherent in any digital measurement of $\pm 1$ count. Clearly this error is reduced by displaying more digits. In the frequency mode the maximum accuracy is obtained with high frequency inputs and in period mode maximum accuracy is obtained with low frequency inputs. As can be seen in Figure 9, the least accuracy will be obtained at 10 kHz . In time interval measurements there can be an error of 1 count per interval. As a result there is the same inherent accuracy in all ranges as shown in Figure 10. In frequency ratio measurement can be more accurately obtained by averaging over more cycles of INPUT B as shown in Figure 11.



0353-19
Figure 10: Maximum Accuracy of Time Interval Measurement Due to Limitations of Quantization Errors



0353-21
Figure 12: 10MHz Universal Counter

## CIRCUIT APPLICATIONS

The ICM7216 has been designed for use in a wide range of Universal and Frequency counters. In many cases, prescalers will be required to reduce the input frequencies to under 10 MHz . Because INPUT A and INPUT B are digital inputs, additional circuitry is often required for input buffering, amplification, hysterisis, and level shifting to obtain a good digital signal.

The ICM7216A or B can be used as a minimum component complete Universal Counter as shown in Figure 12. This circuit can use input frequencies up to 10 MHz at IN PUT A and 2 MHz at INPUT B. If the signal at INPUT A has a very low duty cycle it may be necessary to use a 74LS121 monostable multivibrator or similar circuit to stretch the input pulse width to be able to guarantee that it is at least 50 ns in duration.


0353-22
Figure 13: 40MHz Frequency Counter

To measure frequericies up to 40 MHz the circuit of Figure 13 can be used. To obtain the correct measured value, it is necessary to divide the oscillator frequency by four as well as the input frequency. In doing this the time between measurements is also lengthened to 800 ms and the display multiplex rate is decreased to 125 Hz .
If the input frequency is prescaled by ten, then the oscillator can remain at 10 or 1 MHz , but the decimal point must be moved one digit to the right. Figure 14 shows a frequency counter with a $\div 10$ prescaler and an ICM7216C. Since
there is no external decimal point control with the ICM7216A/B, the decimal point may be controlled externally with additional drivers as shown in Figure 15. Alternatively, if separate anodes are available for the decimal points, they can be wired up to the adjacent digit anodes. Note that there can be one zero to the left of the decimal point since the internal leading zero blanking cannot be changed In Figure 16 additional logic has been added to count the input directly in period mode for maximum accuracy. In Figures 14 through 16, INPUT A comes from $Q_{C}$ of the prescaler rather than $Q_{D}$ to obtain an input duty cycle of $40 \%$.


0353-23
Figure 14: $\mathbf{1 0 0 M H z}$ Frequency Counter

## OSCILLATOR CONSIDERATIONS

The oscillator is a high gain CMOS inverter. An external resistor of $10 \mathrm{M} \Omega$ to $22 \mathrm{M} \Omega$ should be connected between the OSCillator INPUT and OUTPUT to provide biasing. The oscillator is designed to work with a parallel resonant 10 MHz quartz crystal with a static capacitance of 22 pF and a series resistance of less than 35 ohms.
For a specific crystal and load capacitance, the required $\mathrm{g}_{\mathrm{m}}$ can be calculated as follows:
$g_{m}=\omega^{2} C_{i n} C_{o u t} R s\left(1+\frac{C_{O}}{C_{L}}\right)^{2}$
where $C_{L}=\left(\frac{C_{\text {in }} C_{\text {out }}}{C_{\text {in }}+C_{\text {out }}}\right)$
$C_{O}=$ Crystal Static Capacitance
$R_{S}=$ Crystal Series Resistance
$C_{\text {in }}=$ Input Capacitance
$C_{o u t}=$ Output Capacitance
$\omega=2 \pi f$

The required $\mathrm{g}_{\mathrm{m}}$ should not exceed $50 \%$ of the $\mathrm{g}_{\mathrm{m}}$ specified for the ICM7216 to insure reliable startup. The OSCillator INPUT and OUTPUT pins each contribute about 5 pF to
$\mathrm{C}_{\mathrm{in}}$ and $\mathrm{C}_{\text {out }}$. For maximum stability of frequency, $\mathrm{C}_{\text {in }}$ and $\mathrm{C}_{\text {out }}$ should be approximately twice the specified crystal static capacitance.

In cases where non decade prescalers are used it may be desirable to use a crystal which is neither 10 MHz or 1 MHz . In that case both the multiplex rate and time between measurements will be different. The multiplex rate is $f_{\text {mux }}=\frac{f_{\text {osc }}}{2 \times 10^{4}}$ for 10 MHz mode and $f_{\text {mux }}=\frac{f_{\text {osc }}}{2 \times 10^{3}}$ for the 1 MHz mode. The time between measurements is $\frac{2 \times 10^{6}}{f_{\text {osc }}}$ in the 10 MHz mode and $\frac{2 \times 10^{5}}{f_{\text {osc }}}$ in the 1 MHz mode.

The crystal and oscillator components should be located as close to the chip as practical to minimize pickup from other signals. Coupling from the EXTERNAL OSCILLATOR INPUT to the OSCILLATOR OUTPUT or INPUT can cause undesirable shifts in oscillator frequency.

[^542]



0353－26
$f_{A}(\max ), f_{B}(\max )$ as a Function of $V_{D D}$
Figure 17：Typical Operating Characteristics

# ICM7217/ICM7227 4-Digit LED Display Programmable Up/Down Counter 

## GENERAL DESCRIPTION

The ICM7217 and ICM7227 are four digit, presettable up/ down counters, each with an onboard presettable register continuously compared to the counter. The ICM7217 versions are intended for use in hardwired applications where thumbwheel switches are used for loading data, and simple SPDT switches are used for chip control. The ICM7227 versions are for use in processor-based systems, where presetting and control functions are performed under processor control.

These circuits provide multiplexed 7 segment LED display outputs, with common anode or common cathode configurations available. Digit and segment drivers are provided to directly drive displays of up to $0.8^{\prime \prime}$ character height (common anode) at a $25 \%$ duty cycle. The frequency of the onboard multiplex oscillator may be controlled with a single capacitor, or the oscillator may be allowed to free run. Leading zeros can be blanked. The data appearing at the 7 seg ment and BCD outputs is latched; the content of the counter is transferred into the latches under external control by means of the Store pin.

The ICM7217/7227 (common anode) and ICM7217A/ 7227A (common cathode) versions are decade counters, providing a maximum count of 9999, while the ICM7217B, 7227B (common anode) and ICM7217C/7227C (common cathode) are intended for timing purposes, providing a maximum count of 5959 .

## FEATURES

- Four Decade, Presettable Up-Down Counter With Parallel Zero Detect
- Settable Register With Contents Continuously Compared to Counter
- Directly Drives Multiplexed 7 Segment Common Anode or Common Cathode LED Displays
- On-Board Multiplex Scan Oscillator
- Schmitt Trigger On Count Input
- TTL Compatible BCD I/O Port, Carry/Borrow, Equal, and Zero Outputs
- Display Blank Control for Lower Power Operation; Quiescent Power Dissipation $<5 \mathrm{~mW}$
- All Terminals Fully Protected Against Static Discharge
- Single 5V Supply Operation

These circuits provide 3 main outputs; a CARRY/BORROW output, which allows for direct cascading of counters, a ZERO output, which indicates when the count is zero, and an EQUAL output, which indicates when the count is equal to the value contained in the register. Data is multiplexed to and from the device by means of a three-state BCD I/O port. The CARRY/BORROW, EQUAL, ZERO outputs, and the BCD port will each drive one standard TTL load.
To permit operation in noisy environments and to prevent multiple triggering with slowly changing inputs, the count input is provided with a Schmitt trigger.
Input frequency is guaranteed to 2 MHz , although the device will typically run with $f_{\text {in }}$ as high as 5 MHz . Counting and comparing (EQUAL output) will typically run 750 kHz maximum.

ORDERING INFORMATION

| Part <br> Number | Temperature <br> Range | Package | Display <br> Option | Count Option <br> Max Count |
| :--- | :--- | :--- | :--- | :--- |
| ICM7217IJI | $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ | 28 Lead CERDIP | Common Anode | Decade/9999 |
| ICM7217AIPI | $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ | 28 Lead PLASTIC | Common Cathode | Decade/9999 |
| ICM7217BIJI | $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ | 28 Lead CERDIP | Common Anode | Timer/5959 |
| ICM7217CIPI | $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ | 28 Lead PLASTIC | Common Cathode | Timer/5959 |
| ICM7227IJI | $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ | 28 Lead CERDIP | Common Anode | Decade/9999 |
| ICM7227AIPI | $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ | 28 Lead PLASTIC | Common Cathode | Decade/9999 |
| ICM7227BIJI | $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ | 28 Lead CERDIP | Common Anode | Timer/5959 |
| ICM7227CIPI | $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ | 28 Lead PLASTIC | Common Cathode | Timer/5959 |

Figure 1: ICM7217 Functional Diagram
 MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

[^543]ABSOLUTE MAXIMUM RATINGS
Supply Voltage ( $\left.V_{D D}-V_{S S}\right)$
Input Voltage (any terminal)
$\left(V_{D D}+0.3 V\right.$ to
Power Dissipation (common cathode/Plastic) $\qquad$ 0.5 W

Note 1
$\mathrm{V}_{\text {SS }}-0.3 \mathrm{~V}$ ) Note 2
Power Dissipation (common anode/Cerdip) .... 1W Note 1
Operating Temperature Range $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature Range ........... $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10sec) $\qquad$
NOTE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.


Figure 3: Pin Configurations (Outline dwgs JI, PI)
ELECTRICAL CHARACTERISTICS $\quad\left(\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right.$, Display Diode Drop 1.7 V , unless
otherwise specified)

| Symbol | Parameter | Test Conditions | Min | Typ | Max | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| IDD <br> (7217) | Supply Current (Lowest power mode) | Display Off, LC, DC, UP/DN, <br> ST, RS, BCD I/O Floating or at $\mathrm{V}_{\mathrm{DD}}$ (Note 3) |  | 350 | 500 | $\mu \mathrm{A}$ |
| IDD <br> (7227) | Supply current <br> (Lowest power mode) | Display off (Note 3) |  | 300 | 500 | $\mu \mathrm{A}$ |
| IOP | Supply Current OPERATING | Common Anode, Display On, all " 8 's" | 140 | 200 |  | mA |
|  |  | Common Cathode, Display On, all " 8 's" | 50 | 100 |  | mA |
| $V_{\text {DD }}$ | Supply Voltage |  | 4.5 | 5 | 5.5 | V |
| ${ }^{\text {IJIG }}$ | Digit Driver output current | Common anode, $\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\mathrm{DD}}-2.0 \mathrm{~V}$ | 140 | 200 |  | mA <br> peak |
| ISEG | SEGment driver output current | Common anode, $\mathrm{V}_{\text {OUT }}=+1.5 \mathrm{~V}$ | -20 | -35 |  | mA <br> peak |
| ${ }^{\text {IJIG }}$ | Digit Driver output current | Common cathode, $\mathrm{V}_{\text {OUT }}=+1.0 \mathrm{~V}$ | $-50$ | $-75$ |  | $\mathrm{mA}$ peak |
| ISEG | SEGment driver output current | Common cathode $\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\text {DD }}-2 \mathrm{~V}$ | 9 | 12.5 |  | mA <br> peak |
| Ip | $\overline{S T}, \overline{R S}, ~ U P / \overline{D N}$ input pullup current | $V_{\text {OUT }}=\mathrm{V}_{\text {DD }}-2 \mathrm{~V}$ (See Note 3) | 5 | 25 |  | $\mu \mathrm{A}$ |
| $\mathrm{Z}_{\mathrm{IN}}$ | 3 level input impedance |  | 40 |  | 350 | $\mathrm{k} \Omega$ |

[^544]ELECTRICAL CHARACTERISTICS (Continued) $\left(\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right.$, Display Diode Drop 1.7V,
unless otherwise specified)

| Symbol | Parameter | Test Conditions | Min | Typ | Max | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{V}_{\text {BIH }}$ | BCD I/O input high voltage | ICM7217 common anode (Note 4) | 1.5 |  |  | V |
|  |  | ICM7217 common cathode (Note 4) | 4.40 |  |  | V |
|  |  | ICM7227 with 50pF effective load | 3 |  |  | V |
| V BIL | BCD I/O input low voltage | ICM7217 common anode (Note 4) |  |  | 0.60 | V |
|  |  | ICM7217 common cathode (Note 4) |  |  | 3.2 V | V |
|  |  | ICM7227 with 50pF effective load |  |  | 1.5 | V |
| $I_{\text {BPU }}$ | BCD I/O input pullup current | ICM7217 common cathode $\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{DD}}-2 \mathrm{~V}$ <br> (Note 3) | 5 | 25 |  | $\mu \mathrm{A}$ |
| IBPD | BCD I/O input pulldown current | ICM7217 common anode $\mathrm{V}_{\mathrm{IN}}=+2 \mathrm{~V}$ (Note 3) | 5 | 25 |  | $\mu \mathrm{A}$ |
| $\mathrm{V}_{\mathrm{OH}}$ | BCD I/O, ZERO, EQUAL Outputs output high voltage | $\mathrm{IOH}=100 \mu \mathrm{~A}$ | 3.5 |  |  | V |
| VOL | BCD I/O, CARRY/BORROW <br> ZERO, EQUAL Outputs output low voltage | $\mathrm{I}_{\mathrm{OL}}=-1.6 \mathrm{~mA}$ |  |  | 0.4 | V |
| fin | Count input frequency (Guaranteed) | $-20^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<+70^{\circ} \mathrm{C}$ | 0 | 5 | 2 | MHz |
| $\mathrm{V}_{\text {TH }}$ | Count input threshold | (Note 5) |  | 2 |  | V |
| $\mathrm{V}_{\mathrm{HYS}}$ | Count input hysteresis | (Note 5) |  | 0.5 |  | V |
| $\mathrm{V}_{\mathrm{CIL}}$ | Count input LO |  |  |  | 0.40 | V |
| $\mathrm{V}_{\mathrm{ClH}}$ | Count Input HI |  | 3.5 |  |  | V |
| $\mathrm{f}_{\mathrm{ds}}$ | Display scan oscillator frequency | Free-running (SCAN terminal open circuit) |  |  | 10 | kHz |

NOTES: 1. These limits refer to the package and will not be obtained during normal operation.
2. Due to the SCR structure inherent in the CMOS process used to fabricate these devices, connecting any terminal to a voltage greater than $V_{D D}$ or less than $V_{\text {SS }}$ may cause destructive device latchup. For this reason it is recommended that the power supply to the device be established before any inputs are applied and that in multiple systems the supply to the ICM7217/7227 be turned on first.
3. In the ICM7217 the UP/ $\overline{D O W N}, \overline{S T O R E}, \overline{R E S E T}$ and the BCD I/O as inputs have pullup or pulldown devices which consume power when connected to the opposite supply. Under these conditions, with the display off, the device will consume typically $750 \mu \mathrm{~A}$. The ICM7227 devices do not have these pullups or pulldowns and thus are not subject to this condition.
4. These voltages are adjusted to allow the use of thumbwheel switches for the ICM7217 versions. Note that a positive level is taken as an input logic zero for ICM7217 common-cathode versions.
5. Parameters not tested (Guaranteed by Design).

[^545]

[^546]TYPICAL PERFORMANCE CHARACTERISTICS (DIGIT AND SEGMENT DRIVERS)


Typical IDIG vs. $V_{+}$
$-V_{\text {OUT }}, 4.5 \mathrm{~V} \leq \mathrm{V}+\leq 6.0 \mathrm{~V}$


0354-10
Typical IDIGIT vs. Vout


0354-9

Table 2: Control Input Definitions ICM7217

| Input | Terminal | Voltage | Function |
| :---: | :---: | :---: | :---: |
| STORE | 9 | $V_{D D}$ (or floating) $V_{S S}$ | Output latches not updated Output latches updated |
| UP/ $\overline{\text { DOWN }}$ | 10 | $V_{D D}$ (or floating) $V_{S S}$ | Counter counts up Counter counts down |
| RESET | 14 | $V_{D D}$ (or floating) $V_{S S}$ | Normal Operation Counter Reset |
| LOAD COUNTER/ /OOFF | 12 | Unconnected <br> $V_{D D}$ <br> $V_{S S}$ | Normal operation Counter loaded with BCD data BCD port forced to Hi Z condition |
| LOAD REGISTER/ OFF | 11 | ```Unconnected VDD VSS``` | Normal operation <br> Register loaded with BCD data Display drivers disabled; BCD port forced to Hi Z condition, mpx counter reset to D4; mpx oscillator inhibited |
| DISPLAY CONTrol (DC) | 23 Common Anode <br> 20 Common Cathode | $\begin{gathered} \text { Unconnected } \\ V_{D D} \\ V_{S S} \\ \hline \end{gathered}$ | Normal Operation <br> Segment drivers disabled <br> Leading zero blanking inhibited |

Table 3: Control Input Definitions ICM7227

|  | Input | Terminal | Voltage | Function |
| :---: | :---: | :---: | :---: | :---: |
| $\overline{\text { DATA TRANS }}$ FER |  | 13 | $\begin{aligned} & \mathrm{V}_{\mathrm{DD}} \\ & \mathrm{~V}_{\mathrm{SS}} \end{aligned}$ | Normal Operation Causes transfer of data as directed by select code |
| Control <br> Word Port " | STORE | 9 | $V_{D D}$ (During $\overline{\text { CWS }}$ Pulse) $V_{S S}$ | Output latches updated Output latches not updated |
|  | UP/ $\overline{\text { DOWN }}$ | 10 | $V_{D D}$ (During $\overline{C W S}$ Puise) $V_{S S}$ | Counter counts up Counter counts down |
| $2^{\prime \prime}$ | Select Code Bit 1 (SC1) <br> Select Code Bit 2 (SC2) | $\begin{aligned} & 11 \\ & 12 \end{aligned}$ | $\begin{aligned} & V_{D D}=" 1 " \\ & V_{S S}=" 0 " \end{aligned}$ | SC1, SC2 control:00 Change store and up/down latches. No data transfer. 01 Output latch data active 10 Counter to be preset 11 Register to be preset |
| Control Word Strobe (CWS) |  | 14 | $\begin{aligned} & V_{D D} \\ & V_{S S} \end{aligned}$ | Normal operation Causes control word to be written into control latches |
| DISPLAY CONTrol (DC) |  | 23 Common Anode 20 Common Cathode | Unconnected <br> $V_{D D}$ <br> $V_{S S}$ | Normal operation Display drivers disabled Leading zero blanking inhibited |

## DETAILED DESCRIPTION <br> OUTPUTS

The CARRY/BORROW output is a positive going pulse occurring typically 500 ns after the positive going edge of the COUNT INPUT. It occurs when the counter is clocked from 9999 to 0000 when counting up and from 0000 to 9999 when counting down. This output allows direct cascading of counters.

The EQUAL output assumes a negative level when the contents of the counter and register are equal.

The ZERO output assumes a negative level when the content of the counter is 0000 .

The CARRY/BORROW, EQUAL and ZERO outputs will drive a single TTL load over the full range of supply voltage and ambient temperature; for a logic zero, these outputs will sink $1.6 \mathrm{~mA} @ 0.4 \mathrm{~V}$ (on resistance $250 \Omega$ ), and for a logic one, the outputs will source $>60 \mu \mathrm{~A}$. A $10 \mathrm{k} \Omega$ pull-up resistor to $V_{D D}$ on the EQUAL or ZERO outputs is recommended for
highest speed operation, and on the CARRY/BORROW output when it is being used for cascading.
The Digit and SEGment drivers provide a decoded 7 segment display system, capable of directly driving common anode LED displays at typical peak currents of $40 \mathrm{~mA} /$ seg. This corresponds to average currents of $10 \mathrm{~mA} / \mathrm{seg}$ at a $25 \%$ multiplex duty cycle. For the common cathode versions, peak segment currents are 12.5 mA , corresponding to average segment currents of 3.1 mA . Figure 5 shows the multiplex timing, while Figure 6 shows the Output Timing. The DISPLAY pin controls the display output using three level logic. The pin is self-biased to a voltage approximately $1 / 2\left(V_{D D}\right)$; this corresponds to normal operation. When this pin is connected to $V_{D D}$, the segments are inhibited, and when connected to $\mathrm{V}_{\mathrm{SS}}$, the leading zero blanking feature is inhibited. For normal operation (display on with leading zero blanking) the pin may be left open. The display may be controlled with a 3 position SPDT switch; see Figure 4.



## Multiplex SCAN Oscillator

The on-board multiplex scan oscillator has a nominal free-running frequency of 2.5 kHz . This may be reduced by the addition of a single capacitor between the SCAN pin and the positive supply (ICM7217 only). Capacitor values and corresponding nominal oscillator frequencies, digit repetition rates, and loading times are shown in Table 1 below.

The internal oscillator output has a duty cycle of approximately $25: 1$, providing a short pulse occurring at the oscillator frequency. This pulse clocks the four-state counter which provides the four multiplex phases. The short pulse width is used to delay the digit driver outputs, thereby pro-
viding inter-digit blanking which prevents ghosting. The digits are scanned from MSD (D4) to LSD (D1). See Figure 4 for the display digit multiplex timing.
Table 1: ICM7217 Multiplexed Rate Control

| Scan <br> Capacitor | Nominal <br> Oscillator <br> Frequency | Digit <br> Repetition <br> Rate | Scan Cycle <br> Time <br> (4 digits) |
| :---: | :---: | :---: | :---: |
| None | 2.5 kHz | 625 Hz | 1.6 ms |
| 20 pF | 1.25 kHz | 300 Hz | 3.2 ms |
| 90 pF | 600 Hz | 150 Hz | 8 ms |



0354-16
Figure 7: Brightness Control Circuits

During load counter and load register operations, the multiplex oscillator is disconnected from the SCAN input and is allowed to free-run. In all other conditions, the oscillator may be directly overdriven to about 20 kHz , however the internal oscillator signal will be of the same duty cycle and phase as the overdriving signal, and the digits are blanked during the time the external signal is at a positive level. To insure proper leading zero blanking, the interdigit blanking time should not be less than about $2 \mu \mathrm{~s}$. Overdriving the oscillator at less than 200 Hz may cause display flickering.

The display brightness may be altered by varying the duty cycle. Figure 7 shows several variable-duty-cycle oscillators suitable for brightness control at the ICM7217 SCAN input. The inverters should be CMOS CD4000 series and the diodes may be any inexpensive device such as IN914.

## Counting Control

As shown in Figure 6, the counter is incremented by the rising edge of the COUNT INPUT signal when UP/DOWN is high. It is decremented when UP/DOWN is low. A Schmitt trigger on the COUNT INPUT provides hysteresis to prevent double triggering on slow rising edges and permits operation in noisy environments. The COUNT INPUT is inhibited during reset and load counter operations.
The STORE pin controls the internal latches and consequently the signals appearing at the 7 -segment and BCD outputs. Bringing the STORE pin low transfers the contents of the counter into the latches.
The counter is asynchronously reset to 0000 by bringing the RESET pin low. The circuit performs the reset operation by forcing the BCD input lines to zero, and "presetting" all four decades of counter in parallel. This affects register loading; if LOAD REGISTER is activated when the RESET input is low, the register will also be set to zero. The STORE, $\overline{\text { RESET }}$ and UP/DOWN pins are provided with pullup resistors of approximately $75 \mathrm{k} \Omega$.

## BCD I/O Pins

The BCD I/O port provides a means of transferring data to and from the device. The ICM7217 versions can multiplex data into the counter or register via thumbwheel switches, depending on inputs to the LOAD COUNTER or LOAD REGISTER pins; (see below). When functioning as outputs, the BCD I/O pins will drive one standard TTL load. Common anode versions have internal pull down resistors and common cathode versions have internal pull up resistors on the four BCD I/O lines when used as inputs.

## LOADing the COUNTER and REGISTER

The BCD I/O pins, the LOAD COUNTER (LC), and LOAD REGISTER (LR) pins combine to provide presetting and compare functions. LC and LR are three-level inputs, being self-biased at approximately $1 / 2 \mathrm{~V}_{\text {DD }}$ for normal operation. With both LC and LR open, the BCD I/O pins provide a multiplexed BCD output of the latch contents, scanned from MSD to LSD by the display multiplex.

When either the LOAD COUNTER (Pin 12) or LOAD REGISTER (Pin 11) is taken high, the drivers are turned off and the BCD pins become high-impedance inputs. When LC is connected to $V_{D D}$, the count input is inhibited and the levels at the BCD pins are multiplexed into the counter. When LR is connected to $V_{D D}$, the levels at the BCD pins are multiplexed into the register without disturbing the counter. When both are connected to $V_{D D}$, the count is inhibited and both register and counter will be loaded.

The LOAD COUNTER and LOAD REGISTER inputs are edge-triggered, and pulsing them high for 500 ns at room temperature will initiate a full sequence of data entry cycle operations (see Figure 7). When the circuit recognizes that either or both of the LC or LR pins input is high, the multiplex oscillator and counter are reset (to D4). The internal oscillator is then disconnected from the SCAN pin and the
preset circuitry is enabled. The oscillator starts and runs with a frequency determined by its internal capacitor, (which may vary from chip to chip). When the chip finishes a full 4 digit multiplex cycle (loading each digit from D4 to D3 to D2 to D1 in turn), it again samples the LOAD REGISTER and LOAD COUNTER inputs. If either or both is still high, it repeats the load cycle, if both are floating or low, the oscillator is reconnected to the SCAN pin and the chip returns to normal operation. Total load time is digit "on" time multiplied by 4. If the Digit outputs are used to strobe the BCD data into the BCD I/O inputs, the input will be automatically synchronized to the appropriate digit (Figure 8). Input data must be valid at the trailing edge of the digit output.
When LR is connected to GROUND, the oscillator is inhibited, the BCD I/O pins go to the high impedance state, and the segment and digit drivers are turned off. This allows the display to be used for other purposes and minimizes power consumption. In this display off condition, the circuit will continue to count, and the CARRY/BORROW, EQUAL, $\overline{Z E R O}$, UP/DOWN, $\overline{\text { RESET }}$ and STORE functions operate as normal. When LC is connected to ground, the BCD I/O pins are forced to the high impedance state without disturbing the counter or register. See "Control Input Definitions" (Table 2) for a list of the pins that function as three-state self-biased inputs and their respective operations.
Note that the ICM7217 and 7217B have been designed to drive common anode displays. The BCD inputs are high true, as are the BCD outputs.
The ICM7217A and the 7217C are used to drive common cathode displays, and the BCD inputs are low true. BCD outputs are high true.

## Notes on Thumbwheel Switches \& Multiplexing

The thumbwheel switches used with these circuits (both common anode and common cathode) are TRUE BCD coded; i.e. all switches open corresponds to 0000. Since the thumbwheel switches are connected in parallel, diodes must be provided to prevent crosstalk between digits. See Figure 8. In order to maintain reasonable noise margins, these diodes should be specified with low forward voltage drops (IN914). Similarly, if the BCD outputs are to be used, resistors should be inserted in the Digit lines to avoid loading problems.

## Output and Input Restrictions

The CARRY/BORROW output is not valid during load counter and reset operations.
The EQUAL output is not valid during load counter or load register operations.

The ZERO output is not valid during a load counter operation.

The $\overline{\text { RESET }}$ input may be susceptible to noise if its input rise time (coming out of reset) is greater than about $500 \mu \mathrm{~s}$. This will present no problems when this input is driven by active devices (i.e., TTL or CMOS logic) but in hardwired systems adding virtually any capacitance to the RESET input can cause trouble. A simple circuit which provides a reliable power-up reset and a fast rise time on the RESET input is shown below.


When using the circuit as a programmable divider ( $\div$ by n with equal outputs) a short time delay (about $1 \mu \mathrm{~s}$ ) is needed from the EQUAL output to the RESET input to establish a pulse of adequate duration. (See Figure 9)


When the circuit is configured to reload the counter or register with a new value from the BCD lines (upon reaching EQUAL), loading time will be digit "on" time multiplied by four. If this load time is longer than one period of the input count, a count can be lost. Since the circuit will retain data in the register, the register need only be updated when a new value is to be entered. $\overline{\text { RESET will not clear the regis- }}$ ter.

[^547]NOTE: All typical values have been characterized but are not tested.


Figure 10: ICM7217 BCD I/O and Loading Timing


0354-20
Note: If the BCD pins are to be used for outputs a $10 \mathrm{k} \Omega$ resistor should be placed in series with each digit line to avoid loading problems through the switches.
Figure 11: Thumbwheel Switch/Diode Connections

[^548]Figure 12: ICM7227 I/O Timing (see Table 4)

## CONTROL OF ICM7227 VERSIONS

The ICM7227 series has been designed to permit microprocessor control of the inputs. BCD inputs and outputs are active high.

In these versions, the STORE, UP/DOWN, SC1 and SC2 (Select Code bits 1 and 2) pins form a four-bit control word input. A negative-going pulse on the $\overline{\text { CWS }}$ (Control Word Strobe) pin writes the data on these pins into four internal control latches, and resets the multiplex counter in preparation for sequencing a data transfer operation. The select code 00 is reserved for changing the state of the Store and/ or Up/Down latches without initiating a data transfer. Writing a one into the Store latch sets the latch and causes the data in the counter to be transferred into the output latches, while writing a zero resets the latches causing them to retain data and not be updated. Similarly, writing a one into the Up/Down latch causes the counter to count up and writing a zero causes the counter to count down. The state of the Store and Up/ $\overline{\text { Down }}$ latches may also be changed with a non-zero select code.

Writing a nonzero select code initiates a data transfer operation. Writing select code of 01 (SC1, SC2) indicates that the data in the output latches will be active and enables the BCD I/O port to output the data. Writing a select code of 11 indicates that the register will be preset, and a 10 indicates that the counter will be preset.

When a nonzero select code is read, the clock of the four-state multiplex counter is switched to the $\overline{D A T A}$ TRANSFER pin. Negative-going pulses at this pin then sequence a digit-by-digit data transfer, either outputting data or presetting the counter or register as determined by the select code. The output drivers of the BCD I/O port will be enabled only while $\overline{\mathrm{DT}}$ is low during a data transfer initiated with a 01 select code.

The sequence of digits will be D4-D3-D2-D1, i.e. when outputting, the data from D4 will be valid during the first $\overline{\mathrm{DT}}$ pulse, then D3 will be valid during the second pulse, etc. When presetting, the data for D4 must be valid at the posi-tive-going transition (trailing edge) of the first DT pulse, the data for D3 must be valid during the second $\overline{D T}$ pulse, etc.

At the end of a data transfer operation, on the positive going transition of the fourth $\overline{\text { DT pulse, the SC1 and SC2 }}$ control latches will automatically reset, terminating the data transfer and reconnecting the multiplex counter clock to the oscillator. In the ICM7227 versions, the multiplex oscillator is always free-running, except during a data transfer operation when it is disabled.

Figure 12 shows the timing of data transfers initiated with a 11 select code (writing into the register) and a 01 select code (reading out of the output latches). Typical times during which data must be valid at the control word and BCD 1/O ports are indicated in Table 4.
Table 4: ICM7227 I/O Timing Requirements

| Symbol | Description | Min | Typ | Max | Units |
| :---: | :---: | :---: | :---: | :---: | :---: |
| tcWS | Control Word Strobe Width (min) |  | 275 |  | ns |
| ${ }_{\text {t }}^{1} \mathrm{Cs}$ | Internal Control Set-up (min) |  | 2.5 | 3 | $\mu \mathrm{s}$ |
| totw | DATA TRANSFER pulse width (min) |  | 300 |  | ns |
| tscs | Control to Strobe setup (min) |  | 300 |  | ns |
| tsch | Control to Strobe hold (min) |  | 300 |  | ns |
| ${ }_{\text {tids }}$ | Input Data setup (min) |  | 300 |  | ns |
| $t_{\text {ILDh }}$ | Input Data Hold (min) |  | 300 |  | ns |
| ttDacc | Output Data access |  | 300 |  | ns |
| tTDf | Output Transfer to Data float |  | 300 |  | ns |

[^549]NOTE: All typical values have been characterized but are not tested.

## ICM7217／ICM7227

## APPLICATIONS

## FIXED DECIMAL POINT

In the common anode versions，a fixed decimal point may be activated by connecting the D．P．segment lead from the appropriate digit（with separate digit displays）through a $39 \Omega$ series resistor to Ground．With common cathode de－ vices，the D．P．segment lead should be connected through a $75 \Omega$ series resistor to $V_{D D}$ ．

To force the device to display leading zeroes after a fixed decimal point，use a bipolar transistor and base resistor in a configuration like that shown below with the resistor con－ nected to the digit output driving the D．P．for left hand D．P． displays，and to the next least significant digit output for right hand D．P．display．See Performance Characteristics for a similarly operating multi－digit connection．


Figure 13：Forcing Leading Zero Display

## DRIVING LARGER DISPLAYS

For displays requiring more current than the ICM7217／ 7227 can provide，the circuits of Figure 14 can be used．


0354－23
Figure 14：Driving High Current Displays

## LCD DISPLAY INTERFACE

The low－power operation of the ICM7217 makes an LCD interface desirable．The Intersil ICM7211 4 digit BCD to LCD display driver easily interfaces to the ICM7217 as shown in Figure 15．Total system power consumption is less than 5 mW ．System timing margins can be improved by using ca－ pacitance to ground to slow down the BCD lines．A similar circuit can be used to drive Vacuum Fluorescent displays， with the ICM7235．
The $10-20 \mathrm{k} \Omega$ resistors on the switch BCD lines serve to isolate the switches during BCD output．


Figure 15：LCD Display Interface（with Thumbwheel Switches）

[^550]
## UNIT COUNTER WITH BCD OUTPUT

The simplest application of the ICM7217 is a 4 digit unit counter (Figure 16). All that is required is an ICM7217, a power supply and a 4 digit display. Add a momentary switch for reset, an SPDT center-off switch to blank the display or view leading zeroes, and one more SPDT switch for up/ down control. Using an ICM7217A with a common-cathode calculator-type display results in the least expensive digital counter/display system available.

## INEXPENSIVE FREQUENCY COUNTER/ TACHOMETER

This circuit uses the low power ICM7555 (CMOS 555) to generate the gating, STORE and RESET signals as shown in Figure 17. To provide the gating signal, the timer is configured as an astable multivibrator, using $\mathrm{R}_{\mathrm{A}}, \mathrm{R}_{\mathrm{B}}$ and C to provide an output that is positive for approximately one second and negative for approximately $300-500 \mu \mathrm{~s}$. The positive waveform time is given by $t_{w p}=0.693\left(R_{A}+R_{B}\right) C$ while the negative waveform is given by $t_{w n}=0.693 R_{B} C$. The system is calibrated by using a $5 \mathrm{M} \Omega$ potentiometer for $\mathrm{R}_{\mathrm{A}}$ as a "coarse" control and a $1 \mathrm{k} \Omega$ potentiometer for $R_{B}$ as a "fine" control. CD40106B's are used as a monostable multivibrator and reset time delay.

## TAPE RECORDER POSITION INDICATOR/CONTROLLER

The circuit in Figure 18 shows an application which uses the up/down counting feature of the ICM7217 to keep track of tape position. This circuit is representative of the many applications of up/down counting in monitoring dimensional position. For example, an ICM7227 as a peripheral to a processor can monitor the position of a lathe bed or digitizing head, transfer the data to the processor, drive interrupts to the processor using the EQUAL or ZERO outputs, and serve as a numerical display for the processor.

In the tape recorder application, the LOAD REGISTER, EQUAL and ZERO outputs are used to control the recorder. To make the recorder stop at a particular point on the tape, the register can be set with the stop point and the EQUAL output used to stop the recorder either on fast forward, play or rewind.

To make the recorder stop before the tape comes free of the reel on rewind, a leader should be used. Resetting the counter at the starting point of the tape, a few feet from the end of the leader, allows the ZERO output to be used to stop the recorder on rewind, leaving the leader on the reel.

The $1 \mathrm{M} \Omega$ resistor and $.0047 \mu \mathrm{~F}$ capacitor on the COUNT INPUT provide a time constant of about 5 ms to debounce the reel switch. The Schmitt trigger on the COUNT INPUT of the ICM7217 squares up the signal before applying it to the counter. This technique may be used to debounce switchclosure inputs in other applications.

## PRECISION ELAPSED TIME/ COUNTDOWN TIMER

The circuit in Figure 19 uses an ICM7213 precision one minute/one second timebase generator using a 4.1943 MHz crystal for generating pulses counted by an ICM7217B. The thumbwheel switches allow a starting time to be entered into the counter for a preset-countdown type timer, and allow the register to be set for compare functions. For instance, to make a 24 -hour clock with BCD output the register can be preset with 2400 and the EQUAL output used to reset the counter. Note the 10k resistor connected between the LOAD COUNTER terminal and Ground. This resistor pulls the LOAD COUNTER input low when not loading, thereby inhibiting the BCD output drivers. This resistor should be eliminated and SW4 replaced with an SPDT cen-ter-off switch if the BCD outputs are to be used.


0354-25
Figure 16: Unit Counter

[^551]

INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PFODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. the warranty shall be exclusive and shall be in lieu of all other warranties, express, implied or statutory, including the implied warranties of MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.
NOTE: All typical values have been characterized but are not tested.


Figure 19：Precision Timer


[^552]

0354-30
Figure 21: Precision Frequency Counter (MHz Maximum)

This technique may be used on any 3 -level input. The $100 \mathrm{k} \Omega$ pullup resistor on the count input is used to ensure proper logic voltage swing from the ICM7213. For a less expensive (and less accurate) timebase, an ICM7555 timer may be used in a configuration like that shown in Figure 17 to generate a 1 Hz reference.

## 8-DIGIT UP/DOWN COUNTER

This circuit (Figure 20) shows how to cascade counters and retain correct leading zero blanking. The NAND gate detects whether a digit is active since one of the two segments $\overline{\mathrm{a}}$ or $\overline{\mathrm{b}}$ is active on any unblanked number. The flip flop is clocked by the least significant digit of the high order counter, and if this digit is not blanked, the Q output of the flip flop goes high and turns on the NPN transistor, thereby inhibiting leading zero blanking on the low order counter.

It is possible to use separate thumbwheel switches for presetting, but since the devices load data with the oscillator free-running, the multiplexing of the two devices is difficult to synchronize. This presents no problems with the ICM7227 devices, since the two devices are operated as peripherals to a processor.

## PRECISION FREQUENCY COUNTER/ TACHOMETER

The circuit shown in Figure 21 is a simple implementation of a four digit frequency counter, using an ICM7207A to provide the one second gating window and the STORE and RESET signals. In this configuration, the display reads hertz directly. With Pin 11 of the ICM7027A connected to $V_{D D}$, the gating time will be 0.1 second; this will display tens of hertz as the least significant digit. For shorter gating times, an ICM7207 may be used (with a 6.5536 MHz crystal), giving a 0.01 second gating with Pin 11 connected to $V_{D D}$, and a 0.1 second gating with Pin 11 open.

To implement a four digit tachometer, the ICM7207A with one second gating should be used. To get the display to read directly in RPM, the rotational frequency of the object to be measured must be multiplied by 60 . This can be done electronically using a phase-locked loop, or mechanically by using a disc rotating with the object with the appropriate number of holes drilled around its edge to interrupt the light from an LED to a photo-dector. For faster updating, use 0.1 second gating, and multiply the rotational frequency by 600.

For more "intelligent" instrumentation, the ICM7227 interfaced to a microprocessor may be more convenient (see Figure 21). For example, an ICM7207A can be used with two ICM7227's to provide an 8 digit, 2 MHz frequency counter. Since the ICM7207A gating output has a $50 \%$ duty cycle, there is 1 second for the processor to respond to an interrupt, generated by the negative going edge of this signal while it inhibits the count. The processor can respond to the interrupt using ROM based subroutines, to store the data, reset the counter, and read the data into main memory . To add simultaneous period display, the processor inverts the data and an ICM7218 Universal Display Driver stores and displays it.

## AUTO-TARE SYSTEM

This circuit uses the count-up and count-down functions of the ICM7217, controlled via the EQUAL and ZERO outputs, to count in SYNC with an ICL7109 A/D Converter as shown in Figure 22. By RESETing the ICM7217 on a "tare" value conversion, and STORE-ing the result of a true value conversion, an automatic tare subtraction occurs in the result.

The ICM7217 stays in step with the ICL7019 by counting up and down between 0 and 4095, for 8192 total counts, the same number as the ICL7109 cycle. See A047 for more details.

[^553]NOTE: All typical values have been characterized but are not tested.


Figure 22: Auto-Tare System for A/D Converter

# ICM7224/ICM7225 41/2-Digit LCD/LED Display Counter 

## GENERAL DESCRIPTION

The ICM7224 and ICM7225 devices constitute a family of high-performance CMOS $41 / 2$-digit counters, including decoders, output latches, display drivers, count inhibit, leading zero blanking, and reset circuitry.
The counter section provides direct static counting, guaranteed from DC to 15 MHz , using a $5 \mathrm{~V} \pm 10 \%$ supply over the operating temperature range. At normal ambient temperatures, the devices will typically count up to 25 MHz . The COUNT input is provided with a Schmitt trigger to allow operation in noisy environments and correct counting with slowly changing inputs. The COUNT INHIBIT, STORE and RESET inputs allow a direct interface with the ICM7207/A to implement a low cost, low power frequency counter with a minimum component count.
These devices also incorporate several features intended to simplify cascading four-digit blocks. The CARRY output allows the counter to be cascaded, while the Leading Zero Blanking INput and OUTput allows correct Leading Zero Blanking between four-decade blocks. The BackPlane driver of the LCD devices may be disabled, allowing the segments to be slaved to another backplane signal, necessary when using an eight or twelve digit, single backplane display. In common-anode LED systems, the BRighTness input to several ICM7225 devices may be ganged to one potentiometer.
The ICM7224/ICM7225 family are packaged in a standard 40 -pin dual-in-line plastic or CERDIP package, or in dice.

## ORDERING INFORMATION

| Part Number | Display Type | Count Option |
| :---: | :---: | :---: |
| ICM7224IPL | LCD | 19999 |
| ICM7225IPL | LED | 19999 |

Evaluation Kits, order ICM7224 EV/Kit or ICM7225 EV/Kit

## FEATURES

- High Frequency Counting - Guaranteed 15MHz, Typically 25 MHz at 5 V
- Low Power Operation - Typically Less Than $100 \mu \mathrm{~W}$ Quiescent
- STORE and RESET Inputs Permit Operation as Frequency or Period Counter
- True COUNT INHIBIT Disables First Counter Stage
- CARRY Output for Cascading Four-Digit Blocks
- Schmitt-Trigger On The COUNT Input Allows Operation in Noisy Environments or With Slowly Changing Inputs
- Leading Zero Blanking INput and OUTput for Correct Leading Zero Blanking With Cascaded Devices
- LCD Devices Provide Complete Onboard Oscillator and Divider Chain to Generate Backplane Frequency, or Backplane Driver May Be Disabled Allowing Segments to be Slaved to A Master Backplane Signal
- LED Devices Provide BRighTness Input Which Can Function Digitally As A Display Enable or As A Continuous Display Brightness Control With A Single Potentiometer


[^554]

[^555]
## ABSOLUTE MAXIMUM RATINGS

Supply Voltage（ $\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{SS}}$ ）
6.5 V

Input Voltage（Any
Operating Temperature Range ．．．．．．．．．．$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature Range ．．．．．．．．．．．$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature（Soldering，10sec）．．．．．．．．．．．．．．．．300${ }^{\circ} \mathrm{C}$
Power Dissipation（Note 1）．．．．．．．．．．．．．．．．．．0．5W＠ $70^{\circ} \mathrm{C}$

NOTE 1：This limit refers to that of the package and will not be obtained during normal operation．
2：Due to the SCR structure inherent in the CMOS process，connecting any terminal to voltages greater than $V_{D D}$ or less than $V_{S S}$ may cause destructive device latchup．For this reason，it is recommended that no inputs from sources operating on a different power supply be applied to the device before its supply is established，and that in multiple supply systems，the supply to the ICM7224／ICM7225 be turned on first．
NOTE：Stresses above those listed under＂Absolute Maximum Ratings＂may cause permanent damage to the device．These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied．Exposure to absolute maximum rating conditions for extended periods may affect device reliability．

ELECTRICAL CHARACTERISTICS（ $\mathrm{V}_{D D}=5 \mathrm{~V}, \mathrm{~V}_{S S}=0 \mathrm{~V}, \mathrm{~T}_{A}=25^{\circ} \mathrm{C}$ ，unless otherwise indicated） ICM7224 CHARACTERISTICS

| SYMBOL | PARAMETER | TEST CONDITIONS | MIN | TYP | MAX | UNIT |
| :---: | :--- | :--- | :---: | :---: | :---: | :---: |
| $\mathrm{I}_{\mathrm{DD}}$ | Operating current | Test circuit，Display blank |  | 10 | 50 | $\mu \mathrm{~A}$ |
| $\mathrm{~V}_{\text {SUPPLY }}$ | Operating supply voltage range $\left(\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{SS}}\right)$ |  | 3 |  | 6 | V |
| $\mathrm{I}_{\mathrm{OSCl}}$ | OSCILLATOR input current | Pin 36 |  | $\pm 2$ | $\pm 10$ | $\mu \mathrm{~A}$ |
| $\mathrm{t}_{\mathrm{R}}, \mathrm{t}_{\mathrm{F}}$ | Segment rise／fall time | $\mathrm{C}_{\text {load }}=200 \mathrm{pF}$ |  | 0.5 |  | $\mu \mathrm{~s}$ |
| $\mathrm{t}_{\mathrm{R}}, \mathrm{t}_{\mathrm{F}}$ | BackPlane rise／fall time | $\mathrm{C}_{\text {load }}=5000 \mathrm{pF}$ |  | 1.5 |  |  |
| $\mathrm{f}_{\mathrm{OSC}}$ | Oscillator frequency | Pin 36 Floating |  | 19 |  | kHz |
| $\mathrm{f}_{\mathrm{BP}}$ | Backplane frequency | Pin 36 Floating |  | 150 |  | Hz |

ICM7225 CHARACTERISTICS

| SYMBOL | PARAMETER | TEST CONDITIONS | MIN | TYP | MAX | UNIT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Istby | Operating current display off | Pin 5 （BRighTness）at $\mathrm{V}_{\text {SS }}$ Pins 29，31－34 at $V_{D D}$ |  | 10 | 50 | $\mu \mathrm{A}$ |
| $V_{\text {SUPP }}$ | Operating supply voltage range（ $\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{S S}$ ） |  | 4 |  | 6 | V |
| IDD | Operating current | Pin 5 at V ${ }_{\text {DD }}$ ，Display 18888 |  | 200 |  | mA |
| ISLK | Segment leakage current | Segment Off |  | $\pm 0.01$ | $\pm 1$ | $\mu \mathrm{A}$ |
| ISEG | Segment on current | Segment On，Vout $=+3 \mathrm{~V}$ | 5 | 8 |  | mA |
| $\mathrm{I}_{\mathrm{H}}$ | Half－digit on current | Half－digit on，Vout $=+3 \mathrm{~V}$ | 10 | 16 |  |  |

FAMILY CHARACTERISTICS

| SYMBOL | PARAMETER | TEST CONDITIONS | MIN | TYP | MAX | UNIT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Ip | Input Pullup Currents | Pins 29，31，33， 34 Vout $=\mathrm{V}_{\mathrm{DD}}-3 \mathrm{~V}$ |  | 10 |  | $\mu \mathrm{A}$ |
| $\mathrm{V}_{\mathrm{IH}}$ | Input High Voltage | Pins 29，31，33， 34 | 3 |  |  | V |
| $\mathrm{V}_{\text {IL }}$ | Input Low Voltage | Pins 29，31，33， 34 |  |  | 1 |  |
| $\mathrm{V}_{\mathrm{CT}}$ | COUNT Input Threshold |  |  | 2 |  |  |
| $\mathrm{V}_{\mathrm{CH}}$ | COUNT Input Hysteresis |  |  | 0.5 |  |  |
| IOH | Output High Current | $\overline{\text { CARRY Pin } 28}$ <br> Leading Zero Blanking OUT Pin 30 <br> Vout $=V_{D D}-3 V$ | 350 | 500 |  | $\mu \mathrm{A}$ |
| loL | Output Low Current | CARRY Pin 28 <br> Leading Zero Blanking Out Pin 30 <br> Vout $=+3 \mathrm{~V}$ | 350 | 500 |  |  |
| fCOUNT | Count Frequency | $4.5 \mathrm{~V}<\mathrm{V}_{\mathrm{DD}}<6 \mathrm{~V}$ | 0 |  | 15 | MHz |
| $t_{s}, t_{R}$ | STORE，$\overline{\text { RESET }}$ Minimum Pulse Width |  | 3 |  |  | $\mu \mathrm{s}$ |

[^556]TYPICAL PERFORMANCE CHARACTERISTICS


7225 OPERATING POWER (LED DISPLAY) AS A FUNCTION OF SUPPLY VOLTAGE


SUPPLY VOLTAGE (V)
0355-7
7225 LED SEGMENT CURRENT AS A FUNCTION OF BRIGHTNESS CONTROL VOLTAGE


7225 LED SEGMENT CURRENT AS A FUNCTION OF OUTPUT VOLTAGE


7224 BACKPLANE FREQUENCY AS A
FUNCTION OF OSCILLATOR CAPACITOR COSC


MAXIMUM COUNT FREQUENCY (TYPICAL) AS A FUNCTION OF SUPPLY VOLTAGE


INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

NOTE: All typical values have been characterized but are not tested.

TYPICAL PERFORMANCE CHARACTERISTICS (Continued)
SUPPLY CURRENT AS A FUNCTION OF COUNT FREQUENCY


0355-11
TABLE I: Control Input Definitions

| INPUT | TERMINAL | VOLTAGE | FUNCTION |
| :--- | :---: | :---: | :--- |
| Leading Zero Blanking <br> INput | 29 | $V_{D D}$ or Floating <br> $V_{S S}$ | Leading Zero Blanking Enabled <br> Leading Zeroes Displayed |
| $\overline{\text { COUNT INHIBIT }}$ | 31 | $V_{D D}$ or Floating <br> $V_{S S}$ | Counter Enabled <br> Counter Disabled |
| $\overline{\text { RESET }}$ | 33 | $V_{D D}$ or Floating <br> $V_{S S}$ | Inactive <br> Counter Reset to 0000 |
| $\overline{\text { STORE }}$ | 34 | $V_{D D}$ or Floating <br> $V_{S S}$ | Output Latches not Updated <br> Output Latches Updated |

## CONTROL INPUT DEFINITIONS

In Table I, $\mathrm{V}_{\mathrm{DD}}$ and $\mathrm{V}_{\mathrm{SS}}$ are considered to be normal operating input logic levels. Actual input low and high ievels are specified in the Operating Characteristics. For lowest power consumption, input signals should swing over the full supply.

## DETAILED DESCRIPTION

## LCD Devices

The LCD devices in the family (ICM7224 and ICM7224A) provide outputs suitable for driving conventional $41 / 2$-digit by seven segment LCD displays. They include 29 individual segment drivers, a backplane driver, and a self-contained oscillator and divider chain to generate the backplane frequency.
The segment and backplane drivers each consist of a CMOS inverter, with the $n$ - and $p$-channel devices ratioed to provide identical on resistances, and thus equal rise and fall times. This eliminates any D.C. component which could arise from differing rise and fall times, and ensures maximum display life.

The backplane output devices can be disabled by connecting the OSCILLATOR input (pin 36) to $\mathrm{V}_{\mathrm{SS}}$. This synchronizes the 29 segment outputs directly with a signal input at the BP terminal (pin 5) and allows cascading of several slave devices to the backplane output of one master device. The backplane may also be derived from an external
source. This allows the use of displays with characters in multiples of four and a single backplane. A slave device will represent a load of approximately 200 pF (comparable to one additional segment). The limitation on the number of devices that can be slaved to one master device backplane driver is the additional load represented by the larger backplane of displays of more than four digits, and the effect of that load on the backplane rise and fall times. A good rule of thumb to observe in order to minimize power consumption, is to keep the rise and fall times less than about 5 microseconds. The backplane driver devices of one device should handle the backplane to a display of 16 one-half-inch characters without the rise and fall times exceeding $5 \mu \mathrm{~s}$ (ie, 3 slave devices and the display backplane driven by a fourth master device). It is recommended that if more than four devices are to be slaved together, that the backplane signal be derived externally and all the ICM7224 devices be slaved to it.
This external backplane signal should be capable of driving very large capacitive loads with short ( $1-2 \mu \mathrm{~s}$ ) rise and fall times. The maximum frequency for a backplane signal should be about 150 Hz , although this may be too fast for optimum display response at lower display temperatures, depending on the display used.
The onboard oscillator is designed to free run at approximately 19 kHz , at microampere power levels. The oscillator frequency is divided by 128 to provide the backplane frequency, which will be approximately 150 Hz with the oscilla- INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.
tor free－running．The oscillator frequency may be reduced by connecting an external capacitor between the OSCillator terminal（pin 36）and $V_{D D}$ ；see the plot of oscillator／back－ plane frequency in＂Typical Characteristics＂for detailed in－ formation．
The oscillator may also be overdriven if desired，although care must be taken to insure that the backplane driver is not disabled during the negative portion of the overdriving sig－ nal（which could cause a D．C．component to the display）． This can be done by driving the OSCILLATOR input be－ tween the positive supply and a level out of the range where the backplane disable is sensed，about one fifth of the sup－ ply voltage above the negative supply．Another technique for overdriving the oscillator（with a signal swinging the full supply）is to skew the duty cycle of the overdriving signal such that the negative portion has a duration shorter than about one microsecond．The backplane disable sensing cir－ cuit will not respond to signals of this duration．

## LED Devices

The LED devices in the family（ICM7225，ICM7225A）pro－ vide outputs suitable for directly driving $41 / 2$－digit by seven segment common－anode LED displays．They include 28 in－ dividual segment drivers and one half－digit driver，each con－ sisting of a low－leakage current－controlled open－drain n－channel transistor．
The drain current of these transistors can be controlled by varying the voltage at the BRighTness input（pin 5）．The voltage at this pin is transferred to the gates of the output devices for＂on＂segments，and thus directly modulates the transistor＇s＂on＂resistance．A brightness control can be easily implemented with a single potentiometer controlling the voltage at pin 5，connected as in Figure 3．The potenti－ ometer should be a high value（ $100 \mathrm{k} \Omega$ to $1 \mathrm{M} \Omega$ ）to minimize power consumption，which can be significant when the dis－ play is off．
The BRighTness input may also be operated digitally as a display enable；when at $V_{D D}$ ，the display is fully on，and at $\mathrm{V}_{\mathrm{SS}}$ ，fully off．The display brightness may also be controlled by varying the duty cycle of a signal swinging between the two supplies at the BRighTness input．
Note that the LED devices have two connections for $V_{S S}$ ； both should be connected．The double connection is neces－ sary to minimize effects of bond wire resistance with the large total display currents possibie．
When operating the LED devices at higher temperatures and／or higher supply voltages，the device power dissipation may need to be reduced to prevent excessive chip tempera－ tures．The maximum power dissipation is 1 watt at $25^{\circ} \mathrm{C}$ ， derated linearly above $35^{\circ} \mathrm{C}$ to 500 mW at $70^{\circ} \mathrm{C}\left(15 \mathrm{~mW} /{ }^{\circ} \mathrm{C}\right.$ above $35^{\circ} \mathrm{C}$ ）．Power dissipation for the device is given by：

$$
\mathrm{P}=\left(\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{FLED}}\right) \times\left(\mathrm{I}_{\text {SEG }}\right) \times\left(\mathrm{n}_{\text {SEG }}\right)
$$

where $V_{\text {FLED }}$ is the LED forward voltage drop，$I_{\text {SEG }}$ is seg－ ment current，and $\mathrm{n}_{\text {SEG }}$ is the number of＂ON＂segments．It is recommended that if the device is to be operated at ele－ vated temperatures the segment current be limited by use of the BRighTness input to keep power dissipation within the limits described above．


## COUNTER SECTION

The devices in the ICM7224／ICM7225 family implement a four－digit ripple carry resettable counter，including a Schmitt trigger on the COUNT input and a CARRY output．Also in－ cluded is an extra D－type flip－flop，clocked by the CARRY signal which controls the half－digit segment driver．This out－ put driver can be used as either a true half－digit or as an overflow indicator．The counter will increment on the nega－ tive－going edge of the signal at the COUNT input，while the CARRY output provides a negative－going edge following the count which increments the counter from 9999 （or 5959）to 10000．Once the half－digit flip－flop has been clocked，it can only be reset（with the rest of the counter）by a negative level at the RESET terminal，pin 33．However，the four dec－ ades will continue to count in a normal fashion after the half－digit is set，and subsequent CARRY outputs will not be affected．

A negative level at the COUNT INHIBIT input disables the first divide－by－two in the counter chain without affecting its clock．This provides a true inhibit，not sensitive to the state of the COUNT input，which prevents false counts that can result from using a normal logic gate to prevent counting．

Each decade of the counter directly drives a four－to－sev－ en segment decoder which develops the required output data．The output data is latched at the driver．When the STORE pin is low，these latches are updated，and when it is high or floating，the latches hold their contents．

The decoders also include zero detect and blanking logic to provide leading zero blanking．When the Leading Zero Blanking INput is floating or at a positive level，this circuitry is enabled and the device will blank leading zeroes．When it is low，or the half－digit is set，leading zero blanking is inhibit－ ed，and zeroes in the four digits will be displayed．The Lead－ ing Zero Blanking OUTput is provided to allow cascaded devices to blank leading zeroes correctly．This output will assume a positive level only when all four digits are blanked；this can only occur when the Leading Zero Blank－ ing INput is at a positive level and the half－digit is not set．

For example，in an eight－decade counter with overflow using two ICM7224／ICM7225 devices，the Leading Zero Blanking OUTput of the high order digit would be connected to the Leading Zero Blanking INput of the low order digit device．This will assure correct leading zero blanking for all eight digits．

The STORE, $\overline{\text { RESET, }}$ COUNT INHIBIT, and Leading Zero Blanking INputs are provided with pullup devices, so that they may be left open when a positive level is desired. The $\overline{\text { CARRY }}$ and Leading Zero Blanking OUTputs are suitable for interfacing to CMOS logic in general, and are specifically designed to allow cascading of ICM7224 to ICM7225 devices in four-digit blocks.


Figure 4: Display Waveforms


0355-14
Figure 5: Test Circuit

APPLICATIONS


0355-18
Figure 8: Two-Hour Precision Timer


Figure 9: Eight-Digit Precision Frequency Counter

[^557]
## GENERAL DESCRIPTION

The ICM7226 is a fully integrated Universal Counter and LED display driver. It combines a high frequency oscillator, a decade timebase counter, an 8 decade data counter and latches, a 7 segment decoder, digit multiplexer, and segment and digit drivers which can directly drive large LED displays. The counter inputs accept a maximum frequency of 10 MHz in frequency and unit counter modes and 2 MHz in the other modes. Both inputs are digital inputs. In many applications, amplification and level shifting will be required to obtain proper digital signals for these inputs.
The ICM7226 can function as a frequency counter, period counter, frequency ratio ( $\mathrm{f}_{\mathrm{A}} / \mathrm{f}_{\mathrm{B}}$ ) counter, time interval counter or a totalizing counter. The devices require either a 10 MHz or 1 MHz crystal timebase, or if desired an external timebase can also be used. For period and time interval, the 10 MHz timebase gives a $0.1 \mu \mathrm{~s}$ resolution. In period average and time interval average, the resolution can be in the nanosecond range. In the frequency mode, the user can select accumulation time of $10 \mathrm{~ms}, 100 \mathrm{~ms}$, 1 s and 10 s . With a 10s accumulation time, the frequency can be displayed to a resolution of 0.1 Hz . There is a 0.2 s interval between measurements in all ranges. Control signals are provided to enable gating and storing of prescaler data.
Leading zero blanking has been incorporated with frequency display in kHz and time in $\mu \mathrm{s}$. The display is multiplexed at a 500 Hz rate with a $12.2 \%$ duty cycle for each digit. The ICM7226A is designed for common anode displays with typical peak segment currents of 25 mA , and the ICM7226B is designed for common cathode displays with typical segment currents of 12 mA . In the display off mode, both digit drivers \& segment drivers are turned off, allowing the display to be used for other functions.

## FEATURES

- CMOS Design for Very Low Power
- Output Drivers Directly Drive Both Digits and Segments of Large 8 Digit LED Displays. Both Common Anode and Common Cathode Versions Are Available
- Measures Frequencies From DC to 10MHz; Periods From $0.5 \mu \mathrm{~s}$ to 10 s
- Stable High Frequency Oscillator Uses Either 1 MHz or 10MHz Crystal
- Control Signals Available for External Systems Operation
- Multiplexed BCD Outputs


## APPLICATIONS

- Frequency Counter
- Period Counter
- Unit Counter
- Frequency Ratio Counter
- Time Interval Counter

ORDERING INFORMATION

| Part <br> Number | Temperature <br> Range | Package |
| :---: | :---: | :--- |
| ICM7226AIJL | $-25^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ | 40 pin CERDIP |
| ICM7226BIJL | $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ | 40 pin CERDIP |
| ICM7226BIPL | $-25^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ | 40 pin PLASTIC DIP |

NOTE: An evaluation kit is available for these devices-order ICM7226AEV/KIT.

intersil's sole and exclusive warranty obligation with respect to this product shall be that stated in the warranty article of the condition of sale. the warranty shall be exclusive and shall be in lieu of all other warranties, express, implied or statutory, including the implied warranties of MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

ABSOLUTE MAXIMUM RATINGS
Maximum Supply Voltage ( $\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{SS}}$ ) . . . . . . . . . . . . . . 6.5V
Maximum Digit Output Current . . . . . . . . . . . . . . . . . . . . 400mA
Maximum Segment Output Current . . . . . . . . . . . . . . . . . 60mA
Voltage on any Input or Output Terminal (Note 1)

$$
\left(\mathrm{V}_{S S}-0.3 \mathrm{~V}\right) \text { to }\left(\mathrm{V}_{D D}+0.3 \mathrm{~V}\right)
$$

Maximum Power Dissipation at $70^{\circ} \mathrm{C}$ (Note 2)
ICM7226A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.0W
ICM7226B ............................................... . 0.5 W
Operating Temperature Range $\ldots . . . . . .-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature Range ........... $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10sec) ............... 300${ }^{\circ} \mathrm{C}$
*Note 1: Destructive latchup may occur if input signals are applied before the power supply is established or if inputs or outputs are forced to voltages exceeding $\mathrm{V}_{\mathrm{DD}}$ or $\mathrm{V}_{\mathrm{SS}}$ by 0.3 V .
2: Assumes all leads soldered or welded to PC board and free air flow.


0356-3
Figure 2: Functional Diagram

[^558]
## ELECTRICAL CHARACTERISTICS $\quad\left(\mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right.$, unless otherwise specified.)



[^559]ELECTRICAL CHARACTERISTICS ( $\mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise specified.) (Continued)

| Symbol | Parameter | Test Conditions | Min | Typ | Max | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{V}_{\text {IL }}$ | MULTIPLEX INPUTS <br> PINS 1,4,20,21 <br> input low voltage <br> input high voltage <br> input resistance to $\mathrm{V}_{\text {SS }}$ |  |  |  | 0.8 | V |
| $\mathrm{V}_{\mathrm{IH}}$ |  |  | 2.0 |  |  |  |
| $\mathrm{R}_{\mathrm{IN}}$ |  | $\mathrm{V}_{\mathrm{IN}}=+1.0 \mathrm{~V}$ | 50 | 100 |  | $\mathrm{k} \Omega$ |
| lOL | ICM7226B <br> DIGIT DRIVER PINS 8,9,10,11,13,14,15,16 low output current | $\mathrm{V}_{\mathrm{O}}=+1.0 \mathrm{~V}$ | 50 | 75 |  | mA |
| IOH | high output current | $\mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{DD}}-2.5 \mathrm{~V}$ |  | 100 |  | $\mu \mathrm{A}$ |
| IOH | SEGMENT DRIVER <br> PINS 22,23,24,26,27,28,29,30 high output current | $\mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{DD}}-2.0 \mathrm{~V}$ | 10 | 15 |  | mA |
| IL | leakage current | $\mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\text {SS }}$ |  |  | 10 | $\mu \mathrm{A}$ |
| $\mathrm{V}_{\text {IL }}$ | MULTIPLEX INPUTS <br> PINS 1,4,20,21 <br> input low voltage <br> input high voltage <br> input resistance to $V_{D D}$ |  |  |  | $V_{D D}-2.0$ | V |
| $\mathrm{V}_{\mathrm{IH}}$ |  |  | $\mathrm{V}_{\mathrm{DD}}-0.8$ |  |  |  |
| $\mathrm{R}_{\text {IN }}$ |  | $\mathrm{V}_{1 \mathrm{~N}}=\mathrm{V}_{\mathrm{DD}}-1.0 \mathrm{~V}$ | 100 | 360 |  | k $\Omega$ |

NOTE: Typical values are not tested.


## EVALUATION KIT

An evaluation kit is available for the ICM7226A. It includes all the components necessary to assemble and evaluate a universal frequency/period counter based on the ICM7226A. With the help of this kit, an engineer or techni-
cian can have the ICM7226A "up-and-running" in less than an hour. Specifically, the kit contains an ICM7226AIJL, a 10 MHz quartz crystal, eight each 7 -segment $0.3^{\prime \prime}$ LEDs, PC board, resistors, capacitors, diodes, switches and IC socket. Order Number ICM7226AEV/Kit.

[^560]

NOTE：IF RANGE IS SET TO 1 EVENT，FIRST AND LAST MEASURED INTERVAL WILL COINCIDE．
Figure 7：Waveforms for Time Interval Measurement
（Others are similar，without priming phase）

This can be easily accomplished with the following circuit： （Figure．8）．


Figure 8：Priming Circuit，Signal A\＆B High or Low

| Device | Type |
| :---: | :--- |
| 1 | CD4049B Inverting Buffer |
| 2 | CD4070B Exclusive－OR |

## MULTIPLEXED INPUTS

The FUNCTION，RANGE，CONTROL and EXTERNAL DECIMAL POINT inputs are time multiplexed to select the input function desired．This is achieved by connecting the appropriate digit driver output to the inputs．The input func－ tion，range and control inputs must be stable during the last half of each digit output，（typically $125 \mu \mathrm{~s}$ ）．The multiplex inputs are active high for the common anode ICM7226A， and active low for the common cathode ICM7226B．

Noise on the multiplex inputs can cause improper opera－ tion．This is particularly true when the unit counter mode of operation is selected，since changes in voltage on the digit drivers can be capacitively coupled through the LED diodes to the multiplex inputs．For maximum noise immunity，a $10 \mathrm{k} \Omega$ resistor should be placed in series with the multiplex inputs as shown in the application notes．
Table 1 shows the functions selected by each digit for these inputs．

Table 1：Multiple Input Control

|  | Function | Digit |
| :---: | :---: | :---: |
| FUNCTION INPUT Pin 4 | Frequency <br> Period <br> Frequency Ratio <br> Time Interval <br> Unit Counter <br> Oscillator Frequency | $\begin{aligned} & D_{1} \\ & D_{8} \\ & D_{2} \\ & D_{5} \\ & D_{4} \\ & D_{3} \end{aligned}$ |
| RANGE INPUT PIN 21 <br> PIN 31 | $0.01 \mathrm{Sec} / 1$ Cycle <br> $0.1 \mathrm{Sec} / 10$ cycles <br> $1 \mathrm{Sec} / 100$ Cycles <br> $10 \mathrm{Sec} / 1 \mathrm{k}$ Cycles <br> Enable External Range Input | $\begin{aligned} & D_{1} \\ & D_{2} \\ & D_{3} \\ & D_{4} \\ & D_{5} \end{aligned}$ |
| CONTROL INPUT PIN 1 | Display Off <br> Display Test <br> 1 MHz Select <br> External Oscillator Enable <br> External Decimal Point <br> Enable | $\begin{gathered} D_{4} \& \text { Hold } \\ D_{8} \\ D_{2} \\ D_{1} \\ D_{3} \end{gathered}$ |
| EXTERNAL DECIMAL POINT INPUT，PIN 20 | Decimal Point is Output for Same Digit That is Connected to This Input |  |

## CONTROL INPUTS

Display Test - All segments are enabled continuously, giving a display of all 8's with decimal points. The display will be blanked if display off is selected at the same time.

Display Off - To enable the display off mode it is necessary to tie $D_{4}$ to the CONTROL input and have the HOLD input at $\mathrm{V}_{\mathrm{DD}}$. The chip will remain in this mode until HOLD is switched low. While in the display off mode, the segment and digit driver outputs are open and the oscillator continues to run (with a typical supply current of 1.5 mA with a 10 MHz crystal) but no measurements are made. In addition, signals applied to the multiplexed inputs have no effect. A new measurement is initiated after the HOLD input goes low. (This mode does not operate when functioning as a unit counter.)

1 MHz Select - The 1 MHz select mode allows use of a 1 MHz crystal with the same digit multiplex rate and time between measurements as a 10 MHz crystal. The internal decimal point is also shifted one digit to the right in period and time interval, since the least significant digit will be in $1 \mu \mathrm{~s}$ increments rather than $0.1 \mu \mathrm{~s}$.
External Oscillator Enable - In this mode, the EXTernal OSCillator INput is used, rather than the on-chip oscillator, for the Timebase and Main Counter inputs in period and time interval modes. The on-chip oscillator will continue to function when the external oscillator is selected, but have no effect on circuit operation. The external oscillator input frequency must be greater than 100 kHz or the chip will reset itself and enable the on-chip oscillator. Connect external oscillator to both OSC IN (pin 35) and EXT OSC IN (pin 33), or provide crystal for "default" oscillation, to avoid hang-up problems if an external OSC or TXCO will always be used, AC couple to OSC IN.

External Decimal Point Enable - When external decimal point is enabled, a decimal point will be displayed whenever the digit driver connected to the EXTERNAL DECIMAL POINT pin is active. Leading Zero Blanking will be disabled for all digits following the decimal point.

## RANGE INPUT

The range input selects whether the measurement is made for $1,10,100$ or 1000 counts of the reference counter, or if the EXTernal RANGE INput determines the measurement time. In all functional modes except unit counter, a change in the RANGE input will stop the measurement in progress, without updating the display, and initiate a new measurement. This prevents an erroneous first reading after the RANGE input is changed.

## FUNCTION INPUT

Six functions can be selected. They are: Frequency, Period, Time Interval, Unit Counter, Frequency Ratio and Oscillator Frequency.

These functions select which signal is counted into the main counter and which signal is counted by the reference counter, as shown in Table 2. In time interval a flip flop is set first by a $1 \rightarrow 0$ transition at INPUT A and then reset by a $1 \rightarrow 0$ transition at INPUT B. The oscillator is gated into the Main Counter during the time the flip flop is set. A change in the FUNCTION input will stop the measurement
in progress without updating the display and then initiate a new measurement. This prevents an erroneous first reading after the FUNCTION input is changed. If the main counter overflows, an overflow indication is output on the Decimal Point Output during $\mathrm{D}_{8}$.

Table 2: Input Routing

| Description | Main Counter | Reference <br> Counter |
| :--- | :--- | :--- |
| Frequency ( $\mathrm{f}_{\mathrm{A}}$ ) | Input A | $100 \mathrm{~Hz}($ Oscillator <br> $\div 10^{5}$ or 104) |
| Period $\left(\mathrm{t}_{\mathrm{A}}\right)$ | Oscillator | Input A |
| Ratio $\left(\mathrm{f}_{\mathrm{A}} / \mathrm{f}_{\mathrm{B}}\right)$ | Input A | Input B |
| Time Interval <br> $(\mathrm{A} \rightarrow \mathrm{B})$ | Osc ON <br> Gate | Osc OFF <br> Gate |
| Unit Counter <br> $($ Count A$)$ | Input A | Not Applicable |
| Osc. Freq. <br> (fosc) | Oscillator | 100 Hz (Oscillator <br> $\div 10^{5}$ or 104) |

## EXTERNAL DECIMAL POINT INPUT

When the external decimal point is selected, this input is active. Any of the digits, except $D_{8}$, can be connected to this point. $\mathrm{D}_{8}$ should not be used since it will override the overflow output and leading zeros will remain unblanked after the decimal point.

HOLD Input - Except in the unit counter mode, when the HOLD input is at $V_{D D}$, any measurement in progress (before STORE goes low) is stopped, the main counter is reset and the chip is held ready to initiate a new measurement as soon as HOLD goes low. The latches which hold the main counter data are not updated, so the last complete measurement is displayed. In unit counter mode when HOLD input is at $V_{D D}$, the counter is not stopped or reset, but the display is frozen at that instantaneous value. When HOLD goes low the count continues from the new value in the counter.

RESET Input - The RESET Input resets the main counter, stops any measurement in progress, and enables the main counter latches, resulting in an all zero output. A capacitor to ground will prevent any hang-ups on power-up.

EXTernal RANGE Input - The EXTernal RANGE Input is used to select other ranges than those provided on the chip. Figure 9 shows the relationship between MEASurement IN PROGRESS and EXTernal RANGE Input.


0356-11
Figure 9: External Range Input to End of MEASUREMENT IN PROGRESS.

[^561]
## ICM7226A/B

MEASUREMENT IN PROGRESS, STORE AND RESET Outputs - These Outputs are provided to facilitate external interfacing. Figure 10 shows the relationship between these signals during the time between measurements. All three outputs can drive a low power Schottky TTL load. The MEASUREMENT IN PROGRESS output can directly drive one ECL load, if the ECL device is powered from the same power supply as the ICM7226.


BCD Outputs - The BCD representation of each digit output is available at the BCD outputs; see Table 3 for Truth Table. The positive going (ICM7226A-Common Anode) or negative going (ICM7226B - Common Cathode) digit drivers lag the BCD data by 2 to 6 microseconds; the leading edge of the digit drive signal should be used to externally latch the BCD data. Each BCD output will drive one low power Schottky TTL load. The display is multiplexed from MSD to LSD. Leading zero blanking has no effect on the BCD outputs.

Table 3: Truth Table BCD Outputs

| Number | BCD 8 <br> Pin 7 | BCD 4 <br> Pin 6 | BCD 2 <br> Pin 17 | BCD 1 <br> Pin 18 |
| :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 0 | 0 |
| 1 | 0 | 0 | 0 | 1 |
| 2 | 0 | 0 | 1 | 0 |
| 3 | 0 | 0 | 1 | 1 |
| 4 | 0 | 1 | 0 | 0 |
| 5 | 0 | 1 | 0 | 1 |
| 6 | 0 | 1 | 1 | 0 |
| 7 | 0 | 1 | 1 | 1 |
| 8 | 1 | 0 | 0 | 0 |
| 9 | 1 | 0 | 0 | 1 |

BUFFered OSCillator OUTput - The BUFFered OSCillator OUTput has been provided to enable use of the on chip oscillator signal without loading the oscillator itself. This output will drive one low power Schottky TTL load. Care should be taken to minimize capacitive loading on this pin.

## DISPLAY CONSIDERATIONS

The display is multiplexed at a 500 Hz rate with a digit time of $244 \mu \mathrm{~s}$, and an interdigit blanking time of $6 \mu \mathrm{~s}$ to prevent ghosting between digits. The decimal point and leading zero blanking have been implemented for right hand decimal point displays; zeros following the decimal point will not be blanked. Leading zero blanking will also be disabled if the

Main Counter overflows. The internal decimal point control displays frequency in kHz and time in $\mu \mathrm{s}$.

The ICM7226A is designed to drive common anode LED displays at a peak current of $25 \mathrm{~mA} /$ segment, using displays with $\mathrm{V}_{\mathrm{F}}=1.8 \mathrm{~V}$ at 25 mA . The average DC current will be greater than 3mA under these conditions. The ICM7226B is designed to drive common cathode displays at a peak current of $15 \mathrm{~mA} /$ segment, using displays with $\mathrm{V}_{\mathrm{F}}=1.8 \mathrm{~V}$ at 15 mA . Resistors can be added in series with the segment drivers to limit the display current, if required. Figures 11, 12, 13 and 14 show the digit and segment currents as a function of output voltage for common anode and common cathode drivers.


0356-13
Figure 11: ICM7226A Typical Idig vs. $\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{O}}$ $4.5 \leq \mathrm{V}_{\mathrm{DD}} \leq 6.0 \mathrm{~V}$


Figure 12: ICM7226A Typical IsEG vs. Vo


Figure 13: ICM7226B Typical IDIG vs. $\mathbf{V}_{0}$



0356－16
Figure 14：ICM7226B Typical $I_{S E G} \mathbf{v s} .\left(\mathbf{V}_{\mathrm{DD}}-\mathbf{V}_{\mathbf{O}}{ }^{0356-1}\right.$ $4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 6.0 \mathrm{~V}$

To increase the light output from the displays， $\mathrm{V}_{\mathrm{DD}}$ may be increased to 6.0 V ，however care should be taken to see that maximum power and current ratings are not exceeded．

The SEGment and Digit outputs in both the 7226A and B are not directly compatible with either TTL or CMOS logic． Therefore，level shifting with discrete transistors may be re－ quired to use these outputs as logic signals．External latch－ ing should be done on the leading edge of the digit signal．

## ACCURACY

In a Universal Counter，crystal drift and quantization er－ rors cause errors．In frequency，period and time interval modes，a signal derived from the oscillator is used either in the Reference Counter or Main Counter，and in these modes，an error in the oscillator frequency will cause an identical error in the measurement．For instance，an oscilla－ tor temperature coefficient of $20 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ will cause a mea－ surement error of $20 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ ．
In addition，there is a quantization error inherent in any digital measurement of $\pm 1$ count．Clearly this error is re－ duced by displaying more digits．In the frequency mode， maximum accuracy is obtained with high frequency inputs， and in period mode maximum accuracy is obtained with low frequency inputs．As can be seen in Figure 15，the least accuracy will be obtained at 10 kHz ．In time interval mea－ surements there is a maximum error of 1 count per interval． As a result there is the same inherent accuracy in all ranges，as shown in Figure 16．In frequency ratio mea－ surement more accuracy can be obtained by averaging over more cycles of INPUT B as shown in Figure 17.


Figure 15：Maximum Accuracy of Frequency and Period Measurements Due to Limitations of Quantization Errors．


0356－18
Figure 16：Maximum Accuracy of Time Interval Measurement Due to Limitations of Quantization Errors．


Figure 17：Maximum Accuracy for Frequency Ratio Measurement Due to Limitations of Quantization Errors．

[^562]
## CIRCUIT APPLICATIONS

The ICM7226 has been designed as a complete stand alone Universal Counter, or used with prescalers and other circuitry in a variety of applications. Since A IN and BIN are digital inputs, additional circuitry will be required in many applications, for input buffering, amplification, hysteresis, and level shifting to obtain the required digital voltages. For many applications an FET source follower can be used for input buffering, and an ECL 10116 line receiver can be used for amplification and hysteresis to obtain high impedance input, sensitivity and bandwidth. However, cost and complexity of this circuitry can vary widely, depending upon the sensitivity and bandwidth required. When TTL prescalers or input buffers are used, pull up resistors to $V_{D D}$ should be used to obtain optimal voltage swing at A IN and BIN.

If prescalers aren't required, the ICM7226 can be used to implement a minimum component Universal counter as shown in Figure 18.

For input frequencies up to 40 MHz , the circuit shown in figure 14 can be used to implement a frequency and period counter. To obtain the correct value when measuring frequency and period, it is necessary to divide the 10 MHz oscillator frequency down to 2.5 MHz . In doing this the time between measurements is lengthened to 800 ms and the display multiplex rate is decreased to 125 Hz .
If the input frequency is prescaled by ten, the oscillator frequency can remain at either 10 MHz or 1 MHz , but the decimal point must be moved. Figure 20 shows use of a $\div$ 10 prescaler in frequency counter mode. Additional logic has been added to enable the 7226 to count the input directly in period mode for maximum accuracy. Note that A IN comes from $Q_{C}$ rather than $Q_{D}$, to obtain an input duty cycle of $40 \%$. If an output with a duty cycle not near $50 \%$ must be used then it may be necessary to use a 74LS121 monostable multivibrator or similar circuit to stretch the input pulse to guarantee a 50 ns minimum pulse width.


Figure 18: 10MHz Universal Counter

[^563]

0356-21
Notes: 1) If a 2.5 MHz crystal is used, diode D1 and I.C.'s 1 and 2 can be eliminated.
Figure 19: 40MHz Frequency, Period Counter


0356-22
Figure 20: 100MHz Multi Function Counter

INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. the warranty shall be exclusive and shall be in lieu of all other warranties, express, implied or statutory, including the implied warranties of MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

NOTE: All typical values have been characterized but are not tested.


Figure 21：100MHz Frequency，Period Counter

Figure 21 shows the use of a CD4016 analog multiplexer to multiplex the digital outputs back to the FUNCTION Input． Since the CD4016 is a digitally controlied analog transmis－ sion gate，no level shifting of the digit output is required． CD4051＇s or CD4052＇s could also be used to select the proper inputs for the multiplexed input on the ICM7226 from 2 or 3 bit digital inputs．These analog multiplexers may also be used in systems in which the mode of operation is con－ trolled by a microprocessor rather than directly from front panel switches．TTL multiplexers such as the 74LS153 or 74LS251 may also be used，but some additional circuitry will be required to convert the digit output to TTL compatible logic levels．

The circuit shown in Figure 22 can be used in any of the circuit applications shown to implement a single measure－ ment mode of operation．This circuit uses the STORE out－ put to put the ICM7226 into a hold mode．The HOLD input can also be used to reduce the time between measure－ ments．The circuit shown in Figure 23 puts a short pulse into the HOLD input a short time after STORE goes low．A new measurement will be initiated at the end of the pulse on the HOLD Input．This circuit reduces the time between mea－ surements to less than 40 ms from 200 ms ；use of the circuit shown in Figure 23 on the circuit shown in Figure 19 will reduce the time between measurements from 1600 ms to 800ms．



0356-25
Figure 23: Circuit for Reducing Time Between Measurements


Figure 24: Typical Operating Characteristics
Figure 25 shows the ICM7226 being interfaced to LCD displays, by using its BCD outputs and 8 digit lines to drive two ICM7211 display drivers. The ICM7226 EV/Kit may easily be interfaced to 2 ICM7211 EV/Kits in this way. A similar arrangement can be used for driving vacuum fluorescent displays with the ICM7235.

## OSCILLATOR CONSIDERATIONS

The oscillator is a high gain complementary FET inverter. An external resistor of $10 \mathrm{M} \Omega$ or $22 \mathrm{M} \Omega$ should be connected between the oscillator input and output to provide biasing. The oscillator is designed to work with a parallel resonant 10 MHz quartz crystal with a load capacitance of 22pF and a series resistance of less than $35 \Omega$. Among suitable crystals is the 10 MHz CTS KNIGHTS ISI-002.
For a specific crystal and load capacitance, the required $g_{m}$ can be calculated as follows:

| $\mathrm{g}_{\mathrm{m}}=\omega^{2} \mathrm{C}_{\text {IN }}$ Cout Rs |  |  | $\left(1+\frac{C_{O}}{C_{L}}\right)^{2}$ |
| :---: | :---: | :---: | :---: |
| where | $\mathrm{C}_{\mathrm{L}}$ | $=$ | $\left(\frac{C_{\text {IN }}{ }^{\text {cout }}}{} \mathrm{C}_{\text {IN }}+\mathrm{C}_{\text {OUT }}\right)$ |
|  | $\mathrm{Co}_{0}$ | = | Crystal static capacitance |
|  | RS | $=$ | Crystal Series Resistance |
|  | Cin | $=$ | Input Capacitance |
|  | Cout | = | Output Capacitance |
|  | $\omega$ | $=$ | $2 \pi \mathrm{f}$ |

The required $g_{m}$ should not exceed $50 \%$ of the $g_{m}$ specified for the ICM7226 to insure reliable startup. The oscillator input and output pins each contribute about 4 pF to $\mathrm{C}_{\mathbb{N}}$ and $\mathrm{C}_{\text {OUT }}$. For maximum frequency stability, $\mathrm{C}_{\mathrm{IN}}$ and $\mathrm{C}_{\text {OUT }}$ should be approximately twice the specified crystal load capacitance.
In cases where nondecade prescalers are used, it may be desirable to use a crystal which is neither 10 MHz nor 1 MHz . In this case both the multiplex rate and the time between measurements will be different. The multiplex rate is $f_{\text {mux }}=\frac{f_{\text {OSC }}}{2 \times 10^{4}}$ for 10 MHz mode and $f_{\text {mux }}=\frac{f_{\text {osc }}}{2 \times 10^{3}}$ for the 1 MHz mode. The time between measurements is $\frac{2 \times 10^{6}}{f_{\text {osc }}}$ in the 10 MHz mode and $\frac{2 \times 10^{5}}{f_{\text {osc }}}$ in the 1 MHz mode. The buffered oscillator output should be used as an oscillator test point or to drive additional logic; this output will drive one low power Schottky TTL load. When the buffered oscillator output is used to drive CMOS or the external oscillator input, a $10 \mathrm{k} \Omega$ resistor should be added from the buffered oscillator output to $V_{D D}$.

The crystal and oscillator components should be located as close to the chip as practical to minimize pickup from other signals. In particular, coupling from the BUFFfered OSCillator OUTput and EXTernal OSCillator INput to the OSCillator OUTput or OSCillator INput can cause undesirable shifts in oscillator frequency. To minimize this coupling, pins 34 and 37 should be connected to $V_{D D}$ or $V_{S S}$ and these two signals should be kept away from the oscillator circuit.


INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

NOTE: All typical values have been characterized but are not tested.

## GENERAL DESCRIPTION

The ICM7236 and ICM7236A devices are high-performance CMOS $41 / 2$-digit counters. They include 7 -segment decoders, output latches, count inhibit, reset, and leading zero blanking circuitry, as well as twenty-nine high-voltage open drain P-channel transistor outputs suitable for driving nonmultiplexed (static) vacuum fluorescent displays.

The ICM7236 is a decade counter, providing a maximum count of 19999, while the ICM7236A is intended for timing purposes, and provides a maximum count of 15959.

The counter section of the two devices in the ICM7236 family provides direct static counting from DC to 15 MHz guaranteed (with a $5 \mathrm{~V} \pm 10 \%$ supply) over the operating temperature range. At normal room temperatures, the device will typically count up to 25 MHz . The COUNT input is provided with a Schmitt trigger for operation in noisy environments and allows correct counting with slowly changing inputs. These devices also provide count inhibit, store and reset circuitry which allow a direct interface to the ICM7207 devices. This results in a low cost, low power frequency counter with minimum component count.

These devices also incorporate features intended to simplify cascading in four-digit blocks. The CARRY output allows the counter to be cascaded, while the Leading Zero Blanking INput and OUTput allow correct leading zero blanking between four-decade blocks.

The ICM7236 and ICM7236A are packaged in a standard 40-pin dual-in-line plastic and CERDIP packages.

## ORDERING INFORMATION

| ORDER PART <br> NUMBER | TEMPERATURE <br> RANGE | PACKAGE |
| :--- | :--- | :--- |
| ICM7236IJL | $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ | 40 -PIN CERDIP |
| ICM7236AIJL | $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ | 40 -PIN CERDIP |
| ICM7236IPL | $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ | $40-$ PIN PLASTIC DIP |
| ICM7236AIPL | $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ | 40 -PIN PLASTIC DIP |
| ICM7236/D | $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ | DICE |
| ICM7236A/D | $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ | DICE |
| ICM7236EV $/ \mathrm{KIT}$ |  | EVALUATION KIT |

## FEATURES

- High Frequency Counting - Guaranteed 15 MHz , Typically 25 MHz at $\mathrm{T}_{\mathrm{A}}-25^{\circ} \mathrm{C}$
- Low Power Operation - Less Than $100 \mu$ W Quiescent
- Direct 41/2-Digit Seven-Segment Display Drive for Non-Multiplexed Vacuum Fluorescent Displays
- STORE and RESET Inputs Permit Operation As Frequency or Period Counter
- True COUNT INHIBIT Disables First Counter Stage
- CARRY Output for Cascading Four-Digit Blocks
- Schmitt-Trigger On COUNT Input Allows Operation in Noisy Environments or With Slowly Changing Inputs
- Leading Zero Blanking INput and OUTput for Correct Leading Zero Blanking With Cascaded Devices


0357-1
Figure 1: Pin Configuration

## ABSOLUTE MAXIMUM RATINGS



Operating Temperature Range $. \ldots . . . . .-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature Range ．．．．．．．．．．．$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature（Soldering，10sec）．．．．．．．．．．．．．．． $300^{\circ} \mathrm{C}$

NOTE：Stresses above those listed under＂Absolute Maximum Ratings＂may cause permanent damage to the device．These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied．Exposure to absolute maximum rating conditions for extended periods may affect device reliability．


ELECTRICAL CHARACTERISTICS $\quad\left(\mathrm{V}_{D D}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right.$ ，unless otherwise indicated）．

| SYMBOL | PARAMETER | TEST CONDITIONS | MIN | TYP | MAX | UNIT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| V ${ }_{\text {SUPPLY }}$ | Operating Supply Voltage Range（ $\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{SS}}$ ） |  | 3 | 5 | 6 | V |
| IDD | Operating Current | Test circuit，Display blank |  | 10 | 50 | $\mu \mathrm{A}$ |
| $V_{\text {DISP }}$ | Display Voltage |  |  |  | 30 | V |
| IDLK | Display Output Leakage | Output OFF， $\mathrm{V}_{\text {DISP }}=\mathrm{V}_{\text {DD }}-30 \mathrm{~V}$ |  | 0.1 | 10 | $\mu \mathrm{A}$ |
| $\mathrm{I}_{\mathrm{p}}$ | Input Pullup Currents | Pins 29，31，33， $34 \mathrm{~V}_{\text {IN }}=\mathrm{V}_{\text {DD }}-3 \mathrm{~V}$ |  | 10 |  | $\mu \mathrm{A}$ |
| $\mathrm{V}_{\mathrm{IH}}$ | Input High Voltage | Pins 29，31，33， 34 | 3 |  |  | V |
| $\mathrm{V}_{\text {IL }}$ | Input Low Voltage | Pins 29，31，33， 34 |  |  | 2 | V |
| $\mathrm{V}_{\mathrm{CT}}$ | COUNT Input Threshold |  |  | 2 |  | V |
| $\mathrm{V}_{\mathrm{CH}}$ | COUNT Input Hysteresis |  |  | 0.5 |  | V |
| IOH | Output High Current | CARRY（Pin 28），LZB OUT（Pin 30） $V_{O U T}=V_{D D}-3 V$ | 350 | 500 |  | $\mu \mathrm{A}$ |
| lol | Output Low Current | CARRY（Pin 28），LZB OUT（Pin 30） $\mathrm{V}_{\text {OUT }}=+3 \mathrm{~V}$ ． | 350 | 500 |  | $\mu \mathrm{A}$ |
| $\mathrm{f}_{\text {count }}$ | Count Frequency | $4.5 \mathrm{~V}<\mathrm{V}_{\mathrm{DD}}<6 \mathrm{~V}$ | 0 | 25 | 15 | MHz |
| $\mathrm{t}_{\text {s }}, \mathrm{t}_{\mathrm{w}}$ | STORE，RESET Minimum Pulse Width |  | 3 |  |  | $\mu \mathrm{s}$ |

NOTES：1．This limit refers to that of the package and will not occur during normal operation．
2．Due to the SCR structure inherent in the CMOS process used to fabricate these devices，connecting any terminal to voltages greater than VDD or less than ground may cause destructive device latchup．For this reason，it is recommended that no inputs from external sources not operating on the same power supply be applied to the device before its supply is established，and that in multiple supply systems，the supply to the ICM7236／7236A be turned on first．
3．This limit refers to the display output terminals only．

OPERATING CHARACTERISTICS

| INPUT | TERMINAL | VOLTAGE | FUNCTION |
| :--- | :---: | :--- | :--- |
| Leading Zero Blanking Input <br> (LZB IN) | 29 | $V_{D D}$ or Floating <br> $V_{S S}$ | Leading Zero Blanking Enabled <br> Leading Zeroes Displayed |
| COUNT INHIBIT | 31 | $V_{D D}$ or Floating <br> $V_{S S}$ | Counter Enabled <br> Counter Disabled |
| $\overline{\text { RESET }}$ | 33 | $V_{D D}$ or Floating <br> $V_{S S}$ | Inactive <br> Counter Reset to 0000 |
| $\overline{\text { STORE }}$ | 34 | $V_{D D}$ or Floating <br> $V_{S S}$ | Output Latches Not Updated <br> Output Latches Updated |
| Display ON/OFF | 5 | $V_{D D}$ <br> $V_{S S}$ | Display Outputs Disabled <br> Display Outputs Enabled |



Figure 3: Test Circuit

[^564]
## TYPICAL PERFORMANCE CHARACTERISTICS

Output Characteristics
$V_{0}$


0357-4
 as a Function of Supply Voltage


Supply Current as a Function of Count Frequency


0357-6

0357-5

## DESCRIPTION OF OPERATION

Both devices in the ICM7236 family provide twenty-nine outputs suitable for directly driving the anode terminals of $41 / 2$ digit seven-segment non-multiplexed (static) vacuumfluorescent displays. Each display output is the drain of a high-voltage low-leakage P -channel transistor, capable of withstanding typically greater than -35 volts with respect to $V_{D D}$. The output characteristics are shown graphically under "Typical Characteristics."
These chips also provide a display $\overline{O N} / O F F$ input which may be used to disable all the segment outputs and thus blank the display. This input may also be used to control the display brightness by varying the duty cycle of a signal at the input swinging between $V_{D D}$ and $V_{S S}$.
Note that these circuits have two terminals for $V_{D D}$; both of these pins should be connected to the power supply positive terminal. The double connection is necessary to minimize effects of bond wire resistance with the large total display currents possible.
These chips may also be used to directly drive non-multiplexed common-cathode LED displays, where each segment of the display is driven by one ICM7236 output, and the common cathode is connected to ground. With a 5 V power supply and a 1.7V LED diode forward voltage drop, the current in an "ON" segment will be typically 3 mA . This should provide sufficient brightness in displays up to about $0.3^{\prime \prime}$ character height.


0357-7
Figure 4: Segment Assignment


## COUNTER SECTION

The devices in the ICM7236 family implement a four-digit ripple-carry resettable counter, including a Schmitt trigger COUNT input and a CARRY output. Also included is an extra D-type flip-flop, clocked by the carry signal, which controls the half-digit segment driver. This can be used as either a true half-digit or as an overflow indicator. The counter will increment on the negative-going edge of the signal at the COUNT input, and the CARRY output will provide a neg-ative-going edge following the count which increments the counter from 9999 (or 5959) to 10000. Once half-digit flipflop has been clocked, it can only be reset (with the rest of the counter) by a negative level at the RESET terminal, pin 33. However, the four decades will continue to count in a normal fashion after the half-digit is set, and subsequent CARRY outputs will not be affected.

A negative level at the COUNT INHIBIT disables the first divide-by-two flip-flop in the counter chain without affecting its clock. This provides a true count inhibit which is not sensitive to the state of the COUNT input, and prevents false counts which can result from a normal logic gate forcing the state of the clock to prevent counting.

Each decade is fed directly into a four-to-seven line decoder which generates the seven-segment output code. Each decoder output corresponds to one-segment terminal of the device. The output data is latched at the driver. When the STORE pin is at a negative level, the latches are updated, and when the pin is left open or at a positive level, the latches hold their contents.
The decoders also include zero detect and blanking logic to provide leading zero blanking. When the Leading Zero Blanking INput is floating, or at a positive level, this circuitry is enabled and the device will blank leading zeroes. When the Leading Zero Blanking INput is at a negative level, or the half-digit is set, leading zero blanking is inhibited, and zeroes in the four digits will be displayed. The Leading Zero Blanking OUTput is provided to allow cascaded devices to blank leading zeroes correctly. This output will assume a positive level only when all four digits are blanked, and can
only occur when the Leading Zero Blanking INput is at a positive level and the half-digit is not set.
For example, on an eight-decade counter with overflow using two ICM7236 devices, the Leading Zero Blanking OUTput of the high-order digit device would be connected to the Leading Zero Blanking INput of the low-order digit device. This will assure correct leading zero blanking for all eight digits.
The STORE, $\overline{\text { RESET, }} \overline{\text { COUNT INHIBIT, and Leading Zero }}$ Blanking INputs are provided with internal pullup devices, so that they may be left open when a positive level is desired. The CARRY and Leading Zero OUTputs are suitable for interfacing to CMOS logic in general, and are specifically designed to allow cascading of ICM7236 devices in fourdigit blocks.

## CONTROL INPUT DEFINITIONS

In this table, $\mathrm{V}_{\mathrm{DD}}$ and $\mathrm{V}_{\mathrm{SS}}$ are considered to be normal operating input logic levels. Actual input low and high levels are specified under Operating Characteristics. For lowest power consumption, input signals should swing over the full supply.


VACUUM FLUORESCENT DISPLAYS (41/2-DIGIT):
N.E.C. Electronics, Inc.

Model FIP5F8S

## ICM7240/ICM7250 Programmable Timer

## GENERAL DESCRIPTION

The ICM7240/50 is a family of CMOS Timer/Counter circuits intended to replace Intersil's ICM8240/50 and the 2240 in most applications. Together with the ICM7555/56 (CMOS versions of the SE/NE 555/6), they provide a complete line of RC oscillators/timers/counters offering lower supply currents, wider supply voltage ranges, higher operating frequencies, lower component counts and a wider range of timing components. They are intended to simplify the selection of various time delays or frequency outputs from a fixed RC oscillator circuit.

Each device consists of a counter section, control circuitry, and an RC oscillator requiring an external resistor and capacitor. For counter/divider applications, the oscillator may be inhibited and an input clock applied to the TB terminal. The ICM7240 is intended for straight binary counting or timing, whereas the ICM7250 is optimized for decimal counting or timing. Both devices use open drain output transistors, thereby allowing wire AND-ing. Manual programming is easily accomplished by the use of standard thumbwheel switches or hardwired connections. The ICM7240/50 are packaged in 16 pin CERDIP packages.

Applications include programmable timing, long delay generation, cascadeable counters, programmable counters, low frequency oscillators, and sequence timing.


Figure 2: Pin Configurations

[^565]ABSOLUTE MAXIMUM RATINGS

Power Dissipation[2] . .............................. . 200 mW
Operating Temperature Range .......... $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature Range ........... $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10sec)
$300^{\circ} \mathrm{C}$

NOTES: 1. Due to the SCR structure inherent in the CMOS process, connecting any terminal to voltages greater than $\mathrm{V}_{\mathrm{DD}}$ or less than $\mathrm{V}_{\mathrm{SS}}$ may cause destructive device latchup. For this reason, it is recommended that no inputs from external sources not operating on the same supply be applied to the device before its supply is established, and that in multiple supply systems, the supply to the ICM7240/50 be turned on first.
2. Derate at $-2 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $25^{\circ} \mathrm{C}$.

NOTE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
ELECTRICAL CHARACTERISTICS
( $\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{R}=10 \mathrm{k} \Omega, \mathrm{C}=0.1 \mu \mathrm{~F}$, unless otherwise specified.)

| Symbol | Parameter | Test Conditions | Min | Typ | Max | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| V SUPPLY | Guaranteed Supply Voltage $\left(V_{D D}-V_{S S}\right)$ |  | 2 |  | 16 | V |
| IDD | Supply Current | Reset <br> Operating, $R=10 \mathrm{k} \Omega, \mathrm{C}=0.1 \mu \mathrm{~F}$ <br> Operating, $R=1 \mathrm{M} \Omega, \mathrm{C}=0.1 \mu \mathrm{~F}$ <br> TB Inhibited, RC Connected to GND |  | $\begin{aligned} & 125 \\ & 300 \\ & 120 \\ & 125 \\ & \hline \end{aligned}$ | $\begin{aligned} & 800 \\ & 600 \end{aligned}$ | $\mu \mathrm{A}$ <br> $\mu \mathrm{A}$ <br> $\mu \mathrm{A}$ <br> $\mu \mathrm{A}$ |
|  | Timing Accuracy |  |  | 5 |  | \% |
| $\Delta f / \Delta T$ | RC Oscillator Frequency Temperature Drift | (Exclusive of RC Drift) |  | 250 |  | ppm $/{ }^{\circ} \mathrm{C}$ |
| $V_{\text {OtB }}$ | Time Base Output Voltage | $\begin{aligned} & \text { ISOURCE }=100 \mu \mathrm{~A} \\ & \text { ISINK }=1.0 \mathrm{~mA} \end{aligned}$ |  | $\begin{aligned} & 3.50 \\ & 0.40 \end{aligned}$ |  | V |
| Itblk | Time Base Output Leakage Current | $\mathrm{RC}=$ Ground |  |  | 25 | $\mu \mathrm{A}$ |
| $\mathrm{V}_{\text {MOD }}$ | Mod Voltage Level | $\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=15 \mathrm{~V} \end{aligned}$ |  | $\begin{gathered} 3.5 \\ 11.0 \\ \hline \end{gathered}$ |  | $\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$ |
| $\mathrm{V}_{\text {TRIG }}$ | Trigger Input Voltage | $\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=15 \mathrm{~V} \end{aligned}$ |  | $\begin{aligned} & 1.6 \\ & 3.5 \\ & \hline \end{aligned}$ | $\begin{aligned} & 2.0 \\ & 4.5 \\ & \hline \end{aligned}$ | $\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$ |
| $\mathrm{V}_{\text {RST }}$ | Reset Input Voltage | $\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=15 \mathrm{~V} \end{aligned}$ |  | $\begin{aligned} & 1.3 \\ & 2.7 \\ & \hline \end{aligned}$ | $\begin{aligned} & 2.0 \\ & 4.0 \\ & \hline \end{aligned}$ | $\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$ |
| $\mathrm{f}_{\mathrm{t}}$ | Max Count Toggle Rate 7240 | $\left.\begin{array}{l}V_{D D}=2 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{DD}}=5 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{DD}}=15 \mathrm{~V}\end{array}\right\} \quad$ Counter/Divider Mode <br> 50\% Duty Cycle Input with Peak to <br> Peak Voltages Equal to $\mathrm{V}_{\mathrm{DD}}$ and $\mathrm{V}_{\mathrm{SS}}$ | 2 | $\begin{gathered} 1 \\ 6 \\ 13 \end{gathered}$ |  | $\begin{aligned} & \mathrm{MHz} \\ & \mathrm{MHz} \\ & \mathrm{MHz} \end{aligned}$ |
| $\mathrm{f}_{\mathrm{t}}$ | Max Counter Toggle Rate 7250 | $\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} \\ & \text { (Counter/Divider Mode) } \end{aligned}$ | 2 | 5 |  | MHz |
| $\mathrm{f}_{\mathrm{t}}$ | Max Count Toggle Rate | Programmed Timer - Divider Mode |  |  | 100 | kHz |
| $\mathrm{V}_{\text {SAT }}$ | Output Saturation Voltage | All Outputs except TB Output $\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}, \mathrm{l}_{\mathrm{OUT}}=3.2 \mathrm{~mA}$ |  | 0.22 | 0.4 | V |
| IOLK | Output Leakage Current | $\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$, per Output |  |  | 1 | $\mu \mathrm{A}$ |
| $\mathrm{C}_{\mathrm{t}}$ | MIN Timing Capacitor (Note 1) |  | 10 |  |  | pF |
| $\mathrm{R}_{\mathrm{t}}$ | Timing Resistor Range (Note 1) | $\begin{aligned} & \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}} \leq 16 \mathrm{~V} \\ & \hline \end{aligned}$ | $\begin{aligned} & 1 \mathrm{~K} \\ & 1 \mathrm{~K} \end{aligned}$ |  | $\begin{aligned} & 12 \mathrm{M} \\ & 12 \mathrm{M} \end{aligned}$ | $\begin{aligned} & \Omega \\ & \Omega \end{aligned}$ |

NOTE: 1. For Design only, not tested.

[^566]

Figure 3: Test Circuit

## TYPICAL PERFORMANCE CHARACTERISTICS

SUPPLY CURRENT AS A FUNCTION OF SUPPLY VOLTAGE
 FUNCTION OF SUPPLY VOLTAGE

SUPPLY VOLTAGE (V

RECOMMENDED RANGE OF TIMING COMPONENT VALUES FOR ACCURATE TIMING


TIMEBASE FREE RUNNING FREQUENCY AS A FUNCTION OF R AND C


0358-4


0358-5
MINIMUM TRIGGER PULSE WIDTH AS A

0358-6
INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.
NOTE: All typical values have been characterized but are not tested.

TYPICAL PERFORMANCE CHARACTERISTICS

## (Continued)



0358-8
NORMALIZED FREQUENCY STABILITY IN THE ASTABLE MODE AS A FUNCTION OF SUPPLY VOLTAGE


0358-10
DISCHARGE OUTPUT CURRENT AS A FUNCTION OF


0358-12

NORMALIZED FREQUENCY STABILITY IN THE ASTABLE MODE AS A FUNCTION OF"TEMPERATURE


0358-9

MAXIMUM DIVIDER FREQUENCY vs. SUPPLY VOLTAGE*


0358-11


0358-13

INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. the warranty shall be exclusive and shall be in lieu of all other warranties, express, mplied or statutory, including the implied warranties of MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.
NOTE: All typical values have been characterized but are not tested.

## CIRCUIT DESCRIPTION

The timing cycle is initiated by applying a positive-going trigger pulse to pin 11. This pulse enables the counter section, sets all counter outputs to the LOW or ON state, and starts the time base oscillator. Then, external C is charged through external R from $20 \%$ to $70 \%$ of $\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{SS}}$, generating a timing waveform with period $t$, equal to 1RC. A short negative clock or time base pulse occurs during the capacitor discharge portion of the waveform. These clock pulses are counted by the binary counter of the 7240 or by two cascaded Binary Coded Decimal (BCD) Counters in the 7250. The timing cycle terminates when a positive level is applied to RESET. When the circuit is at reset, both the time base and the counter sections are disabled and all the counter outputs are at a HIGH or OFF state. The carry-out is also HIGH. Both devices utilize an identical timebase, control flip-flops, and basic counters, with the outputs consisting of open drain n-channel transistors. Only the ICM7250 has CARRY outputs.

In most timing applications, one or more of the counter outputs are connected back to RESET, the circuit will start timing when a TRIGGER is applied and will automatically reset itself to complete the timing cycle when a programmed count is completed. If none of the counter outputs are connected back to the RESET (switch $\mathrm{S}_{1}$ open), the circuit operates in its astable, or free-running mode, after initial triggering.

## DESCRIPTION OF PIN FUNCTIONS COUNTER OUTPUTS (PINS 1 THROUGH 8)

Each binary counter output is a buffered "open-drain" type. At reset condition, all the counter outputs are at a high, or non-conducting state. After a trigger input or when using the internal timebase, the outputs change state (see timing diagram, Figure 4). If an external clock input is used, the trigger input must overlap at least the first falling edge of the clock. The counter outputs can be used individually, or can be connected together in a wired-AND configuration, as described in the Programming section.


0358-14
Figure 4: Timing Diagram for ICM7240/50

## $\mathbf{V}_{\mathrm{SS}}$ (PIN 9)

This is the return or most negative supply pin. It should have a very low impedance as the capacitor discharge and other switched currents could create transients.

## RESET AND TRIGGER INPUTS (PINS 10 AND 11)

The circuits are reset or triggered by a positive level applied to pins 10 and 11, and once triggered they ignore additional trigger inputs until either the timing cycle is completed or a reset signal is applied. If both reset and trigger are applied simultaneously trigger overrides reset. Minimum input pulse widths are shown in the typical performance characteristics. Note that all devices feature power ON reset.
MODULATION AND SYNC INPUT (PIN 12)
The period, t , of the time base oscillator can be modulated by applying a DC voltage to this terminal. The time base oscillator can be synchronized to an external clock by applying a sync pulse to pin 12.

## TIMEBASE INPUT/OUTPUT PIN (PIN 14)

While this pin can be used as either a time base input or output terminal, it should only be used as an input if the RC pin is connected to $V_{S S}$.

If the counter is to be externally driven, care should be taken to ensure that fall times are fast (see Operating Limits section).
Under no conditions is a 300pF capacitor on this terminal useful and should be removed if a 7240/50 is used to replace an 8240/50 or 2240.

## CARRY OUTPUT (PIN 15, ICM7250 ONLY)

This pin will go HI for the last 10 counts of a 59 or 99 count, and can be used to drive another 7250 counter stage while still using all the counter outputs of the first. Thus, by cascading several 7250's a large BCD countdown can be achieved.

The basic timing diagrams for the ICM7240/50 are shown in Figure 4. Assuming that the device is in the RESET mode, which occurs on powerup or after a positive level on the RESET terminal (if TRIGGER is low), a positive level on the trigger input signal will initiate normal operation. The discharge transistor turns on, discharging the timing capacitor C , and all the flip-flops in the counter chain change states.

Note that for straight binary counting the outputs are symmetrical; that is, a $50 \%$ duty cycle HI-LO. This is not the case when using BCD counting. (See Figure 6.)

## PROGRAMMING CAPABILITY

The counter outputs, pins 1 through 8, are open-drain Nchannel FETs, and can be shorted together to a common pull-up resistor to form a "wired-AND" connection. The combined output will be LOW as long as any one of the outputs is low. Each output is capable of sinking $\approx 5 \mathrm{~mA}$. In this manner, the time delays associated with each counter output can be summed by simply shorting them together to a common output. For example, if only pin 6 is connected to the output and the rest left open, the total duration of the timing cycle (monostable mode) $t_{0}$ would be $32 t$ for a 7240 and 20 t for a 7250 . Similarly, if pins, 1, 5 , and 6 were

## ICM7240/ICM7250

shorted to the output bus, the total time delay would be $t_{0}=(1+16+32) t$ for the 7240 or $(1+10+20) t$ for the 7250 . Thus, by selecting the number of counter terminals connected to the output bus, the timing cycle can be programmed from:

$$
\begin{aligned}
& 1 t \leq t_{0} \leq 255 t(7240) \\
& 1 t \leq t_{0} \leq 99 t(7250)
\end{aligned}
$$

Note that for the 7250, invalid count states (BCD values $\geq 10$ ) will not be recognized and the counter will not stop.

The 7240/50 can be configured to initiate a controlled timing cycle upon power up, and also reset internally; see Figure 5. Applications for this could include lawn watering sprinkler timing, pump operation, etc.

## BINARY OR DECIMAL PATTERN GENERATION

In astable operation, as shown in Figure 5, the output of the 7240/50 appears as a complex pulse pattern. The waveform of the output pulse train can be determined directly from the timing diagram of Figure 4, which shows the phase relations between the counter outputs. Figure 6 shows some of these complex pulse patterns. The pulse pattern repeats itself at a rate equal to the period of the highest counter bit connected to the common output bus. The minimum pulse width contained in the pulse train is determined by the lowest counter bit connected to the output.

## THUMBWHEEL SWITCHES

While the ICM7240 is frequently hard wired for a particular function, the ICM7250 can easily be programmed using thumbwheel switches. Standard BCD thumbwheel switches have one common and four inputs ( $1,2,4$ and 8 ) which are connected according to the binary equivalent to the digits 0 through 9.

For a single ICM7250 two such switches would select a time of 1RC to 99RC. Cascading two ICM7250's (using the carry out gate) would expand selection to 9999RC.

## NOTES ON THE COUNTER SECTION

Used as a straight binary counter (ICM7240), or as a $\div 100$ (ICM7250), both devices are significantly faster than their bipolar equivalents. However, when using these devices as programmable counters the maximum frequency of operation is reduced by more than an order of magnitude. For any division ratio other than 256 (ICM7240), or 100 (ICM7250), the maximum input frequency must be limited to approximately 100 kHz or less (with $\mathrm{V}_{\mathrm{DD}}$ equal to +5 volts). The reason for this is two-fold:
a. Since Ripple counters are used, there is a propagation delay between each individual $\div 2$ counter ( 8 counters for the ICM7240/50). Outputs from the individual $\div 2$ counters are AND'ed together to provide the output signal and the RESET/TRIGGER signal.
b. There must be a delay of the positive going output to RESET, (pin 10) and TRIGGER (pin 11). The RESET signal must therefore be generated first, and from this signal another signal is obtained through a delay network. The TRIGGER overrides RESET.
The delay between TRIGGER and RESET is generated by the signal RC network consisting of the $56 \mathrm{k} \Omega$ resistor and the 330 pF capacitor.

The delay caused by the counter ripple delays can be as long as $2 \mu \mathrm{~s}$ ( 5 volt supply), and the delay between RESET and TRIGGER should be at least $2 \mu \mathrm{~s}$. The sum of these two delays cannot be greater than one-half of the input clock period for reliable operation. See Figure 7 and 8.

$\star$ FOR POWER UP TRIGGERING( ${ }^{\mathbf{w}} \mathbf{w}=185 \mathrm{~ms}$ ) USE CIRCUIT SHOWN
AND OMIT EXTERNAL PULSE.
Figure 5: Generalized Circuit for Timing Applications
(Switch $\mathrm{S}_{1}$ open for astable operation, closed for monostable operation)

[^567]

0358-16
Figure 6: Pulse Patterns Obtained by Shorting Various Counter Outputs


Figure 7: Programming the Counter Section of the ICM7240/50


Figure 8: Waveforms for Programming the Counter Section for a Division Ratio of $\mathbf{7}\left(\mathbf{S}_{1}, \mathbf{S}_{\mathbf{2}}, \mathbf{S}_{\mathbf{3}} \mathbf{C l o s e d}\right.$ )

INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

NOTE: All typical values have been characterized but are not tested.

## APPLICATIONS <br> GENERAL CONSIDERATIONS

Shorting the RC terminal or output terminals to $V_{D D}$ may exceed dissipation ratings and/or maximum DC current limits (especially at high supply voltages).

There is a limit of 50 pF maximum loading on the TB I/O terminal if the timebase is being used to drive the counter section. If higher value loading is used, the counter sections may miscount.
For greatest accuracy, use timing component values shown in the graph under Typical Performance Characteristics. For highest frequency operation it will be desirable to use very low values for the capacitor; accuracy will decrease for oscillator frequencies in excess of 200 kHz .

When driving the counter section from an external clock, the optimum drive waveform is a square wave with an amplitude equal to supply voltage. If the clock is a very slow ramp triangular, sine wave, etc., it will be necessary to "square up" the waveform (rise/fall time $\leq 1 \mu \mathrm{~s}$ ); this can be done by using two CMOS inverters in series, operating from the same supply voltage as the ICM 7240/50.

By cascading devices, use of low cost CMOS AND/OR gates and appropriate RC delays between stages, numerous sequential control variations can be obtained. Typical applications include injection molding machine controllers, phonograph record production machines, automatic sequencers (no metal contacts or moving parts), milling machine controllers, process timers, automatic lubrication systems, etc.

By selection of $R$ and $C$, a wide variety of sequence timing can be realized. A typical flow chart for a machine tool controller could be as follows:


Figure 9

[^568]

0358－20
Figure 10

## CMOS PRECISION PROGRAMMABLE 0－99 SECONDS／MINUTES LABORATORY TIMER

The ICM7250 is well suited as a laboratory timer to alert personnel of the expiration of a preselected interval of time．
When connected as shown in Figure 10，the timer can accurately measure preselected time intervals of $0-99$ sec－ onds or 0－99 minutes．A 5 volt buzzer alerts the operator when the preselected time interval is over．

The circuit operates as follows：
The time base is first selected with S1（seconds or min－ utes），then units 0－99 are selected on the two thumbwheel switches S4 and S5．Finally，switch S2 is depressed to start the timer．Simultaneously the quartz crystal controlled divid－ er circuits are reset，the ICM7250 is triggered and counting begins．The ICM7250 counts until the pre－programmed val－ ue is reached，whereupon it is reset，pin 10 of the CD4082B is enabled and the buzzer is turned on．Pressing S3 turns the buzzer off．


0358－21
Figure 11

## LOW POWER MICROPROCESSOR PROGRAMMABLE INTERVAL TIMER

The ICM7240 CMOS programmable binary timer can be configured as a low cost microprocessor controlled interval timer with the addition of a few inexpensive CD4000 series devices．

With the devices connected as shown in Figure 11，the sequence of operation is as follows：

The microprocessor sends out an 8 bit binary code on its 8 bit I／O bus（the binary value needed to program the ICM7240），followed by four WRITE pulses into the CD4017B decade counter．The first pulse resets the 8 bit latch，the second strobes the binary value into the 8 bit
latch，the third triggers the ICM7240 to begin its timing cycle and the fourth resets the decade counter．
The ICM7240 then counts the interval of time determined by the R－C value on pin 13，and the programmed binary count on pins 1 through 8 ．At the end of the programmed time interval，the interrupt one－shot is triggered，informing the microprocessor that the programmed time interval is over．
With a resistor of approximately $10 \mathrm{M} \Omega$ and capacitor of $0.1 \mu \mathrm{~F}$ ，the time base of the ICM7240 is one second．Thus，a time of 1－255 seconds can be programmed by the micro－ processor，and by varying R or C，longer or shorter time bases can be selected．

ICM7242
Long-Range Fixed Timer

## GENERAL DESCRIPTION

The ICM7242 is a CMOS timer/counter circuit consisting of an RC oscillator followed by an 8 -bit binary counter. It will replace the 2242 in most applications, with a significant reduction in the number of external components.

Three outputs are provided. They are the oscillator output, and buffered outputs from the fiist and eighth counters.

## FEATURES

- Replaces The 2242 in Most Applications
- Timing From Microseconds to Days
- Cascadeable
- Monostable or Astable Operation
- Wide Supply Voltage Range: 2-16 volts
- Low Supply Current: $115 \mu$ A @ 5 volts


## ORDERING INFORMATION

| Part Number | Temperature Range | Package |
| :--- | :---: | :---: |
| ICM7242IPA | $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ | 8 pin MINI-DIP |
| ICM72421JA | $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ | 8 pin CERDIP |
| ICM7242CBA | $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ | 8 pin S.O.I.C. |


|  |  |
| :---: | :---: |
| Figure 1: Pin Configuration (Outline Drawing JA, PA) | 0360-1 |



Figure 2: Functional Diagram

[^569]ABSOLUTE MAXIMUM RATINGS
Supply Voltage ( $\mathrm{V}_{\mathrm{DD}}$ to $\mathrm{V}_{\mathrm{SS}}$ ) . . . . . . . . . . . . . . . . . . . . . . . 18 V
Input Voltage [1]
Terminals (Pins 5, 6, 7, 8) $\ldots\left(\mathrm{V}_{S S}-0.3 \mathrm{~V}\right)$ to $\left(\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}\right)$ Maximum continuous output current
(each output)
50 mA
Power Dissipation[2] . . . . . . . . . . . . . . . . . . . . . . . . . . 200mW
Operating Temperature Range
!CM72421 $\ldots \ldots \ldots \ldots \ldots \ldots \ldots . .25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
ICM7242C .................................. $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature Range . . . . . . . . . . $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10sec) ............... $300^{\circ} \mathrm{C}$
NOTES: 1. Due to the SCR structure inherent in the CMOS process, connecting any terminal to voltages greater than $V_{D D}$ or less than $V_{S S}$ may cause destructive device latchup. For this reason, it is recommended that no inputs from external sources not operating on the same supply be applied to the device before its supply is established and, that in multiple supply systems, the supply to the ICM7242 be turned on first.
2. Derate at $-2 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $25^{\circ} \mathrm{C}$.

ELECTRICAL CHARACTERISTICS
( $\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{R}=10 \mathrm{k} \Omega, \mathrm{C}=0.1 \mu \mathrm{~F}, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}$ unless otherwise specified.)

| Symbol | Parameter | Test Conditions | Min | Typ | Max | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $V_{D D}$ | Guaranteed Supply Voltage |  | 2 |  | 16 | V |
| IDD | Supply Current | Reset <br> Operating, $\mathrm{R}=10 \mathrm{k} \Omega, \mathrm{C}=0.1 \mu \mathrm{~F}$ <br> Operating, $\mathrm{R}=1 \mathrm{M} \Omega, \mathrm{C}=0.1 \mu \mathrm{~F}$ <br> TB Inhibited, RC Connected to V $_{\text {SS }}$ |  | $\begin{aligned} & 125 \\ & 340 \\ & 220 \\ & 225 \end{aligned}$ | $\begin{aligned} & 800 \\ & 600 \end{aligned}$ | $\mu \mathrm{A}$ $\mu \mathrm{A}$ $\mu \mathrm{A}$ $\mu \mathrm{A}$ |
|  | Timing Accuracy |  |  | 5 |  | \% |
| $\Delta f / \Delta T$ | RC Oscillator Frequency Temperature Drift | Independent of RC Components |  | 250 |  | ppm $/{ }^{\circ} \mathrm{C}$ |
| $V_{\text {оtв }}$ | Time Base Output Voltage | $\begin{aligned} & \text { ISOURCE }=100 \mu \mathrm{~A} \\ & \text { ISINK }=1.0 \mathrm{~mA} \end{aligned}$ |  | $\begin{gathered} 3.5 \\ 0.40 \end{gathered}$ |  | $\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$ |
| Itblk | Time Base Output Leakage Current | $\mathrm{RC}=$ Ground |  |  | 25 | $\mu \mathrm{A}$ |
| $V_{\text {TRIG }}$ | Trigger Input Voltage | $\begin{aligned} & V_{D D}=5 V \\ & V_{D D}=15 \mathrm{~V} \end{aligned}$ |  | $\begin{aligned} & 1.6 \\ & 3.5 \\ & \hline \end{aligned}$ | $\begin{aligned} & 2.0 \\ & 4.5 \end{aligned}$ | $\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$ |
| $\mathrm{V}_{\mathrm{RST}}$ | Reset Input Voltage | $\begin{aligned} & V_{D D}=5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=15 \mathrm{~V} \end{aligned}$ |  | $\begin{aligned} & 1.3 \\ & 2.7 \end{aligned}$ | $\begin{aligned} & 2.0 \\ & 4.0 \\ & \hline \end{aligned}$ | $\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$ |
| ITRIG, IRST | Trigger/Reset Input Current |  |  | 10 |  | $\mu \mathrm{A}$ |
| $\mathrm{f}_{\mathrm{t}}$ | Max Count Toggle Rate | $\left.\begin{array}{l} V_{D D}=2 V \\ V_{D D}=5 V \\ V_{D D}=15 V \end{array}\right\}$ <br> Counter/Divider Mode <br> 50\% Duty Cycle Input with Peak to Peak Voltages Equal to $V_{D D}$ and $v_{S S}$ | 2 | $\begin{gathered} 1 \\ 6 \\ 13 \end{gathered}$ |  | MHz <br> MHz <br> MHz |
| $\mathrm{V}_{\text {SAT }}$ | Output Saturation Voltage | All Outputs except TB Output $\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{OUT}}=3.2 \mathrm{~mA}$ |  | 0.22 | 0.4 | V |
| Isource | Output Sourcing Current 7242 | $\begin{aligned} & V_{D D}=5 \mathrm{~V} \\ & \text { Terminals } 2 \& 3, V_{O U T}=1 \mathrm{~V} \end{aligned}$ |  | 300 |  | $\mu \mathrm{A}$ |
| $\mathrm{C}_{\mathrm{t}}$ | MIN Timing Capacitor (Note 1) |  | 10 |  |  | pF |
| $\mathrm{R}_{\mathrm{t}}$ | Timing Resistor Range (Note 1) | $V_{D D}=2-16 \mathrm{~V}$ | 1K |  | 22M | $\Omega$ |

NOTE: 1. For Design only, not tested.
intersil's sole and exclusive warranty obligation with respect to this product shall be that stated in the warranty article of the condition of sale. the warranty shall be exclusive and shall be in lieu of all other warranties, express, mplied or statutory, including the mplied warranties of MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

NOTE: All typical values have been characterized but are not tested.

NOTE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.


0360－3
NOTE：OUTPUTS $\div 2^{1}$ AND $\div 2^{8}$ ARE INVERTERS AND HAVE ACTIVE PULLUPS．
Figure 3：Test Circuit

## TYPICAL PERFORMANCE CHARACTERISTICS

## SUPPLY CURRENT AS A

 FUNCTION OF SUPPLY VOLTAGE

RECOMMENDED RANGE OF TIMING COMPONENT VALUES FOR ACCURATE TIMING


DIMENSIONS IN INCHES AND MILLIMETERS



0360－6

## TYPICAL PERFORMANCE CHARACTERISTICS <br> (Continued)



NORMALIZED FREQUENCY STABILITY IN THE ASTABLE MODE AS A FUNCTION OF SUPPLY VOLTAGE


0360-9

MAXIMUM DIVIDER FREQUENCY vs. SUPPLY VOLTAGE


0360-11


DISCHARGE OUTPUT CURRENT AS A FUNCTION OF DISCHARGE OUTPUT VOLTAGE


OUTPUT SATURATION CURRENT AS A FUNCTION OF OUTPUT SATURATION VOLTAGE


0360-13

## OPERATING CONSIDERATIONS

Shorting the RC terminal or output terminals to $V_{D D}$ may exceed dissipation ratings and/or maximum DC current limits (especially at high supply voltages).

There is a limitation of 50 pF maximum loading on the TB I/O terminal if the timebase is being used to drive the counter section. If higher value loading is used, the counter sections may miscount.

For greatest accuracy, use timing component values shown in the graph under typical performance characteristics. For highest frequency operation it will be desirable to use very low values for the capacitor; accuracy will decrease for oscillator frequencies in excess of 200 KHz .
When driving the counter section from an external clock, the optimum drive waveform is a square wave with an amplitude equal to supply voltage. If the clock is a very slow ramp triangular, sine wave, etc., it will be necessary to "square up" the waveform; this can be done by using two CMOS inverters in series, operating from the same supply voltage as the ICM7242.
The ICM7242 is a non-programmable timer whose principal applications will be very low frequency oscillators and long range timers; it makes a much better low frequency oscillator/timer than a 555 or ICM7555, because of the onchip 8 -bit counter. Also, devices can be cascaded to produce extremely low frequency signals.

Because outputs will not be AND'd, output inverters are used instead of open drain N -channel transistors, and the external resistors used for the 2242 will not be required for the ICM7242. The ICM7242 will, however, plug into a socket for the 2242 having these resistors.
The timing diagram for the ICM7242 is shown in Figure 4. Assuming that the device is in the RESET mode, which occurs on powerup or after a positive signal on the RESET terminal (if TRIGGER is low), a positive edge on the trigger input signal will initiate normal operation. The discharge transistor turns on, discharging the timing capacitor C , and ail the flip-flops in the counter chain change states. Thus, the outputs on terminals 2 and 3 change from high to low states. After 128 negative timebase edges, the $\div 2^{8}$ output returns to the high state.

To use the 8-bit counter without the timebase, terminal 7 (RC) should be connected to ground and the outputs taken from terminals 2 and 3.



0360-15
Figure 5: Using the ICM7242 as a Ripple Counter (Divider)

The ICM7242 may be used for a very low frequency square wave reference. For this application the timing components are more convenient than those that would be required by a 555 timer. For very low frequencies, devices may be cascaded (see Figure 6).


For monostable operation the $\div 2^{8}$ output is connected to the RESET terminal. A positive edge on TRIGGER initiates the cycle (NOTE: TRIGGER overrides RESET).

The ICM7242 is superior in all respects to the 2242 except for initial accuracy and oscillator stability. This is primarily due to the fact that high value $\mathrm{p}^{-}$resistors have been used on the ICM7242 to provide the comparator timing points.


0360-17
Figure 7: Monostable Operation

INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

NOTE: All typical values have been characterized but are not tested.

COMPARING THE ICM7242 WITH THE 2242

|  | ICM7242 | 2242 |
| :---: | :---: | :---: |
| a. Operating Voltage | 2-16V | 4-15V |
| b. Operating Temp. Range | $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C} 0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ |  |
| c. Supply Current |  |  |
| $V_{D D}=5 \mathrm{~V}$ | 0.7mA Max. | 7mA Max. |
| d. Pullup Resistors |  |  |
| TB Output | No | Yes |
| $\div 2$ Output | No | Yes |
| $\div 256$ Output | No | Yes |
| e. Toggle Rate | 3.0 MHz | 0.5 MHz |
| f. Resistor to Inhibit |  |  |
| Oscillator | No | Yes |
| g. Resistor in Serie with Reset for |  |  |
| Monostable Operation | No | Yes |
| h. Capacitor TB |  |  |
| Terminal for |  |  |
| HF Operation | No | Sometimes |

By selection of R and C , a wide variety of sequence timing can be realized. A typical flow chart for a machine tool controller could be as follows:


## Figure 8

By cascading devices, use of low cost CMOS AND/OR gates and appropriate RC delays between stages, numerous sequential control variations can be obtained. Typical applications include injection molding machine controllers, phonograph record production machines, automatic sequencers (no metal contacts or moving parts), milling machine controllers, process timers, automatic lubrication systems, etc.

## SEQUENCE TIMING

- Process Control
- Machine Automation
-Electro-Pneumatic Drivers
- Multi-Operation (Serial or Parallel Controlling)


0360-19
Figure 9: Sequence Timer

[^570]
## GENERAL DESCRIPTION

The ICM7249 Timer／Counter is intended for long－term battery－supported industrial applications．The ICM7249 typi－ cally draws $1 \mu \mathrm{~A}$ during active timing or counting，due to Intersil＇s special low－power design techniques．This allows more than 10 years of continuous operation without battery replacement．The chip offers four timing modes，eight counting modes and four test modes．

The ICM7249 is a 48 －lead device，powered by a single DC voltage source and controlled by a 32.768 kHz quartz crys－ tal．No other external components are required．Inputs to the chip are TTL－compatible and outputs drive standard LCD segments．The chip is available in dice and in ceramic side－brazed packages．


## FEATURES

－Hour Meter Requires Only 4 Parts Total
－Micropower Operation：$<1 \mu \mathrm{~A}$ at 2.8 V Typical
－ 10 Year Operation On One Lithium Cell 21／2 Year Battery Life With Display Connected
－Directly drives 51／2 Digit LCD
－ 14 Programmable Modes of Operation
－Times Hrs．， 0.1 Hrs．， .01 Hrs．， 1 Mins．
－Counts 1＇s，10＇s，100＇s，1000＇s
－Dual Funtion Input Circuit： －Selectable Debounce for Counter －High－Pass Filter for Timer
－Direct AC Line Triggering With Input Resistor
－Winking＂Timer Active＂Display Output
－Display Test Feature

## APPLICATIONS

－AC or DC Hour Meters
－AC or DC Totalizers
－Portable Battery Powered Equipment
－Long Range Service Meters

## ORDERING INFORMATION

| Part Number | Temperature Range | Package |
| :---: | :---: | :---: |
| ICM7249IDM | $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ | 48 －Pin Ceramic |

ABSOLUTE MAXIMUM RATINGS
Supply Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6V
Input Voltage
Pins 43-48 (Note 1) ......... (VSS -0.3 V ) to ( $\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$ )
Power Dissipation (Note 2) ......................... 200mW
Operating Temperature Range $\ldots . . \ldots . . .-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
Storage Temperature Range ............. $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10sec) ............... 300${ }^{\circ} \mathrm{C}$
NOTE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.


[^571]ELECTRICAL CHARACTERISTICS Temperature $=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=2.5 \mathrm{~V}$ to $5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}$, unless otherwise noted. Typical specifications measured at temperature $=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{DD}}=2.8 \mathrm{~V}$ unless otherwise noted.

| Symbol | Parameter | Test Conditions | Limits |  |  | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Min | Typ | Max |  |
| $V_{D D}$ | Operating Voltage | Note 3 | 2.5 |  | 5.5 | V |
| IDD | Operating Current | $\begin{aligned} & \text { Note 4, All inputs }=V_{D D} \text { or GND } \\ & V_{D D}=2.8 \mathrm{~V} \\ & V_{D D}=5.5 \mathrm{~V} \end{aligned}$ |  | $\begin{aligned} & 1.0 \\ & 4.0 \end{aligned}$ | $\begin{aligned} & 10.0 \\ & 20.0 \end{aligned}$ | $\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \end{aligned}$ |
| $\begin{aligned} & I_{N} \\ & I_{S S} \\ & \text { IDT } \end{aligned}$ | $\begin{aligned} & \text { Input Current: } \\ & C_{0}-C_{3} \\ & S / S \\ & \text { DT } \end{aligned}$ | All Inputs $V_{D D}$ or GND $V_{D D}=2.8 V$ <br> Note 5 | $\begin{gathered} 0.0 \\ 0.5 \\ 40.0 \\ \hline \end{gathered}$ | 1.5 | $\begin{gathered} 1 \\ 3.0 \\ 110 \\ \hline \end{gathered}$ | $\mu \mathrm{A}$ <br> $\mu \mathrm{A}$ <br> $\mu \mathrm{A}$ |
| $\begin{aligned} & V_{I L} \\ & V_{I H} \end{aligned}$ | Input Voltage: $\mathrm{C}_{0}-\mathrm{C}_{3}, \mathrm{DT}, \mathrm{~S} / \mathrm{S}$ | 0 | $0.7 \mathrm{~V}_{\mathrm{DD}}$ |  | 0.3 V VD | $\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$ |
| $\mathrm{V}_{\mathrm{OL}}$ <br> $\mathrm{VOH}_{\mathrm{OH}}$ | Segment Output Voltage | $\begin{aligned} & \mathrm{lOL}=1 \mu \mathrm{~A} \\ & \mathrm{l}_{\mathrm{OH}}=1 \mu \mathrm{~A} \end{aligned}$ | $V_{D D}-0.8$ |  | 0.8 | V |
| $\mathrm{V}_{\mathrm{OL}}$ <br> $\mathrm{VOH}_{\mathrm{OH}}$ | Backplane Output Voltage | $\begin{aligned} & \mathrm{I}_{\mathrm{OL}}=10 \mu \mathrm{~A} \\ & \mathrm{I}_{\mathrm{OH}}=10 \mu \mathrm{~A} \end{aligned}$ | $V_{D D}-0.8$ |  | 0.8 | V |
| - | Oscillator Stability: $\begin{aligned} & \text { Temp. }=25^{\circ} \mathrm{C}, \mathrm{~V}_{\mathrm{DD}}=2.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V} \\ & \text { Temp. }=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C}, \\ & \mathrm{~V}_{\mathrm{DD}}=2.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V} \end{aligned}$ |  |  | $\begin{gathered} 0.1 \\ 5 \end{gathered}$ |  | $\begin{aligned} & \mathrm{ppm} \\ & \mathrm{ppm} \end{aligned}$ |
| $T_{H P}$ <br> TDE <br> TDE | S/S Pulse Width: <br> High-pass Filter (Modes 0-3) <br> Debounce (Modes 4, 6, 8, 10) <br> w/o Debounce (Modes 5, 7, 9, 11) |  | $\begin{gathered} 5 \\ 10,000 \\ 5 \\ \hline \end{gathered}$ |  | 10,000 | $\begin{aligned} & \mu \mathrm{S} \\ & \mu \mathrm{~S} \\ & \mu \mathrm{~S} \end{aligned}$ |

NOTES: 1. Due to the SCR structure inherent in junction-isolated CMOS devices, the circuit can be put in a latchup mode if large currents are injected into device inputs or outputs. For this reason special care should be taken in a system with multiple power supplies to prevent voltages being applied to inputs or outputs before power is applied. If only inputs are affected, latchup also can be prevented by limiting the current into the input terminal to less than 1 mA .
2. This limit refers to that of the package and will not occur during normal operation.
3. Internal reset to 00000 requires a maximum $V_{D D}$ rise time of $1 \mu \mathrm{~s}$. Longer rise times at power-up may cause improper reset.
4. Operating current is measured with the LCD disconnected, and input current Iss and IDT supplied externally.
5. Inputs $C_{0}-C_{3}$ are latched internally and draw no DC current after switching. During switching, a $90 \mu A$ peak current may be drawn for 10 nanoseconds.

Table 1. Pin Assignment and Function

| Pin | Name | Description |
| :---: | :---: | :---: |
| 1 | $\mathrm{B}_{6} / \mathrm{C}_{6}$ | Half-digit LCD segment output. |
| 2 | $\mathrm{F}_{5}$ | Seven-segment LCD outputs. |
| 3 | $\mathrm{G}_{5}$ |  |
| 4 | $\mathrm{E}_{5}$ |  |
| 5 | $\mathrm{D}_{5}$ |  |
| 6 | $\mathrm{C}_{5}$ |  |
| 7 | $\mathrm{B}_{5}$ |  |
| 8 | $\mathrm{A}_{5}$ |  |
| 9 | $\mathrm{F}_{4}$ |  |
| 10 | $\mathrm{G}_{4}$ |  |
| 11 | $\mathrm{E}_{4}$ |  |
| 12 | $\mathrm{D}_{4}$ |  |
| 13 | $\mathrm{C}_{4}$ |  |
| 14 | $\mathrm{B}_{4}$ |  |
| 15 | $\mathrm{A}_{4}$ |  |
| 16 | $\mathrm{F}_{3}$ |  |
| 17 | $\mathrm{G}_{3}$ |  |
| 18 | $\mathrm{E}_{3}$ |  |
| 19 | $\mathrm{D}_{3}$ |  |
| 20 | $\mathrm{C}_{3}$ |  |
| 21 | $\mathrm{B}_{3}$ |  |
| 22 | $\mathrm{A}_{3}$ |  |
| $\begin{aligned} & 23 \\ & 24 \end{aligned}$ | $\begin{aligned} & \mathrm{F}_{2} \\ & \mathrm{G}_{2} \end{aligned}$ |  |
| 25 | $\mathrm{E}_{2}$ |  |
| 26 | $\mathrm{D}_{2}$ |  |
| 27 | $\mathrm{C}_{2}$ |  |
| 28 | $\mathrm{B}_{2}$ |  |
| 29 | $\mathrm{A}_{2}$ |  |
| 30 | $\mathrm{F}_{1}$ |  |
| 31 | $\mathrm{G}_{1}$ |  |
| 32 | $\mathrm{E}_{1}$ |  |
| 33 | $\mathrm{D}_{1}$ |  |
| 34 | $\mathrm{C}_{1}$ |  |
| 35 | $\mathrm{B}_{1}$ |  |
| 36 | $\mathrm{A}_{1}$ |  |

Table 1. Pin Assignment and Function (Continued)

| Pin | Name | Description |
| :---: | :---: | :---: |
| 37 | W | Wink-segment output. |
| 38 | BP | Backplane for LCD reference. |
| 39 | V+ | Positive supply voltage. |
| 40 | $\mathrm{OSC}_{1}$ | Quartz Crystal connections |
| 41 | $\mathrm{OSC}_{0}$ |  |
| 42 | GND | Chip GRouND. |
| 43 | $\mathrm{C}_{0}$ | Mode-select control inputs. |
| 44 | $\mathrm{C}_{1}$ |  |
| 45 | $\mathrm{C}_{2}$ |  |
| 46 | $\mathrm{C}_{3}$ |  |
| 47 | S/S | Start / Stop |
| 48 | DT | Display Test |

Table 2. Mode Select Table

| Mode | Control Pin Inputs |  |  |  | Function |  |
| :---: | :---: | :---: | :---: | :---: | :--- | :---: |
|  | $C_{3}$ | $C_{2}$ | $C_{1}$ | $C_{0}$ |  |  |
| 0 | 0 | 0 | 0 | 0 | 1 hour interval timer |  |
| 1 | 0 | 0 | 0 | 1 | 0.1 hour interval timer |  |
| 2 | 0 | 0 | 1 | 0 | 0.01 hour interval timer |  |
| 3 | 0 | 0 | 1 | 1 | 0.1 minute interval timer |  |
| 4 | 0 | 1 | 0 | 0 | 1 's counter with debounce |  |
| 5 | 0 | 1 | 0 | 1 | 1 's counter |  |
| 6 | 0 | 1 | 1 | 0 | $10 ' s$ counter with debounce |  |
| 7 | 0 | 1 | 1 | 1 | $10 ' s$ counter |  |
| 8 | 1 | 0 | 0 | 0 | $100 ' s$ counter with debounce |  |
| 9 | 1 | 0 | 0 | 1 | $100 ' s$ counter |  |
| 10 | 1 | 0 | 1 | 0 | $1000 ' s$ counter with debounce |  |
| 11 | 1 | 0 | 1 | 1 | $1000 ' s$ counter |  |
| 12 | 1 | 1 | 0 | 0 | Test display digits |  |
| 13 | 1 | 1 | 0 | 1 | Internal test |  |
| 14 | 1 | 1 | 1 | 0 | Internal test |  |
| 15 | 1 | 1 | 1 | 1 | Reset |  |

[^572]
## DETAILED DESCRIPTION

After power is applied, the ICM7249 requires a rise time of $t_{R}$ to become active and for oscillation to begin, as seen in Figure 3. Initially the backplane output BP is a logic ' 1 ' level, but then changes after every 512 crystal oscillation cycles, giving BP a square-wave frequency of 32 Hz . Segments are turned off when the voltage levels of the segment drive pins are the same as and in phase with BP. Segments are turned on by having the drive pin voltages out of phase with BP.

The 16 modes are selected by placing the binary equivalent of the mode number on inputs $\mathrm{C}_{0}-\mathrm{C}_{3}$ (Table 2). In the four timer modes, timing is controlled by the Start/Stop input S/S. Because of internal high-pass filtering, timing is active when either $S / S$ is held high for more than 25 ms , or the input signal has a frequency of at least 50 Hz and less than 120 kHz as shown in Figure 4. Driving $\mathrm{S} / \mathrm{S}$ with an input
frequency between 40 Hz and 50 Hz has an indeterminate effect on the timing.
The timing intervals are different for each mode. For example, in Mode 0 the display is incremented every hour, while in Mode 3 the display is incremented every tenth of a minute.
While timing is active, the wink-segment output W will flash, as seen in Figure 1. On the upward transistion of S/S, the wink output turns off. It remains off for 16 backplane cycles and turns back on for another 16 cycles. If timing is still active, the wink segment repeats this process, giving it a flash rate of 1 Hz : otherwise the wink output remains on until timing begins again. In counting modes 4-11, the count is registered and latched on each positive transition of S/S.
The display is keyed to the specific counting mode. In the 1 's counter mode, the display is incremented for each count; in the 10's counter mode, the display is incremented after every tenth count.



Figure 4：Start／Stop Input High－Pass Filtering in Timing Modes


[^573]During counting, the display will wink off at each count input regardless of whether the display is incremented. When a count occurs, the wink segment output turns off at the end of the 16th BP cycle and turns back on at the end of the 32nd BP cycle, creating a half-second wink, as shown in Figure 6. If counting occurs more frequently than once a second, the wink output will default to a constant 1 Hz flash rate.

In counter modes 4, 6, 8 and 10, the count pulse is subject to debounce filtering. Figure 7 shows that only pulses with a frequency of less than 40 Hz are valid. Pulses with a frequency between 50 Hz and 120 kHz are ignored, while those with a frequency between 40 Hz and 50 Hz have an indeterminate effect on the count.

The display may be tested at any time without disturbing operation by pulsing DT high, as seen in Figure 8. On the next positive transition of BP, all the segments turn on and remain on until the end of the 16th BP cycle. This takes a half-second or less. All the segments then turn off for an additional 48 BP cycles (the end of the 64th cycle), after which valid data returns to the display. As long as DT is held high, the segments will remain on.

Additional display testing is provided by using mode 12. In this mode each displayed decade is incremented on each positive transition of S/S. Modes 13 and 14 are for manufacturer testing only.

Mode 15 resets all the decades and internal counters to zero, essentially bringing everything back to power-up status.


Figure 7: Start/Stop Input Debounce Filtering in Counting Modes

[^574]

0362-8
Figure 8: Display Testing

## APPLICATION NOTES

A typical use of the ICM7249 is seen in Figure 9, the Motor Hour Meter. In this application the ICM7249 is configured as an hours-in-use meter and shows how many whole hours of line voltage have been applied. The $20 \mathrm{M} \Omega$ resistor and high-pass filtering allow AC line activation of the S/S input. This configuration, which is powered by a 3 V lithium cell, will operate continuously for $21 / 2$ years. Without the display, which only needs to be connected when a reading is required, the span of operation is extended to 10 years.
When the ICM7249 is configured as an attendance counter, as shown in Figure 10, the display shows each increment. By using mode 2, external debouncing of the gate switch is unnecessary, provided the switch bounce is less than 35 ms .

The 3V lithium battery can be replaced without disturbing operation if a suitable capacitor is connected in parallel with it. The display should be disconnected, if possible, during the procedure to minimize current drain. The capacitor should be large enough to store charge for the amount of time needed to physically replace the battery ( $\Delta t=\Delta \mathrm{VC} / \mathrm{I})$. A $100 \mu \mathrm{~F}$ capacitor initially charged to 3 V will supply a current of $1.0 \mu \mathrm{~A}$ for 50 seconds before its voltage drops to 2.5 V , which is the minimum operating voltage for the ICM7249.

Before the battery is removed, the capacitor should be placed in parallel, across the $\mathrm{V}_{\mathrm{DD}}$ and GND terminals. After the battery is replaced, the capacitor can be removed and the display reconnected.


Figure 9: Motor Hour Meter

INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

NOTE: All typical values have been characterized but are not tested.


0362－10
Figure 10：Attendance Counter

# ICM7555/ICM7556 General Purpose Timer 

## GENERAL DESCRIPTION

The ICM7555/6 are CMOS RC timers providing significantly improved performance over the standard SE/NE555/6 and 355 timers, while at the same time being direct replacements for those devices in most applications. Improved parameters include low supply current, wide operating supply voltage range, low THRESHOLD, TRIGGER and RESET currents, no crowbarring of the supply current during output transitions, higher frequency performance and no requirement to decouple CONTROL VOLTAGE for stable operation.

Specifically, the ICM7555/6 are stable controllers capable of producing accurate time delays or frequencies. The ICM7556 is a dual ICM7555, with the two timers operating independently of each other, sharing only $\mathrm{V}^{+}$and GND. In the one shot mode, the pulse width of each circuit is precisely controlled by one external resistor and capacitor. For astable operation as an oscillator, the free running frequency and the duty cycle are both accurately controiled by two external resistors and one capacitor. Unlike the regular bipolar 555/6 devices, the CONTROL VOLTAGE terminal need not be decoupled with a capacitor. The circuits are triggered and reset on falling (negative) waveforms, and the output inverter can source or sink currents large enough to drive TTL loads, or provide minimal offsets to drive CMOS loads.

## ORDERING INFORMATION

| Part <br> Number | Temperature <br> Range | Package |
| :--- | :--- | :--- |
| ICM7555CBA | $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ | 8 Lead SOIC |
| ICM7555IPA | $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ | 8 Lead MiniDip |
| ICM7555ITV | $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ | TO-99 Can |
| ICM7555MTV** | $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ | TO-99 Can |
| ICM7556IPD | $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ | 14 Lead Plastic DIP |
| ICM7556MJD* | $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ | 14 Lead CERDIP |

## FEATURES

- Exact Equivalent in Most Cases for SE/NE555/556 or TLC555/556
- Low Supply Current - 60 AA Typ. (ICM7555) 120 $\mu$ A Typ. (ICM7556)
- Extremely Low Trigger, Threshold and Reset Currents - 20pA Typical
- High Speed Operation - 1MHz Typical
- Wide Operation Supply Voltage Range Guaranteed 2 to 18 Volts
- Normal Reset Function - No Crowbarring of Supply During Output Transition
- Can Be Used With Higher Impedance Timing Elements Than Regular 555/6 for Longer RC Time Constants
- Timing From Microseconds Through Hours
- Operates in Both Astable and Monostable Modes
- Adjustable Duty Cycle
- High Output Source/Sink Driver Can Drive TTL/ CMOS
- Typical Temperature Stability of $\mathbf{0 . 0 0 5 \%}$ Per ${ }^{\circ} \mathrm{C}$ at $25^{\circ} \mathrm{C}$
- Outputs Have Very Low Offsets, HI and LO

APPLICATIONS

- Precision Timing
- Pulse Generation
- Sequential Timing
- Time Delay Generation
- Pulse Width Modulation
- Pulse Position Modulation
- Missing Pulse Detector
*Add /883B to part number if 883B processing is desired.


Figure 1: Functional Diagram

## ABSOLUTE MAXIMUM RATINGS

Supply Voltage
+18 Volts
Input Voltage: Trigger,
Control Voltage, Threshold, $\ldots \ldots . \mathrm{V}^{+}+0.3 \mathrm{~V}$ to $\mathrm{V}--0.3 \mathrm{~V}$
Reset
Output Current 100 mA
Power Dissipation[2] ICM7556 . . . . . . . . . . . . . . . . . . 300 ${ }^{[2] W}$
ICM7555 200 mW
Storage Temperature $\ldots \ldots . \ldots \ldots . . . .-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10sec) ............ $+300^{\circ} \mathrm{C}$ Operating Temperature Range ${ }^{[2]}$


ICM7555XI ............................ . $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
ICM7555XM .......................... $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

NOTE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

(OUTLINE DRAWING TV)

(OUTLINE DRAWING PA)

(OUTLINE DRAWING BA)

0363-3

(OUTLINE DRAWING JD, PD)

Figure 2: Pin Configuration
(Top View)

ICM7555/ICM7556

## ICM7555

ELECTRICAL CHARACTERISTICS


[^575][^576]ICM7556
ELECTRICAL CHARACTERISTICS $T_{A}=25^{\circ} \mathrm{C}$, unless otherwise specified.

| Symbol | Parameter | Test Conditions | ICM75561,M$T_{A}=25^{\circ} \mathrm{C}$ |  |  | ICM7556M |  |  | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  | $-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$ |  |  |  |
|  |  |  | Min | Typ | Max | Min | Typ | Max |  |
| $1+$ | Static Supply Current | $\begin{aligned} & V_{D D}=5 \mathrm{~V} \\ & V_{D D}=15 \mathrm{~V} \end{aligned}$ |  | $\begin{gathered} 80 \\ 120 \\ \hline \end{gathered}$ | $\begin{array}{\|l\|} \hline 400 \\ 600 \\ \hline \end{array}$ |  |  | $\begin{aligned} & 600 \\ & 600 \end{aligned}$ | $\mu \mathrm{A}$ $\mu \mathrm{A}$ |
|  | Monostable Timing Accuracy | $R A=10 \mathrm{k}, \mathrm{C}=0.1 \mu \mathrm{~F}, \mathrm{~V}_{\mathrm{DD}}=5 \mathrm{~V}$ |  | 2 |  | 858 |  | 1161 | $\begin{gathered} \% \\ \mu \mathrm{~s} \end{gathered}$ |
|  | Drift with Temp* | $\begin{aligned} & V_{D D}=5 \mathrm{~V} \\ & V_{D D}=10 \mathrm{~V} \\ & V_{D D}=15 \mathrm{~V} \\ & \hline \end{aligned}$ |  | $\begin{aligned} & 150 \\ & 200 \\ & 250 \\ & \hline \end{aligned}$ |  |  | $\begin{aligned} & 150 \\ & 200 \\ & 250 \\ & \hline \end{aligned}$ |  | ppm $/{ }^{\circ} \mathrm{C}$ <br> ppm $/{ }^{\circ} \mathrm{C}$ <br> ppm $/{ }^{\circ} \mathrm{C}$ |
|  | Drift with Supply* | $V_{D D}=5 \mathrm{~V}$ to 15 V |  | 0.5 |  |  | 0.5 |  | \%/V |
|  | Astable Timing Accuracy | $R A=R B=10 k, C=0.1 \mu \mathrm{~F}, \mathrm{~V}_{\mathrm{DD}}=5 \mathrm{~V}$ |  | 2 |  | 1717 |  | 2323 | $\begin{gathered} \% \\ \mu \mathrm{~s} \end{gathered}$ |
|  | Drift with Temp* | $\begin{aligned} & V_{D D}=5 \mathrm{~V} \\ & V_{D D}=10 \mathrm{~V} \\ & V_{D D}=15 \mathrm{~V} \\ & \hline \end{aligned}$ |  | $\begin{aligned} & 150 \\ & 200 \\ & 250 \\ & \hline \end{aligned}$ |  |  | $\begin{aligned} & 150 \\ & 200 \\ & 250 \\ & \hline \end{aligned}$ |  | ppm $/{ }^{\circ} \mathrm{C}$ <br> ppm $/{ }^{\circ} \mathrm{C}$ <br> ppm $/{ }^{\circ} \mathrm{C}$ |
|  | Drift with Supply* | $\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$ to 15 V |  | 0.5 |  |  | 0.5 |  | \% V |
| $\mathrm{V}_{\text {TH }}$ | Threshold Voltage | $V_{D D}=15 \mathrm{~V}$ | 62 | 67 | 71 | 61 |  | 72 | $\% V_{D D}$ |
| $\mathrm{V}_{\text {TRIG }}$ | Trigger Voltage | $V_{D D}=15 \mathrm{~V}$ | 28 | 32 | 36 | 27 |  | 37 | $\% V_{D D}$ |
| ITRIG | Trigger Current | $\mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}$ |  |  | 10 |  |  | 50 | nA |
| $1{ }_{\text {TH }}$ | Threshold Current | $V_{D D}=15 \mathrm{~V}$ |  |  | 10 |  |  | 50 | nA |
| $\mathrm{V}_{\mathrm{CV}}$ | Control Voltage | $V_{D D}=15 \mathrm{~V}$ | 62 | 67 | 71 | 61 |  | 72 | $\% V_{D D}$ |
| $\mathrm{V}_{\text {RST }}$ | Reset Voltage | $\mathrm{V}_{\mathrm{DD}}=2 \mathrm{~V}$ to 15V | 0.4 |  | 1.0 | 0.2 |  | 1.2 | V |
| IRST | Reset Current | $\mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}$ |  |  | 10 |  |  | 50 | nA |
| IDIS | Discharge Leakage | $V_{D D}=15 \mathrm{~V}$ |  |  | 10 |  |  | 50 | nA |
| $\mathrm{V}_{\mathrm{OL}}$ | Output Voltage Drop | $\begin{aligned} & V_{D D}=15 \mathrm{~V}, I_{\text {sink }}=20 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{DD}}=5 \mathrm{~V}, I_{\text {sink }}=3.2 \mathrm{~mA} \end{aligned}$ |  | $\begin{aligned} & 0.4 \\ & 0.2 \end{aligned}$ | $\begin{aligned} & 1.0 \\ & 0.4 \end{aligned}$ |  |  | $\begin{gathered} 1.25 \\ 0.5 \end{gathered}$ | $\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$ |
| $\mathrm{V}_{\mathrm{OH}}$ | Output Voltage Drop | $\begin{aligned} & V_{D D}=15 \mathrm{~V}, I_{\text {source }}=0.8 \mathrm{~mA} \\ & V_{D D}=5 \mathrm{~V}, I_{\text {source }}=0.8 \mathrm{~mA} \end{aligned}$ | $\begin{gathered} 14.3 \\ 4.0 \\ \hline \end{gathered}$ | $\begin{gathered} 14.6 \\ 4.3 \\ \hline \end{gathered}$ |  | $\begin{gathered} 14.2 \\ 3.8 \\ \hline \end{gathered}$ |  |  | $\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$ |
| VDIS | Discharge Output Voltage Drop | $\begin{aligned} & V_{D D}=5 \mathrm{~V}, \mathrm{I}_{\text {sink }}=15 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{DD}}=5 \mathrm{~V}, \mathrm{I}_{\text {sink }}=15 \mathrm{~mA} \end{aligned}$ |  | 0.2 | 0.4 |  |  | $\begin{aligned} & 0.6 \\ & 0.4 \\ & \hline \end{aligned}$ | $\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$ |
| V+ | Supply Voltage* | Functional Oper. | 2.0 |  | 18.0 | 2.0 |  | 18.0 | V |
| $\mathrm{t}_{\mathrm{R}}$ | Output Rise Time* | $R L=10 \mathrm{M}, \mathrm{CL}=10 \mathrm{pF}, \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$ |  | 75 |  |  | 75 |  | ns |
| $\mathrm{t}_{\mathrm{F}}$ | Output Fall Time* | $\mathrm{RL}=10 \mathrm{M}, \mathrm{CL}=10 \mathrm{pF}, \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$ |  | 75 |  |  | 75 |  | ns |
| ${ }_{\text {f max }}$ | Oscillator Frequency* | $\begin{aligned} & V_{D D}=5 V, R A=470 \Omega, \\ & R B=270 \Omega, C=200 p F \end{aligned}$ |  | 1 |  |  | 1 |  | MHz |

*These parameters are based upon characterization data and are not tested.

## TYPICAL PERFORMANCE CHARACTERISTICS



MINIMUM PULSE WIDTH REQUIRED
FOR TRIGGERING

lowest voltage level of thigger pulse (\%V.)
0363-4

OUTPUT SINK CURRENT AS A FUNCTION OF OUTPUT VOLTAGE


0363-7

SUPPLY CURRENT AS A FUNCTION OF SUPPLY VOLTAGE


0363-5


0363-8 FUNCTION OF DISCHARGE OUTPUT VOLTAGE


0363-11

OUTPUT SOURCE CURRENT AS A FUNCTION OF OUTPUT VOLTAGE


0363-6


0363-9

PROPAGATION DELAY AS A FUNCTION OF VOLTAGE LEVEL OF TRIGGER PULSE


0363-12

[^577]NOTE: All typical values have been characterized but are not tested.

## TYPICAL PERFORMANCE CHARACTERISTICS

NORMALIZED FREQUENCY STABILITY IN THE ASTABLE MODE AS A FUNCTION OF TEMPERATURE


0363-13

## APPLICATION NOTES GENERAL

The ICM7555/6 devices are, in most instances, direct replacements for the NE/SE 555/6 devices. However, it is possible to effect economies in the external component count using the ICM7555/6. Because the bipolar 555/6 devices produce large crowbar currents in the output driver, it is necessary to decouple the power supply lines with a good capacitor close to the device. The 7555/6 devices produce no such transients. See Figure 3.


0363-16
Figure 3: Supply Current Transient
Compared with a Standard Bipolar 555 During an Output Transition

The ICM7555/6 produces supply current spikes of only $2-3 \mathrm{~mA}$ instead of $300-400 \mathrm{~mA}$ and supply decoupling is normally not necessary. Secondly, in most instances, the CONTROL VOLTAGE decoupling capacitors are not required since the input impedance of the CMOS comparators on chip are very high. Thus, for many applications 2 capacitors can be saved using an ICM7555, and 3 capacitors with an ICM7556.

FREE RUNNING FREQUENCY AS A


TIME DELAY IN THE MONOSTABLE MODE AS A FUNCTION OF RA AND C


0363-14
0363-15

## POWER SUPPLY CONSIDERATIONS

Although the supply current consumed by the ICM7555/6 devices is very low, the total system supply can be high unless the timing components are high impedance. Therefore, use high values for $R$ and low values for $C$ in Figures 4 and 5.

## OUTPUT DRIVE CAPABILITY

The output driver consists of a CMOS inverter capable of driving most logic families including CMOS and TTL. As such, if driving CMOS, the output swing at all supply voltages will equal the supply voltage. At a supply voltage of 4.5 volts or more the ICM7555/6 will drive at least 2 standard TTL loads.

## ASTABLE OPERATION

The circuit can be connected to trigger itself and free run as a multivibrator, see Figure 4. The output swings from rail to rail, and is a true $50 \%$ duty cycle square wave. (Trip points and output swings are symmetrical). Less than a 1\% frequency variation is observed, over a voltage range of +5 to +15 V .

$$
f=\frac{1}{1.4 R C}
$$

The timer can also be connected as shown in Figure 4b. In this circuit, the frequency is:

$$
f=1.44 /\left(R_{A}+2 R_{B}\right) C
$$

The duty cycle is controlled by the values of $R_{A}$ and $R_{B}$, by the equation:

$$
D=\left(R_{A}+R_{B}\right) /\left(R_{A}+2 R_{B}\right)
$$

## MONOSTABLE OPERATION

In this mode of operation, the timer functions as a oneshot. Initially the external capacitor (C) is held discharged by a transistor inside the timer. Upon application of a negative TRIGGER pulse to pin 2, the internal flip flop is set which releases the short circuit across the external capacitor and drives the OUTPUT high. The voltage across the capacitor now increases exponentially with a time constant $t=R_{A} C$. When the voltage across the capacitor equals $2 / 3 \mathrm{~V}+$, the comparator resets the flip flop, which in turn discharges the capacitor rapidly and also drives the OUTPUT to its low state. TRIGGER must return to a high state before the OUTPUT can return to a low state.

$$
t_{\text {output }}=-\ln (1 / 3) R_{A} C=1.1 R_{A} C
$$

INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

NOTE: All typical values have been characterized but are not tested.


## CONTROL VOLTAGE

The CONTROL VOLTAGE terminal permits the two trip voltages for the THRESHOLD and TRIGGER internal comparators to be controlled. This provides the possibility of oscillation frequency modulation in the astable mode or even inhibition of oscillation, depending on the applied voltage. In the monostable mode, delay times can be changed by varying the applied voltage to the CONTROL VOLTAGE pin.

## RESET

The RESET terminal is designed to have essentially the same trip voltage as the standard bipolar 555/6, i.e. 0.6 to 0.7 volts. At all supply voltages it represents an extremely high input impedance. The mode of operation of the RESET function is, however, much improved over the standard bipolar 555/6 in that it controls only the internal flip flop, which in turn controls simultaneously the state of the OUTPUT and DISCHARGE pins. This avoids the multiple threshold problems sometimes encountered with slow falling edges in the bipolar devices.


Figure 5: Monostable Operation

| \|CM7555/MCM7556 |  |  |  | 風UNTGR |
| :---: | :---: | :---: | :---: | :---: |
| TRUTH TABLE |  |  |  |  |
| Threshold Voltage | Trigger Voltage | RESET | Output | Discharge Switch |
| DON'T CARE | DON'T CARE | LOW | LOW | ON |
| $>2 / 3\left(V^{+}\right)$ | $>1 / 3(\mathrm{~V}+$ ) | HIGH | LOW | ON |
| $<2 / 3$ (V+) | $>1 / 3\left(V^{+}\right)$ | HIGH | STABLE | STABLE |
| DON'T CARE | $<1 / 3\left(V^{+}\right)$ | HIGH | HIGH | OFF |

NOTE: $\overline{R E S E T}$ will dominate all other inputs: TRIGGER will dominate over THRESHOLD.

## Section 15 - High Reliability

## 100\% INTEGRATED CIRCUIT PROCESSING

Intersil is committed to build and process integrated circuits for the Military/High-Rel market segments in conformance with MIL-STD-883 and MIL-M-38510. Any customer drawing which specifies testing as set forth in these documents will be automatically processed to the latest revisions of MIL-STD-883 and MIL-M-38510, unless specific requests are made to the contrary.

## HI-REL PROCESS OFFERINGS <br> 38510 PRODUCTS

Intersil holds QPL1 status on a number of JAN MIL-M38510 products. As required by JAN specifications, these products are fabricated, assembled, and $100 \%$ processed within the United States and are fully compliant with all the requirements, procedures, and methods as given in MIL-M38510 and MIL-STD-883.

## MILITARY DRAWING PRODUCTS

Intersil offers a large and growing number of Military Drawing Products (previously referred to as Desc Drawings). These are processed in full compliance with MIL-STD-883 Rev C and carry electrical specifications standardized and controlled by Desc.

## 883 CLASS B PRODUCTS

The 883 Class B flow diagram represents product processed in accordance with Method 5004 and Method 5005 of MIL-STD-883 Rev. C, Class B. Many products herein are available as compliant to paragraph 1.2 of MIL-STD-883 Rev. C while others are available only as non-compliant at this time. Check with Intersil Customer Service as to the compliant status of individual product offerings at any point in time.

## HR PRODUCTS

The HR flow diagram, newly offered by Intersil, represents high reliability hermetic product utilizing many, but not necessarily all, of the test methods and requirements of MIL-STD-883 Rev. C, to be used in high reliability applications where some deviations from Rev. C may be justified and economic advantages realized. Such product may not be branded /883B but may be branded /HR or a special brand as required by purchase order.

## BR PRODUCTS

The BR flow diagram, newly offered by Intersil, represents hermetic or plastic encapsulated product intended for application in the computer, industrial, or hi-rel commercial marketplace. In addition to $100 \%$ burn-in, many other reliability processing steps are included to enhance quality levels on shipped parts and to improve long term reliability characteristics. Such product may be branded /BR or as required by purchase order.

Contact Product Marketing for availability and pricing on 883B, HR and BR products.

## 100\% DISCRETE DEVICE PROCESSING

Intersil also offers several QPL-approved discrete products carrying the JAN, JTX, and JTXV designation, which are screened and qualified to the latest revisions of MIL-STD-750 and MIL-S-19500.

38510
Per MIL-M-38510 Slash Sheet


QUALITY CONFORMANCE INSPECTION PER METHOD 5005 GROUP A: TABLE I, EACH LOT PER APPLICABLE DEVICE SPECIFICATION

| SUBGRP | TEST | TEMP |
| :---: | :---: | :---: |
| -1 | STATIC | $25^{\circ} \mathrm{C}$ |
| -2 | STATIC | MAX. |
| -3 | STATIC | MIN. |
| -4 | DYNAMIC | $25^{\circ} \mathrm{C}$ |
| -5 | DYNAMIC | MAX. |
| -6 | DYNAMIC | MIN. |
| -7 | FUNC. | $25^{\circ} \mathrm{C}$ |
| -8 | FUNC. | MN. $/$ MAX. |
| -9 | SWITCH | $25^{\circ} \mathrm{C}$ |
| -10 | SWITCH | MAX. |
| -11 | SWITCH | MIN. |

GROUP B: TABLE IIB, EACH INSPECTION LOT GROUP C: TABLE III, 3 MO. PERHDIC GROUP D: TABLE IV, 6 MO. PERIODIC


883 Class B $(1,2,4)$
Per MIL-STD-883 Rev. C Screening per Method 5004


0422-2

HR (1, 2, 4)
In-House Hi Rel Processing Flows Performed 100\% Unless Otherwise Noted Applies to IC's and Hybrids


## FOOTNOTES:

(1) Governing Document, Order of Precedence
A. Purchase Order Contract
B. Detail Specification
C. This Flow
(2) Where test methods are indicated, the test will be performed to MIL STD-833.
(3) With exception of parameters guaranteed by basic design, not tested.

BR $(1,2)$
Performed 100\% Unless Otherwise Noted APPLIES TO IC'S AND HYBRIDS

B1 $(1,2)$
Performed 100\% Unless Otherwise Noted APPLIES TO IC'S ANY HYBRIDS AND TRANSISTORS


## FOOTNOTES:

(1) Governing Document, Order of Precedence
A. Purchase Order Contract
B. Detail Specification
C. This Flow
(2) Where test methods are indicated, the test will be performed to MIL-STD-883.
(3) With exception of parameters guaranteed by basic design, not tested.
(4) Does not apply to plastic packages.
(5) May be performed any time after encapsulation.
(6) For Plastic Packages, stabilization bake is accomplished during the encapsulation curing cycle.
(7) Weekly Reliability Monitor.

## Standard Product (1, 2) <br> Performed 100\% Unless Otherwise Noted APPLIES TO IC'S AND HYBRIDS AND TRANSISTORS



## FOOTNOTES:

(1) Governing Document, Order of Precedence
A. Purchase Order Contract
B. Detail Specification
C. This Flow
(2) Where test methods are indicated, the test will be performed to MIL-STD-883.
(3) With exception of parameters guaranteed by basic design, not tested.
(4) Does not apply to plastic packages.
(5) May be performed any time after encapsulation.
(6) For Plastic Packages, stabilization bake is accomplished during the encapsulation curing cycle.
(7) Weekly Reliability Monitor.

High-Reliability/Military Products Discrete Products JAN, JANTX and JANTXV Per MIL-S-19500 and MIL-STD-750 Performed 100\% unless otherwise noted


HIGH RELIABILITY PROCESSING
PROCESS FLOW SELECTION GUIDE
-STANDARD IC PROCESS FLOWS -


MIL-STD-883 REV. C, CLASS B


Note 1: Required only if package contains a desiccant.


Note 1: Applies if package has a Frit-Seal.

INTERSIL QPL/Hi-REL DEVICES

| Data Acquisition Products JM38510 |  | Data Aquisition Products JM38510 (Continued) |  |
| :---: | :---: | :---: | :---: |
| 12702BEA | AD7520UD | 11108BEC | DG191AP |
| 12703BVA | AD7521UD | 11108BEA | DG191AP |
| 12704BVC | AD7541TD | 11601BCC | DG300AAP |
| 12704BVA | AD7541TD | 11601BCA | DG300AAP |
|  |  | 11602BCC | DG301AAP |
| Analog Switch Products |  | 11602BCA | DG301AAP |
| JM38510 |  | 11603BCC | DG302AAP |
| 10501BEA | IH5040MDE | 11603BCA | DG302AAP |
| 10501BEC | IH5040MDE | 11604BCC | DG303AAP |
| 10502BEA | IH5041MDE | 11604BCA | DG303AAP |
| 10502BEC | IH5041MDE | 12302BEA | DG201AP |
| 10503BEA | IH5042MDE | 12302BEC | DG201AP |
| 10503BEC | IH5042MDE |  |  |
| 10504BEA | IH5043MDE | Anaiog Switch Products |  |
| 10504BEC | IH5043MDE | Military DWG. NO. |  |
| 11101BAC | DG181AL | 7705201EA | IH6108MJE |
| 11101BCC | DG181AP | 7705201EC | IH6108MDE |
| 11101BIA | DG181AA | 7705201EA | IH6108MDE |
| 11101BIC | DG181AA | 7705301EA | DG201AK |
| 11101BCA | DG181AP | 7705301EC | DG201AP |
| 11102BIA | DG182AA | 7705301EA | DG201AP |
| 11102BAC | DG182AL | 7801401CA | DG129AK |
| 11102BCC | DG182AP | 7801401CC | DG129AP |
| 11102BIC | DG182AA | 7801401CA | DG129AP |
| 11102BCA | DG182AP | 8100601AC | IH5040MFD |
| 11103BAC | DG184AL | 8100601EC | IH5040MDE |
| 11103BEC | DG184AP | 8100601EA | IH5040MDE |
| 11103BEA | DG184AP | 8100602AC | IH5041MFD |
| 11104BAC | DG185AL | 8100602EC | IH5041MDE |
| 11104BEC | DG185AP | 8100602EA | IH5041MDE |
| 11104BEA | DG185AP | 81006021A | IH5041MTW |
| 11105BAC | DG187AL | 8100602IC | IH5041MTW |
| 11105BCC | DG187AP | 81006021B | IH5041MTW |
| 11105BIA | DG187AA | 8100603AC | IH5042MFD |
| 11105BIC | DG187AA | 8100603EC | IH5042MDE |
| 11105BCA | DG187AP | 8100603EA | IH5042MDE |
| 11106BAC | DG188AL | 81006031A | IH5042MTW |
| 11106BCC | DG188AP | 8100603IC | IH5042MTW |
| 11106BIA | DG188AA | 81006031B | IH5042MTW |
| 11106BIC | DG188AA | 8100604AC | IH5043MFD |
| 11106BCA | DG188AP | 8100604EA | IH5043MJE |
| 11107BAC | DG190AL | 8100604EC | IH5043MDE |
| 11107BEC | DG190AP | 8100604EA | IH5043MDE |
| 11107BEA | DG190AP | 8100605AC | IH5044MFD |
| 11107BAC | DG191AL | 8100605EA | IH5044MJE |


| Analog Switch Products <br> Military DWG. NO. (Continued) |  |
| :--- | :---: |
| 8100605EC | IH5044MDE |
| 8100605EA | IH5044MDE |
| 8100605IA | IH5044MTW |
| 8100605IC | IH5044MTW |
| 8100605IB | IH5044MTW |
| 8100606AC | IH5045MFD |
| 8100606EA | IH5045MJE |
| 8100606EC | IH5045MDE |
| 8100606EA | IH5045MDE |
| 8100606IA | IH5045MTW |
| 8100606IC | IH5045MTW |
| 8100606IB | IH5045MTW |
| 5962-8513104XA | IH5116MJI |
| 5962-8513104XA | IH5116MDI |
| 5962-8513104XC | IH5116MDI |
| 5962-8513105XA | IH5216MJI |
| 5962-8513105XA | IH5216MDI |
| 5962-8513105XC | IH5216MDI |
| 5962-8513106EA | IH5208MJE |
| 5962-8513106EA | IH5208MDE |
| 5962-8513106EC | IH5208MDE |

MIL-S-19500 Transistors

| 2N3821JAN | 2N4858JAN |
| :--- | :--- |
| 2N3821JTX | 2N4858JTX |

2N3821JTXV 2N4858JTXV
2N3823JAN 2N4859JAN
2N3823JTX 2N4859JTX
2N3823JTXV 2N4859JTXV
2N4091JAN 2N4860JAN
2N4091JTX 2N4860JTX
2N4091JTXV 2N4860JTXV
2N4092JAN 2N4861JAN
2N4092JTX 2N4861JTX
2N4092JTXV 2N4861JTXV
2N4093JAN 2N5114JAN
2N4093JTX 2N5114JTX
2N4093JTXV 2N5114JTXV
2N4856JAN 2N5115JAN
2N4856JTX 2N5115JTX
2N4856JTXV 2N5115JTXV
2N4857JAN 2N5116JAN
2N4857JTX 2N5116JTX
2N4857JTXV 2N5116JTXV

INTERSIL MIL-STD-883B REV. C COMPLIANT DEVICES

Data Acquisition
Products
883B Rev C.
AD7520SD/883B
AD7520TD/883B
AD7520UD/883B
AD7521SD/883B
AD7521TD/883B
AD7521UD/883B
AD7533SD/883B
AD7533TD/883B
AD7533UD/883B
AD7541SD/883B
AD7541TD/883B
ICL7134UJMJ1/883B
ICL7134UKMJI/883B
ICL7134ULMMI/883B
ICL7134BJMJI/883B
ICL7134BKMJI/883B
ICL7134BLMMI/883B

## Special Analog Functions

 883B Rev C. ICL7660MTV/883B ICL7662MTV/883B ICL7667MJA/883B ICL7667MTV/883B ICL8038AMJD/883B ICL8038BMJD/883B ICL8069CMSQ/883B ICL8069DMSQ/883B ICL8211MTY/883B ICL8212MTY/883BTimer/Counter Circults 883B Rev C. ICM7555MTV/883B ICM7556MJD/883B

AmplifiersOperational 883B Rev C. ICL8021MTY/883B ICL8023MJE/883B

## Analog Switch Products 883B Rev C.

D123AK/883B
D123AL/883B
D125AK/883B
D125AL/883B
D129AK/883B
D129AL/883B
DG126AK/883B

Analog Switch Products
883B Rev C. (Continued) DG126AL/883B DG129AK/883B DG129AL/883B DG133AK/883B DG133AL/883B DG134AK/883B DG134AL/883B DG139AK/883B DG139AL/883B DG140AL/883B DG140AP/883B DG141AL/883B DG141AP/883B DG142AK/883B DG142AL/883B DG143AK/883B DG143AL/883B DG144AK/883B DG144AL/883B DG145AL/883B DG145AP/883B DG146AL/883B DG146AP/883B DG151AK/883B DG151AL/883B DG152AK/883B DG152AL/883B DG153AL/883B DG153AP/883B DG154AK/883B DG154AL/883B DG161AL/883B DG161AP/883B DG162AK/883B DG162AL/883B DG163AL/883B DG163AP/883B DG164AK/883B DG164AL/883B DG180AA/883B DG180AK/883B DG180AL/883B DG181AA/883B DG181AK/883B DG181AL/883B DG182AA/883B DG182AK/883B DG182AL/883B DG183AL/883B DG183AP/883B DG184AK/883B DG184AL/883B DG185AK/883B DG185AL/883B DG186AA/883B DG186AL/883B

Analog Switch Products
883B Rev C. (Continued)
DG186AP/883B
DG187AA/883B
DG187AK/883B
DG187AL/883B
DG188AA/883B
DG188AK/883B
DG188AL/883B
DG189AP/883B
DG190AK/883B
DG190AL/883B
DG191AK/883B
DG191AL/883B
DG200AA/883B
DG200AK/883B
DG201AK/883B
DG201AAK/883B
DG202AK/883B
DG300AAK/883B
DG301AAA/883B
DG301AAK/883B
DG302AAK/883B
DG303AAK/883B
DGM181AA/883B
DGM181AK/883B
DGM182AA/883B
DGM182AK/883B
DGM184AK/883B
DGM185AK/883B
DGM190AK/883B
DGM191AK/883B
IH5009MJD/883B
IH5010MJD/883B
IH5011MJE/883B IH5012MJE/883B IH5013MJD/883B IH5014MJD/883B IH5015MJE/883B IH5016MJE/883B IH5017MJD/883B IH5018MJD/883B IH5019MJE/883B IH5020MJE/883B IH5021MJD/883B IH5022MJD/883B IH5023MJE/883B IH5024MJE/883B IH5040MFD/883B IH5040MJE/883B IH5041MFD/883B IH5041MJE/883B IH5042MFD/883B IH5042MJE/883B IH5043MFD/883B IH5043MJE/883B IH5044MFD/883B IH5044MJE/883B

## Analog Switch

 Products883B Rev C. (Continued) IH5045MFD/883B IH5045MJE/883B IH5046MFD/883B IH5046MJE/883B IH5047MFD/883B IH5047MJE/883B IH5052MJE/883B IH5053MJE/883B IH5108MJE/883B IH5116MJI/883B IH5140MFD/883B IH5140MJE/883B IH5141MFD/883B IH5141MJE/883B IH5142MFD/883B IH5142MJE/883B IH5143MFD/883B IH5143MJE/883B IH5144MFD/883B IH5144MJE/883B IH5145MFD/883B IH5145MJE/883B IH5148MFD/883B IH5148MJE/883B IH5149MFD/883B IH5149MJE/883B IH5150MFD/883B IH5150MJE/883B IH5151MFD/883B IH5151MJE/883B IH5208MJE/883B IH5216MJI/883B IH5341MTW/883B IH5352MJE/883B IH6108MJE/883B IH6116MJI/883B IH6201MJE/883B IH6208MJE/883B IH6216MJI/883B

> Microcontrollers, Microperipherals, Memory 883B Rev C. ICM7170MDG/883B IM6402-1MJL/883B IM6402AIJL/883B IM6402AMJL/883B IM6402IJL/883B IM6653AMJG/883B IM6653MJG/883B IM6654-1IJG/883B IM6654AMJG/883B IM6654MJG/883B IM6654IJG/883B

# High Reliability Processing 

## GLOSSARY OF MILITARY/AEROSPACE HI-REL DEFINITIONS/TERMINOLOGY

ACCELERATED BURN-IN - Same as "Burn-In", except that testing is carried out at an increased temperature (nominally $150^{\circ} \mathrm{C}$ ) for reduced dwell time. Accelerated testing is not permissible for Class $S$ devices.
ATTRIBUTES DATA - Go-No-Go data. Strictly pass/fail and number of rejects recorded. A typical requirement for post burn-in electrical tests on Class B devices.
BASELINE - Technique used to define manufacturing and test processes at time of order placement. Baselining usually involves development of a Program Plan and an Acceptance Test Plan which include flow charts, specification identification/revision letters, QA procedures, and actual specimens of certain important specifications. During subsequent manufacture and testing of parts, it is not permissible to make revisions or changes to any of the identified specifications, unless prior notification and possible customer approval occurs.
BURN-IN - A screening operation. Devices are subjected to high temperature (typically $125^{\circ} \mathrm{C}$ ) and normal power/operation for 160 hours (Class B devices) or 240 hours (Class $S$ devices).
CLASS S AND B INTEGRATED CIRCUITS - These classes set forth the screening, sampling and document control requirements for IC testing. Terminology is defined in MIL-M-38510 and in Test Methods 5004 and 5005 of MIL-STD-883. Classes, $S$ and $B$ are sometimes referred to as "Levels S and B." The Classes cover:
CLASS S - For space and satellite programs. Includes Condition A Precap, SEM, 240 hour burn-in, PIND test and elaborate qualification and quality conformance testing. Normally requires extensive data, documentation, and program planning. Formerly referred to as Class A. Class S devices are quite expensive.
CLASS B - For manned flight, and includes most frequent-ly-procured military integrated circuits. Used for all but highest reliability requirements. Class $B$ uses burn-in, pre-cap visual, etc.
CORRECTIVE ACTION - Those actions which a given supplier (or user) agrees to perform so that a detected problem does not reoccur.
DESC - Defense Electronic Supply Center, located in Dayton, Ohio.
DESC LINE CERTIFICATION - The document which approves a supplier's facilities as an appropriate site to manufacture JAN parts.
DPA - Destructive Physical Analysis. Finished products are opened and analyzed, in accordance with customer or MIL Spec criteria.
GENERIC DATA - Data pertaining to a device family; not necessarily the specific part number ordered by the customer, but representative of parts in the family. Group B, C and D generic data is frequently requested in lieu of the performance of special qual tests on a given order.
GROUP A - Sample electrical test which are performed on each lot. Group A is defined in Test Method 5005 for integrated circuits and in MIL-S-19500 for diodes and transistors.

GROUP B - For Integrated Circuits, Package-Related Environmental Tests are performed for Class B Products per MIL-STD-883, Method 5005 (For Revision Products) or per the "HR" program. For Class S, Group B includes Additional Processing, including steady state life test.
For Diodes and Transistors, both enviromental and life test are performed per MIL-S-19500.
GROUP C - For Class B or "HR" program I.C.'s, Die-Related Tests are performed. Not required for Class S I.C.'s. Group C includes life testing temperature cycling and constant acceleration per MIL-M-38510. For diodes transistors, Group C includes both environmental and life tests per MIL-S-19500.
GROUP D - Additional Package-Related Environmental Test for I.C.'s for Class B or Class S products or per the "HR" program.
JAN - "Joint Army Navy", a registered trademark of the U.S. Government. The JAN marking denotes a device which is in full compliance to MIL-M-38510 or MIL-S-19500.
JAN TX - A JAN-qualified diode or transistor which has been subjected to additional screening and burn-in tests. MIL-S-19500 only.
JAN TXV - A JAN-qualified diode or transistor which, in additional to burn-in testing, has been subjected to additional screening including pre-cap visual inspection, as witnessed by a government source inspector. Equivalent to Class B screening for integrated circuits. MIL-S-19500 only. LTPD-Lot Tolerance Percent Defective is a sampling plan measurement criteria.
MIL-M-38510 - The general military specification for integrated circuits.
M38510/XXX - Detail specifications (or "slash sheets") for integrated circuits. For example, the 101 specification covers Operational Amplifiers, with electrical requirements for the 741, LM101, 108, 747 types, etc.
MIL-S-19500 - The general military specifications for diodes and transistors.
MIL-S-19500/XXX — Detail specifications (or "slash sheets" for diodes and transistors.
MIL-STD-750 - Specifies Test Methods for diodes and transistors, such as burn-in, pre-cap, temperature cycling, etc.
MIL-STD-883 - Specifies Test Methods for integrated circuits, such as pre-cap, burn-in, hermeticity, storage life, etc.
NPFC - Naval Publications and Forms Center, Philadelphia Printing and distribution source for military specifications.
NON-STANDARD PARTS - In government terminology, refers to non-JAN devices. Non-standard parts are typically covered by user Source Control Drawings (SCD).
NON-STANDARD PARTS APPROVAL - Approval by the government (frequently RADC) of non-JAN parts, typically on source control drawings, for use in a military system or program. This approval is essentially a waiver which permits non-JAN 38510 parts in a system which otherwise mandatorially requires JAN parts only.

## HIGH RELIABILITY PROCESSING

OPERATING LIFE TEST - Same conditions as burn-in, but duration is usually 1000 hours. This is a sample test (Qualification and Quality Conformance).
PCA - Parts Configuration Analysis. A new term which has much the same meaning as "Baseline".
PDA - Percent Defective Allowable. Criteria sometimes applied to burn-in screening. MIL-STD-883 and MIL-M38510 typically require either a $5 \%$ or $10 \%$ PDA. A 10\% PDA means that if more than $10 \%$ of that lot fails as a result of burn-in (as determined by pre- and post-burn-in electrical tests) the entire lot is considered to have failed.
PDS - Parameter Drift Screening. Measures the changes $(\Delta s)$ in electrical parameters through burn-in. Common for Class S devices.
PIND - Particle Impact Noise Detection. This is an audio screening test to locate and eliminate those parts which have loose internal particles. The test can isolate a high percentage of defectives, even in otherwise good lots. Repeatability of the tests is questionable. This test is one of the screening items for Class S integrated circuits.
PREPARING ACTIVITY - The organizational element of the government which writes specifications, frequently RADC.
PRESEAL VISUAL - A screening inspection which involves observation of a die through a microscope.
PROCURING ACTIVITY - Per MIL-M-38510, this is the organizational element in the government which contracts for articles or services. The Procuring Activity can be a subcontractor (OEM), providing that the government delegates this responsibility. In such a case, the subcontractor does not have the power to grant waivers, unless this authority has been approved by the government.
PRODUCT RELIABILITY - Pertains to the level of quality of a product over a period of time. Reliability is usually measured or expressed in terms of Failure Rate (such as " $0.002 \%$ per 1000 hours) or MTBF (mean time between failure in hours). MTBF is the reciprocal of Failure Rate.
QPL - Qualified Products List. In the case of JAN products, QPLs are identified as QPL-38510 for integrated circuits and QPL-19500 for diodes and transistors. QPL-38510 revisions occur approximately quarterly and QPL-19500 revisions occur approximately annually. In the interim, the government will notify suppliers via letter of any new device qualifications which may have been granted. Two types of QPLs exist for MIL-M-38510:
PART II QPL - This is an interim or temporary QPL which is granted on the basis of having obtained line certification and approval of an Application to Conduct Qualification Testing. A PART II QPL is automatically voided after 90 days whenever any one supplier is granted a PART I QPL.
PART I QPL - A "permanent" QPL, granted after all qualification testing is completed and test data is approved by the government.

QUALIFYING ACTIVITY — Per MIL-M-38510, the organizational element in the government which designates certification (i.e., DESC).
QUALIFICATION TESTING - Initial one-time sample tests which are performed to determine whether device types and processes are good. For integrated circuits, this usually means testing to Groups A, B, C and D per MIL-STD-883. For diodes and transistors, this usually means testing to Groups A, B and C per MIL-STD-750.
QUALITY CONFORMANCE TESTING - These are sample tests which must be performed at prescribed intervals per MIL-M-38510 or MIL-S-19500, assuring that processes remain in control and that individual lots are passed.
RADC - Rome Air Development Command, Griffiss AFB, New York. This is the government organization which created semiconductor specifications; MIL-M-38510 and MIL-STD-883 were developed at RADC. This Air Force unit develops specifications for all U.S. military services. RADC is frequently involved in granting waivers for non-standard parts for Air Force systems.
READ AND RECORD DATA - Same as variable data.
REWORK PROVISION - For semiconductor devices, permissible rework of parts is usually limited to re-testing (screening), re-marking, and cleaning.
SCREENING - Operations which are performed on devices on a $100 \%$ basis (not sampling). Examples include precap visual, burn-in hermeticity, $100 \%$ electrical test, etc.
SEM INSPECTION - Inspection by Scanning Electron Microscope. Die samples are examined at very high magnification for metallization defects.
SERIALIZATION - The marking of a unique part number on each part, with assigned numbers marked sequentially/ consecutively.
SCDs - Source Control Drawings. Typically user-generated drawings which require development of internal IC vendor sheets. Although each drawing may be slightly different, all will be modelled around MIL-M-38510, MIL-S-19500, MIL-STD-883, or MIL-STD-750.
SOURCE INSPECTION - Can be either Customer Source Inspection (CSI) or Government Source Inspection (GSI). Source Inspection is initiated via purchase order, and can typically occur at one or more points:

- Pre-cap Visual. Expensive and adds to throughput time.
- Final Inspection.

TRACEABILITY - A production and manufacturing control system which includes:

- Wafer run identification number.
- Date pre-cap visual inspection was performed, identity of inspector, and specification number and revision.
- Lot number and inspection history.
- QA Group A electrical results.

VARIABLE DATA - Read and recorded electrical measurements (parametric values). Usually required for pre- and post-burn-in electrical tests. Also common for Group C and D testing.

## Section 16 - Ordering and Marking Information

ORDERING INFORMATION
Device Family Prefixes
AD -Analog Devices Alternate Source
D -Driver/Level Translator IC
DG -Siliconix Analog Switch Alternate Source
DGM —Monolithic DG Analog Switch Replacement
ICL -Linear IC
ICM -Microperipheral IC
ICH —Hybrid IC
IM —Microcontroller IC
LH -National Semiconductor Hybrid Alternate Source
LM -National Semiconductor Alternate Source
MM —High Voltage Analog Switch
NE -Signetics Alternate Source
SE -Signetics Alternate Source
2N —Industry Standard Discrete Transistor
3N -Industry Standard Discrete Transistor
IT -Discrete Transistor
ITE —Discrete Transistor
J —Discrete Transistor
M —Discrete Transistor
NF -Discrete Transistor
P -Discrete Transistor
PN —Discrete Transistor
U —Discrete Transistor
VCR —Discrete Transistor
ID -Low Leakage Diodes
G -Siliconix Analog Gate Alternate Source
IH —Analog Switch Family
ADC -National Semiconductor A/D Alternate Source
$\mu \mathrm{a} \quad$-Fairchild Linear Alternate Source
Temperature Range Designators
C -Commercial: $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
1 -Industrial: Either $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ or $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Specified on Datasheet)
M -Military: $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

## Package Type Designators

A -TO-237
B -Small Outline IC (SOIC)
C -TO-220
D -Ceramic Dual-In-Line
E -Small TO-8
F -Ceramic Flat Pack
H -TO-66
I $\quad-16 \operatorname{Pin}(0.6 \times 0.7 \operatorname{Pin}$ Spacing $)$ Hermetic Hybrid Dip
J -CERDIP Dual-In-Line
K -TO-3
L —Leadless, Ceramic
P -Plastic Dual-In-Line
S $\quad$ TO-52
T -TO-5 Type
(Also TO-78, TO-99, TO-100)
U -TO-72 Type
(Also TO-18, TO-71)
$V$-TO-39
Z -TO-92

## EXCEPTIONS TO PACKAGE TYPE DESIGNATORS <br> DG \& DGM Series

A - 10 Pin Metal Can
L - 14 Pin Flatpack
P -Ceramic DIP (Special Order Only)
K -CERDIP
AD Series
H -TO-52
D -CERDIP Ceramic DIP
N -Epoxy DIP
R -TO-92

## ORDERING INFORMATION

Pin Count Designator

| A | 8 | P | 20 |
| :--- | :--- | :--- | :--- |
| B | 10 | Q | 2 |
| C | 12 | R | 3 |
| D | 14 | S | 4 |
| E | 16 | T | 6 |
| F | 22 | U | 7 |
| G | 24 | V | $8\left(0.200^{\prime \prime}\right.$ pin circle, isolated case $)$ |
| H | 42 |  |  |
| I | 28 | W | $10\left(0.230^{\prime \prime}\right.$ pin circle, isolated case $)$ |
| J | 32 |  |  |
| K | 35 | Y | $8\left(0.200^{\prime \prime}\right.$ pin circle, case to pin 4$)$ |
| L | 40 |  |  |
| M | 48 | Z | $10\left(0.230^{\prime \prime}\right.$ pin circle, case to pin 5$)$ |
| N | 18 |  |  |

## EXCEPTIONS TO PIN COUNT DESIGNATORS

DG \& DGM Series
A $\quad-10$ Pin Metal Can
L - 14 Pin Flatpack
P -Ceramic DIP (Special Order Only)
K -CERDIP

## AD Series

| D | $-20,18,16$ or 14 |
| :--- | :--- |
| H | -3 Pin |
| N | $-20,18,16$ or 14 |
| HIGH RELIABILITY DESIGNATOR |  |
| /883B | -MIL-STD-883B Screened Device |
| /HR | -High-Reliability Device |
| /BR | -Cost Effective High-Reliability Device |
| /BI | -Burn-in Only Process Flow |

ORDERING INFORMATION
Part Numbering System

All Intersil Part Numbers consist of a Device Family Prefix, a Basic Numeric Part Number, and an Option Suffix, as follows:


0424-1

## Part Number Systems Examples



## ORDERING INFORMATION

Part Number Systems Examples（Continued）


## Intersil Code and FSCM Number Information

CDPR — Letter Code for Intersil Assigned by the U．S．Government
32293－Intersil FSCM Number Assigned by the U．S．Government

## EVALUATION KITS

Product Description
Part Number

## Contents

| Power Amplifier Kits | ICH8510IEV/KIT ICH8520IEV/KIT | ICH8510i + Socket + Heat Sink ICH8520i + Socket + Heat Sink |
| :---: | :---: | :---: |
| 31⁄2 Digit LCD Panel Meter Kit | ICL7106EV/KIT | ICL7106 + PC Card + All Passive Components |
| 31⁄2 Digit LED Panel Meter Kit | ICL7107EV/KIT | ICL7107 + PC Card + All Passive Components |
| 3½ Digit Low Power LCD Panel Meter Kit | ICL7126EV/KIT | ICL7126 + PC Card + All Passive Components |
| 41⁄2 Digit A/D Converter Kit | ICL7129EV/KIT | ICL7129 + 41⁄2 Digit LCD Display + ICL8069 + PC Card + Active, Passive Components |
| 41⁄2 Digit LCD Display Driver Kit | ICM7211EV/KIT | ICM7211 + 4½ Digit LCD Display + PC Card + Active, Passive Components |
| 8 Character Multiplexed LCD Display Driver Kit | ICM7233AEV/KIT | 2 of ICM7233A + PC Card + 8 Character Triplexed LCD Display |
| 8 Character Multiplexed LED Display Driver Kit | ICM7243BEV/KIT | ICM7243B + PC Card + 8 Character LED |
| 41⁄2 Digit LCD Display Counter Kit | ICL7224EV/KIT | ICM7224 + ICM7207A + 5.24288MHz Crystal + 4½ Digit LCD Display + PC Card + Passive Components |
| 41⁄2 Digit LED Display Counter Kit | ICM7225EV/KIT | ICM7225 + ICM7207A + 5.24288MHz Crystal + 41/2 Digit LED Display + PC Card + Passive Components |
| Touch Tone Encoder |  |  |
| One contact per key | ICM7206EV/KIT | ICM7206+3.579545MHz Crystal |
| Two contacts per key, common to positive supply | ICM7206AEV/KIT | ICM7206A + 3.579545MHz Crystal |
| Common to negative supply, oscillator enabled when key depressed | ICM7206BEV/KIT | ICM7206B +3.579545 MHz Crystal |
| 8 Digit Frequency/Period Counter |  |  |
| 5 Function | ICM7226AEV/KIT | ICM7226A + 10MHz Crystal + PC Card + LEDs + All Passive Components |

## APPLICATION NOTE SUMMARY

The following are brief descriptions of current Intersil Application notes.

## A003 UNDERSTANDING AND APPLYING THE ANALOG SWITCH

Introduces analog switches and compares them to relays. Describes CMOS, hybrid (FET+driver), JFET "virtual ground" and J-FET "positive signal" types. Application information included.
A004 IH5009 LOW COST ANALOG SWITCH SERIES Compares the members of the HH 5009 "virtual ground" analog switches and provides suggested applications.
A005 THE 8007 - A HIGH PERFORMANCE FET INPUT OP AMP
Compares the 8007 with the 741, which is pin compatible and suggests applications such as logantilog amplifier, sample and hold circuit, photometer, peak detector, etc.
A007 USING THE 8048/8049 MONOLITHIC LOG-ANTILOG AMPLIFIER
Describes in detail the operation of the 8048 logarithmetic amplifier, and its counterpart, the 8049 antilog amp.
A011 A PRECISION FOUR QUADRANT MULTIPLIER THE 8013
Describes, in detail, the operation of the 8013 analog multiplier. Included are multiplication, division, and square root applications.
A013 EVERYTHING YOU ALWAYS WANTED TO KNOW ABOUT THE 8038
This note includes 17 of the most asked questions regarding the use of the 8038.
A015 DESIGN FOR A BATTERY OPERATED FREQUENCY COUNTER
Describes a low cost battery operated frequency/ period counter using the 7207A and 7208. Includes specifications, schematics, PC layout, etc.
A016 SELECTING A/D CONVERTERS
Describes the differences between integrating converters and successive approximation converters. Includes a checklist for decision making, and a note on multiplexed data systems.
A017 THE INTEGRATING A/D CONVERTER
Provides an explanation of integrating A/D converters, together with a detailed error analysis.
A018 DO'S AND DONT'S OF APPLYING A/D CONVERTERS
An analysis of proper design techniques using D/A converters.
A019 4½ DIGIT PANEL METER DEMONSTRATION/INSTRUMENTATION BOARDS
Describes two typical PC board layouts using the 8052A/7103A 4½ digit A/D pair. Includes schematics, parts layout, list of materials, etc. Also see A028.

A020 A COOKBOOK APPROACH TO HIGH SPEED DATA ACQUISITION AND MICROPROCESSOR INTERFACING
Uses the building block approach to design a complete 12 volt system. Explains the significance of each component and demonstrates methods for microprocessor interfacing, including the use of control signals.
A021 POWER D/A CONVERTERS USING THE ICH 8510 Detailed analysis of the 8510. Included are a section describing the linearity of the device and application notes for driving servo motors, linear and rotary actuators, etc. Also see A026.
A022 A NEW J-FET STRUCTURE - THE VARAFET Describes in detail the operation of the varafet, a standard J-FET with the analog gate interfacing components monolithically built-in.
A023 LOW COST DIGITAL PANEL METER DESIGNS Provides a detailed explanation of the 7106 and $710731 / 2$ digit panel meter IC's, and describes two of the evaluation kits available from Intersil.
A026 DC SERVO MOTOR SYSTEMS USING THE ICH8510
This companion note to A021 explains the design techniques utilized in using the ICH8510 family to drive closed loop servo motor systems.
A027 POWER SUPPLY DESIGN USING THE ICL8211 AND ICL8212
Explains the operation of the ICL8211/12 and describes various power supply configurations. Included are positive and negative voltage regulators, constant current source, programmable current source, current limiting, voltage crowbarring, power supply window detector, etc.
A028 BUILDING AN AUTO RANGING DMM WITH THE ICL7103A/8052A CONVERTER PAIR
This companion app note to A019 explains the use of the 8052A/7103A converter pair to build a $\pm 41 / 2$ digit auto ranging digital multimeter. Included are schematics, circuit descriptions, tips and hints, etc.
A029 POWER OP AMP HEAT SINK KIT
Describes the heat sinks for the ICH8510 family. These heat sinks may be ordered from the factory.
A030 THE ICL7104: A BINARY OUTPUT A/D CONVERTER FOR MICROPROCESSORS
Describes in detail the operation of the 7104. Includes in digital interfacing, handshake mode, buffer gain, auto-zero and external zero. Appendix includes detailed discussion of auto-zero loop residual errors in dual slope A/D conversion.
A031 COIL DRIVE ALARM DESIGN CONSIDERATIONS Explains the procedure used when using watch circuits to drive piezoelectric transducers.
A032 UNDERSTANDING THE AUTO-ZERO AND COMMON MODE PERFORMANCE OF THE ICL7106/ 7107/7109 FAMILY
Explains in detail the operation of the ICL7106/7/9 family of A/D Converters.

A046 BUILDING A BATTERY OPERATED AUTO RANGING DVM WITH THE ICL7106
Explains principles of auto ranging, problems and solutions. Includes clock circuits, power supply requirements, design hints, schematics, etc.
A047 GAMES PEOPLE PLAY WITH A/D CONVERTERS Describes 25 different integrating A/D converter applications. Input circuits, conversion modifications, display and microprocessor interfaces are shown in detail.
A050 USING THE IT500 FAMILY TO IMPROVE THE INPUT BIAS CURRENT OF BIFET OP AMPS
A brief description of a preamplifier for BIFET OP AMPS.
A051 PRINCIPLES AND APPLICATIONS OF THE ICL7660 CMOS VOLTAGE CONVERTER Describes internal operation of the ICL7660. Includes a wide range of possible applications.

A052 TIPS FOR USING SINGLE CHIP $31 / 2$ DIGIT A/D CONVERTERS
Answers frequently asked questions regarding the operation of $31 / 2$ digit single chip A/D converters. Included are sections on power supplies, displays, timing and component selection.
A053 THE ICL7650 A NEW ERA IN GLITCH-FREE CHOPPER STABILIZER AMPLIFIERS
A brief discussion of the internal operation of the ICL7650, followed by an extensive applications section including amplifiers, comparators, log-amps, pre-amps, etc.
A054 DISPLAY DRIVER FAMILY COMBINES CONVENIENCE OF USE WITH MICROPROCESSOR INTERFACEABILITY
Compares and describes the various display drivers. Includes design examples for 7 segment, Alpha-numeric, and bargraph systems.

PACKAGE OUTLINES All dimensions given in inches and (millimeters).


SQ* denotes a two lead package; center lead missing.

PACKAGE OUTLINES
All dimensions given in inches and (millimeters).


TO-92

PACKAGE OUTLINES
All dimensions given in inches and (millimeters).


TO-92 with ICO Mil Leads Spacings Add (-2) to Standard Part Number


TO-92 Lead Form to TO-5 Pin Circle Add ( -5 ) Suffix to Standard Part Number


TO-92 TO-92 Lead Form to TO-18 Pin Circle Add (-18) Suffix to Standard Part Number

TO-92 TAPING SPECIFICATIONS AND WINDING STYLES


ORDERING INFORMATION
TO-92 Standard Lead Forms

Lead Form
TO-18 Pin Circle
Suffix
-18
-5
TO-5 Pin Circle
100-Mil Leads Spacing

## Typical Quantities

1800 Units Per Reel 3000 Units Per Ammo Box

TO-92 Taping Specifications and Winding Styles

| Style | Packaging | Suffix |
| :---: | :---: | :---: |
| A | Reel | - TA |
| B | Reel | - TB |
| C | Reel | - TC |
| D | Reel | $-T D$ |
| E | Reel | - TE |
| F | Reel | - TF |
| G | Reel | - TG |
| H | Reel | - TH |
| P | Ammo Box | - TP |
| M | Ammo Box | $-T M$ |

PACKAGE OUTLINES All dimensions given in inches and (millimeters).


PACKAGE OUTLINES All dimensions given in inches and (millimeters).


TO-100 (TW, TX)


PACKAGE OUTLINES All dimensions given in inches and (millimeters).


PACKAGE OUTLINES All dimensions given in inches and (millimeters).


PACKAGE OUTLINES
All dimensions given in inches and (millimeters).


PACKAGE OUTLINES All dimensions given in inches and (millimeters).


16 LEAD CERAMIC (DE)

PACKAGE OUTLINES All dimensions given in inches and (millimeters).


PACKAGE OUTLINES All dimensions given in inches and (millimeters).


16 LEAD FLATPACK (FE-1)


PACKAGE OUTLINES All dimensions given in inches and (millimeters).


PACKAGE OUTLINES
All dimensions given in inches and (millimeters).


18 LEAD FLATPACK (FN-2)

PACKAGE OUTLINES All dimensions given in inches and (millimeters).


PACKAGE OUTLINES
All dimensions given in inches and (millimeters).


PACKAGE OUTLINES All dimensions given in inches and (millimeters).



PACKAGE OUTLINES All dimensions given in inches and (millimeters).


PACKAGE OUTLINES All dimensions given in inches and (millimeters).


## PACKAGE OUTLINES All dimensions given in inches and (millimeters).



PACKAGE OUTLINES All dimensions given in inches and (millimeters).


PACKAGE OUTLINES All dimensions given in inches and (millimeters).


28 LEAD CERDIP (JI)


PACKAGE OUTLINES All dimensions given in inches and (millimeters).


PACKAGE OUTLINES All dimensions given in inches and (millimeters).


PACKAGE OUTLINES All dimensions given in inches and (millimeters).


NOTE 1: Finish: Gold plated 60 micro inches minimum thickness over nickel plated.
2: Pin number 1 connected to die attach pad ground.
40 PIN LEADLESS CHIP CARRIER (LL)

PACKAGE OUTLINES All dimensions given in inches and (millimeters).


PACKAGE OUTLINES All dimensions given in inches and (millimeters).


PACKAGE OUTLINES All dimensions given in inches and (millimeters).


PACKAGE OUTLINES All dimensions given in inches and (millimeters).


## Anything's possible with Great Engineering

## Intersil, Inc.

10600 Ridgeview Court
Cupertino, CA 95014


[^0]:    *Also available as JAN/JANTX \& JANTXV
    **Most TO-92's are available lead formed to a TO-18 or TO-5 pinout. Also available in tape and reel (EIA STD RS-468).

[^1]:    *Also available as JAN/JANTX \& JANTXV
    **Most TO-92's are available lead formed to a TO-18 or TO-5 pinout. Also available in tape and reel (EIA STD RS-468).

[^2]:    *"Most TO-92's are available lead formed to a TO-18 or TO-5 pinout. Also available in tape and reel (EIA STD RS-468).

[^3]:    *"Most TO-92's are available lead formed to a TO-18 or TO-5 pinout. Also available in tape and reel (EIA STD RS-468).

[^4]:    *(@1DSS

[^5]:    - These counters will measure frequency when used with the ICM7207 ( 0.01 and 0.1 second timebase) or the ICM7207A ( 0.1 and 1.0 second timebase)

[^6]:    intersil's sole and exclusive warranty obligation with respect to this product shall be that stated in the warranty article of the condition of sale. the warranty shall be exclusive and shall be in lieu of all other warranties, express, implied or statutory, including the mplied warranties of MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

[^7]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE the warranty shall be exclusive and shall be in lieu of all other warranties, express, implied or statutory, ingluding the implied warranties of MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.
    NOTE: All typical values have been characterized but are not tested.

[^8]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.
    NOTE: All typical values have been characterized but are not tested.

[^9]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

[^10]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

[^11]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

[^12]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.
    NOTE: All typical values have been characterized but are not tested.

[^13]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INGLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.
    NOTE: All typical values have been characterized but are not tested.

[^14]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

[^15]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

[^16]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. the warranty shall be exclusive and shall be in lieu of all other warranties, express, implied or statutory, including the implied warranties of MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

    NOTE: All typical values have been characterized but are not tested.

[^17]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

    NOTE: All typical values have been characterized but are not tested.

[^18]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. the warranty shall be exclusive and shall be in lieu of all other warranties, express, implied or statutory, including the impled warranties of MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

[^19]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

    NOTE: All typical values have been characterized but are not tested.

[^20]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

    NOTE: All typical values have been characterized but are not tested.

[^21]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

[^22]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

    NOTE: All typical values have been characterized but are not tested.

[^23]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

[^24]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

    NOTE: All typical values have been characterized but are not tested.

[^25]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

    NOTE: All typical values have been characterized but are not tested.

[^26]:    intersil's sole and exclusive warranty obligation with respect to this proiuct shall be that stated in the warranty article of the condition of sale. the warranty shall be exclusive and shall be in lieu of all other warranties, express, implied or statutory, including the mplied warranties of MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

[^27]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.
    NOTE: All typical values have been characterized but are not tested.

[^28]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. the warranty shall be exclusive and shall be in lieu of all other warranties, express, implied or statutory, including the impled warranties of MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

    NOTE: All typical values have been characterized but are not tested.

[^29]:    NTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

[^30]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE

[^31]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

[^32]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.
    NOTE: All typical values have been characterized but are not tested.

[^33]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. the warranty shall be exclusive and shall be in lieu of all other warranties, express, implied or statutory, including the implied warranties of MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.
    NOTE: All typical values have been characterized but are not tested.

[^34]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. the warranty shall be exclusive and shall be in lieu of all other warranties, express, implied or statutory, including the implied warranties of MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

    NOTE: All typical values have been characterized but are not tested.

[^35]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

    NOTE: All typical values have been characterized but are not tested.

[^36]:    INTERSIL＇S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE． THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES，EXPRESS，IMPLIED OR STATUTORY，INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE．

    NOTE：All typical values have been characterized but are not tested．

[^37]:    *Values depend on clock frequency. See Figures 11, 12, 13.

[^38]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL. BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.
    NOTE: All typical values have been characterized but are not tested.

[^39]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.
    NOTE: All typical values have been characterized but are not tested.

[^40]:    NTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE

[^41]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. the warranty shall be exclusive and shall be in lieu of all other warranties, express, implied or statutory, including the implied warranties of MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

[^42]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

    NOTE: All typical values have been characterized but are not tested.

[^43]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

    NOTE: All typical values have been characterized but are not tested.

[^44]:    *Values depend on clock frequency. See Figures 10, 11, and 12.
    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL be EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.
    NOTE: All typical values have been characterized but are not tested.

[^45]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.
    NOTE: All typical values have been characterized but are not tested.

[^46]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

[^47]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.
    NOTE: All typical values have been characterized but are not tested.

[^48]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. the warranty shall be exclusive and shall be in lieu of all other warranties, express, implied or statutory, including the implied warranties of MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

    NOTE: All typical values have been characterized but are not tested.

[^49]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY ObLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

    NOTE: All typical values have been characterized but are not tested.

[^50]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.
    NOTE: All typical values have been characterized but are not tested.

[^51]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.
    NOTE: All typical values have been characterized but are not tested.

[^52]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE the warranty shall be exclusive and shall be in lieu of all other warranties, express, implied or statutory, including the implied warranties of MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

    NOTE: All typical values have been characterized but are not tested.

[^53]:    *Consult Factory for Details

[^54]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

    NOTE: All typical values have been characterized but are not tested.

[^55]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

    NOTE: All typical values have been characterized but are not tested.

[^56]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

[^57]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INGLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.
    NOTE: All typical values have been characterized but are not tested.

[^58]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

    NOTE: All typical values have been characterized but are not tested.

[^59]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.
    NOTE: All typical values have been characterized but are not tested.

[^60]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE the warranty shall be exclusive and shall be in lieu of all other warranties, express, implied or statutory, including the implied warranties of MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.
    NOTE: All typical values have been characterized but are not tested.

[^61]:    NTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE

[^62]:    *Consult factory for details.

[^63]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.
    NOTE: All typical values have been characterized but are not tested.

[^64]:    intersil's sole and exclusive warranty obligation with respect to this product shall be that stated in the warranty article of the condition of sale. the warranty shall be exclusive and shall be in lieu of all other warranties, express, mplied or statutory, including the implied warranties of MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

    NOTE: All typical values have been characterized but are not tested.

[^65]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. the warranty shall be exclusive and shall be in lieu of all other warranties, express, implied or statutory, including the impled warranties of MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

[^66]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. the warranty shall be exclusive and shall be in lieu of all other warranties, express, implied or statutory, including the implied warranties of MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE

[^67]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

    NOTE: All typical values have been characterized but are not tested.

[^68]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL be THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL be exclusive and shall be in lieu of all other warranties, express, implied or statutory, including the impled warranties of MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

    NOTE: All typical values have been characterized but are not tested.

[^69]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

    NOTE: All typical values have been characterized but are not tested.

[^70]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

[^71]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.
    NOTE: All typical values have been characterized but are not tested

[^72]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. the warranty shall be exclusive and shall be in lieu of all other warranties, express, implied or statutory, including the implied warranties of MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

[^73]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

    NOTE: All typical values have been characterized but are not tested.

[^74]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

    NOTE: All typical values have been characterized but are not tested.

[^75]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

    NOTE: All typical values have been characterized but are not tested.

[^76]:    INTERSIL＇S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE． the warranty shall be exclusive and shall be in lieu of all other warranties，express，implied or statutory，including the implied warranties of MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE．

[^77]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

[^78]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

    NOTE: All typical values have been characterized but are not tested.

[^79]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. the warranty shall be exclusive and shall be in lieu of all other warranties, express, implied or statutory, including the implied warranties of MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.
    NOTE: All typical values have been characterized but are not tested.

[^80]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. the warranty shall be exclusive and shall be in lieu of all other warranties, express, implied or statutory, including the implied warranties of MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

[^81]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

[^82]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. the warranty shall be exclusive and shall be in lieu of all other warranties, express, implied or statutory, including the implied warranties of MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

    NOTE: All typical values have been characterized but are not tested.

[^83]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

    NOTE: All typical values have been characterized but are not tested.

[^84]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE.

[^85]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.
    NOTE: All typical values have been characterized but are not tested.

[^86]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.
    NOTE: All typical values have been characterized but are not tested.

[^87]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

    301655-003

[^88]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

    NOTE: All typical values have been characterized but are not tested.

[^89]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

[^90]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.
    NOTE: All typical values have been characterized but are not tested.

[^91]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.
    NOTE: All typical values have been characterized but are not tested.

[^92]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

    NOTE: All typical values have been characterized but are not tested.

[^93]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

[^94]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.
    NOTE: All typical values have been characterized but are not tested.

[^95]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

    NOTE: All typical values have been characterized but are not tested.

[^96]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. the warranty shall be exclusive and shall be in lieu of all other warranties, express, implied or statutory, including the impled warranties of MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

    NOTE: All typical values have been characterized but are not tested.

[^97]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. the warranty shall be exclusive and shall be in lieu of all other warranties, express, implied or statutory, including the implied warranties of MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

[^98]:    NTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

[^99]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.
    NOTE: All typical values have been characterized but are not tested.

[^100]:    intersil's sole and exclusive warranty obligation with respect to this product shall be that stated in the warranty article of the condition of sale. the warranty shall be exclusive and shall be in lieu of all other warranties, express, implied or statutory, including the implied warranties of MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.
    NOTE: All typical values have been characterized but are not tested.

[^101]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

    NOTE: All typical values have been characterized but are not tested.

[^102]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

    NOTE: All typical values have been characterized but are not tested.

[^103]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.
    NOTE: All typical values have been characterized but are not tested.

[^104]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

    NOTE: All typical values have been characterized but are not tested.

[^105]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. the warranty shall be exclusive and shall be in lieu of all other warranties, express, implied or statutory, including the implied warranties of MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

[^106]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

    NOTE: All typical values have been characterized but are not tested.

[^107]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. the warranty shall be exclusive and shall be in lieu of all other warranties, express, implied or statutory, including the implied warranties of MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

    NOTE: All typical values have been characterized but are not tested.

[^108]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

[^109]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. the warranty shall be exclusive and shall be in lieu of all other warranties, express, implied or statutory, including the implied warranties of MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

    NOTE: All typical values have been characterized but are not tested.

[^110]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

    NOTE: All typical values have been characterized but are not tested.

[^111]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

    NOTE: All typical values have been characterized but are not tested.

[^112]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.
    NOTE: All typical values have been characterized but are not tested.

[^113]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. the warranty shall be exclusive and shall be in lieu of all other warranties, express, implied or statutory, including the implied warranties of MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.
    NOTE: All typical values have been characterized but are not tested.

[^114]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

[^115]:    NTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.
    NOTE: All typical values have been characterized but are not tested.

[^116]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

    NOTE: All typical values have been characterized but are not tested.

[^117]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

    NOTE: All typical values have been characterized but are not tested.

[^118]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

[^119]:    NTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. the warranty shall be exclusive and shall be in lieu of all other warranties, express, implied or statutory, including the implied warranties of MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE

[^120]:    NTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.
    NOTE: All typical values have been characterized but are not tested.

[^121]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.
    NOTE: All typical values have been characterized but are not tested.

[^122]:    intersil's sole and exclusive warranty obligation with respect to this product shall be that stated in the warranty article of the condition of sale. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

    NOTE: All typical values have been characterized but are not tested.

[^123]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE

    NOTE: All typical values have been characterized but are not tested.

[^124]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. the warranty shall be exclusive and shall be in lieu of all other warranties, express, implied or statutory, including the implied warranties of MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

    NOTE: All typical values have been characterized but are not tested.

[^125]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

    NOTE: All typical values have been characterized but are not tested.

[^126]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.
    NOTE: All typical values have been characterized but are not tested.

[^127]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

[^128]:    NTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

    NOTE: All typical values have been characterized but are not tested.

[^129]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE

[^130]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

[^131]:    ABSOLUTE MAXIMUM RATINGS
    (Note 1)
    Supply Voltage $\mathrm{V}^{+}$to DGND . . . . . . . . . . . . . . -0.3 V to 7.5 V
    $\mathrm{V}_{\text {REF }}$, R $_{\text {OFS }}, R_{\text {INV }}, \mathrm{R}_{\text {FB }}$ to DGND . .................... $\pm 25 \mathrm{~V}$
    Current in AGND ${ }_{F}$, AGND . . . . . . . . . . . . . . . . . . . . . . . . 25 mA
    $\mathrm{D}_{\mathrm{N}}, \overline{\mathrm{WR}}, \overline{\mathrm{CS}}, \mathrm{PROG}$, IOUT,
    
    Operating Temperature
    ICL7121C . $.0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
    ICL7121M $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

    Storage Temperature $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
    Power Dissipation (Note 2) .500 mW derate above $70^{\circ} \mathrm{C} @ 10 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
    Lead Temperature (soldering, 10 sec )
    $.300^{\circ} \mathrm{C}$
    NOTE 1: All voltages with respect to DGND.
    2: Assumes all leads soldered or welded to printed circuit board.
    NOTE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

[^132]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

    NOTE: All typical values have been characterized but are not tested.

[^133]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

[^134]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. the warranty shall be exclusive and shall be in lieu of all other warranties, express, implied or statutory, including the implied warranties of MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

[^135]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

[^136]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.
    NOTE: All typical values have been characterized but are not tested.

[^137]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.
    NOTE: All typical values have been characterized but are not tested.

[^138]:    NTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

    NOTE: All typical values have been characterized but are not tested.

[^139]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL. BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.
    NOTE: All typical values have been charecterized but are not tested.

[^140]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY Obligation With respect TO THis product Shall be that stated in the warranty article of the condition of sale. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.
    NOTE: All typical values have been characterized but are not tested.

[^141]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

    NOTE: All typical values have been characterized but are not tested.

[^142]:    NTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.
    NOTE: All typical values have been characterized but are not tested.

[^143]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

    NOTE: All typical values have been characterized but are not tested.

[^144]:    intersil's sole and exclusive warranty obligation with respect to this product shall be that stated in the warranty article of the condition of sale. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABLLITY AND FITNESS FOR A PARTICULAR USE.

    302063-004

[^145]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.
    NOTE: All typical values have been characterized but are not tested.

[^146]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

    NOTE: All typical values have been characterized but are not tested.

[^147]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

[^148]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

[^149]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. the warranty shall be exclusive and shall be in lieu of all other warranties, express, implied or statutory, including the implied warranties of MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

[^150]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

[^151]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.
    NOTE: All typical values have been characterized but are not tested.

[^152]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

[^153]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. the warranty shall be exclusive and shall be in lieu of all other warranties, express, implied or statutory, including the implied warranties of MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.
    NOTE: All typical values have been characterized but are not tested.

[^154]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.
    NOTE: All typical values have been characterized but are not tested.

[^155]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

    NOTE: All typical values have been characterized but are not tested.

[^156]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

[^157]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

[^158]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

    NOTE: All typical values have been characterized but are not tested.

[^159]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.
    NOTE: All typical values have been characterized but are not tested.

[^160]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

[^161]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. the warranty shall be exclusive and shall be in lieu of all other warranties, express, implied or statutory, including the implied warranties of MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.
    NOTE: All typical values have been characterized but are not tested.

[^162]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.
    NOTE: All typical values have been characterized but are not tested.

[^163]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. the warranty shall be exclusive and shall be in lieu of all other warranties, express, implied or statutory, including the implied warranties of MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.
    NOTE: All typical values have been characterized but are not tested.

[^164]:    intersil's sole and exclusive warranty obligation with respect to this product shall be that stated in the warranty article of the condition of sale. the warranty shall be exclusive and shall be in lieu of all other warranties, express, implied or statutory, including the implied warranties of MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

[^165]:    NTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

[^166]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

    NOTE: All typical values have been characterized but are not tested.

[^167]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. the warranty shali be exclusive and shall be in lieu of all other warranties, express, implied or statutory, including the implied warranties of MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

    NOTE: All typical values have been characterized but are not tested.

[^168]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY ObLIGATION WITH RESPECT TO THIS PRODUCT SHALL be THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. the warranty shall be exclusive and shall be in lieu of all other warranties, express, implied or statutory, including the impled warranties of MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

    NOTE: All typical values have been characterized but are not tested.

[^169]:    NTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.
    NOTE: All typical values have been characterized but are not tested.

[^170]:    intersil's sole and exclusive warranty obligation with respect to this product shall be that stated in the warranty article of the condition of sale. the warranty shall be exclusive and shall be in lieu of all other warranties, express, implied or statutory, including the implied warranties of MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

[^171]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE

    NOTE: All typical values have been characterized but are not tested.

[^172]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.
    NOTE: All typical values have been characterized but are not tested.

[^173]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

[^174]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

    NOTE: All typical values have been characterized but are not tested.

[^175]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. the warranty shall be exclusive and shall be in lieu of all other warranties, express, implied or statutory, including the implied warranties of MERCHANTABIIITY AND FITNESS FOR A PARTICULAR USE.
    NOTE: All typical values have been characterized but are not tested.

[^176]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

    NOTE: All typical values have been characterized but are not tested.

[^177]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

    302070-004

[^178]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

[^179]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.
    NOTE: All typical values have been characterized but are not tested.

[^180]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

    NOTE: All typical values have been characterized but are not tested.

[^181]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. the warranty shall be exclusive and shall be in lieu of all other warranties, express, implied or statutory, including the implied warranties of MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

[^182]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.
    NOTE: All typical values have been characterized but are not tested.

[^183]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

    NOTE: All typical values have been characterized but are not tested.

[^184]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE.
    THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.
    NOTE: All typical values have been characterized but are not tested.

[^185]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE the warranty shall be exclusive and shall be in lieu of all other warranties, express, implied or statutory, including the implied warranties of MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.
    NOTE: All typical values have been characterized but are not tested.

[^186]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

    NOTE: All typical values have been characterized but are not tested.

[^187]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

[^188]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE

    NOTE: All typical values have been characterized but are not tested.

[^189]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE.
    THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.
    NOTE: All typical values have been characterized but are not tested.

[^190]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL. BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

    NOTE: All typical values have been characterized but are not tested.

[^191]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.
    NOTE: All typical values have been characterized but are not tested.

[^192]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

    NOTE: All typical values have been characterized but are not tested.

[^193]:    INTERSIL＇S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE． the warranty shall be exclusive and shall be in lieu of all other warranties，express，implied or statutory，including the mplied warranties of MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE．

[^194]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INGLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

    NOTE: All typical values have been characterized but are not tested.

[^195]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

[^196]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

[^197]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

[^198]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.
    NOTE: All typical values have been characterized but are not tested.

[^199]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

[^200]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

    NOTE: All typical values have been characterized but are not tested.

[^201]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE.
    THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.
    NOTE: All typical values have been characterized but are not tested.

[^202]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

    NOTE: All typical values have been characterized but are not tested.

[^203]:    NTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

    NOTE: All typical values have been characterized but are not tested.

[^204]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

[^205]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

    NOTE: All typical values have been characterized but are not tested.

[^206]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

[^207]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

[^208]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

    NOTE: All typical values have been characterized but are not tested.

[^209]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

[^210]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

    NOTE: All typical values have been characterized but are not tested.

[^211]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. the warranty shall be exclusive and shall be in lieu of all other warranties, express, implied or statutory, including the implied warranties of MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

    NOTE: All typical values have been characterized but are not tested.

[^212]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. the warranty shall be exclusive and shall be in lieu of all other warranties, express, implied or statutory, including the implied warranties of MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.
    NOTE: All typical values have been characterized but are not tested.

[^213]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

    NOTE: All typical values have been characterized but are not tested.

[^214]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

    NOTE: All typical values have been characterized but are not tested.

[^215]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

[^216]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.
    NOTE: All typical values have been characterized but are not tested.

[^217]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.
    NOTE: All typical values have been characterized but are not tested.

[^218]:    INTERSIL＇S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE． THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES，EXPRESS，IMPLIED OR STATUTORY，INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE．

[^219]:    NTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

    NOTE: All typical values have been characterized but are not tested.

[^220]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

    NOTE: All typical values have been characterized but are not tested.

[^221]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE

[^222]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

    NOTE: All typical values have been characterized but are not tested.

[^223]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

[^224]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.
    NOTE: All typical values have been characterized but are not tested.

[^225]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.
    NOTE: All typical values have been characterized but are not tested.

[^226]:    INTERSIL＇S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE． THE WARRANTY SHALL be exclusive and shall be in lieu of all other warranties，express，implied or statutory，including the implied warranties of MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE．
    NOTE：All typical values have been characterized but are not tested．

[^227]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. the warranty shall be exclusive and shall be in lieu of all other warranties, express, implied or statutory, including the implied warranties of MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.
    NOTE: All typical values have been characterized but are not tested.

[^228]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

[^229]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

    NOTE: All typical values have been characterized but are not tested.

[^230]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. the warranty shall be exclusive and shall be in lieu of all other warranties, express, implied or statutory, including the implied warranties of MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

[^231]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. the warranty shall be exclusive and shall be in lieu of all other warranties, express, implied or statutory, including the mplied warranties of MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE

    NOTE: All typical values have been characterized but are not tested.

[^232]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. the warranty shall be exclusive and shall be in lieu of all other warranties, express, implied or statutory, including the implied warranties of MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

[^233]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

    NOTE: All typical values have been characterized but are not tested.

[^234]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.
    NOTE: All typical values have been characterized but are not tested.

[^235]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

    NOTE: All typical values have been characterized but are not tested.

[^236]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE

[^237]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

[^238]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

[^239]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

    NOTE: All typical values have been characterized but are not tested.

[^240]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

    NOTE: All typical values have been characterized but are not tested.

[^241]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. the warranty shall be exclusive and shall be in lieu of all other warranties, express, implied or statutory, including the implied warranties of MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

    NOTE: All typical values have been characterized but are not tested.

[^242]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

[^243]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY ObLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INGLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.
    NOTE: All typical values have been characterized but are not tested.

[^244]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. the warranty shall be exclusive and shall be in lieu of all other warranties, express, implied or statutory, including the implied warranties of MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

[^245]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

    NOTE: All typical values have been characterized but are not tested.

[^246]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

    NOTE: All typical values have been characterized but are not tested.

[^247]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

    NOTE: All typical values have been characterized but are not tested.

[^248]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.
    NOTE: All typical values have been characterized but are not tested.

[^249]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. the warranty shall be exclusive and shall be in lieu of all other warranties, express, implied or statutory, including the implied warranties of MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

    NOTE: All typical values have been characterized but are not tested.

[^250]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INGLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.
    NOTE: All typical values have been characterized but are not tested.

[^251]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

[^252]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

[^253]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

    NOTE: All typical va/ues have been characterized but are not tested.

[^254]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

    NOTE: All typical values have been characterized but are not tested.

[^255]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

    NOTE: All typical values have been characterized but are not tested.

[^256]:    intersil's sole and exclusive warranty obligation with respect to this product shall be that stated in the warranty article of the condition of sale. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

[^257]:    *Add /88313 to Part Number if 883B processing is required.

[^258]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY ObLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. the warranty shall be exclusive and shall be in lieu of all other warranties, express, implied or statutory, including the implied warranties of MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.
    NOTE: All typical values have been characterized but are not tested.

[^259]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.
    NOTE: All typical values have been characterized but are not tested.

[^260]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

[^261]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.
    NOTE: All typical values have been characterized but are not tested.

[^262]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INGLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.
    NOTE: All typical values have been characterized but are not tested.

[^263]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

[^264]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.
    NOTE: All typical values have been characterized but are not tested.

[^265]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. the warranty shall be exclusive and shall be in lieu of all other warranties, express, implied or statutory, including the implied warranties of MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

[^266]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

    NOTE: All typical values have been characterized but are not tested.

[^267]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

[^268]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

[^269]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. the warranty shall be exclusive and shall be in lieu of all other warranties, express, implied or statutory, including the implied warranties of MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

    NOTE: All typical values have been characterized but are not tested.

[^270]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

    NOTE: All typical values have been characterized but are not tested.

[^271]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

    NOTE: All typical values have been characterized but are not tested.

[^272]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

[^273]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

    NOTE: All typical values have been characterized but are not tested.

[^274]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE

[^275]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

[^276]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

    NOTE: All typical values have been characterized but are not tested.

[^277]:    INTERSIL＇S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE． THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES，EXPRESS，IMPLIED OR STATUTORY，INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE．

    NOTE：A／l typical values have beon characterized but are not tested．

[^278]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

[^279]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. the warranty shall be exclusive and shall be in lieu of all other warranties, express, implied or statutory, including the implied warranties of MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

[^280]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.
    NOTE: All typical values have been characterized but are not tested.

[^281]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

[^282]:    INTERSIL＇S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE． THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES，EXPRESS，IMPLIED OR STATUTORY，INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE．
    NOTE：All typical values have been characterized but are not tested．

[^283]:    NTERSIL＇S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE． THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES，EXPRESS，IMPLIED OR STATUTORY，INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE

    NOTE：All typical values have been characterized but are not tested．

[^284]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.
    NOTE: All typical values have been characterized but are not tested.

[^285]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY Obligation With respect to this product Shall be that stated in the warranty article of the condition of sale. the warranty shall be exclusive and shall be in lieu of all other warranties, express, impled or statutory, including the implied warranties of MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.
    NOTE: All typical values heve been characterized but are not tested.

[^286]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

[^287]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. the warranty shall be exclusive and shall be in lieu of all other warranties, express, implied or statutory, including the implied warranties of MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

[^288]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

    NOTE: All typical values have been characterized but are not tested.

[^289]:    NOTE: (OFF) and (ON) subscript notation refers to the conduction state of the FET switch for the given test.

[^290]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. the warranty shall be exclusive and shall be in lieu of all other warranties, express, implied or statutory, including the implied warranties of MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE
    NOTE: All typical values have been characterized but are not tested.

[^291]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

[^292]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

    NOTE: All typical values have been characterized but are not tested.

[^293]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

    NOTE: All typical values have been characterized but are not tested.

[^294]:    Switch output waveform shown for $V_{S}=$ constant with logic input waveform as shown. Note that $V_{S}$ may be + or - as per switching time test circuit. $V_{O}$ is the steady state output with switch on. Feedthrough via gate capacitance may result in spikes at leading and trailing edge of output waveform.

[^295]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

    NOTE: All typical values have been characterized but are not tested.

[^296]:    INTERSIL＇S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE． THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE $\mathbb{N}$ LIEU OF ALL OTHER WARRANTIES，EXPRESS，IMPLIED OR STATUTORY，INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE．

    NOTE：All typical values have been characterized but are not tested．

[^297]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

[^298]:    INTERSIL＇S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE． THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES，EXPRESS，IMPLIED OR STATUTORY，INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE

[^299]:    NTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

[^300]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. the warranty shall be exclusive and shall be in lieu of all other warranties, express, implied or statutory, including the mplied warranties of MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE,

[^301]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

    NOTE: All typical values have been characterized but are not tested.

[^302]:    INTERSLL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL. OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

    NOTE: All typical values have been characterized but are not tested.

[^303]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

[^304]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.
    NOTE: All typical values have been characterized but are not tested.

[^305]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL. OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

[^306]:    NTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.
    NOTE: All typical va/ues have been characterized but are not tested.

[^307]:    INTERSIL＇S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE． the warranty shall be exclusive and shall be in lieu of all other warranties，express，implied or statutory，including the implied warranties of MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE．
    NOTE：All typical values have been characterized but are not tested．

[^308]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

[^309]:    Note: 1. See Switching State Diagrams for $\mathrm{V}_{\mathbb{I}}$ and $\mathrm{V}_{\mathbb{N}}$ "OFF" Test Conditions.
    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

[^310]:    INTERSIL＇S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE． THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES，EXPRESS，IMPLIED OR STATUTORY，INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE．

    NOTE：All typical values have been characterized but are not tested．

[^311]:    NTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

    NOTE: All typical values have been characterized but are not tested.

[^312]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

[^313]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.
    NOTE: All typical values have been characterized but are not tested.

[^314]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

[^315]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.
    NOTE: All typical values have been characterized but are not tested.

[^316]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.
    NOTE: Al/ typical values have been characterized but are not tested.

[^317]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LLIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

[^318]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.
    NOTE: All typical values have been characterized but are not tested.

[^319]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

    NOTE: All typical values have been characterized but are not tested.

[^320]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.
    NOTE: All typical values have been characterized but are not tested.

[^321]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

    NOTE: All typical values have been characterized but are not tested.

[^322]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE

[^323]:    NOTE 1: Typical values are for design aid only, not guaranteed and not subject to production testing.
    intersil's sole and exclusive warranty obligation with respect to this product shall be that stated in the warranty article of the condition of sale THE WARRANTY SHALL be EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.
    NOTE: All typical values have been characterized but are not tested.

[^324]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. the warranty shall be exclusive and shall be in lieu of all other warranties, express, implied or statutory, including the implied warranties of MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.
    NOTE: All typical values have been characterized but are not tested.

[^325]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. the warranty shall be exclusive and shall be in lieu of all other warranties, express, implied or statutory, including the implied warranties of MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

[^326]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.
    NOTE: Al/ typical values have been characterized but are not tested.

[^327]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.
    NOTE: All typical values have been characterized but are not tested.

[^328]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

    NOTE: All typical values have been characterized but are not tested.

[^329]:    intersil's sole and exclusive warranty obligation with respect to this product shall be that stated in the warranty article of the condition of sale. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.
    NOTE: All typical values have been characterized but are not tested.

[^330]:    NTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

    304300-003

[^331]:    intersil's sole and exclusive warranty obligation with respect to this product shall be that stated in the warranty article of the condition of sale. the warranty shall be exclusive and shall be in lieu of all other warranties, express, implied or statutory, including the implied warranties of MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.
    NOTE: All typical values have been characterized but are not tested.

[^332]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

    NOTE: All typical values have been characterized but are not tested.

[^333]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. the warranty shall be exclusive and shall be in lieu of all other warranties, express, implied or statutory, including the impled warranties of MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

    305528-003

[^334]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.
    NOTE: All typical values have been characterized but are not tested.

[^335]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

[^336]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

[^337]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

    NOTE: All typical values have been characterized but are not tested.

[^338]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. the warranty shall be exclusive and shall be in lieu of all other warranties, express, implied or statutory, including the implied warranties of MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

[^339]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

    NOTE: All typical values have been characterized but are not tested.

[^340]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

    304200-003

[^341]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.
    NOTE: All typical values have been characterized but are not tested.

[^342]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTIGLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

[^343]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.
    NOTE: All typical values have been characterized but are not tested.

[^344]:    NTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

[^345]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE

    NOTE: All typical values have been characterized but are not tested.

[^346]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

    NOTE: All typical values have been characterized but are not tested.

[^347]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.
    NOTE: All typical values have been characterized but are not tested.

[^348]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE

    NOTE: All typical values have been characterized but are not tested.

[^349]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

    NOTE: All typical values have been characterized but are not tested.

[^350]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

    NOTE: All typical values have been characterized but are not tested.

[^351]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

[^352]:    NTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

[^353]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

    NOTE: All typical values have been characterized but are not tested.

[^354]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

    NOTE: All typical values have been characterized but are not tested.

[^355]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE the warranty shall be exclusive and shall be in lieu of all other warranties, express, implied or statutory, including the implied warranties of MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.
    NOTE: All typical values have been characterized but are not tested.

[^356]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.
    NOTE: All typical values have been characterized but are not tested.

[^357]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

    NOTE: All typical values have been characterized but are not tested.

[^358]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

    NOTE: All typical values have been characterized but are not tested.

[^359]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. the warranty shall be exclusive and shall be in lieu of all other warranties, express, implied or statutory, including the impled warranties of MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

    NOTE: All typical values have been characterized but are not tested.

[^360]:    Logic "1" $=\mathrm{V}_{\mathrm{AH}}>2.4 \mathrm{~V} \mathrm{~V}_{\mathrm{ENH}}>2.4 \mathrm{~V}$
    Logic " 0 " $=\mathrm{V}_{\mathrm{AL}}<0.8 \mathrm{~V}$

[^361]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. the warranty shall be exclusive and shall be in lieu of all other warranties, express, implied or statutory, including the implied warranties of MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

[^362]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

    NOTE: All typical values have been characterized but are not tested.

[^363]:    NTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

[^364]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. the warranty shall be exclusive and shall be in lieu of all other warranties, express, implied or statutory, including the implied warranties of MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

[^365]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE.
    THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

    NOTE: All typical values have been characterized but are not tested.

[^366]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

    NOTE: All typical values have been characterized but are not tested.

[^367]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

[^368]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL bE THAT STATED IN THE WARRANTY article of the CONDITION OF SALE. the warranty shall be exclusive and shall be in lieu of all other warranties, express, implied or statutory, including the implied warranties of MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

[^369]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

    NOTE: All typical values have been characterized but are not tested.

[^370]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

    NOTE: All typical values have been characterized but are not tested.

[^371]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.
    NOTE: All typical values have been characterized but are not tested.

[^372]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

    NOTE: All typical values have been characterized but are not tested.

[^373]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

    NOTE: All typical values have been characterized but are not tested.

[^374]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.
    NOTE: All typical values have been characterized but are not tested.

[^375]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. the warranty shall be exclusive and shall be in lieu of all other warranties, express, implied or statutory, including the impled warranties of MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

    NOTE: All typical values have been characterized but are not tested.

[^376]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.
    NOTE: All typical values have been characterized but are not tested.

[^377]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTIGLE OF THE CONDITION OF SALE. the warranty shall be exclusive and shall be in lieu of all. other warranties, express, implied or statutory, including the implied warranties of MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.
    NOTE: All typical values have been characterized but are not tested.

[^378]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

[^379]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. the warranty shall be exclusive and shall be in lieu of all other warranties, express, implied or statutory, including the impled warranties of MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.
    NOTE: All typical values have been characterized but are not tested.

[^380]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.
    NOTE: All typical values have been characterized but are not tested.

[^381]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. the warranty shall be exclusive and shall be in lieu of all other warranties, express, implied or statutory, including the impled warranties of MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

[^382]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

[^383]:    INTERSiL'S SOLE AND EXCLUSIVE WARRANTY Obligation With respect to this product Shall be that stated in the warranty article of the condition of sale. the warranty shall be exclusive and shall be in lieu of all other warranties, express, implied or statutory, including the implied warranties of MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

[^384]:    intersil's sole and exclusive warranty obligation with respect to this product shall be that stated in the warranty article of the condition of sale. the warranty shall be exclusive and shall be in lieu of all other warranties, express, impled or statutory, including the implied warranties of MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

    NOTE: All typical values have been characterized but are not tested.

[^385]:    NOTES: 1. These parameters are measured during a 2 ms interval 100 ms after DC power is applied.
    2. For design reference only, not $100 \%$ tested.

[^386]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. the warranty shall be exclusive and shall be in lieu of all other warranties, express, implied or statutory, including the implied warranties of MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

    NOTE: All typical values have been characterized but are not tested.

[^387]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.
    NOTE: All typical values have been characterized but are not tested.

[^388]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE the warranty shall be exclusive and shall be in lieu of all other warranties, express, implied or statutory, including the implied warranties of MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

[^389]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. the warranty shall be exclusive and shall be in lieu of all other warranties, express, implied or statutory, including the implied warranties of MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

[^390]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE the warranty shall be exclusive and shall be in lieu of all other warranties, express, implied or statutory, including the implied warranties of MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.
    NOTE: All typical values have been characterized but are not tested.

[^391]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. the warranty shall be exclusive and shall be in lieu of all other warranties, express, implied or statutory, including the implied warranties of MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

[^392]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

    NOTE: All typical values have been characterized but are not tested.

[^393]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INGLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.
    NOTE: All typical values have been characterized but are not tested.

[^394]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

[^395]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

[^396]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

[^397]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.
    NOTE: All typical values have been characterized but are not tested.

[^398]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. the warranty shall be exclusive and shall be in lieu of all other warranties, express, implied or statutory, including the implied warranties of MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

[^399]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. the warranty shall be exclusive and shall be in lieu of all other warranties, express, implied or statutory, including the implied warranties of MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.
    NOTE: All typical values have been characterized but are not tested.

[^400]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. the warranty shall be exclusive and shall be in lieu of all other warranties, express, implied or statutory, including the implied warranties of MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

    NOTE: All typical values have been characterized but are not tested.

[^401]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. the warranty shall be exclusive and shall be in lieu of all other warranties, express, implied or statutory, including the implied warranties of MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.
    NOTE: All typical values have been characterized but are not tested.

[^402]:    INTERSIL＇S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE． THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES，EXPRESS，IMPLIED OR STATUTORY，INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE．

    NOTE：All typical values have been characterized but are not tested．

[^403]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

[^404]:    Intersil's sole and exclusive warranty obligation with respect to this product shall be that stated in the warranty article of the condition of sale. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

[^405]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.
    NOTE: All typical values have been characterized but are not tested.

[^406]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

[^407]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

[^408]:    NOTES: 1. Pulse test required. Pulse width $=300 \mu \mathrm{~s}$, duty cycle $\leq 3 \%$.

[^409]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

[^410]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

    NOTE: All typical values have been characterized but are not tested.

[^411]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.
    NOTE: All typical values have been characterized but are not tested.

[^412]:    INTERSIL'S SOLE AND EXCLUSIVE WARrANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. the warranty shall be exclusive and shall be in lieu of all other warranties, express, implied or statutory, including the implied warranties of MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

[^413]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

    NOTE: All typical values have been characterized but are not tested.

[^414]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. the warranty shall be exclusive and shall be in lieu of all other warranties, express, implied or statutory, including the implied warranties of MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

    NOTE: All typical values have been characterized but are not tested.

[^415]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY ObLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. the warranty shall be exclusive and shall be in lieu of all other warranties, express, implied or statutory, including the implied warranties of MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.
    NOTE: All typical values have been characterized but are not tested.

[^416]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

    NOTE: All typical values have been characterized but are not tested.

[^417]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

[^418]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. the warranty shall be exclusive and shall be in lieu of all other warranties, express, implied or statutory, including the implied warranties of MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

[^419]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

[^420]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

    NOTE: All typical values have been characterized but are not tested.

[^421]:    INTERSIL＇S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE． THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES，EXPRESS，IMPLIED OR STATUTORY，INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE

[^422]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. the warranty shall be exclusive and shall be in lieu of all other warranties, express, implied or statutory, including the implied warranties of MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.
    NOTE: A/I typical values have been characterized but are not iested.

[^423]:    NTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

    NOTE: All typical values have been characterized but are not tested.

[^424]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.
    NOTE: All typical values have been characterized but are not tosted.

[^425]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. the warranty shall be exclusive and shall be in lieu of all other warranties, express, implied or statutory, including the implied warranties of MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

    NOTE: All typical values have been characterized but are not tested.

[^426]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

    NOTE: All typical values have been characterized but are not tested.

[^427]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.
    NOTE: All typical vaiues have been characterized but are not tested.

[^428]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

[^429]:    INTERSIL＇S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE． THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES，EXPRESS，IMPLIED OR STATUTORY，INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE．

[^430]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

[^431]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

[^432]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. the warranty shall be exclusive and shall be in lieu of all other warranties, express, mplied or statutory, including the implied warranties of MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

[^433]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY ObLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE the warranty shall be exclusive and shall be in lieu of all other warranties, express, implied or statutory, including the implied warranties of MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

[^434]:    NOTE 1: For design reference only, not $100 \%$ tested.

[^435]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. the warranty shall be exclusive and shall be in lieu of all other warranties, express; implied or statutory, including the implied warranties of MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

[^436]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

[^437]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.
    NOTE: All typical values have been characterized but are not tested.

[^438]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. the warranty shall be exclusive and shall be in lieu of all other warranties, express, implied or statutory, including the implied warranties of MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

    NOTE: All typical values have been characterized but are not tested.

[^439]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. the warranty shall be exclusive and shall be in lieu of all other warranties, express, mplied or statutory, including the implied warranties of MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

[^440]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

    NOTE: All typical values have been characterized but are not tested.

[^441]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. the warranty shall be exclusive and shall be in lieu of all other warranties, express, implied or statutory, including the implied warranties of MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.
    NOTE: Al/ typical values have been characterized but are not tested.

[^442]:    NOTES: 1. Pulse test pulsewidth $=300 \mu \mathrm{~s}$; duty cycle $<3 \%$.

[^443]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. the warranty shall be exclusive and shall be in lieu of all other warranties, express, mplied or statutory, including the implied warranties of MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

[^444]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

    NOTE: All typical values have been characterized but are not tested.

[^445]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

[^446]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

    NOTE: All typical values have been characterized but are not tested.

[^447]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE the warranty shall be exclusive and shall be in lieu of all other warranties, express, implied or statutory, including the implied warranties of MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

[^448]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.
    NOTE: All typical values have been characterized but are not tested.

[^449]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

[^450]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.
    NOTE: All typical values have been characterized but are not tested.

[^451]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

[^452]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY ObLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL be EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INGLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.
    NOTE: All typical values have been characterized but are not tested.

[^453]:    INTERSIL＇S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE． THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES，EXPRESS，IMPLIED OR STATUTORY，INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE．

    NOTE：All typical values have been characterized but are not tested．

[^454]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

[^455]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

[^456]:    NTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

[^457]:    INTERSIL＇S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE． THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES，EXPRESS，IMPLIED OR STATUTORY，INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE．

    NOTE：All typical values have been characterized but are not tested．

[^458]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INGLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.
    NOTE: All typical values have been characterized but are not tested.

[^459]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. the warranty shall be exclusive and shall be in lieu of all other warranties, express, implied or statutory, including the implied warranties of MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

    NOTE: All typical values have been characterized but are not tested.

[^460]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

[^461]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. the warranty shall be exclusive and shall be in lieu of all other warranties, express, implied or statutory, including the implied warranties of MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

    301600-001

[^462]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

    NOTE: All typical values have been characterized but are not tested.

[^463]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

[^464]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

[^465]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

    NOTE: All typical values have been characterized but are not tested.

[^466]:    INTERSIL＇S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE． THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES，EXPRESS，IMPLIED OR STATUTORY，INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE．

[^467]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

[^468]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.
    NOTE: All typical values have been characterized but are not tested.

[^469]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. the warranty shall be exclusive and shall be in lieu of all other warranties, express, implied or statutory, including the implied warranties of MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

[^470]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

    NOTE: All typical values have been characterized but are not tested.

[^471]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.
    NOTE: All typical values have been characterized but are not tested.

[^472]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.
    NOTE: All typical values have been characterized but are not tested.

[^473]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

[^474]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. the warranty shall be exclusive and shall be in lieu of all other warranties, express, implied or statutory, including the implied warranties of MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

    NOTE: All typical values have been characterized but are not tested.

[^475]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

[^476]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.
    NOTE: All typical values have been characterized but are not tested.

[^477]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY ObLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. the warranty shall be exclusive and shall be in lieu of all other warranties, express, implied or statutory, including the implied warranties of MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

    601120-002

[^478]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

[^479]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL be THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. the warranty shall be exclusive and shall be in lieu of all other warranties, express, implied or statutory, including the implied warranties of MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

[^480]:    INTERSIL＇S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE． the warranty shall be exclusive and shall be in lieu of all other warranties，express，implied or statutory，including the implied warranties of MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE．
    NOTE：All typical values have been characterized but are not tested．

[^481]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. the warranty shall be exclusive and shall be in lieu of all other warranties, express, implied or statutory, including the implied warranties of MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

    NOTE: All typical values have been characterized but are not tested.

[^482]:    INTERSIL＇S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE． THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES，EXPRESS，IMPLIED OR STATUTORY，INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE．
    NOTE：All typical values have been characterized but are not tested．

[^483]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

[^484]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

    NOTE: All typical values have been characterized but are not tested.

[^485]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.
    NOTE: All typical values have been characterized but are not tested.

[^486]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

    NOTE: All typical values have been characterized but are not tested.

[^487]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

    NOTE: All typical values have been characterized but are not tested.

[^488]:    NTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

    NOTE: All typical values have been characterized but are not tested.

[^489]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.
    NOTE: All typical values have been characterized but are not tested.

[^490]:    NTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.
    NOTE: All typical values have been characterized but are not tested.

[^491]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.
    NOTE: All typical values have been characterized but are not tested.

[^492]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

[^493]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

    NOTE: All typical values have been characterized but are not tested.

[^494]:    INTERSIL＇S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE． THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES，EXPRESS，IMPLIED OR STATUTORY，INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE．

    NOTE：All typical values have been characterized but are not tested．

[^495]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

[^496]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. the warranty shall be exclusive and shall be in lieu of all other warranties, express, implied or statutory, including the implied warranties of MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.
    NOTE: All typical values have been characterized but are not tested.

[^497]:    INTERSIL＇S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE． THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES，EXPRESS，IMPLIED OR STATUTORY，INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE．

[^498]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

    NOTE: All typical values have been characterized but are not tested.

[^499]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE.
    THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.
    NOTE: All typical values have been characterized but are not tested.

[^500]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.
    NOTE: All typical values have been characterized but are not tested.

[^501]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.
    NOTE: All typical values have been characterized but are not tested.

[^502]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.
    NOTE: All typical values have been characterized but are not tested.

[^503]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

[^504]:    INTERSIL＇S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE． THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES，EXPRESS，IMPLIED OR STATUTORY，INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE．

[^505]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.
    NOTE: All typical values have been characterized but are not tested.

[^506]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.
    NOTE: All typical values have been characterized but are not tested.

[^507]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. the warranty shall be exclusive and shall be in lieu of all other warranties, express, implied or statutory, including the implied warranties of MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.
    NOTE: All typical values have been characterized but are not tested.

[^508]:    INTERSIL＇S SOLE AND EXCLUSIVE WARRANTY ObLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE． THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES，EXPRESS，IMPLIED OR STATUTORY，INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE．

    NOTE：All typical values have been characterized but are not tested．

[^509]:    INTERSIL＇S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE． THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES，EXPRESS，IMPLIED OR STATUTORY，INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE．

[^510]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

    NOTE: All typical values have been characterized but are not tested.

[^511]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

    NOTE: All typical values have been characterized but are not tested.

[^512]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

    NOTE: All typical values have been characterized but are not tested.

[^513]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

    NOTE: All typical values have been characterized but are not tested.

[^514]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

    NOTE: All typical values have been characterized but are not tested.

[^515]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE.
    THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.
    NOTE: All typical values have been characterized but are not tested.

[^516]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

[^517]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

[^518]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

    NOTE: All typical values have been characterized but are not tested.

[^519]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.
    NOTE: All typical values have been characterized but are not tested.

[^520]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

[^521]:    NTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

[^522]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.
    NOTE: All typical values have been characterized but are not tested.

[^523]:    INTERSIL＇S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE． THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES，EXPRESS，IMPLIED OR STATUTORY，INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE．
    NOTE：All typical values have been characterized but are not tested．

[^524]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

[^525]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

    NOTE: All typical values have been characterized but are not tested.

[^526]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

[^527]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INGLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

    NOTE: All typical values have been characterized but are not tested.

[^528]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

[^529]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

[^530]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

[^531]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

[^532]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

    NOTE: All typical values have been characterized but are not tested.

[^533]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

    NOTE: All typical values have been characterized but are not tested.

[^534]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

[^535]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

    NOTE: All typical values have been characterized but are not tested.

[^536]:    INTERSIL＇S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE． the warranty shall be exclusive and shall be in lieu of all other warranties，express，implied or statutory，including the impled warranties of MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE．

    NOTE：All typical values have been characterized but are not tested．

[^537]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY Obligation with respect to this product shall be that stated in the warranty article of the condition of sale. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

    NOTE: All typical values have been characterized but are not tested.

[^538]:    INTERSIL＇S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE． the warranty shall be exclusive and shall be in lieu of all other warranties，express，implied or statutory，including the impled warranties of MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE．

    NOTE：All typical values have been characterized but are not tested．

[^539]:    INTERSIL＇S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES，EXPRESS，IMPLIED OR STATUTORY，INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE．
    NOTE：All typical values have been characterized but are not tested．

[^540]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

    NOTE: All typical values have been characterized but are not tested.

[^541]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

    NOTE: All typical values have been characterized but are not tested.

[^542]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. the warranty shall be exclusive and shall be in lieu of all other warranties, express, implied or statutory, including the implied warranties of MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.
    NOTE: All typical values have been characterized but are not tested.

[^543]:    NOTE: All typical values have been characterized but are not tested.

[^544]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. the warranty shall be exclusive and shall be in lieu of all other warranties, express, implied or statutory, including the implied warranties of MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

    NOTE: All typical values have been characterized but are not tested.

[^545]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

    NOTE: All typical values have been characterized but are not tested.

[^546]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

[^547]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

[^548]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

    NOTE: All typical values have been characterized but are not tested.

[^549]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. the warranty shall be exclusive and shall be in lieu of all other warranties, express, implied or statutory, including the implied warranties of MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

[^550]:    INTERSIL＇S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE． THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES，EXPRESS，IMPLIED OR STATUTORY，INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE．

    NOTE：All typical values have beon characterized but are not tested．

[^551]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

[^552]:    INTERSIL＇S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE． THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES，EXPRESS，IMPLIED OR STATUTORY，INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE

    NOTE：All typical values have been characterized but are not tested．

[^553]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. the warranty shall be exclusive and shall be in lieu of all other warranties, express, implied or statutory, including the implied warranties of MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

[^554]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. the warranty shall be exclusive and shall be in lieu of all other warranties, express, implied or statutory, including the implied warranties of MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

[^555]:    INTERSIL＇S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE． THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES，EXPRESS，IMPLIED OR STATUTORY，INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE．

    NOTE：All typical values have been charactenized but are not tested．

[^556]:    INTERSIL＇S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE． THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES，EXPRESS，IMPLIED OR STATUTORY，INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE．

    NOTE：A／l typical values have been characterized but are not tested．

[^557]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.
    NOTE: All typical values have been characterized but are not tested.

[^558]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

[^559]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

    NOTE: All typical values have been characterized but are not tested.

[^560]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

    NOTE: All typical values have been characterized but are not tested.

[^561]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

    NOTE: All typical values have been characterized but are not tested.

[^562]:    INTERSIL＇S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE． THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES，EXPRESS，IMPLIED OR STATUTORY，INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE．
    NOTE：All typical values have been characterized but are not tested．

[^563]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

[^564]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

    NOTE: All typical values have been characterized but are not tested.

[^565]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. the warranty shall be exclusive and shall be in lieu of all other warranties, express, implied or statutory, including the impled warranties of MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

    203403-003

[^566]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. the warranty shall be exclusive and shall be in lieu of all other warranties, express, implied or statutory, including the implied warranties of MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.
    NOTE: All typical values have been characterized but are not tested.

[^567]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL be EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

    NOTE: All typical values have been characterized but are not tested.

[^568]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

[^569]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

[^570]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

    NOTE: All typical values have been characterized but are not tested

[^571]:    intersil's sole and exclusive warranty obligation with respect to this product shall be that stated in the warranty article of the condition of sale. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.
    NOTE: All typical values have been characterized but are not tested.

[^572]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.
    NOTE: All typical values have been characterized but are not tested.

[^573]:    INTERSIL＇S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE． THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES，EXPRESS，IMPLIED OR STATUTORY，INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE．
    NOTE：All typical values have been characterized but are not tested．

[^574]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. the warranty shall be exclusive and shall be in lieu of all other warranties, express, impled or statutory, including the implied warranties of MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.
    NOTE: All typical values have been characterized but are not tested.

[^575]:    *These parameters are based upon characterization data and are not tested.

[^576]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.
    NOTE: All typical values have been characterized but are not tested.

[^577]:    INTERSIL'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

